
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

AI in the Wild

Robust evaluation and optimized
fine-tuning of machine learning algorithms

deployed on the edge

A.P. van der Burgt
M.Sc. Thesis

June 2023

Supervisors:
prof. dr. P. J. M. Havinga

dr. J. W. Kamminga
ir. E. Molenkamp

Pervasive Systems Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente
7522 NB Enschede

The Netherlands

A B S T R A C T

Estimates say that around 2.5 quintillion bytes of data are generated daily. Large computer clusters ana-
lyse this data in the cloud, requiring large amounts of energy for transmission and causing high latency.
This research aims to resolve these issues by moving these computations towards the edge, which is
called Edge Intelligence or TinyML. Little research has been done on EI or TinyML regarding evaluat-
ing deployed devices and further improving these devices. A system is often trained once and during
deployment, not monitored and rarely actively maintained. This thesis shows the methods emplyed to
evaluate deployed EI devices and offers methods to fine-tune deployed Machine Learning algorithms.
Whilst deploying ML algorithms on edge devices, Out-of-Distribution data plays an enormous role. This
OOD data is not gathered during training, but during deployment in a new environment. To research
the influences of a new unknown environment, represented by OOD data, a dataset was made which
contains six distributions, each containing ten objects.

To evaluate a deployed ML algorithm, it first should be determined how many images, including
their predictions, should be sent to the cloud to identify the classification performance accurately. This
research shows that 15 to 25 images per class are needed for every model, for a 95% confident Confidence
Interval of 1% to 2%.

When deploying an EI device, images and predictions must be sent back to a central point for
evaluation. Thus a power-efficient transmission protocol should be identified. This research shows that
NB-IoT is the most power-efficient transmission protocol for sending image data.

ML algorithms can be used in the cloud and on edge devices. However, moving from cloud to
edge devices and quantisation affects classification performance and power consumption. Complete and
quantised models on the cloud have similar accuracy, but quantised models take longer to run inference.
When comparing performance between quantised models in the cloud and on the edge CPU, there is a 7%
to 17% accuracy difference. Finally, accuracy is similar when comparing edge CPU with edge TPU. Power
consumption was reduced by 90% with the edge TPU due to decreased inference time. This research
compared MobileNetv2, EfficientNetB0, EfficientNetV2B0, EfficientNetV2S and InceptionResNetV2. The
first three models were more power efficient. This was due to decreased inference time of these models.
The latter two were dropped in this thesis due to the unsuitability of the models.

When the performance of a deployed device is identified, fine-tuning can be used to increase the
performance. This can be done in the cloud, and updated weights are sent to the edge device. When
performing fine-tuning in the cloud, data may need to be sent from the device to the cloud and vice
versa, which takes a lot of power. It is possible to perform fine-tuning on the device itself, but this can
consume a lot of power. This research aims to identify where the trade-off lies in power consumption
and final accuracy of deployed EI devices. The cloud-based fine-tuned models perform well on the cloud
but suffer the same performance drop as the non-fine-tuned models when moving to the edge, with
the accuracy difference varying from 10% to 25%. When using fine-tuning techniques on the edge, the
overall classification performance is higher than when running cloud-fine-tuned algorithms on the edge,
with an accuracy increase of about 10% to the best-performing cloud-based fine-tuning.

Considering the trade-off between cloud and edge fine-tuning, there is a crossing point where it
is more power efficient to use cloud-based fine-tuning. In this research, for MobileNetV2, this crossing is
located at around 480 images per class for fine-tuning. For EfficientNetV2B0, this is 8 images per class.
For both holds that even when fine-tuning for 1 image per class on the edge, classification performance is
higher than fine-tuning on the cloud. Power efficiency in its totality can be increased by using compressed
images, as often the classes are still recognizable for humans. Lastly, insight is given into the different
parameters which influence the battery life of a remotely evaluated fine-tuned EI device.

Overall, the presented work discusses a method for evaluation of a deployed Edge Intelligence
device and provides insights into different methods of fine-tuning the Machine Learning algorithm de-
ployed on the EI device. This thesis shows that it is possible and worth the trade-off between accuracy
and power consumption to use edge hardware to fine-tune edge deployed ML algorithms on the edge
device themselves, thus improving the classification performance for an edge deployed algorithm.

ii

A C K N O W L E D G E M E N T S

Dear reader, thank you for reading my master’s thesis. Getting the thesis to where it stands now took
me a while. Primarily due to constantly trying to squeeze out a bit more to be able to present an even
better thesis. I found working on small microcontrollers and computers to be something that was most
interesting to me during my studies. Placing it into context for it to be finally used in wildlife preservation
was a definite bonus for me. In this way, a passion of mine could be used to help the world further to a
better place.

I want to thank my supervisor Jacob Kamminga for a year of hard work and for being there to
spar with about ideas. Furthermore, being there to answer the endless streams of questions that I asked
and encountered.

Furthermore, I would like to thank my friends and family for being there when I needed it. Gradu-
ation work is not always easy, so talking to them and putting things in perspective was always nice.
Specifically, I’d like to thank Maartje and Sander for the brave task of reading through my entire thesis
for the first time to weed out the most obvious mistakes and imperfections. Likewise, Michael and Puck
helped me to lift the thesis and my own writing to a higher level. Next to that, I would like to thank
everyone who made my student life over the past seven years as to what it has been, something great for
me to remember.

I hope the thesis that lies before you, is as interesting to you as it has been to me, and will inspire
you to work further on the subject of this thesis, or in the topic of running machine learning on resource
constrained devices.

iii

C O N T E N T S

1 I N T R O D U C T I O N 6
1.1 Open issues . 6
1.2 Research Questions . 7
1.3 Approach . 8
1.4 Thesis Organization . 8

2 B A C K G R O U N D 9
2.1 Computing Structures . 9

2.1.1 Cloud Computing . 9
2.1.2 Edge Computing . 9
2.1.3 Fog Computing . 9

2.2 Edge Intelligence . 9
2.2.1 Applications of Edge Intelligence . 10

2.3 Machine Learning . 11
2.3.1 Learning methods . 11
2.3.2 Model Training . 11
2.3.3 Model Validation . 12
2.3.4 Model Compression . 12
2.3.5 Model Inference . 13

2.4 Distribution Shift . 13
2.4.1 Detecting Distribution Shift . 13

3 L I T E R AT U R E R E V I E W 14
3.1 Methodology . 14

3.1.1 Terminology . 14
3.2 Edge Intelligence . 16

3.2.1 History of Edge Intelligence . 16
3.2.2 AI in Edge Intelligence . 16
3.2.3 Evaluation of Deployed Edge Devices . 21

3.3 Distribution Shift . 21
3.3.1 Tackling Distribution Shift . 21
3.3.2 Similar Studies . 22

3.4 Challenges . 24
3.4.1 Resource Constraints . 24
3.4.2 Non-IID Data, Data Drift and Deployment of Edge devices 24
3.4.3 Computational Limits . 24

3.5 Open Issues . 25
3.5.1 Methods beside Supervised Learning and Federated Learning 25
3.5.2 Non-Independent and Identically Distributed and Out-of-Distribution Data 25
3.5.3 Further Quantisation . 25
3.5.4 Post Deployment Monitoring . 25
3.5.5 Lack of Evaluation Platforms for Edge Intelligent Models 25

3.6 Conclusion Literature Review . 25
4 S TAT E O F T H E A RT 26

4.1 Discussion of Software Platforms . 29
4.2 Discussion of Edge Hardware . 29

5 S TA N D A R D I S E D E D G E A I D I S T R I B U T I O N S H I F T D ATA S E T 32
5.1 Methodology . 32

5.1.1 Data Acquisition . 32
5.1.2 Dataset Evaluation . 34

6 D E T E R M I N I N G T H E A M O U N T O F E VA L UAT I O N I M A G E S 35
6.1 Methodology . 35

6.1.1 Model Choice . 35

iv

6.1.2 Model Training . 36
6.1.3 Model Inference . 36
6.1.4 Model Evaluation . 38
6.1.5 Platform Choice . 40
6.1.6 Downsampling Techniques . 40

6.2 Results . 41
6.3 Discussion . 42
6.4 Conclusion . 43

7 T R A D E - O F F B E T W E E N R E M O T E E VA L UAT I O N A N D P O W E R U S A G E 44
7.1 Methodology . 44

7.1.1 Creating an overview of critical power components 44
7.1.2 Platform Choice . 44

7.2 Results . 46
7.2.1 Creating an overview of critical power components 47
7.2.2 Modelling Battery Capacity vs Photos sent and Time 48
7.2.3 Human Effort . 48

7.3 Discussion . 49
7.4 Conclusion . 49

8 T R A D E - O F F B E T W E E N I N F E R E N C E O N E D G E C P U O R E D G E T P U A N D Q UA N T I Z AT I O N 50
8.1 Methodology . 50

8.1.1 Model Inference and Evaluation . 50
8.1.2 Experiment . 50

8.2 Results . 51
8.3 Discussion . 52
8.4 Conclusion . 53

9 D I F F E R E N C E I N P E R F O R M A N C E B E T W E E N R U N N I N G C L O U D F I N E -T U N E D M O D E L S I N

T H E C L O U D A N D O N T H E E D G E 54
9.1 Methodology . 54

9.1.1 Model Choice . 54
9.1.2 Model Fine-tuning . 54
9.1.3 Model Evaluation . 54
9.1.4 Experiment . 55

9.2 Results . 55
9.3 Discussion . 56
9.4 Conclusion . 56

10 T R A D E - O F F B E T W E E N F I N E -T U N I N G O N T H E E D G E A N D I N T H E C L O U D 58
10.1 Methodology . 58

10.1.1 Model Fine-tuning . 58
10.1.2 Model Evaluation . 59
10.1.3 Data Size and Compression . 59
10.1.4 Battery Charge over Time . 59
10.1.5 Experiment . 60

10.2 Results . 60
10.2.1 Classification Performance . 60
10.2.2 Power Consumption for Fine-Tuning . 61
10.2.3 Data Size and Compression . 64
10.2.4 Battery Charge over Time . 66

10.3 Discussion . 67
10.4 Conclusion . 68

11 C O N C L U S I O N A N D F U T U R E W O R K 69
11.1 Conclusions . 69
11.2 Future Work . 71

B I B L I O G R A P H Y 73
12 A P P E N D I C E S 82

v

A Results Experiment 1 . 82
A.1 Individual Distribution Accuracies . 82
A.2 Plots . 83

B Results Experiment 3 . 88
B.1 Classification Performances . 88
B.2 Summed Confusion Matrices . 89

C Results Experiment 4 . 93
D Results Experiment 5 . 96

D.1 Classification Performance . 96
D.2 Power Consumption . 98

vi

A C R O N Y M S

AE Autoencoder. 23
AI Artificial Intelligence. 6, 10, 14
AIoT Artificial Intelligence of Things. 14
ALSLR All Layers Small Learning Rate. 2, 5, 54–58, 60, 62, 63, 67, 70, 93, 96, 99
ANN Artificial Neural Networks. 17

CI Confidence Interval. ii, 3, 4, 35, 39, 41–43, 69, 82–87
CORAL Correlation Alignment. 22
CPU Central Processing Unit. ii, 2–5, 7, 8, 19, 50–53, 59, 60, 70, 88, 91

DANN domain-Adversarial Neural Networks. 22
DMM Digital Multimeter. 51
DSE Design Space Exploration. 35, 50
DT Decision Trees. 17

EI Edge Intelligence. ii, 2, 4, 6, 7, 9, 10, 14–17, 19–21, 24–26, 32, 42, 47, 48, 67–69
ERM Empirical Risk Minimization. 22

FL Federated Learning. 14, 18, 20, 21, 24, 25
FN False negative. 38
FP False positive. 38

GPU Graphics Processing Unit. 7, 19, 29, 44, 50, 52, 54

ID In-Distribution. 5, 22, 23, 32, 34, 94
IID Independent and Identically Distributed. 14, 18, 19, 24, 25
IoT Internet of Things. 6, 9, 14, 49

k-NN K-Nearest Neighbour. 17

LLRT Last Layer Randomized weights Training. 2, 5, 54, 55, 58, 60, 62, 63, 67, 71, 93, 96, 99
LLSLR Last Layer Small Learning Rate. 2, 5, 54, 55, 58, 60, 62, 63, 67, 70, 71, 93, 96, 99
LR Logistic Regression. 17
LSVM Linear Support Vector Machines. 17

MCU Microcontroller Unit. 14, 16, 17, 19, 24
MIPI CSI-2 MIPI Camera Serial Interface 2. 45
ML Machine Learning. ii, 2, 6–11, 13–21, 24, 25, 29, 35, 36, 38, 40–42, 50, 51, 53–55, 59, 66–69, 71,

72

OOD Out-of-Distribution. ii, 2, 3, 6–8, 21–25, 32, 34–36, 42, 43, 69–71, 95, 97

RF Random Forest. 17

SL Supervised Learning. 23, 25
SSL Self-Supervised Learning. 23
SVM Support Vector Machines. 17

TF lite Tensorflow Lite. 19, 29, 35, 40, 50, 52, 60, 70, 72
TinyML Machine Learning on Microcontrollers. ii, 6, 14–17, 19, 20, 24–26, 29
TN True negative. 38
TP True positive. 38
TPU Tensor Processing Unit. ii, 2–5, 7, 8, 29, 30, 35, 40, 45, 46, 50–54, 58–60, 70, 88, 92, 98

USB Universal Serial Bus. 45

WSL Windows Subsystem for Linus. 45

1

L I S T O F F I G U R E S

Figure 1 An example of how Out-of-Distribution data may occur, which would then be
misclassified [17]. 7

Figure 2 Levels of Edge Intelligence level 1 to 6 [10]. 10
Figure 3 An overview of a Machine Learning model pipeline [31]. 11
Figure 4 An example of accuracy and loss convergence during training [32]. 12
Figure 5 Fitting of models visualized [33]. 12
Figure 6 Venn Diagram showing the overlap between the different Terminologies 15
Figure 7 Overview of a TinyMLOps system [11] . 16
Figure 8 Architecture Modes of distributed learning. (a) Centralized, (b) Decentralized,

(c) Hybrid [10] . 18
Figure 9 Different types of Solo-Inference [23] . 20
Figure 10 Different types of Hybrid Co-Inference [23] . 20
Figure 11 Different types of Peer-to-Peer Co-Inference [23] 20
Figure 12 Example images of the created dataset. In respective order, bear in forest, apple

in cityscape, backpack in uniform, ball in office, fork in pub and remote in park. . 33
Figure 13 Overview of this experiment and the steps taken. 35
Figure 14 Overview of how training has been done for making averaged ML models which

were evaluated for the number of evaluation images. 38
Figure 15 Overview of how training has been done for making models which are reviewed

for the number of evaluation images. 40
Figure 16 Average accuracy and loss with Confidence Intervals of EfficientNetV2B0. 41
Figure 17 Accuracy across the different distributions for all ML models. The whiskers show

the deviation in accuracy across the distributions. 42
Figure 18 Flow of data in a deployed device. The different steps consume varying amounts

of power, with the transmission of data being the most power-consuming step. . . 45
Figure 19 A bar chart displaying the different power consumption for transmitting a 36.0

KB image using different protocols. 48
Figure 20 The results for the different models on the different architectures. The whiskers

denote the variation in accuracy for the different distributions in the holdout set.
The results are shown for the model and quantised model in the cloud, as well as
the quantised model on edge CPU and the compiled quantised model on edge TPU. 52

Figure 21 Overview of how training has been done for fine-tuning the ML models that were
fine-tuned with varying numbers of training images. 55

Figure 22 The results for EfficientNetV2B0 fine-tuned models trained on the cloud and
tested on both cloud and edge to investigate the impact of testing on different
platforms. The accuracy is given for the varying amounts of fine-tuning images.
The accuracy of 0 images per class is given by the non-fine-tuned models as found
in Chapter 8. 56

Figure 23 The different steps between fine-tuning on-device and fine-tuning in the cloud.
The steps that happen on the edge device are the power-consuming parts which
need investigation. 58

Figure 24 The results for EfficientNetV2B0 fine-tuned models that are trained on the cloud
and tested on edge and fine-tuned on the edge. The accuracy is given for the
varying amounts of fine-tune training images. The accuracy of 0 images per class
is given by the non-fine-tuned models as given in experiment 3 in Section 8.2. . . 61

Figure 25 Time taken for fine-tuning per edge model in seconds. 62
Figure 26 The power consumption of fine-tuning the edge models in Joule per model. 63
Figure 27 The power consumption of fine-tuning the edge models in Joule per model. The

most power-efficient cloud model and transmission protocol are shown (LLRT
and LLSLR, no ALSLR). 63

Figure 28 Original Teddy image scaled to 224 x 224 pixels (36.0KB). 65

2

Figure 29 Teddy image with 15 of 224 Principal Components (5.35KB). 65
Figure 30 Teddy image with 6% JPG compression (2.51KB). 65
Figure 31 Original Remote Image scaled to 224 x 224 pixels (32.0KB). 65
Figure 32 Remote image with 15 of 224 Principal Components (2.86KB). 65
Figure 33 Remote image with 6% JPG compression (1.78KB). 65
Figure 34 Remote image with 50 of 224 Principal Components (9.52KB). 65
Figure 35 Remote image with 22% JPG compression (4.47KB). 65
Figure 36 Original Phone Image scaled to 224 x 224 pixels (54.3KB). 65
Figure 37 Phone image with 50 of 224 Principal Components (28.0KB). 65
Figure 38 Phone image with 22% JPG compression (4.41KB). 65
Figure 39 Activation layers from the neural network used (EfficientNetV2B0) for the teddy

image. 66
Figure 40 Activation layers from the neural network used (EfficientNetV2B0) for the remote

image. 66
Figure 41 Activation layers from the neural network used (EfficientNetV2B0) for the phone

image. 66
Figure 42 The battery charge of a 72Wh battery, when 100 36.0KB images are inferred

every day, a 0.21% on time with 3.9W nominal power usage, and 0.001W idle
power usage, 0W incoming power. Furthermore, 20 images per class are sent for
evaluation, and 80 images per class for fine-tuning, for a total of 10 classes. The
evaluation set, as well as fine-tuning, occurs every 31 days. In this graph, two
different combinations of models and transmission protocols are shown. 67

Figure 43 Average accuracy and loss with Confidence Interval of MobileNetV2. 83
Figure 44 Average accuracy and loss with Confidence Interval of EfficientNetB0. 84
Figure 45 Average accuracy and loss with Confidence Interval of EffiecientNetV2B0. 85
Figure 46 Average accuracy and loss with Confidence Interval of EfficientNetV2S. 86
Figure 47 Average accuracy and loss with Confidence Interval of InceptionResNetV2. 87
Figure 48 Summed confusion matrixes of the full models ran on Jupyter Lab in experiment 3. 89
Figure 49 Summed confusion matrixes of the quantised models ran on Jupyter Lab in ex-

periment 3. 90
Figure 50 Summed confusion matrixes of the quantised models ran on the edge CPU in

experiment 3. 91
Figure 51 Summed confusion matrixes of the quantised models ran on the edge TPU in

experiment 3. 92
Figure 52 The accuracy for the varying amounts of OOD data for fine-tuned models that are

trained on the Cloud and tested on both Cloud and Edge to investigate the impact
of testing on different platforms. The accuracy of 0 images per class is given by
the non-fine-tuned models as given in experiment 3. 95

Figure 53 The accuracy for the varying amounts of OOD data for fine-tuned models that are
trained on the Cloud and tested on Edge, as well as the models fine-tuned on the
Edge. The accuracy of 0 images per class is given by the non-fine-tuned models
as given in experiment 3. 97

Figure 54 The power consumption in Joule per cloud and edge model, which is consumed
for fine-tuning. The protocols are shown for images of 36.0kB. 98

Figure 55 The power consumption in Joule per cloud and edge model, which is consumed
for fine-tuning. The protocol which is most power efficient is shown. 99

3

L I S T O F TA B L E S

Table 1 Model Compression Techniques . 13
Table 2 Difference in terminology between terms that were often associated to be Edge

Intelligence. The terms of interest are highlighted. 14
Table 3 Training Architectures Advantages and Disadvantages 18
Table 4 Edge Intelligence Hardware [4]. Abbreviations consist of Neural Processing Unit

(NPU), Application Specific Integrated Circuit (ASIC), Artificial Intelligence Pro-
cessing Unit (AI PU) and Digital Signal Processor (DSP) 26

Table 5 Edge Intelligence Frameworks [4] . 26
Table 6 TinyML Hardware [16] . 27
Table 7 TinyML Software Frameworks [15, 16, 104, 105] 28
Table 8 Design Space Exploration of Hardware Choice, from "- -" to "++", which repres-

ents a score from -2 to +2. This score is multiplied with the weight and finally
summed to a total which is shown in the last column. 30

Table 9 Design Space Exploration of Hardware Choice, from "- -" to "++", which repres-
ents a score from -2 to +2. This score is multiplied with the weight and finally
summed to a total which is shown in the last column. 31

Table 10 The different distributions and classes in the dataset, with a description. 33
Table 11 This table explains how the metrics of the DSE are related to the ++/- - awarded

in the DSE. 36
Table 12 Design Space Exploration of Algorithm Choice (Edge), from "- -" to "++", which

represents a score from -2 to +2. This score is multiplied with the weight and
finally summed to a total which is shown in the last column. 37

Table 13 Design Space Exploration for Camera Choice. For the MIPI CSI-2 cameras, the
Coral AI Camera [158], and the e-con Systems Coral cameras [159] were used,
and as a reference for the USB camera the Logitech C920 [160] was used. 45

Table 14 Comparison between different long-range communication techniques, which are
a possible use case for edge devices. Values were obtained from research and
datasheets which are given in the references column. 46

Table 15 The power consumption and relative power consumption of the different parts
of a EI device. Power consumption is calculated for 1 image. For camera power
consumption, the power consumption in Watt and the frames per second from
Table 13 can be used to calculate the amount of Joules used per image. For pre-
processing and inference, the values from Table 17 are used. For feedback trans-
mission, the values from Table 16 are used. 47

Table 16 Comparison between power requirements for a 36.0 KB picture to be sent by
different communication protocols. 47

Table 17 Power consumption and inference time of models on the edge device. Here the
quantised models are shown running on CPU and TPU. A metric for power con-
sumed per 36.0KB image inferred is given. 52

Table 18 The power consumption of fine-tuning different models on the edge device, as
well as the power needed to receive the updated weights from the cloud. These
values are also shown in Figure 55. 62

Table 19 Results of compression in size and percentage. The percentages are calculated
with an original image size of 36.0KB. 66

Table 20 Mean accuracy and 95% Confidence Interval of algorithms tested on all distribu-
tion versus
the number of evaluation images per class. The distributions on the left were the
distributions used as the evaluation set. 82

Table 21 The performance of the quantised and full models. For every model, the accuracy
of the summed confusion matrixes is given, as well as the F1-score, precision,
recall and time. 88

4

Table 22 Here the quantised models are shown running on CPU and TPU. For every model,
the accuracy of the summed confusion matrixes is given, as well as the overall
F1-score, precision and recall. 88

Table 23 The accuracy for the fine-tuned models in experiment 4. 93
Table 24 Performance of the full models with 80 images per class of In-Distribution data

with 5-fold cross-validation. 94
Table 25 The accuracy and F1 score of the fine-tuned models in the cloud and on the edge. 96
Table 26 The average time in seconds required per fine-tuning for each edge TPU model. . 98
Table 27 The average power in Joule required per fine-tuning for each edge TPU model. . . 98
Table 28 Here the cloud fine-tuned models are shown. The average Power in Joule needed

per fine-tuning a model is shown. This is needed by the edge device for receiving
the updated weights for the fine-tuning techniques LLRT, LLSLR and ALSLR. . . . 99

5

1
I N T R O D U C T I O N

Estimates say that around 2.5 quintillion (1018) bytes of data are generated every day [1, 2]. This is not
only done by hand but more and more by autonomous sensors. These sensors include Internet of Things
(IoT) devices placed in different environments and devices like smartphones [3]. These environments
range from home environments for intelligent home applications to industry IoT devices and sensors
that are connected and work together by gathering data to monitor devices and applications that are
run.

Using dedicated computing clusters in the cloud to handle large amounts of data is gradually
becoming unable to provide the needed computing power [4]. Next to this needed computing power, the
power consumption by a large computing cluster is also large, and this can be reduced by performing
calculations on the edge in advance [5, 6, 7]. Furthermore, high latency is introduced by sending data
to the cloud and receiving the prediction [5, 6, 7, 8, 9]. By performing computations on the edge, this
latency is reduced.

To counteract this problem, research has shifted to move these computations towards the edge [5,
6, 4, 10]. Moving these computations towards the edge allows for low-latency data handling and less
transmission overhead. Edge Intelligence (EI) is the solution for this, as it combines the powerful com-
putation of Artificial Intelligence (AI) and Machine Learning (ML) with low-power edge devices. EI can
reduce the large amounts of raw data to data that only holds the needed information. Cloud and edge
are not exclusive and can complement each other [4].

The usage of EI introduces numerous challenges and requirements which should be managed,
and in this thesis, the following are addressed: (i.) The EI devices are to be placed in remote locations
and should not be obtrusive. This leads to physical limitations, but also limitations in computational
power, memory resources, and available power. (ii.) The devices and sensors may encounter degradation,
meaning there should be a way to monitor their performance at a distance. (iii.) The devices are placed in
different locations, meaning they all have different surroundings, thus Out-of-Distribution (OOD) data
is obtained by all of them. (iv.) Edge devices have increasingly powerful processing units, sometimes
also a ML accelerator. The difference between such a ML accelerator and the normal processing unit
should be investigated, as it may lead to decreased power consumption. (v.) The deployed ML algorithm
performance may vary if deployed on the edge or in the cloud. It is challenging to find the difference in
performance without a practical example.

1.1 O P E N I S S U E S

From the literature research done in Chapter 3, open issues were found which are to be tackled in this
research. These are identified to be the following:

Post-Deployment Monitoring of deployed Edge Intelligence devices. The research that is avail-
able for EI and TinyML has mostly been aimed towards the training of the models that need to be
run. When deployed, these models are not monitored and evaluated on their post-deployment per-
formance [11]. Doing so may result in being able to improve the performance of ML models during
deployment. When the device is deployed, the accuracy at that new place should be evaluated by
capturing images and sending them, along with their predicted classes, to the cloud. When this is
sent to the cloud, a human expert may need to identify the actual label for the image, and accur-
acy can be calculated. Sending these images and labels is costly due to resource constraints like
power usage. Therefore we would like to send as few of them as possible without compromising
the evaluation.

The Out-of-Distribution nature of real-world data. Data captured in the real world often contains
changing backgrounds due to sensor degradation, changing seasons, or the sensor being placed in
a different location [12, 13]. This leads to the captured data being data which has not been seen
during training, thus being Out-of-Distribution. An example of OOD data can be seen in Figure 1.

6

Power consumption of a deployed Edge Intelligence device. The power consumption of a de-
ployed EI device has not been monitored. Next to that, there is a difference in power consumption
between running inference in the cloud and running inference on the edge. Many different trans-
mission protocols are used, and there has not been an identification for an ideal EI deployed device.

Performance difference of different processing units in a Edge Intelligence device. There has
been research into running quantised models on edge devices [14]. Mostly this research concerns
the CPU and the GPU. However, a ML accelerator such as the TPU has not been discussed in this
research but should be a good addition to these comparisons.

Performance difference of a deployed Edge Intelligence device versus the cloud for OOD data.
Research has been done on the performance differences between edge and cloud systems [15, 16,
4]. Nevertheless, this is never done with real-world OOD data in mind.

Figure 1: An example of how Out-of-Distribution data may occur, which would then be misclassified [17].

1.2 R E S E A R C H Q U E S T I O N S

This research solves the above-mentioned research gaps and open issues. From these issues concerning
OOD, real-life data and distribution shift in EI devices, the following main research question can be
formulated:

How to achieve the best classification performance and reliable evaluation for a deployed edge intelli-
gent device, while using the least amount of power?

The first sub-question investigates the evaluation of a deployed edge intelligent device in a new distribu-
tion. The number of images that need to be sent back were minimized to minimise the power needed for
evaluation. To find the minimum number of evaluation images, the first research question is posed:

How many images are needed, for a statistically reliable evaluation of a multi-class classification?

The relationship between power usage and the remote evaluation of the deployed system needs to be
identified. Deploying Edge Intelligence on resource constraint devices is a complex multivariate device
with various trade-offs, including power efficiency, algorithm performance, and human effort (scalabil-
ity). State-of-the-art does not show the proper evaluation of the effects of these factors. Therefore we
pose the following sub-questions:

What is the trade-off between evaluation reliability, power usage, and human effort?

What parts of remote evaluation influence power consumption?

7

Next, running a Machine Learning model on an edge device needs adjustments to the model to fit the
model on target hardware. The main techniques which are used are pruning, quantisation and knowledge
distillation. These are all techniques which may affect the performance of the model. To investigate the
effect of model quantisation, the following question is posed:

What is the trade-off between inference on edge CPU or edge TPU, and how does quantisation influence
this?

Fourthly, the effect of hardware architecture differences on the performance of a model is investigated.
Various factors affect performance, such as different libraries for coding being used and running the code
on other hardware. The following question is posed:

What is the trade-off between inference of cloud fine-tuned models on cloud and edge, and how does
quantisation influence this?

Related work uses fine-tuning to counteract the distribution shift [18, 19, 20]. Fine-tuning can be done
by fine-tuning the quantised model on the device or by fine-tuning the full model in the cloud and then
sending a quantised version to the edge device. These are two different ways of handling fine-tuning, yet
they may affect classification performance and power consumption differently. Therefore, we investigate
the following sub-question:

What is the trade-off between fine-tuning on the edge and in the cloud?

To investigate all these questions, a dataset is needed, which consists of OOD data. This dataset is to
be gathered and needs to be able to run on different models and edge devices. The dataset reflects the
problem statement as accurately as possible. To ensure this, the dataset exists out of different domains to
help train for OOD data. Furthermore, object variability is desired to ensure that classification is not too
easy. Next, this dataset is to be easily extendable by others and easy to make, meaning that the classes
and domains are available to anyone. This leads to the sub-question:

How to make a standardised edge AI distribution shift dataset, that allows supervision over different
distributions?

1.3 A P P R O A C H

A real-world dataset is collected and annotated. The data comprises 10 classes in various environments
to create separated distributions. This dataset is then used for the following experiments. To examine sub-
question 1, the dataset is used to train and evaluate ML models, where the amount of evaluation data is
incrementally enlarged. For each evaluation set, the performance difference between the full evaluation
set and this evaluation set is determined. From this difference, a trade-off between reliable evaluation
can be decided. To answer sub-question 2, a model is developed to visualise the power consumption
of different transmission radios. To investigate sub-question 3, the ML models of sub-question 1 are
quantised and compiled to run on the edge CPU and edge TPU. The classification performance and power
consumption are then compared for a trade-off between the different architectures and models. Sub-
question 4 investigates how cloud fine-tuned models perform on cloud architecture as compared to how
they perform on edge architecture. The ML models, which could be compiled for the edge architecture,
are compared based on classification performance. Lastly, sub-question 5 is examined. The trade-off
between fine-tuning in the cloud and fine-tuning on the edge was investigated by deploying different ML
models on a cloud infrastructure and an edge device with an edge TPU Machine Learning accelerator.
This comparison was done based on classification performance and power consumption for the different
fine-tuning methods.

1.4 T H E S I S O R G A N I Z AT I O N

This thesis is structured in the following way. First, background research and a literature review are done
in Chapters 2 and 3. Then an overview of the current state-of-the-art hardware and software used is
given in Chapter 4. The gathered dataset is discussed in Chapter 5. Next, the experiments to answer the
research questions are presented in Chapter 6 till 10. The conclusions drawn and work that can be done
for improvement as found in the experiment chapters are concluded in Chapter 11

8

2
B A C K G R O U N D

This chapter discusses the background of this research to be able to better understand the concepts and
methods which are discussed later on in this research. Some general concepts in edge computing and
Machine Learning (ML) are covered, to then be further extended in the next chapter with research by
others. Furthermore, some methods are explored which can be used to reduce the size and complexity
of a ML model. This can be used so that this ML model can run on an edge device with limited resources.

2.1 C O M P U T I N G S T R U C T U R E S

To better understand the types of computing structures that we are dealing with, it is best to identify the
differences between the different structures.

2.1.1 Cloud Computing

Cloud Computing is the most used Internet of Things (IoT) data computation method as of now [21].
IoT in this context means that devices send their data to one central storage cluster to be stored or to be
used in computations, thus storing data locally is unnecessary. Another advantage of cloud computing
is that large computer clusters can perform calculations on the stored data. This often leads to fast
calculations on large amounts of data. Another significant advantage is that multiple devices can access
the data simultaneously. On the other hand, a disadvantage of cloud computing is that often high latency
is introduced because of the larger communication overhead.

2.1.2 Edge Computing

Edge Computing takes data storage and processing completely away from the centralised perspect-
ive [21]. Data is stored and processed locally on the device that gathers the information, and only the
results from data computation are sent to a cloud. This decentralized approach does make accessing the
data harder. Edge computing does not depend on the cloud, and edge devices can operate independently.
Nevertheless, a significant disadvantage is that edge computing hosts less powerful computing devices
to use, leading to slower inference.

2.1.3 Fog Computing

Fog Computing can be seen as the layer between Cloud and Edge Computing [21]. It extends cloud
computing by bringing data storage and computation closer to the edge. Fog Computing can distribute
storage and computation over multiple nodes and store data physically closer to the edge. Nodes in
the fog layer, the layer between cloud and edge, can decide whether to process it locally or send it
to the cloud. While urgent requests are processed in the fog, the cloud handles less sensitive data or
not-so-urgent requests. This indicates that it is more time-efficient than cloud computing, which may
be necessary for some systems. However, a disadvantage would be the significantly larger overhead for
communication.

2.2 E D G E I N T E L L I G E N C E

Edge Intelligence (EI) combines edge computing and artificial intelligence. Different terminology has
been used to describe how edge and end devices are used to process data, some pointing towards dif-
ferent goals than others. In Table 2 in Chapter 3, synonyms for EI can be seen. Edge Intelligence can be
divided into different autonomy levels, as seen in Figure 2. Here EI, as discussed in this thesis, can be
seen as levels 4, 5 and 6.

9

Figure 2: Levels of Edge Intelligence level 1 to 6 [10].

Figure 2 mostly shows where the training of the ML model happens and where the inference of new
data happens. It is good to note the difference between edge and device, as the term edge can be the
collaboration of multiple end devices, whereas the term device refers to just one device working on its
own.

2.2.1 Applications of Edge Intelligence

To illustrate what EI can be, it is good to see where it is used in practice, including the AI techniques
that can be used. The first application area where EI is present is Industry 4.0. This is accomplished by
performing predictive maintenance [22, 23] or by optimising processes [3, 4]. For optimisation in the
industry, EI is used to see where bottlenecks are located. For these applications, response latency, risk
control, and privacy protection must be addressed [4]. Here EI can be used to process gathered data,
which can then be evaluated using different frameworks (i.e. CEML) [24]. Moreover, EI is also used in
the autonomous vehicle industry [4, 23, 25], where connectivity between such vehicles can vary from
networking to sensing and the computation of the different sensors.

A second popular field is smart home and city [4]. This is due to the distribution of sensors and
actuators, which can be used for indoor positioning systems or enabling robots for visual servicing. For
a city network, EI is most interesting due to the geospatial nature of the data connected to the different
sensor nodes [26].

Real-Time Video Analytics is an often applied field [4] enabling smart homes and cities. It is used
in VR, AR and intelligent surveillance. EI is interesting in this application, as typically deep learning
techniques are resource expensive and specifically, in surveillance, there must be low latency and high
reliability. This computation can also be done on a hybrid level at different levels, as shown in Figure 2.

Within nature and agriculture [3, 10, 22, 27], EI can also be used. Application areas include us-
ing EI to detect diseases on plants and crops using a smartphone application. Since it runs on the end
device, farmers in remote areas can also use the application. Next to that, ML powered nodes can be
used to monitor wildlife, to ensure that humans do not interfere with them. Especially for anti-poaching
applications [28, 29, 30], EI can be interesting due to minimally invasive monitoring and monitoring for
extended periods. Another application in this area is nature conservation and Digital Species Identifica-
tion. These systems can automatically detect species. They can be used to keep track of the population

10

in an area or to identify which prey is eaten by which predator. This allows for the mapping of the
biodiversity in a location.

2.3 M A C H I N E L E A R N I N G

A popular way of data analysis in recent years has been adding ML to existing applications. Therefore,
knowing what steps ML consists of is important. This section briefly overviews the training steps and
deploying a ML model. Figure 3 gives an overview of a typical Machine Learning model pipeline.

Figure 3: An overview of a Machine Learning model pipeline [31].

2.3.1 Learning methods

Machine learning can be implemented in various ways, of which the two most common methods are
supervised learning and unsupervised learning. Supervised learning is an approach that uses labelled
datasets to train. Often these algorithms are used for classification or regression as these are used to
either classify or predict outcomes based on the inputs. Unsupervised learning is an approach that uses
unlabeled datasets for training. Often these algorithms are used to find patterns in the data utilizing
clustering or are used for dimensionality reduction.

Then there are some less often-used learning methods, such as semi-supervised, incremental, and
active learning. Semi-supervised learning combines a small amount of labelled data with unlabelled
data. With the help of the labelled data, it can cluster and label the unlabelled data and decide upon
a decision boundary between different clusters. Incremental learning is a learning method in which the
input data is continuously used to extend an existing model. For example, it could learn a new class in
a classification algorithm. While some algorithms already inherently allow incremental learning, others
must be adapted. Lastly, there is active learning, which is a part of supervised learning. Here a learning
algorithm can ask a human expert or another information source like a larger ML model to label new
input data so that the model can be updated.

2.3.2 Model Training

There are many different types of ML models (i.e. Decision Trees, Support Vector Machines, Naive Bayes
and the now often-used Neural Networks), which all need to be trained before deployment [4]. There
are different ways of training these models, which often depend on the final application for which the
model is needed. When training a model, the data is split into parts: one to train the model (typically
60%), one to validate the model when training (20%) and a final part to test the fully trained model at
the end (20%). The weights associated with the model are generally adjusted by an algorithm to increase
or decrease a performance metric. The metrics which are often used are loss and accuracy. An example
of the convergence of accuracy and loss during training can be seen in Figure 4.
When training, it is also possible to overfit or underfit a model [32]. Overfitting occurs when the model
is trained on the training data for too long, and the performance on this training data increases, but the
performance on the validation data decreases. This is often due to a lack of generalisation of the new

11

Figure 4: An example of accuracy and loss convergence during training [32].

data. Underfitting occurs when a model is not able to make good predictions. Often this happens due to
the model being too small to capture the complexity of the data, or due to not enough training epochs.
Figure 5 shows an example of underfitting, overfitting and a correct fit.

Figure 5: Fitting of models visualized [33].

2.3.3 Model Validation

When a model is trained, it is important to test the model between different training epochs to see
how the model is performing [32]. This validation data is a better representative measure to see how
the model is doing, as it is data that the model has not seen before. When comparing the training and
validation performance, one can see if underfitting or overfitting occurs.

However, when the validation data is used, it may also occur that the model starts to overfit on
both the training and validation data. To counter this, a final test dataset is used to test the fully trained
model for its final performance. If the model returns a bad accuracy on the test set, then the model
architecture may need to be improved, or another architecture should be chosen for the data. On the
other hand, if the model performs well on the test set, it can be deployed to devices.

2.3.4 Model Compression

Bigger models often lead to better classification performance. Nonetheless, they also take valuable
memory resources on the deployed device [23]. The trained model can be compressed to decrease the
needed memory to store the model and possibly increase inference time. The six main techniques of
model compression are shown and explained in Table 1.

12

Table 1: Model Compression Techniques

Model Compression Technique Explanation

Model Pruning Removing redundant weights or neurons, reducing memory footprint [23, 10].

Low-rank Approximation
Decomposing a large matrix with weights into two smaller matrices.

This may lead to less computation complexity, thus faster results and a smaller footprint [23].

Parameter quantisation
Using a more compact data format to store parameters instead of a larger floating-point format.

This reduces the memory footprint and increases energy efficiency [23, 10]
.

Vector quantisation Grouping weights of a vector to share the same weight, thus compressing the model, reducing memory footprint [23].

Knowledge distillation Training of a small neural network with the help of a larger one, reducing memory footprint [23].

Lightweight model design Using specific tailor-made models for resource-constrained devices, reducing memory footprint [23].

2.3.5 Model Inference

When a ML model is deployed on a device, it can be used to infer new data, which is called inference [32].
For this to happen, the input is retrieved from sensors or other hardware, which may need to be filtered
or pre-processed for use by the ML model. When inference is run, it is critical that the input is clean
and there are no inconsistencies due to faulty sensors or other faulty hardware, as this could result in
misclassification.

2.4 D I S T R I B U T I O N S H I F T

A distribution shift is when the data with which a model works changes over time, influencing the
predictions and causing the accuracy to drop [34]. There are two different distributions to identify,
which are the source distribution and the target distribution. Respectively, these are the data on which
the model is trained and the data on which the model runs inference after deployment. There are three
different types of distribution shifts to distinguish, which are:

1. Covariate shift. This is when the distribution of the input changes, but the conditional probability
of a label for a certain input remains the same.

2. Label shift. This is when the distribution of the output changes, but the conditional probability of
a certain input for a certain output remains the same.

3. Concept drift. This is when the input distribution is the same, but the conditional probability of a
certain output for a specific input changes.

2.4.1 Detecting Distribution Shift

Distributions shifts are not necessarily a problem, only when they cause your model to perform differ-
ently than desired [34]. It is good to investigate when this happens without an apparent reason. The
model’s performance can be checked in two ways: calculating accuracy or monitoring the distributions.
Monitoring the distributions can be done for the input, label and conditional distributions. It is the easiest
to keep track of the accuracy, but this does require ground truth labels, which are not always available.
In the case when the ground truth labels are not available, observing the distributions is an option. In
this case, the changes in the input distribution are often monitored. Examples include the distribution
divergence of principal feature components, mean and variance of streaming inputs, or using the confid-
ence score of predictions [35]. In addition, statistical tests can be used to detect if two distributions are
significantly different.

13

3
L I T E R AT U R E R E V I E W

In this chapter, the different terminologies surrounding Edge Intelligence (EI) are researched, and related
works are investigated. Furthermore, the challenges with working on EI and TinyML are explored, and
the open issues are identified.

3.1 M E T H O D O L O GY

For this literature review, the sources used to search for related works are the University of Twente
library [36] and Google Scholar [37]. The different keywords which are used are the following: Edge
Computing, TinyML, Edge Intelligence, Distributed Learning, Federated Learning, Edge Machine Learning,
Edge Artificial Intelligence, Embedded Machine Learning, Embedded Artificial Intelligence, Artificial Intelli-
gence of Things (AIoT), Embedded Intelligence, Post Deployment Monitoring.

3.1.1 Terminology

As can be seen in the keywords in Section 3.1, similar terms exist, which are all related to one another
but are not always synonyms. To get better insight, an overview has been made in Table 2. The main
terminology that is utilized and investigated further in this research is EI and TinyML. This is because the
most relevant papers were identified with these keywords. The search into the terminology as presented
in Table 2 was not exhaustive, as can be seen by the lacking synonyms in the not further researched
terminology.

Table 2: Difference in terminology between terms that were often associated to be Edge Intelligence.
The terms of interest are highlighted.

Term Explanation Synonym

Edge Computing
Performing calculations on the edge,

to offload the calculations from the cloud. This is often to reduce data transmission.
Edge Computing does not necessarily include Artificial Intelligence.[4, 6]

n/a

Fog Computing

An architecture where the cloud is extended to be closer to the edge devices,
thus improving latency and increasing security by performing calculations closer to the edge. [6]

As opposed to cloud computing, instead of one central service,
it offers multiple decentralised services.

n/a

Cloud Computing
A central fast and secure computing and data storage service

that allows multiple devices to connect to it and use its computing resources [23]
n/a

Distributed Learning
Training ML models on multiple devices,

using Independent and Identically Distributed (IID) data with high-performance nodes [23].
n/a

Federated Learning
Training ML models locally on data from multiple resource-constrained nodes,
while preventing data leakage and using Non-IID data with varying amounts

of data on each node.[25]
n/a

Edge Intelligence
The combination of Edge Computing and AI or ML [10].

An implementation of this could be that AI is combined with FPGAs or SoCs [8].
Next to that, AI implemented on IoT devices can also be considered Edge Intelligence [3].

Edge machine learning [6],
Edge artificial intelligence [10],

Embedded machine learning [8],
Embedded artificial intelligence [38],

Artificial Intelligence of Things (AIoT) [3].

TinyML
The deployment of ML on Microcontroller Unit (MCU)

that are at the outermost edge of the infrastructure.
Using Figure 2, it can be compared to level 3 and level 6 [15, 16, 32].

n/a

Embedded Intelligence
The ability for a device to contemplate its own performance.
Although the term seems linked to EI, it is unrelated [39].

n/a

Figure 6 shows the overlap between the different terminology. The two most important parts of the ter-
minology are Machine Learning (ML) and Edge Computing. However, Cloud Computing does not overlap
with either of these, which is the exact opposite of Edge Computing. Fog Computing tries to marry these
Computing architectures into one, bringing the cloud closer to the edge. Distributed learning and Fed-
erated Learning (FL) can be seen as an implementation of Fog Computing on the Edge Computing side,
which is why they are shared terminology between these computing architectures. Embedded Intelli-

14

gence is a device’s self-assessment, often with ML’s help. This does not necessarily have to do with Edge
Computing.

Finally, there is EI, where ML techniques are applied in the domain of Edge Computing. A more
focused research direction within EI is TinyML, where everything is done on one device only. This is not
necessarily the case with EI, as this also includes co-training options or pre-training.

Figure 6: Venn Diagram showing the overlap between the different Terminologies

15

3.2 E D G E I N T E L L I G E N C E

This section discusses the history of Edge Intelligence to give insight into where EI comes from. Further-
more, it outlines how other research has tackled the steps necessary to implement EI or TinyML.

3.2.1 History of Edge Intelligence

The first mention of the concept of Edge Intelligence (EI) can be found in the paper "The Case for
VM-Based Cloudlets in Mobile Computing" [40], where "Cloudlets" are mentioned, which are smaller
computing nodes close to the end-devices. These are what we would call edge nodes where computation
could happen. In the whitepaper "A Berkeley View of Systems Challenges for AI" [41], the cooperation
between cloud and edge is discussed, as Cloud-Edge systems are mentioned. The whitepaper covers the
movement of placing cloud-located intelligence and systems on the edge to improve security, privacy,
latency and safety. However, it mentions that extensive calculations are to be done by the cloud for
applications such as drones, self-driving cars and home robots. These two papers are the first mentions
of EI as defined in Table 2. Research into EI has been increasingly attractive in previous years due to an
increase in large amounts of data gathering. Because of that, research into EI is relatively new. There are
a lot of challenges to overcome as they do not have a defined solution, and open issues to still be solved.

3.2.2 AI in Edge Intelligence

Machine Learning is an often used way of data processing for Edge Intelligence. This section describes
the difference in processes between ML in the cloud as compared to using ML on the edge and MCUs.
Next to that, it also discusses different research that tried overcoming challenges connected to that part
of Machine Learning and future work that they still have.

Leroux et al. [11] present a structure for implementing TinyML, which makes it an interesting
work to start with. Their proposed structure can be seen in Figure 7. Here three major phases are presen-
ted, which are model, model updates and telemetry. The model phase consists of making the model by
selecting a suitable model, compressing the model where needed and the quantisation of this model.
Then comes the model updates phase, where the model is trained and validated. Finally, in the telemetry
phase, monitoring and anomaly detection are handled, which helps to ensure the model is still perform-
ing accordingly. Besides that, when deployed for others, it may be possible to bill these others for the
usage of the model.

Figure 7: Overview of a TinyMLOps system [11]

3.2.2.1 Model Selection for Edge Intelligence

The first step of implementing Machine Learning on the edge consists of choosing an appropriate model
to be run on the edge device. This must be a model which is small enough to fit on an edge device, or
a model that can be downsized to fit on a resource-constrained device. Deng et al. [42] mention nodel

16

selection, and give an overview of appropriate hardware and the trade-offs that come with it, as one of
the remaining challenges of AI on edge devices.

In the research by Sakr et al. [43], they attempted to check often-used ML algorithms on state-of-
the-art edge devices. They investigated multiple questions, including the performance in accuracy and
inference time, the effect of scaling data, and dimensionality reduction. To this end, they proposed a
framework for TinyML training, inference and testing framework. Here, a computer was used to train
and validate the models, and the inference was run on MCUs. The training computer was used to choose
from the four models by tuning the hyperparameters and checking their final performance. These models
are Artificial Neural Networks (ANN), Linear Support Vector Machines (LSVM), K-Nearest Neighbour (k-
NN) and Decision Trees (DT). They trained these models for six different STM microcontrollers using
ARM Cortex-M processors. They used six different datasets to validate their testing, which attempted
binary classification, multi-class classification and regression. Their results showed that for ANNs and
LSVMs, the accuracies were similar to the desktop implementation, but inference took longer. For k-NN
models, it was found that the flash size of the microcontrollers was a limiting factor and a training set
cap needed to be set, thus affecting accuracy. It performed similarly to ANN but did require a much
larger footprint. DTs are the worst performer as they underperform compared to the rest of the models.
However, it does have fast inference, which may be preferred in some cases. They conclude that their
research would benefit from adding convolutional and recurrent neural networks. Next to that, more
complex datasets such as images and audio streams may also help toward a better selection of models.
Lastly, an analysis of unsupervised algorithms would be interesting in low-accessibility areas.

Huč et al. [44] try to test the robustness of five different ML models on a large imbalanced dataset.
Their challenge itself is to look at anomaly detection to decrease the number of false alarms. The ML
models they choose to compare against their Online Locally Weighted Projection Regression (OLWPR) are
Logistic Regression (LR), Random Forest (RF), AdaBoost, Decision Trees (DT), Support Vector Machines
(SVM) and Artificial Neural Networks (ANN). They split their datasets into smaller datasets with samples
from anomalous classes and samples from computed clusters of the normal classes. After implementing
the models on a regular computer, they concluded that the performance for the imbalanced datasets is
mostly low for anomalous classes. For balanced datasets, performance is low for non-anomalous classes.
Finally, they implement the models on a Raspberry Pi 4. Here they show that the Decision Trees model
is the most promising solution due to its similar results for F1 score and low resource consumption,
and fast inference. In future work, they mention using larger imbalanced datasets, pre-processing and
optimization methods. Asides, they want to adopt several ML models to implement incremental learning
in edge computing.

3.2.2.2 Training for Edge Intelligence

There are different ways of training a model for EI, which all are mainly concerned with where training
is done. For example, training can be fully done by a central computing cluster, by the device itself or
partly trained by the central cluster and then fine-tuned by the edge device, as can be seen in Figure 8.

Centralized models are run through big computing clusters [10, 23], which allow training and
inference on the cloud. The centralized architecture can be seen in Figure 2 as Levels 1, 2 and 3. In
decentralized architectures, the nodes train the models locally [10, 23]. This results in a more private
way of storing and using information. However, the updated model parameters can still be shared from
one node to another. This way of computing corresponds to level 5 in Figure 2. Hybrid architectures are
a combination of centralized and decentralized architectures [10, 23]. Edge servers may train the model
on the edge nodes, combine the other decentralized updates, or use centralized training with the cloud.
This covers level 4 in Figure 2. The advantages and disadvantages of these architectures can be seen in
Table 3.

Interesting research in the field of training for EI is De Prado et al. [13] looking into one of
the significant challenges for automotive driving; the real-world environment changes over time. The
problem they tried to solve was the difference in lighting. They achieved this by running a dual setup,
employing a teacher-student model, to train a faster low-power system using a MCU, with a slower,
more powerful system when needed. To this end, they made their own group of ML models to be used
by the system, as well as their own dataset. They implemented a closed-loop learning system with two
microcontrollers and cameras to achieve high accuracy on the inference microcontroller with low latency

17

Figure 8: Architecture Modes of distributed learning. (a) Centralized, (b) Decentralized, (c) Hybrid [10]

Table 3: Training Architectures Advantages and Disadvantages

Architecture Advantages Disadvantages

Centralized
Utilize powerful computing clusters

Fast training and inference
High Latency

Decentralized
Low latency

Less data acquisition
Utilize less powerful computing clusters

Slower inference

Hybrid
Medium latency

Can use both types of computing clusters
More overhead for communication channels

and low energy usage. Future work can be found in performing training on-chip without needing a host
(teacher) system. Besides that, it should also offer the ability to adapt continuously to the environment.

McMahan et al. [45] worked on extracting the benefits of shared models trained from shared
data. They investigated this decentralized approach of multiple edge devices working together, which
they named Federated Learning (FL). An improvement is that it helps reduce privacy and security risks.
To uncover the exact workings of the shared models, they make a baseline model which uses Stochastic
Gradient Descent (SGD), which they call FederatedSGD. Their coined approach is federated averaging,
which improves upon FederatedSGD by, instead of having one parameter, having three. In their study,
they also propose to have the edge devices do more computation, which may be problematic for a full-
on edge approach. They try their work on different ML models, all using federated averaging to train
high-quality models. Future work is identified as more research into differential privacy and multi-party
computation.

Finally, in the research by Zhang et al. [46], they try to handle non-IID data with the help of FL.
They mention FL as an excellent solution to the large amounts of data harvested and helpful in the privacy
and security domain, as only the weights and biases are shared between the different edge devices.
However, the data that one edge device may encounter may not represent the population distribution,
thus being non-IID. They define weight divergence between clients as indicating a higher non-IID degree
of data. Thus, the divergence of accuracy can be countered by selecting the nodes with lower non-
IID degrees of data. The divergence of weights between clients is tested with IID and non-IID data,

18

where the weight divergence of IID data is lower than with non-IID data. The proposed model, Client
Selected Federated Averaging (CSFedAvg), performs well, with fewer communication rounds, to achieve
the desired accuracy. In addition, CSFedAvg improves training performance in the simulated scenarios,
such as accuracy and convergence rate.

3.2.2.3 Compressing a Machine Learning model for Edge Intelligence

When a model is created and trained, it can be implemented on the target device. Often target devices
in EI and TinyML do not have ample storage or computation capabilities, meaning the model should
be compressed. Tensorflow Lite (TF lite) [47] is a popular service to do so, which is made to run on
microcontrollers. Most often, a model is made in TensorFlow to be then converted to a TF lite model
with the TF lite Converter [48]. Specific optimizations can also be chosen for conversion to reduce
the overall size without compromising performance greatly. Another example of such a service is Intel’s
OpenVINO. They are more targeted towards CPUs and GPUs on higher-end machines. However, also have
the availability to run on some edge devices like microcontrollers. OpenVINO also supports quantisation
to ARM level CPUs, although this is less advanced than they do for others like CPUs and GPUs, which
is expected, due to the restrictions of ARM CPUs. For OpenVINO, there is the post-training optimization
tool, which can help further with quantisation.

Shamim [49] proposes a solution for an image recognition ML model on a resource-constrained
embedded device. The framework used was TF lite for Microcontrollers, as developed by Google. Mobi-
leNetV2 was used to train the model by way of transfer learning. The training was done with the help of
Edge Impulse Studio. The dataset has benign and (pre-)malignant tongue lesions to be classified by the
model. To properly fit the dataset to a model for the MCU, Edge Impulse Studio can quantize the weights
and biases of the default FLOAT32 precision into INT8 precision. This was found to influence the results
slightly. The FLOAT32 model achieved a 99.8% accuracy with a loss of 0.002 on the validation set, with
the INT8 model achieving similar performance with an accuracy of 98.42% and a 0.015 loss. Here the
discrepancy in accuracy can be attributed to the quantisation from FLOAT32 to INT8. Unfortunately, the
author provides no future work.

Next is the work from Mohan et al. [14], which attempted to detect people with and without
facemasks. They set out to investigate the difference in accuracy the quantisation process brings from
FLOAT32 models to INT8 models. The dataset used was a combined dataset of three different datasets
and also augmented with OpenCV’s interpolation methods, to increase the number of images. All im-
ages were resized to 32 x 32 as the authors found that this was the optimal size for the buffer of the
OpenMV Cam. The accuracies of the SqueezeNet, Modified SqueezeNet and proposed model are respect-
ively 98.53%, 98.99% and 99.83% for the INT8 model. Interestingly, the INT8 models outperformed the
FLOAT32 models for every model. Furthermore, the modified SqueezeNet performed better than the un-
modified model. This may indicate that smaller models can generalize better to new data. Furthermore,
due to the slight difference in accuracy, they mention the quantisation to INT8 to be a high success. Fi-
nally, they say that future research can be done by experimenting with 6-bit, 4-bit and binarized neural
networks.

Finally, in the work of Giordano et al. [50], an intelligent tag is made, to make a low-cost edge
device that can track the usage of power tools. Their biggest challenge is the lifetime of the battery-
operated device. A TinyML model is chosen to detect four different classes, transportation, idle drilling,
wood drilling and metal drilling. The authors made the dataset which consisted of 280 minutes of three-
axis accelerations with a sampling frequency of 800 Hz. A window of 448 samples is used to detect
the different classifications. Here, FFT detects the transportation class due to its high peaks at lower
frequencies. A small neural network was made for the other classes, which was quantised from FLOAT32
to INT8. The final result of the FLOAT32 model is an accuracy of 93.3%. The INT8 model yielded an
accuracy of 90.6% for the same test set. Furthermore, the research concludes that the memory size of
the quantised model is about three times smaller, where the amount of training cycles, latency and energy
is all reduced three-fold. Future work is identified by the authors to be the generalization of position on
a tool and extending the number of classes of interest.

19

3.2.2.4 Inference for Edge Intelligence

Inference, as discussed in 2.3.5, can be extended toward edge applications through solo-inference, hybrid
co-inference and peer-to-peer co-inference [23].

Solo-Inference can be described as an inference model only running on one device, whether on
the device itself, on the edge, or in the cloud, see Figure 9. The data is sent from the device to the relevant
infrastructure for edge and cloud.

Figure 9: Different types of Solo-Inference [23]

The general definition for Hybrid Co-Inference is that inference runs on two or more infrastructures, as
seen in Figure 10.

Figure 10: Different types of Hybrid Co-Inference [23]

Lastly, Peer-to-peer co-inference is very similar to hybrid co-inference. However, instead of dividing over
multiple infrastructures, the inference is shared between the same infrastructures, as shown in Figure 11.

Figure 11: Different types of Peer-to-Peer Co-Inference [23]

Solo-inference is an often used inference type in EI and TinyML. As already shown in the research by
Giordano et al. [50] and Mohan et al. [14], the entire training phase of a ML model is performed in
the cloud, where the device only performs inference. Finally, in the research by Zhang et al. [46], the
device itself often makes the inference. Updating and training can be shared and are done so in the
context of FL. An example of Peer-to-peer co-inference can be seen in the works of De Prado et al. [13],
where they used two microcontrollers. The more powerful system is only used when requested, leading
to co-inference.

3.2.2.5 Validation for Edge Intelligence

The last step of running a ML model on edge devices is the same as running it on other systems; the
model needs to be validated with a test set. The test set is often gathered from real-life data when the
system is running. The validation of the edge systems is very similar to that of cloud systems. For example,
McMahan et al. [45], who worked on the concept of FL, still uses performance metrics which are often
also seen in more classic ML research papers. These graphs show the loss or accuracy against the number

20

of epochs. The only difference is that there is no single epoch with FL, but the global amount of epochs.
Another example can be found in the research of De Prado et al. [13], who worked on the student-
teacher model. They also use performance metrics such as accuracy, latency and energy consumption for
validation. A third example comes from the research of Huč et al. [44], who made a classifier. They still
use the terms Precision, Recall and F1 score, as is done in other research. Their results show confusion
matrices better to exemplify their different ML models.

3.2.3 Evaluation of Deployed Edge Devices

Not much research has been done on evaluating deployed edge devices. This is probably because the
evaluation of a deployed device is often complicated and cannot be done due to time constraints for
most researchers. What makes it complicated is that to measure the performance, the ground truth is
also needed to measure the performance. To do so, the sensor could be retrieved and known images or
known variables can be entered to see if the output is a performance measure can be taken. However,
this is not possible in traditional methods when the edge device is deployed and constrained in ways of
processing power and, more importantly, energy consumption. The current state-of-the-art is to assume
that over time the performance drops and the edge device need to be retrieved to do retraining as
mentioned in Section 3.3.1

Only one mention of ML metrics to be used for post-deployment monitoring could be found, which
is for a Stanford course by Chip Huyen [34]. She mentions a division of metrics to monitor, which are the
raw inputs, features, predictions and accuracy. For all these monitoring possibilities, it is good to know
that cumulative metrics may hide sudden dips in the metric, whereas a sliding window approach may
not hide this. To measure the accuracy, ground truth labels are also needed. However, for others, this
may not be necessary.

Huyen also gives an example of monitoring the predictions. This has to do with a possible dis-
tribution shift in predictions, which statistical tests can compute. If the weights and biases have not
changed, a change in the output distribution often indicates a difference in the input distribution. How-
ever, it is good to note that this input distribution could be rightly shifted. For instance, if during the
winter there are fewer birds because they are migratory birds, it is customary to see fewer predictions
for birds. Furthermore, if the model predicts only one specific label, it could also indicate that something
is malfunctioning.

Another possibility for post-deployment monitoring is to monitor the features. For example, met-
rics like the minimum, maximum and mean values can be computed for features, to see if they are in
expected ranges. Furthermore, statistical tests can be used to check the underlying distribution of a fea-
ture or a set of features and to see if it has shifted. There are some significant drawbacks compared to
input monitoring for feature monitoring. First, it is more computationally expensive. Secondly, a slight in-
put distribution shift can cause substantial performance losses. However, an individual feature’s changes
might not hurt the model’s performance in practice.

3.3 D I S T R I B U T I O N S H I F T

A large part of the open research in Edge Intelligence (EI) concerns the diversity in real-world data.
This envelops OOD data and distribution shifts as the main reason for the need of post-deployment
monitoring. This section describes ways of dealing with distribution shift, and related work implementing
such techniques.

3.3.1 Tackling Distribution Shift

A distribution shift can be identified, but the main concern remains to solve this shift. For this, three
methods are often used in the industry [34]. The first way, which dominates current research and prac-
tical uses, is to train models on massive datasets. The assumption is that when there is a distribution
shift, new data points are close to the trained distribution and thus, inference happens correctly.

The second approach, which is not studied often, uses unsupervised learning to adapt a trained
model to a target distribution. Here, distributions are considered to correct the models’ predictions.

21

Another way is to use domain invariant learning to learn data representations invariant to the changing
distributions.

The third approach is to retrain the model using labelled data from the target distribution. Chal-
lenges posed here are the considerations of training on either the new data, both old and new data, or
perhaps continuously training the model with new data. This last approach can also be called fine-tuning.
However, this can be difficult to perform correctly, as deciding on what data to use can be challenging.
For instance, if you should use data from the last 24 hours, if you should use all data from the previous
retraining onward or from the point where the distributions diverge [19].

Other techniques, which are not widely adopted yet, but are proposed by the scientific community,
all have to do with on-device training [35]. One such technique mentioned by Saha et al. is to update
the bias instead of the weights. This could include only training the base classifiers with a significant
impact on final accuracy. Another method which can be considered is Special Learning Techniques. This
technique stores activation maps from past training data in a quantised form to be used as replay data.
This should allow for learning from non-IID data.

3.3.2 Similar Studies

The research that has already been done into distribution shifts are discussed in this section. An excellent
research to start with is the work from Koh et al. [51]. This research is the development of a benchmark
for real-life distribution sets. They gathered ten datasets ranging from wildlife photos to cell and satellite
imagery. These datasets concern domain generalization (iWildCam, Camelyon, OGB-MoIPCBA, RxRx1,
GlobalWheat), Subpopulation shift (CivilComments) or both (FMoW, PovertyMap, Amazon, Py150).
They try to address two problems: domain generalization and sub-population shift. Domain generaliza-
tion concerns training on certain domains while testing on other domains. Sub-population shift focuses
on training on all domains while testing on the same domains with a different proportion than the train-
ing. For evaluation, Koh et al. [51] propose different metrics for the different datasets. This is due to the
nature of the data. Nevertheless, for all datasets, they evaluate the performance of In-Distribution (ID)
and Out-of-Distribution (OOD) data. For domain generalization, they have CORAL [52] and IRM [53],
and for subpopulation shift, they have Group DRO [54]. However, almost none of these latter models im-
proved upon their baseline of Empirical Risk Minimization (ERM) models, except for the CORAL model
for the iWildCam dataset and the Group DRO model for the CivilComments dataset.

Sagawa et al. [55] worked on extending the benchmarking tool presented by Koh et al. [51]
for unsupervised domain adaptation. Here, some of the ten datasets used by Koh et al. were extended
by unlabeled data, which can be used for training the models. Next to that, for the evaluation part,
they sought three different methods: domain-invariant, self-training, and self-supervision. Concerning
domain-invariant methods, they cover domain-Adversarial Neural Networks (DANN) and Correlation
Alignment (CORAL). These models learn feature representations that are consistent across different do-
mains. For self-training, they investigate the pseudo-Label, FixMatch and noisy student models. The aim
of self-training is the concept that models label unlabeled examples, which they also use for training.
Finally, there are self-supervision models consisting of SwAV and Masked Language Modeling (MLM).
Self-supervision models learn representation by training on unlabeled data via other tasks. Like in the
paper of Koh et al., they compared the In-Distribution and Out-of-Distribution performance of the models
on the datasets. The results show that for image detection ERM outperformed the newly posed models.

In the work of Wiles et al. [56], multiple models, which are considered to improve the robust-
ness of models to distribution shift, are evaluated and compared. These improvements involve architec-
ture choice, heuristic data augmentation, learned data augmentation, domain generalization, adaptive
approaches and representation learning. These models are trained on six datasets (dSprites, MPI3D,
SmallNorb, Shapes3D, Camelyon17, iWildCam) with three distribution shifts for these datasets. These
distribution shifts included spurious correlation, low-data drift and unseen data shift. Spurious correla-
tion makes a new data set for training with the correlated distribution and N samples from the uncorrel-
ated distribution. Low-data drift means that we only see N samples of specific features, and for all other
features, the model can access all features. An unseen data shift is a case of low-data drift, where N is
set to 0. The results for the different models vary greatly for spurious correlation and low-data drift. For
spurious correlation, CycleGAN performs consistently best, with pre-training on ImageNet also resulting
in a boost in performance. For low data drift, pre-training on ImageNet performs consistently best, while

22

CycleGan, most domain adaptation methods and ImagNet augmentation also boost performance. Finally,
Wiles et al. mention that the key takeaways are:

• Not one method always performs the best.

• Pre-training is a powerful tool across different shifts and datasets.

• Heuristic augmentation improves generalization if the augmentation describes a feature.

• Learned data augmentation is effective across different conditions and distribution shifts.

• Domain generalization algorithms offer little performance improvement.

• The precise attributes we consider directly impacts the results.

The work of Shi et al. [57] looks into the performances of pre-trained models on distribution shift. They
investigate supervised learning and Self-Supervised Learning (SSL) and Autoencoder (AE) models. They
primarily concern the SSL models, which enforce invariance between representations of two augmented
views of the same image, and AEs, which learn by image reconstruction. Shi et al. worked on robustness
to spurious correlation under synthetic and realistic distribution shifts. Respectively, these are based on
synthetic datasets and more realistic scenarios of datasets. In this work, the work on WILDS [51, 55] is
mentioned as the realistic distribution shift. The synthetic distribution shift concerns designed datasets
with one simple feature (e.g. colour) and one complex feature (e.g. shape). Next to that, they test the
retraining of the linear head on ID and OOD training sets and use the OOD data as a test set for both
to measure the performance of the model. They trained eight learning models, which are SSL models
(SimCLR, SimSiam, BYOL), AE models (Autoencoder, Variational Autoencoder (VAE), β-VAE, Importance
Weighted Autoencoder (IWAE)) and one SL model (not defined). For synthetic distribution shift, they
found a correlation between the complex and simple features learned by SSL and AE models, where
SL only learns the more superficial features. They find that SL is no better than SSL or AE for realistic
distribution shifts. However, they find that for OOD generalisation, the performance of all models can
be increased by retraining the linear head on a small amount of OOD data. Finally, they note that AE
and SSL consistently outperform supervised models and that the OOD generalization performance is
significantly improved by retraining the linear head on a small amount of OOD data.

23

3.4 C H A L L E N G E S

EI and TinyML come with challenges to overcome before widespread usage can be implemented. Some
of these challenges are captured within the use of EI and TinyML, and others are found through the
works of researchers. Most of these challenges have been solved by other research or are an underlying
challenge that always exists when working with EI or resource-constrained edge devices.

3.4.1 Resource Constraints

Edge devices are often smaller devices which do not have large computational abilities, large memory
and abundant energy to consume [23, 58]. Most of these resource constraints also influence one another.
For instance, using a processor that can process data faster often consumes more energy. Often edge
devices are battery-operated or use a solar panel to generate energy to be used. This limits the amount
of on-time a device can have, thus limiting the time spent on data computation. This can further reduce
such a device’s computational ability through energy conservation. Besides the energy consumption, one
of the most significant constraints is the size of a deployed ML model, due to the small memory size of
these edge devices. These memory and energy constraints often cause other researchers to implement
quantisation on their ML model to reduce the computational time and complexity, such that the edge
device does not have a long on-time.

3.4.2 Non-IID Data, Data Drift and Deployment of Edge devices

Non-Independent and Identically Distributed (IID) data has to do with the fact that data is retrieved
from one sensor or one type of sensor, which does not represent the entire population, thus not being
identically distributed. There are ways to deal with this, of which an often chosen solution is Federated
Learning (FL) [45, 46].

Besides a change in data due to non-IID data, there is data drift. This is when test data differs
too much from the training data. An example of this would be a camera that captures the outdoors.
Due to the seasons, the backdrop changes gradually. Another term for the non-IID data as is presented
here is Out-of-Distribution (OOD) data. An extreme example of data drift would be that the model is
trained for spring and summer seasons but tested on autumn and winter images. This violates the IID
data assumption [12]. This data drift can be countered in numerous ways to reduce the impact on
classification performance. Some of these are used during this thesis, but it is shown in related work that
some of these can be used for edge devices, such as online learning through a student-teacher model [13].
Another example is fine-tuning of deployed models on newly gathered data [34].

Due to the data drift and Out-of-Distribution data, post-deployment monitoring is a challenge
often overlooked. Transfer learning [5, 10, 16, 42], which includes distribution shift, encapsulates some
of the challenges that OOD data also brings. For example, data is captured on different sensors and
processed by different MCUs which may lead to a false inference. Some researchers consider these chal-
lenges, but they are not explicitly sought after [13, 49].

3.4.3 Computational Limits

Implementing models to work on edge devices is difficult due to the limits of the computational efficiency
of the edge device. As can be seen in the state-of-the-art in Chapter 4, the processors and memory used
are limited. Not only do most processors not have dedicated FLOAT32 computation hardware, there
often is not enough memory on the device to work with these FLOAT32 numbers efficiently [14]. Besides
these hardware limits of the device, there is also the energy limits, as it is beneficial to deploy as small
as possible models on the device. For this, quantisation, as described in Section 3.2.2.3 [14, 49, 50], is
an interesting aspect of deploying the models on edge devices.

24

3.5 O P E N I S S U E S

From the literature reviewed in Sections 3.2 and 3.3, the following open issues are identified.

3.5.1 Methods beside Supervised Learning and Federated Learning

As mentioned in the introduction, Chapter 1, edge devices generate a lot of data. Sakr et al. [43] and
Huč et al. [44] showed that methods beside Supervised Learning (SL) requires this data to be labelled
to be able to use it, which is why other learning methods may be beneficial. These methods include
unsupervised learning [43], active learning [43], incremental learning [44], or semi-supervised learn-
ing [44]. These methods are not researched well in related work, but there are some works which show
the potential of the use of these methods in Edge Intelligence devices [57, 59].

3.5.2 Non-Independent and Identically Distributed and Out-of-Distribution Data

Recent literature [5, 23] showed that a heterogeneous environment is often present at the edge. One
edge device gathering data, does not cover the entire population. Even when deploying numerous of
these edge devices, the entire population is not covered due to real-world data being very diverse. This
results in the fact that these edge device use non-IID or OOD data. This could be countered by letting
the different edge devices which use the same model share their weights and biases, better known as
FL [46]. Another solution would be student and teacher devices [13].

3.5.3 Further Quantisation

Mohan et al. showed that quantisation from FLOAT32 to INT8 can lead to more generalized models,
leading to better classification performance. They refer to the optimization of further quantisation as
future work, as further quantisation to 6-bit, 4-bit and binarised neural networks may not necessarily
lead to more performance loss, but lead to faster inference times and less power usage.

3.5.4 Post Deployment Monitoring

Filho et al. [5] shows that when an edge device is deployed with a ML model, it is important to keep
monitoring them. Due to data drift, distribution shift, or faulty sensors, the performance of an edge device
may degrade. The post-deployment monitoring is mentioned in TinyMLOps as coined by Leroux [11], but
research into this subject was not found in this literature review.

3.5.5 Lack of Evaluation Platforms for Edge Intelligent Models

The evaluation of deployed ML models is critical. Recent literature [16, 4] shows that there is a lack of
baseline Edge Intelligence models. For cloud models, there is a suitable way of comparing the model’s
functioning by inputting a benchmarking dataset like ImageNet or COCO and seeing if the model per-
forms better than other models. A set of baseline models is still lacking for EI and TinyML applications.
Next to baseline models, literature [15, 16] mentions a suitable benchmark dataset is also missing. The
availability of a benchmark dataset could improve further insights and comparisons between different
ML algorithms.

3.6 C O N C L U S I O N L I T E R AT U R E R E V I E W

From the open issues and challenges, we can see that the handling of OOD data and the post-deployment
monitoring of performance are large challenges still left. Often these two issues are overlooked or left
to the sidelines when implementing an EI or TinyML solution to a problem, making it interesting to do
more research into these issues.

25

4
S TAT E O F T H E A RT

This chapter outlines the technologies that exist now and are used in other research or currently used by
companies. These technologies include the hardware used in state-of-the-art research for EI and TinyML,
but also software frameworks. The hardware and software frameworks used for EI and TinyML can
be very different, so they are separated. The hardware can be found in Table 4 and 6. The software
frameworks can be found in Table 5 and 7.

Table 4: Edge Intelligence Hardware [4].
Abbreviations consist of Neural Processing Unit (NPU), Application Specific Integrated Circuit (ASIC),
Artificial Intelligence Processing Unit (AI PU) and Digital Signal Processor (DSP)

Hardware Processor CPU Clock Connectivity Based on Organisation

Snapdragon 8 Series [60] Qualcomm Kryo CPU 2.99 GHz - NPU Qualcomm

Kirin 600/900 Series [61]
2x Cortex-A76,

16-core Mali-G76 GPU
2.68 GHz 2G/3G/4G NPU HiSilicon

Ascend Series [62] 3D Cube
320 TFLOPS@FP16,

640 TOPS@INT8
- ASIC HiSilicon

Helio P60 [63]
Arm Cortex-A53,
Arm Cortex-A73

2.0GHz
Bluetooth, FM Radio,

GNSS, WiFi
GPU and AI PU MediaTek

Turing GPUs - - - GPU NVIDIA

TPU v4 [64] 1050 MHz 275 TFLOPS - ASIC Google

Xeon D-2100 [65] - 3.0 GHz Ethernet CPU Intel

Exynos 9820 [66]
ARM Cortex-A75,

ARM Cortex-A55 and
ARM Mali™-G76 GPU

2.68 GHz LTE-M NPU and DSP Samsung

GrAI VIP [67] Dual-Core CPU Camera Interface GrAICore GrAI Matter Labs

Table 5: Edge Intelligence Frameworks [4]

Framework Hardware Languages Publicly available Organisation

Baetyl v2 [68] Ram 1GB minimum, CPU at least 1 GO Yes Baetyl

Azure IoT Edge [69] Raspberry Pi 3 (64-bit quad-core ARMv8 CPU) C# Yes Azure

EdgeX [70] ARM 64-Bit GO, C Yes EdgeX Foundry

NVIDIA EGX [71] NVIDIA Jetson, NVIDIA GPUs - Unknown NVIDIA

AWS IoT Greengrass [72] NVIDIA devices, Specific Greengrass devices - Unknown Amazon

Google Cloud IoT [73] Edge TPU ASIC boards

C#, GO,
Java, Node.js,
PHP, Python,

Ruby

Yes Google

OpenVINO [74] CPU, GPU, iGPU, VPU, ARM-CPUs
C, C++,
Python

Yes Intel

26

Table 6: TinyML Hardware [16]
Hardware Processor CPU Clock

Power consumption
(Typical load main processor)

Flash SRAM Connectivity Sensors/Connectors Mentioned

Apollo3 [75] 32-bit ARM Cortex-M4F
48 MHz, 96 MHz
with TurboSPOT

6 uA/MHz 1 MB 384 KB BLE5, FTDI SPI,USB
Accelerometer, HM01B0 camera,

MEMS microphone
[76]

STM32F
Discovery [77]

32-bit ARM Cortex-M4
FPU Core

48 MHz 128 uA/MHz 1 MB 192 KB LQFP100 I/O, USB Accelerometer, microphone [76, 43]

ST IoTDiscovery [78] ARM Cortex M4 48 MHz 120 uA/MHz
1 MB,

64Mbit-
Quad-SPI

128 KB
8.211b/g/n,NFC,
868/915 MHz,
BLE 4.1, USB

Microphone, accelerometer,
gyroscope, barometer,

gesture detection,
humidity, temperature

ECM3532 AI
Sensor NSP [79]

ARM Cortex M3,
NXP CoolFlus 16bit DSP

100 MHz 13 uA/MHz 512 KB 256 KB BLE 4.2, RF, USB
Pressure, temperature,

gyroscope, accelerometer,
temperature, humidity

Arduino Nano
33 BLE Sense [80]

nRF52840 65 MHz 11 uA/MHz 1 MB 256 KB UART,SPI,I2C,USB,BLE IMU,
microphone, gesture,

light, proximity, barometer,
temperature, humidity

[81]

OpenMV Cam
H7 Plus [82]

ARM Cortex M7 480 MHz 300 uA/MHz 2 MB (internal)
1 MB +

32 MB SDRAM
I2C, USB, CAN, UART 5MP Camera at 50 FPS [49, 14, 83]

Himax EW-I Plus [84]
32-bit ARC EM9D

DSP with FPU Core
400 MHz Not found 2 MB 2 MB SPI2, I2C, UART, USB

VGA Camera 60 FPS,
Accelerometer,

Microphone

Thunderboard
Sense 2 [85]

EFR32 Mighty Gecko
wireless SoC

38.4 MHz 63 uA/MHz 1 KB 256 KB 2.4 GHz, USB, SPI

Temperature, humidity,
ambient light, pressure,
air quality, microphone,

hall-effect, UV

Sony’s Spresense [86]
ARM Cortex M4F

6 Core
156 MHZ 384 uA/MHz 8 MB 1.5 MB

SPI, I2C, UART,
I2S, GNSS antenna

Microphone, Camera [76]

TinyML Board [87]
Syntiant NDP101 NDP
32-bit ARM Cortex M0

48 MHz 11 uA/MHz 256 KB 32 KB UART, I2C Motion, Microphone

Arduino Portenta H7 [88]
Arm Cortex M7

Arm Cortex M4 GPU
480 MHz,
240 MHz

300/120 uA/MHz 16 MB 8 MB SDRAM
WiFi, BLE,

10/100 Ethernet Phy,
USB MIPI DSI, MPI D-PHY

Temperature, camera extension

Raspberry Pi 4B [89]
64-bit ARM Cortex

A72 quad core
Broadcom BCM2711

1.5 GHz 360 uA/MHz - 256 KB
WiFi, BLE,

CSI, DSI, HDMI,
USB, Ethernet

Temperature

NVIDIA Jetson Nano [90]
Quad-core ARM A57

128-core Maxwell GPU
1.43 GHz 460 uA/MHz 4 GB microSD

Ethernet, HDMI,
USB, GPIO, I2C,
I2S, SPI, UART

Camera (RPi)

AI-deck 1.1 [91] GAP8, ESP32 168 MHz 26 uA/MHz 1 MB 192 KB WiFi, URT, SPI Monochrome camera

Pico4ML BLE [92]
Raspberry Pi RP2040

DSP dual core
133 MHz 180 uA/MHz 4 MB 264 KB BLE, USB, I2C

Camera QVGA 60 FPS,
Microphone, IMU

MKR Vidor 4000 [93]

Intel Cyclone
10CL016 FPGA

32 bit ARM
Cortex M0

48-200 MHz 500 uA/MHz 2 MB, 256 KB 32 KB, 8 MB SDRAM
SPI, I2C,

UART, USB, MIPI,
u-blox NINA-W102

-

Nicla Sense ME [94] ARM Cortex M4 64 MHz 120 uA/MHz 512 KB 64 KB BLE4.2, SPI, USB, I2C
Accelerometer, gyroscope,

pressure, geomagnetic,
gas, temperature, humidity

[76]

CC1352P Launchpad [95]
CC1352R Wireless
MCU LaunchPad

48 MHz 280 uA/MHz 352 KB 8 KB

UART, I2C, SSI,
I2S, 868/915/433 MHz,

BLE, Thread, ZigBee,
802.15.4, Sub-1 GHz Connectivity

Temperature

ESP-EYE [96] 32 bit ESP32 240 MHz 40 uA/MHz 4 MB 8 MB PSRAM WiFi, USB, SPI, I2C, UART, BLE 2MP camera

GAP8 [97]
RISC-V, Hardware
convolution engine

250 MHz (FC),
175 MHz (C),

22.65GOPs
26 uA/MHz 512 KB 80 KB, 8 MB SDRAM

Serial, SPI, I2C, I2S,
CPI, Hyperbus, UART

Extension Camera [13]

GAP9 [97]
RISC-V, Hardware
convolution engine

400 MHz (FC),
150.8GOPs

6 uA/MHz 1.5 MB 128 KB, 2 MB External
Serial, SPI, I2C, I2S,
CPI, Hyperbus, UART

Extension Camera

Nordic Semi
nRF52840 DK [98]

ARM Cortex M4 64 MHz 120 uA/MHz 192 KB 24 KB

BLE5, Bluetooth mesh,
Thread, Zigbee,
802.15.4, ANT,

2.4 GHz, NFC, UART

- [76, 50]

Nordic Semi
Thingy:91 [99]

ARM Cortex M33
nRF9160 SiP

64 MHz 81 uA/MHz 1 MB 256 KB UART, SPI, I2S, NB-IoT, LTE-M
Color, light,

humidity, air quality,
temperature, pressure

FRDM-K64F [100] ARM Cortex M4 120 MHz 120 uA/MHz 1 MB 256 KB Ethernet, CAN, SPI, I2C, UART, I2S Accelerometer, magnetometer [76]

Coral Dev Board [101]

Quad Cortex-A53
Cortex-M4F

GC7000 GPU
Google Edge -

TPU coprocessor

2.3 GHz / 64 MHz /
4 TOPS (int8)

117/90 uA/MHz
2 TOPS/W

8 GB 1 GB
Ethernet, WiFi,

Bluetooth 4.2, audio,
GPIO, I2C, UART, I2S

Camera, USB interface

Coral USB Accelerator [101]
Google Edge

TPU coprocessor
4 TOPS (int 8) 2 TOPS/W N.A. N.A. N.A. USB C

Coral USB Mini [101]
Quad Cortex-A53

IMG PowerVR GE8300 GPU
2.3 GHz

117 uA/MHz
2 TOPS/W

8 GB 2 GB
WiFi,

Bluetooth 5.0, audio,
GPIO, I2C, UART, I2S

Camera,
USB interface,
microphone

Coral USB Micro [101]
Cortex-M7
Cortex-M4

Coral Edge TPU coprocessor

480 MHz /
240 MHz /

4 TOPS (int8)

300/90 uA/MHz
2 TOPS/W

1 GB 512 MB
GPIO, I2C, UART, I2S

On-board camera and microphone

Ethernet, WiFi,
Bluetooth 4.2

(not integrated)

Maix Go [102] Dual-core 64bit RISC-V 400MHz 0.83 TOPS/W 17 MB 8 MB
Camera, GPIO,

OTP, UART,
SPI, I2S

OAK-D-Lite [103] Robotics Vision Core 2 4 TOPS 0.35TOPS/W N.A. N.A. IMX214 camera, OV7251 camera

27

Table 7: TinyML Software Frameworks [15, 16, 104, 105]

Framework Algorithms Platforms Languages
interoperable

External
Libraries

Publicly available Organisation

TensorFlow Lite [47] Neural Networks ARM Cortex-M C++ 11 TensorFlow Yes Google

TensorFlow Lite
for Microcontrollers [106]

Neural Networks

Arduino Nano 33 BLE Sense
SparkFun Edge

STM32F746 Discovery kit
ESP32

ESP-EYE
Spresense

C++ TensorFlow Yes Google

Edge Impulse [8] Neural Networks

Arduino platforms
ESP32

Nordic platforms
Spresense

Syntiant Tiny ML Board
CC1352P LaunchPad

Raspberry Pi 4
Jetson Nano

Node.js,
Python,

Go, C++
- Yes Edge Impulse

PyTorch Mobile [107] Neural Networks Android IOS Python - Yes PyTorch

Embedded
Learning

Library (ELL) [108]
Neural Networks

ARM Cortex-M
ARM Cortex-A

Arduino
micro:bit

C, C++
CNTK

Darknet
ONNX

Yes Microsoft

ARM-NN [109] Neural Networks

ARM Cortex-A
ARM Mali

Graphics Processors
ARM Ethos Processor

C
TensorFlow

Caffe
ONNX

Yes ARM

CMSIS-NN [110] Neural Networks ARM Cortex-M C++
TensorFlow

Caffe
PyTorch

Yes ARM

STM 32 Cube.AI [111] Neural Networks STM32 C

Keras
TensorFlow
Lite Caffe
ConvNetJs
Lasagne

Yes STMicroelectronics

AIfes [112] Neural Networks

Windows (DLL)
Raspberry Pi

Arduino
ATMega32U4

STM32 F4 Series
ARM Cortex-M4

C
TensorFlow

Keras
No Fraunhofer IMS

NanoEdge AI Studio [113] Unsupervised Learning ARM Cortex-M C - No Cartesiam

MicroMLGen [114] SVM, RVM
Arduino
ESP32

ESP8266
C Scikit-learn Yes

Particular
developer

sklearnporter [115]

SVM
Decision tree

Random Forest
Ada Boost

Classifier k-NN
Naive Bayes

Neural Networks

Multiple
constrained &

non-constrained
platforms

C,
GO,

Java,
JavaScript,

PHP,
Ruby

Scikit-learn Yes
Particular
developer

m2cgen [116]

Linear Regression
Logistic Regression
Neural Networks

SVM
Decision tree

Random Forest
LGBM Classifier

Multiple
constrained &

non-constrained
platforms

C, C#, Dart,
GO, Java,

JavaScript,
PHP,

PowerShell,
Python, R,

Visual Basic

Scikit-learn Yes
Particular
developer

weka-porter [117] Decision trees

Multiple
constrained &

non-constrained
platforms

C,
Java,

JavaScript
Weka Yes

Particular
developer

EmbML [118]
Decision trees

Neural networks
SVM

Arduino
Teensy

C++
Scikit-learn

Weka
No Research Group

emlearn [119]

Decision trees
Neural networks
Naive Gaussian

Bayes
Random forest

AVR Atmega
ESP8266

Linux
C

Keras
Scikit-learn

Yes
Particular
developer

uTensor [120] Neural Networks mBed boards C++11 TensorFlow Yes
Particular
developer

TinyMLgen [121] Neural Networks
ARM Cortex-M

ESP32
C TensorFlow Lite Yes

Particular
developer

CMix-NN [122] Neural Networks ARM Cortext-M C Mobilenet Yes Research Group

FANN-on-MCU [123] Neural Networks
ARM Cortex-M

PULP
C FANN Yes Research Group

28

4.1 D I S C U S S I O N O F S O F T WA R E P L AT F O R M S

For software platforms, there are various choices which all have advantages and disadvantages. The
platforms that were available and mentioned in related work are Edge Impulse [8], OpenVINO [74],
OpenMV [82] and Neuton AI [124]. There are some major disadvantages for the latter three. Firstly,
OpenVINO has a lack of support for Microcontroller hardware. Secondly, OpenMV only supports its own
microcontroller and no others, which is also too restrictive. Thirdly, Neuton looks promising, but does
not yet support image, video and audio.

Edge Impulse is the best documented, often used and most open platform for TinyML. It sup-
ports all types of devices from single board computers like the Raspberry PI to GPUs to microcontroller
class hardware and TPUs [125]. Next to that, it also has data gathering, pre-processing and annotation
tools. Furthermore, it supports some predefined ML models out of the box and offers so-called "expert
mode" [126]. This allows a developer to create their model in TensorFlow combined with Keras.

Lastly, it also employs compilers to compile it to their "fully-supported" hardware and compilers
to compile it to a generic Tensorflow Lite model, which can then be loaded onto your hardware, such as
a Google Coral TPU Development Board [127]. Edge Impulse seems to be the preferred tool. However,
they have restricted the open access to only allow 4GB or 4 hours of data, with no option for research
purposes. Therefore, Edge Impulse is not suitable, as in this research, more data storage needs to be
available to train and test the different ML models.

4.2 D I S C U S S I O N O F E D G E H A R D WA R E

The choice of hardware could decide what models are used but also in what way data needs to be
gathered and what software the models run. For this, different metrics were used, which are found in
Table 8. These consist of compatibility of hardware for ML, the platform’s ease of use, the size of the
community, the availability of the platform, the fact that the platform can use a camera, microphone or
both, and the total power consumption of the platform. Some of these metrics are more important in this
research, and get a higher weight.

29

Table 8: Design Space Exploration of Hardware Choice, from "- -" to "++", which represents a score from -2 to +2.
This score is multiplied with the weight and finally summed to a total which is shown in the last column.

Hardware Capability of ML Ease of use Size of community Accessability
Sensors of interest
& Easy attachability

Power Consumption Total

Weights 3 1 1 2 1 2

Coral Dev Board [101] ++ + + ++ + + 15

Coral USB Mini [101] ++ + + + + + 13

Coral USB Micro [101] ++ + + +/- ++ + 12

Arduino Nano
33 BLE Sense [80]

+ + + + + ++ 12

Raspberry Pi 4B [89] ++ ++ ++ ++ + - - 11

Coral USB Accelerator [101] ++ + + + - - + 10

NVIDIA Jetson Nano [90] ++ ++ ++ + + - - 9

Apollo3 [75] +/- + - + ++ ++ 8

Arduino Portenta H7 [88] ++ + +/- + +/- - 7

Nordic Semi
nRF52840 DK [98]

++ + +/- + +/- - 7

OAK-D-Lite [103] ++ + +/- + ++ - - 7

ECM3532 AI
Sensor NSP [79]

+ +/- - - ++ ++ 6

Sony’s Spresense [86] ++ +/- + + +/- - - 5

Nicla Sense ME [94] ++ +/- +/- + - - - 4

GAP8 [97] ++ +/- +/- - - +/- + 4

GAP9 [97] + +/- +/- - - +/- ++ 3

ESP-EYE [96] + + - - - ++ + 3

Maix Go [102] ++ - - - ++ - 2

OpenMV Cam
H7 Plus [82]

++ + +/- - + - - 2

AI-deck 1.1 [91] + - - - +/- +/- + 2

Nordic Semi
Thingy:91 [99]

+ + +/- +/- - - +/- 2

FRDM-K64F [100] ++ +/- - - + - 2

TinyML Board [87] + +/- - - - - + 0

Pico4ML BLE [92] +/- + - +/- ++ - 0

Himax EW-I Plus [84] + +/- +/- - ++ - - -1

Thunderboard
Sense 2 [85]

+ +/- - - - +/- -1

ST IoTDiscovery [78] - +/- - - + +/- - -5

STM32F
Discovery [77]

- +/- - - + - - -6

CC1352P Launchpad [95] +/- +/- - - - - - -8

MKR Vidor 4000 [93] - - +/- + +/- +/- - - -9

Table 8 was then further refined. For this, the boards with a score of 9 and above were chosen. This
selection has been further examined and presented in Table 9. As seen in this table, the Google Coral
edge TPU boards are well above the rest. The final choice came to the Google Coral TPU Development
Board, due to the available connection types, interface and wider availability.

30

Table 9: Design Space Exploration of Hardware Choice, from "- -" to "++", which represents a score from -2 to +2.
This score is multiplied with the weight and finally summed to a total which is shown in the last column.

Architecture Hardwares Max Size for ML models
Performance

(FPS for MobileNet-V2)
Ease of use Power Consumption Total

Weights N.A. 2 3 2 3

Coral TPU
Coral Dev Board [101]
Coral USB Mini [101]
Coral USB Micro [101]

+ ++ + + 13

Quad-core ARM A57
128-core Maxwell GPU

NVIDIA Jetson Nano [90] ++ + ++ - - 5

Quad Core ARM-A72 Raspberry Pi 4B [89] + +/- ++ - - 0

Nordic nRF52840

Arduino Nano
33 BLE Sense [80]

Nordic Semi
nRF52840 DK [98]

- - - - + ++ -2

31

5
S TA N D A R D I S E D E D G E A I D I S T R I B U T I O N S H I F T D ATA S E T

In order to study post-deployment monitoring of EI devices and the impact of real-world OOD data, we
collected a high-quality dataset with images of objects in different surroundings. In this chapter, the
collection methodology, as well as the labelling process, of this image dataset is described.

Image datasets like CIFAR10 [128] and ImageNet [129] are used in many of the works presented
in the literature review, to look at the influence of different surroundings in an image on the accuracy.
However, these datasets are missing insight into which distribution objects are placed. Thus for this thesis,
a dataset is created where objects are placed in different surroundings to control the distributions.

This dataset was used to study how different distributions can be used to generalise to distribu-
tions not seen in training. Several distributions, or environments, were identified and chosen where the
objects are placed. To make a correct dataset for OOD data, this dataset was to have distributions that
are distinct and not too similar. Furthermore, these surroundings should occur everywhere in the world,
as the dataset needs to be able to be extended by others.

It is preferred that these objects are easily identifiable and easily obtainable by anyone to extend
the dataset. Furthermore, having multiple variations, such as size and colour, of every object makes sure
that the classification is not too easy, as otherwise, the models would perform too well in the different
surroundings, defeating the purpose of the research into OOD data. Besides that, it would be helpful if
the objects which are chosen overlap with already existing datasets. This makes it easier to use a model
which is pre-trained on such a dataset, allowing for faster training and making transfer learning more
accessible.

Furthermore, the number of images must be determined per class per distribution. This should be
a reasonably high number to allow the model to converge during training.

5.1 M E T H O D O L O GY

This section explains the way how the Out-of-Distribution (OOD) dataset is collected and processed, to
be used in the remainder of this thesis. The classes of this dataset can also be found in the COCO data-
set [130], to be able to use images from this dataset to make transfer learning easier. The distributions
and classes are shown in Table 10.

5.1.1 Data Acquisition

High-quality images were taken, because images can always be downscaled but cannot be reliably up-
scaled. The photos were taken with a Lumix DMC-G80, with a 3840 by 2160 pixels resolution. 100
images were taken per class per domain. Photos were taken from different angles with different compos-
itions. To simplify the data annotation process, the images were first grouped per distribution, and then
per class. This was to ensure that In-Distribution (ID) and OOD testing can be done and labels can be
easily retrieved. Examples of the images can be seen in Figure 12.

32

Table 10: The different distributions and classes in the dataset, with a description.

Description

Distributions

Cityscape The object is surrounded by buildings and streets.

Forest The object is surrounded by trees, moss and shrubs.

Office
The object is placed in a light room,

with not much clutter, generally has some desks or PC equipment.

Park
The object is surrounded by nature.

Differs from the Forest by having paths and open grassy places.

Pub
The object is placed in a cluttered, darker room.

Often the furniture is also quite dark.

Uniform
The object is placed in front of a single colour background indoors.

This is done indoors to make the lighting as uniform as possible.

Classes

Apple A piece of fruit.

Backpack A backpack that is not worn. This does not include purses.

Ball A ball used in different sports.

Book A book of varying thicknesses and different colours for the cover.

Bottle A plastic or glass bottle.

Fork A piece of cutlery. Can be made of different materials.

Phone A handheld smartphone.

Remote Remote controls for appliances.

Scissors A pair of scissors, with different shapes, colours, opened or closed.

Teddy Bear A stuffed animal toy, of different shapes with different colours.

Figure 12: Example images of the created dataset. In respective order, bear in forest, apple in cityscape, backpack in
uniform, ball in office, fork in pub and remote in park.

33

5.1.2 Dataset Evaluation

The quality of the dataset has been checked with the balance score [27] and the openness factor [131].
The balance score is a normalized value between 0 and 1, where 1 denotes a balanced dataset, and 0
is an imbalanced dataset. The dataset, which is presented here, is balanced because every class has the
same size, thus the balance score of the dataset is 1.

BalanceScore =
H

log k
=

−∑k
i=1(

ci
n log ci

n)

logk
(5.1)

As coined by [27], where:

H = Shannon entropy

k = the number of classes

n = the total number of data samples

ci = the size of class i

The openness factor is given by Scheirer et al. [131] to indicate how challenging it is to classify a dataset.
It is an estimate for OOD data detection difficulty and is determined by the number of classes which
can be considered ID and which classes can be considered OOD. The openness factor varies between 0
and 1, where 0 represents a fully closed problem and larger values more open problems. This openness
factor can thus give good insights into how OOD a certain problem is. However, the openness factor for
real-world data can be difficult to determine, as there is a lot of variability in the data as discussed in
Section 3.3 and thus a large number of possible OOD data in the real-world data.

As this research entails a multi-class classification, the openness factor should be 0 [131]. How-
ever, because different domains are used, the combination of an object and a domain can be considered
a separate class. Therefore, the ID distribution consists of 5 domains with 10 objects, thus 50 classes. For
the amount of OOD data, 10 classes are added to the 50 classes, leading to 60 testing classes. This would
lead to a final openness factor of approximately 0.05, meaning that the problem addressed cannot be
compared to an open set problem.

OpennessFactor = 1 −

√
2 × |training classes|

|testing classes| + |target classes|
(5.2)

As coined by [131], where:

Training classes = The number of classes in the training set (including validation set)

Testing classes = The number of classes that are overall tested as well as used during training

Target classes =
The number of classes that are used to train on and
thus used as the classes that need to be classified

34

6
D E T E R M I N I N G T H E A M O U N T O F E VA L UAT I O N I M A G E S

In this chapter, we answer the following sub-question:

How many images are needed, for a statistically reliable evaluation of a multi-class classification?

The ML models in this experiment are chosen based on performance, ease of implementation and infer-
ence speed. Furthermore, they are also able to be converted to a Tensorflow Lite model and edge Tensor
Processing Unit model, so they can run on the cloud and edge hardware. These models are then trained
to identify the 10 classes that are present in the real-world dataset, described in Chapter 5. In training the
models, the nature of OOD data is considered, by leaving one distribution out as an evaluation set, and
training on four distributions whilst validating on the last distribution set. Due to time constraints, the
models that were gathered are pre-trained models. The pre-trained models were refined on the captured
dataset through transfer learning.

The number of evaluation images varied between 1 and 80. 10 reruns were done to ensure proper
evaluation and to achieve an average accuracy and Confidence Interval (CI) for the certainty of the
number of evaluation images found.

6.1 M E T H O D O L O GY

This experiment is structured into two main steps. The first is selecting the Machine Learning (ML)
models and training the models as discussed in Section 6.1.2. The second step is the evaluation of the
trained ML models in two ways of which the flow can be seen in Figure 13.

First, the ML models were evaluated in more classical ways of evaluation, through a classification
report for precision and F1-scores, and a confidence matrix. This was done with all possible evaluation
images of the evaluation set. The models were chosen from other research which implements and test
the accuracy of these models on similar datasets. For these specific ML models, different input resolutions
for the images were required. All of these input resolutions are square, meaning that besides a suitable
downsampling technique, a suitable resizing technique was chosen to resize the dataset images from a
4:3 aspect ratio to a square.

Secondly, the variation in the number of evaluation images per class was examined. This was done
with multiple reruns per number of evaluation images, which allows for mean value and Confidence
Interval (CI)s to be plotted. The CI will be further discussed in Section 6.1.4.

Figure 13: Overview of this experiment and the steps taken.

6.1.1 Model Choice

The best-suited Machine Learning models were chosen with the help of a Design Space Exploration
(DSE). This DSE is found in Table 12. The criteria that were used, were the classification accuracy based
on ImageNet, how easy the ML models are to implement based on their availability in libraries, and time

35

taken per inference. Better accuracy, easier implementation and faster inference led to ++, while the
opposite resulted in - -. The exact overview is given in Table 11.

Table 11: This table explains how the metrics of the DSE are related to the ++/- - awarded in the DSE.

DSE Metric ++ + +/- - - -

Performance >80% 75-80% 70-75% 60-70% <60%

Ease of Implementation
Model in
libraries

Pre-made model
by Google

Libary implementation
Non-libary

implementation found
No

implementation found

Throughput <16.66ms 16.66-33.33ms 33.33-60ms 60-100ms >100ms

The full scores and DSE is given in Table 12. Some of these criteria are more critical for this research,
which is why weights were used to indicate the importance of these criteria. ML models were selected
as suitable if that ML model scored higher or equal to 9. This number was chosen to allow for a suitable
range of ML models to explore, and also to look at secondary criteria, such as the different input ratios
and possible quantisation methods to quantize these ML models.

The models which were chosen were MobileNetV2 [132], EfficientNetB0 [133], EfficientNetV2B0 [134],
EfficientNetV2S [134] and InceptionResNetV2 [135]. These models were all designed as lightweight ML
models, making them more suitable for resource-constrained devices. The layers of these models all exist
out of layers that are built of operations which were shown to be able to work and perform well on the
chosen hardware [136, 137].

Due to limited time, pre-trained ML models were selected for the analysis. The best would be if
these ML models were pre-trained on COCO as it is the best comparable dataset to the one made in this
research. The ML models that were found which were pre-trained on COCO were all object detection
models, but in this research, the focus is on classification models. Suitable pre-trained classification
models where COCO is used as the dataset, could not be found, and thus ML models were used, which
were pre-trained on ImageNet.

6.1.2 Model Training

Utilising the pre-trained ML models, the models were then retrained using transfer learning on our
dataset. For this, the classification head of the ML model was removed, and a new classification head
was added. The original weights of the pre-trained ML model were frozen, and only the weights in the
classification head were updated.

The ML models were trained with leave-one-distribution-out cross-validation, as illustrated in
Figure 14. First of all, one distribution was set aside for the final evaluation, thus five distributions were
left to train with. For every evaluation distribution, five separate ML models were trained for every type
of model, in which one of the remaining distributions was used as a validation set, and the other four
remaining distributions as the training set. To illustrate: for MobileNetV2, where the park distribution
was left out, five separate models were trained where all distributions except the park distribution were
used as the validation set. These five models were averaged, and this averaged model was used for the
final, park distribution, evaluation set. This meant that for every ML model, 6 averaged models were
trained, one for every distribution.

The models were trained separately, and the weights of the models were averaged, to better mimic
the final deployment. The distribution in which it is placed is not known, and therefore the validation set
should be kept separately. This approach mimics federated averaging, which has been proven successful
for edge devices placed in different environments [45].

6.1.3 Model Inference

After the training of the ML models has succeeded, the test set was used for inference. This refers to the
distribution which has not yet been seen by the ML model, ensuring that it is OOD data. This is done ten
times for every number of evaluation images. So one image of every class is evaluated, then five and so
on. This is done for 1, 5, 10, 15, 25, 50, 75, and 100 images per class.

36

Table 12: Design Space Exploration of Algorithm Choice (Edge), from "- -" to "++", which represents a score from
-2 to +2. This score is multiplied with the weight and finally summed to a total which is shown in the last
column.

Algorithm Performance Ease of Implementation Throughput Total

Weights 3 2 1

Image Recognition
Algorithms for EI

and TinyML

EfficientNet V2 S [134] ++ ++ + 11

EfficientNet B0 [133] + ++ ++ 9

EfficientNet V2 B0 [134] + ++ ++ 9

Inception-ResNet V2 [135] ++ ++ - 9

MobileNet v2 [132] + ++ ++ 9

Inception v4 [135] ++ + - - 6

DenseNet [138] + + + 6

MobileNet v1 [139] +/- ++ ++ 6

ResNet-50 V1 [140] + +/- +/- 3

ResNet-152 V2 [141] + +/- +/- 3

EfficientNet-EdgeTpu-L [142] ++ - - + 3

Inception v1 [143] - ++ ++ 3

MobileNet v3Small [144] - + ++ 1

EfficientNet-EdgeTpu-S [142] + - - ++ 1

EfficientNet-EdgeTpu-M [142] + - - ++ 1

SqueezeNet [35] - - +/- ++ -4

MCUNetV2-H7 [145] +/- - -
- -

(Not Found)
-6

AttendNets [146] +/- - -
- -

(Not Found)
-6

RNNPool [147] +/- - -
- -

(Not Found)
-6

37

Figure 14: Overview of how training has been done for making averaged ML models which were evaluated for the
number of evaluation images.

6.1.4 Model Evaluation

The metrics used, are explained in Equations 6.1, 6.2, 6.3, and 6.4. The acronyms that are used, are as
follows:

• True positive (TP): when the classifier correctly classifies a Teddy as a Teddy

• False positive (FP): when the classifier classifies a Ball as a Teddy.

• True negative (TN): when the classifier correctly classifies a Ball as a Ball

• False negative (FN): when the classifier classifies a Teddy as a Ball.

The different resulting parameters which can say something about the performance of the classifier are
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(6.1)

Precision =
TP

TP + FP
(6.2)

Recall =
TP

TP + FN
(6.3)

F1 − Score = 2 × Precision × Recall
Precision + Recall

(6.4)

38

The performance of the classifiers was evaluated using four metrics: accuracy, precision, recall and F1-
score. A downside of the accuracy is that if the dataset is unbalanced, it may not give an accurate
representation. On the other hand, if the dataset is balanced, it is used as a reliable measure [148].

Next to the more classical ways of evaluating the classifier’s performance, for this research, in-
sights were found in the difference between evaluation performances for the different number of evalu-
ation images. An overview of the evaluation is also presented in Figure 15. For this evaluation, accuracy
is used as the performance metric. From this performance metric, a mean is taken over ten reruns to
finally get a mean and Confidence Interval per number of evaluation images. See Equation 6.5 for how
the CI is calculated. This CI gives a confidence measure, that if this experiment is to be repeated, we
could be 95% certain that the average accuracy would be within the CI. The CI is calculated to give
insight into the variation possible after the evaluation of the varying number of evaluation images.

CI = x̄ ± z × s√
n

(6.5)

where:

CI = Confidence Interval

x̄ =
Mean of classification accuracies for the reruns
of a specific amount of evaluation images per class.

z = Confidence level value, for a confidence level of 95%, a value of 1.96 is used [149].

s =
Standard deviation of the classification accuracies for the reruns
of a specific amount of evaluation images per class.

n = Number of reruns of a specific amount of evaluation images per class.

39

Figure 15: Overview of how training has been done for making models which are reviewed for the number of
evaluation images.

6.1.5 Platform Choice

In this thesis, custom Python scripts and JupyterLab [150] were used, to train, infer and evaluate the
first ML models. To collect results of different runs and evaluation reports, Weights and Biases [151]
was used. Weights and Biases allowed for easy access and overview of the trained ML models and their
performance by using an online dashboard.

The constructed TF lite models were visualised with the help of Netron [152]. This was done to
allow for inspection, to see if the converted TF lite files and edge Tensor Processing Unit-supported TF
lite models contained the correct layers. This was done as some layers were not supported by either the
TF lite for microcontrollers library or by the edge Tensor Processing Unit (TPU).

6.1.6 Downsampling Techniques

The dataset images were pre-processed to the different resolutions needed for the chosen algorithms,
which were 224 x 224 pixels for MobileNetV2, EfficientNetB0 and EfficientNetV2B0. For InceptionRes-
NetV2 and EfficientNetV2S, larger images were needed, respectively 299 x 299 pixels and 384 x 384
pixels. Similar pre-processing methods were used for every ML model to ensure that proper comparison

40

could be achieved. The differences in pre-processing methods are the resizing of the images, as well
as the scaling of the RGB values from INT8 to FLOAT32. The dataset was resized with the help of the
OpenCV library [153]. Multiple resizing methods were tried, with the nearest neighbour interpolation
method being the fastest, while not visually altering the image. The nearest neighbour interpolation
method was used to rescale and resize the images at the same time to the desired input sizes of the used
ML models, which are 224 x 224 pixels, 299 x 299 pixels and 384 x 384 pixels.

6.2 R E S U LT S

This experiment resulted in an overview of graphs showing the mean accuracies of the ML models per
model and the Confidence Intervals of these mean accuracies if one would repeat the same experiment.
The graphs show that the mean accuracy does not differ much for a given number of evaluation images
compared to using the entire evaluation set. The graph for EfficientNetV2B0 is shown in Figure 17. The
graphs for the other models are given in Appendix A.2.

Figure 16: Average accuracy and loss with Confidence Intervals of EfficientNetV2B0.

In Figure 16, the accuracy for the entire evaluation set of a distribution is given. The deviation shown
is the accuracy between the different distributions. Here it can be observed that for EfficientNetV2B0,
the park distribution is seen as outliers, due to the relative high performance on the other distribu-
tions when compared to the park distribution. EfficientNetV2S performs the best of the five models,
and MobileNetV2 performs the worst, which is in line with their relative performance on the ImageNet

41

dataset [132, 133, 134, 135]. EfficientNetV2S performs 6% to 25% better than MobileNetV2 across the
different distributions, thus showing that EfficientNetV2S is better in classifying OOD data. Furthermore,
InceptionResNetV2 performs worse than the EfficientNet models on more difficult distributions, such as
park and office, while achieving better performance in the easier uniform distribution. Performance on
the different distributions seems to be in line with what was found in state-of-the-art research [57].

Figure 17: Accuracy across the different distributions for all ML models. The whiskers show the deviation in accuracy
across the distributions.

Next to the graph, an overview of all values is given in Table 20 in Appendix A.1 per model and per
distribution. The values were calculated by averaging the 10 reruns and retrieving the average classifica-
tion accuracy. Next to that, with the accuracy of these 10 reruns, the Confidence Interval was calculated.
During training, it was observed that the callback of Weights and Biases can take a very long time. This
varied a lot but increased the duration of training significantly.

Table 20 and Figure 17 show that the Confidence Interval (CI) decreases when more images are
used. However, a reasonable trade-off is situated around the 15 to 25 images mark. Here the CI varies
from 1% to 2%. Thus, when this experiment was to be repeated, we are 95% confident that the measured
evaluation accuracies vary 1% to 2% from the actual accuracy.

The classification performance was the best for the distribution with uniform backgrounds and
the worst for the distribution with park backgrounds. The CI was smallest for the uniform distribution
and largest for the park distribution. This is logical, as for the less accurate distributions, there would be
more variety in how the models performed, than for more accurate distributions.

6.3 D I S C U S S I O N

The different evaluation distributions performed very differently from each other. The Uniform distribu-
tion models were trained on the most cluttered backgrounds and tested on objects with a non-cluttered
background, thus improving classification performance. For the Park distribution, the opposite is true, as
the background contained the most variety in colours and patterns, which would lead to misclassification.

To reflect on the question posed at the beginning of this experiment, around 20 images per class,
the Confidence Interval across all distributions and models was 1% to 2%. This implies that 20 images
per class give a very reliable evaluation for a deployed EI device.

A limitation that was introduced, is the fact that the models that were chosen, were pre-trained
on ImageNet. This could have affected the final results, as the classes in ImageNet were not the same as
the ones used in this dataset. The effects should be limited due to the vastness of the ImageNet dataset. A
more representable dataset that could be used for pre-training, is the COCO dataset, due to its vastness in

42

varying environments. This could potentially decrease the data needed for transfer learning, or increase
the potential final performance for a given number of training images.

Another limitation is that the dataset used is a balanced dataset. The data gathered in the real
world may be better represented with an unbalanced dataset, where the classes are long-tailed, meaning
that for a lot of classes, a small amount of data is available. Comparing the difference in performance
would need to be done with the F1-score as opposed to the accuracy metric now used, and it would
be seen that the presence of long-tailed classes leads to a loss in classification performance. Another
consideration is that for every distribution, the dataset is also balanced. However, it is possible that
from some distributions, more data can be gathered than from other distributions, leading to long-tailed
distributions as well as the classes present within the distributions.

6.4 C O N C L U S I O N

With the made OOD dataset, 20 images per class can be used for a reliable evaluation. When evaluating
on 15 to 25 images per class, the Confidence Interval is reduced to 1% to 2% for a confidence measure
of 95%. This means it can be said with 95% confidence that when this experiment is repeated, the final
accuracies are within a 1% to 2% margin, where this lower margin indicates more confidence in the
repeatability of this experiment.

It was shown that the EfficientNet models perform the best across the different distributions,
whereas MobileNetV2 performs the worst. The difference between the models on the most accurate
distributions is 6% and the least accurate distributions 25%. All models can be run on an edge device,
but EfficientNetV2S and InceptionResNetV2 have a larger memory footprint, mainly due to the fact that
they have larger images as input when compared to MobileNetV2, EfficientNetB0 and EffcientNetV2B0.

Furthermore, the park distribution is the most difficult, and the uniform distribution is the easiest
to classify for all models. The difficulty in classifying the park distribution was due to the variety in
background colours, and the clutteredness of the image. This points to the fact that the surroundings of
an edge device should be kept as simple as possible.

43

7
T R A D E - O F F B E T W E E N R E M O T E E VA L UAT I O N A N D P O W E R U S A G E

In this chapter, the aim is to create an overview of the trade-off between the remote evaluation of a
deployed system, human effort, and the power that must be consumed for such a system to be evaluated,
thus answering the following sub-question:

What is the trade-off between evaluation reliability, power usage, and human effort?

The remote evaluation of an edge device is needed, as not all edge devices can be easily accessed by
researchers, to retrieve the data. As evaluation is still important to check the proper performance of an
edge device, images need to be sent to a central part, to be labelled by one or multiple human experts,
to retrieve a ground truth label. As the classification performance of edge devices degrades over time, an
evaluation set can be sent, to determine the classification performance over a specified time span.

For the trade-off between evaluation reliability and power usage, a hardware setup was used, to
be able to take measurements. The different hardware and software components contributing to the
total power usage in the remote evaluation of a deployed device were identified. For this, different
cameras were investigated in terms of their power consumption. With the components that are most
power-consuming, a model is made that calculates how many images can be sent and how long the
device would be able to run.

For the trade-off between evaluation reliability and human effort, a more theoretical approach
is taken, where different methods of evaluation are compared. These methods are compared on their
accuracy in evaluation and how much effort and time is required from a human expert.

7.1 M E T H O D O L O GY

This section describes the methodology which was followed for creating an overview of all power com-
ponents and modelling this trade-off. Furthermore, the human effort needed for reliable evaluation is
discussed.

7.1.1 Creating an overview of critical power components

The camera, inference of images, and transmission of these images are the parts where an edge device
consumes power. Firstly, the power consumption of cameras is retrieved from datasheets and can be
found in Table 13. Secondly, the power consumption of inference is measured in the next experiment but
can be found in Table 17. Thirdly, the power consumption of transmission of images is found in literature,
which can be found in Table 16.

The modelling in this experiment consists of making an overview of the impact of different com-
munication protocols and other variables on the prospected battery life of edge devices. The input vari-
ables consist of the data size of the image to be sent, how many images are to be sent, and variables
of the battery like capacity, nominal voltage, idle power usage and sleep usage. Furthermore, average
incoming power may be interesting as often a solar panel is an option that is used for power generation
for deployed edge devices.

7.1.2 Platform Choice

To write the code needed for power consumption measurements, the Jupyterlab environment from the
University of Twente was used for training and inference. This environment hosts multiple GPUs which
can be used for machine learning. To be able to compare the computational power of the cloud and
the edge, one specific GPU was chosen, which was the NVIDIA Tesla T4 GPU. This specific GPU was
chosen as it was found to be the most reliable running the code of this research. The NVIDIA Tesla T4
can achieve around 65 TFLOPS for mixed precision (FP16/FP32) and 130 TOPS for INT8 [154]. This
compares to the Google Coral TPU Development Board where the CPU has 2.3 TOPS [155], and the TPU
has 4 TOPS [137].

44

Figure 18: Flow of data in a deployed device. The different steps consume varying amounts of power, with the
transmission of data being the most power-consuming step.

Together with Jupyterlab, Windows Subsystem for Linus (WSL) [156] was used to use the edge TPU
compiler [157] of Google Coral. This edge TPU compiler is used to compile quantised models to be used
on the edge TPU on the Google Coral TPU development board.

7.1.2.1 Camera Choice

For the chosen Google Coral TPU Development Board, there are different ways of connecting the camera,
which are the MIPI Camera Serial Interface 2 (MIPI CSI-2) connector and the Universal Serial Bus (USB)
connector. Table 13 shows there is little difference between the cameras, except for the throughput of
the MIPI CSI-2 camera connections. These can be used in later revisions where classification models get
more efficient and a higher resolution image can be used as input. The other significant difference is
power usage. However, this differs significantly between USB cameras, so depending on the resolution
and framerate needs, a less power-consuming USB camera can be chosen.

The documentation for edge TPU benchmarks [137] shows that the largest model expects an input
image of 513 by 513. This resolution is nowhere near the restricting limits of both types of cameras.
Thus, the bandwidth for both should be more than enough at this moment. Next to that, in the edge
TPU benchmarks table, it can also be seen that the inference time for nine models is low enough to run
at 60fps. For two other models, which are larger models, 30fps is possible. The larger models do have
higher accuracy. Due to the high bandwidth and availability, the Coral AI camera was chosen for this
research. This camera is used as an indication of the power consumption of the camera subsystem.

Table 13: Design Space Exploration for Camera Choice.
For the MIPI CSI-2 cameras, the Coral AI Camera [158], and the e-con Systems Coral cameras [159] were
used, and as a reference for the USB camera the Logitech C920 [160] was used.

Camera Type Bandwidth Max Resolution FPS for FullHD Power usage min (W) Power usage max (W)

MIPI CSI-2
Cameras

Coral AI camera
320MB/s per lane

(4 lanes)
2592 x 1944 30 Not found Not found

e-CAM30_CUCRL
320MB/s per lane

(4 lanes)
2268 x 1512 60 0.79 1.22

e-CAM50_CUCRL
320MB/s per lane

(4 lanes)
2592 x 1944 65 0.840 1.160

USB Cameras

Logitech HD Webcam C270 40MB/s 1600 x 1200 30 Not found 2.5W

Logitech QuickCam pro 9000 40MB/s 1280 x 720 30 Not found Not found

Microsoft LiveCam Studio 40MB/s 1920 X 1080 30 Not found Not found

45

7.1.2.2 Quantisation Techniques

To be able to run models on the edge TPU, these models need to be fully integer quantised [161]. This
allows the models to fit on the hardware, as well as be compiled by the edge TPU compiler. However, this
may also influence the final accuracy of the model. This variation of accuracies is discussed and further
investigated in the experiments in Chapter 8.

7.1.2.3 Power Consumption Evaluation

The separate power-consuming parts of the data flow need to be characterized, which may be hard
due to missing data. To get the power requirements, a current measuring device is used to get the idle
current consumption of the device. A separate voltage measurement is taken to determine the power
consumption, which can ultimately be compared. It was not possible to measure different communication
protocol modules, thus theoretical values were taken from other research, which is shown in Table 14.

Table 14: Comparison between different long-range communication techniques, which are a possible use case for
edge devices. Values were obtained from research and datasheets which are given in the references column.

Communication Type Uplink Speed Downlink Speed Power (J / kbyte) Range Latency References

LoRaWAN 250 bit/s - 11 kbit/s 250 bit/s - 11 kbit/s 0.698 10 km 250 ms [162, 163]

4G 100 Mbit/s 100 Mbit/s 0.217 25 km 25 ms [164, 165, 166]

LTE-M 7 Mbit/s 4 Mbit/s 0.27 10-50 km 10 - 15 ms [167, 168]

NB-IoT 159 kbit/s 127 kbit/s 0.198 1-10 km 1 - 10 s [167, 168]

Sigfox 600 bit/s 600 bit/s 5.906 10-50 km 20 s [169, 170, 171]

Wi-Fi 80 Mbit/s 25 Mbit/s 0.385 50 m 1-3 ms [172, 173]

These values can be used to calculate the amount of Joules needed to send one 36.0KB image and how
many seconds it takes to send a 36.0KB image. A 36.0KB image was assumed, as this is the approximate
size of a 224 X 224 pixels image. To make these calculations, Equations 7.1 and 7.2 were used.

PI = PKB × S (7.1)

where:

PI = Power per Image (J)

PKB = Power per KByte (J / KB)

S = Image size (KB)

TT =
S
TS

(7.2)

where:

TT = Time per Image (s)

TS = KByte per seconds (KB / s)

S = Image size (KB)

7.2 R E S U LT S

There are two main results that are gathered from this experiment. The first part consists of the trade-off
between evaluation and power consumption. A graph was rendered to show the different communication
protocols and their life span on a given battery capacity. The second part compares the human effort and
the evaluation reliability, where a theoretical approach has been taken.

46

7.2.1 Creating an overview of critical power components

As shown in Table 15, the largest part of the power consumed is the sending of images. In the table, the
minimum and maximum power consumption for every aspect is shown. As can be seen from the table,
the largest part of the power consumed is the transmission of images for feedback.

Table 15: The power consumption and relative power consumption of the different parts of a EI device. Power
consumption is calculated for 1 image. For camera power consumption, the power consumption in Watt
and the frames per second from Table 13 can be used to calculate the amount of Joules used per image.
For pre-processing and inference, the values from Table 17 are used. For feedback transmission, the values
from Table 16 are used.

System Part Power consumption (J) Power consumption (% of total)

Camera 0.013 - 0.020 0.007% - 0.000%

Pre-processing and Inference 0.031 - 12.423 0.016% - 0.210%

Feedback Transmission 198 - 5906.25 99.978% - 99.790%

The power requirements for each tested communication technology are shown in Table 14 and visualized
in Figure 19. Calculations are done to give an overview of how much power is required to send one
picture. The power requirements per image are presented in Table 16.

Table 16: Comparison between power requirements for a 36.0 KB picture to be sent by different communication
protocols.

Communication Type Power (J / kbit)
Power

(J/image)
Tx time (s)

LoRaWAN 0.087 25.13 26.18

4G 0.027 7.81 0.35

LTE-M 0.0338 9.72 0.04

NB-IoT 0.0248 7.13 1.81

Sigfox 0.738 212.63 180

Wi-Fi 0.048 13.86 0.0036

In Figure 19, Sigfox stands out, as it seems to have particularly high power consumption. This is due to
the fact that Sigfox, as a communication protocol, is used for small amounts of data and is not made for
sending larger data like images. This is why sending an image would take so long, and there is such a
high-power draw. LoRaWAN has been made for sending small amounts of data over large distances. This
is why the transmission time is so high. However, it compensates for this with a low J / kbit rating.

47

Figure 19: A bar chart displaying the different power consumption for transmitting a 36.0 KB image using different
protocols.

7.2.2 Modelling Battery Capacity vs Photos sent and Time

A model was made based on the different transmission protocols, as well as different inputs, like battery
capacity, uptime, power usage of the different software parts, and the number of photos sent per day.
This model shows how different protocols lead to different maximum lifetimes per a given battery size.
In Chapter 10, this model is used to create an overview of the battery charge for a typically deployed edge
device. A battery capacity of 72Wh is considered a reasonable size, as this is 3 Li-Ion batteries in series
with 2 parallel, which has been used in wild-life camera applications. The nominal and idle power usage
is evaluated from the datasheet of the development board and retrieved from measurements. Next to
that, an uptime of approximately 0.25% per day is assumed, as is calculated with the transmission time
of the images, as well as inference time. With the given image size of 36.0KB and a battery capacity of
72Wh, around 36400 images can be sent by NB-IoT, which is the most efficient protocol. 4G is the second
most efficient protocol, which is able to send around 33200 images. The worst transmission protocol is
Sigfox, which can only send around 1220 images.

7.2.3 Human Effort

When the images are sent back for evaluation, more images often relate to higher evaluation reliability.
Thus human experts would need to check more images, thus increasing human effort. Multiple human
experts labelling the same evaluation set, leads to a higher reliability in evaluation, as opposed to one
human expert [174]. In Chapter 6, it was shown that for the given dataset in this research, only about
20 images per class are needed for reliable evaluation, thus decreasing the human effort. A downside of
this is the fact that this is for just one deployed EI device. Often multiple edge devices are deployed at
once, thus increasing the human effort again.

This can be counteracted by using a teacher-student model [13, 175]. A large cloud model is
deployed as a teacher model together with the smaller edge devices as students. The cloud model can
then infer the images and predict which label would be associated with the image. This cloud model
requires no transmission of images to check its classification performance, and these cloud models are
often more accurate than edge models [49, 50]. This system can be used in place of a human expert, or
alongside a human expert to check the work of edge devices.

48

7.3 D I S C U S S I O N

This experiment has shown that communication protocols such as Wi-Fi indeed take a lot of power to
send an image, yet, it does so very fast. More typical communication types in IoT consume less power per
image sent but take longer. NB-IoT and 4G are suitable protocols, as they have the lowest transmission
power while sending the image. Furthermore, they do not take long to send the picture, but 4G is faster
than NB-IoT.

A fascinating insight is found in Sigfox, as it is assumed widely to be energy efficient, which did
not appear to be the case. This is mainly because sending a small amount of data takes a long time, as
an image is too large for this technology. Comparing the amount of power needed to send images, the
rest of the components in the device have insignificant power usage, as shown in Table 15.

For a battery of 72Wh with no incoming power, with the most power-efficient communication
protocol, NB-IoT, around 34600 images can be sent. If we retrieve the number of images needed for
reliable evaluation from the previous chapter, 20 images are required per class. In the case of the 10
classes in this research, this equals 200 images. Comparing this to 34600 images that could be sent,
173 evaluation sets could potentially be sent. This means that during deployment, besides inference, an
evaluation set can be sent back to a central location to evaluate the current classification performance of
a deployed edge device. With the large amounts of power, updating the machine learning model by way
of fine-tuning can be considered to increase the classification performance over time.

To minimize human effort, while keeping reliable evaluation, the number of evaluation images
per edge device can be reduced to 20 images per class. Using the combined knowledge of multiple human
experts can lead to a better evaluation, thus increasing evaluation reliability. Here the trade-off lies with
the fact, that this would increase the human effort again.

A limitation of this experiment is that all power consumption values of the transmission protocols
are theoretical values and are not the power consumption of a radio or radio module when deployed in
the real world. This could lead to the values provided in this experiment being too low, as there may be
more power drawing components in a radio module than just the radio, or too high, as the values given
are theoretical maximum values. Measuring the power draw would lead to more accurate measurements
when an edge device is deployed, ultimately leading to better insight into possible trade-offs between
the cloud and the edge.

7.4 C O N C L U S I O N

The optimal communication protocol to use seems to be NB-IoT, with a power consumption of 7.13 Joule
per 36.0 KB image and a relatively fast transmission time of 1.81 seconds per image. 4G has a slightly
higher power consumption with 7.81 Joule per image but could be more suitable due to a decreased
transmission time of 0.35 seconds.

In the best scenario, around 36400 36.0 KB images can be sent with a battery of 72 Wh with
NB-IoT. Experiment 1 in Chapter 6 showed that around 20 images per class are needed for reliable
evaluation. This signifies that reliable evaluation can be attained with NB-IoT. For the given settings for
NB-IoT, every transmission protocol, except for Sigfox, can send enough images for reliable evaluation,
as Sigfox can send 1220 images on a 72 Wh battery.

Concerning human effort, 20 images per class need to be labelled by human experts. This has
to be done for every edge device, increasing the human effort again. However, the human effort can be
reduced by employing a student-teacher model structure by having a larger, more accurate cloud model
label the evaluation images and computing accuracy. The trade-off which is introduced here is that this
could lead to inaccuracies, as the teacher model could falsely predict the evaluation images from the
edge, whereas a human expert is less likely to label the images wrong.

49

8
T R A D E - O F F B E T W E E N I N F E R E N C E O N E D G E C P U O R E D G E T P U A N D
Q UA N T I Z AT I O N

On an edge device, besides a CPU, a machine learning accelerator like a TPU can be used to infer im-
ages. The architectural differences between these components can lead to differences in classification
performance. Besides the architectural differences, the models which run on these components are dif-
ferent, which can also influence performance. To investigate the influence of the different architectures
on classification performance, the following question is answered in this chapter:

What is the trade-off between inference on edge CPU or edge TPU, and how does quantisation influence
this?

To explore the trade-off between these architectures, the averaged ML models that were trained in
Chapter 6 are quantised into TF lite models. These two models were then run on the cloud hardware.
Next to that, the quantised model was compiled to be run on the TPU. The quantised model was run on
the CPU, and the TPU compiled models were run on the TPU of the model. This classification perform-
ance difference is interesting to investigate, as quantised models can sometimes perform better due to
better generalisation [14].

The ML models were all evaluated on classification performance with the full evaluation set for
every distribution and for inference time. The power consumption of the edge device was also meas-
ured when running inference on the CPU and TPU. With the classification performance and the power
consumption, a trade-off can be made, which ML model and which hardware can best be used.

8.1 M E T H O D O L O GY

In this section, the different steps are explained, which are taken to explore the trade-off between classi-
fication performance and power consumption for different hardware architectures, and their respective
ML models. The models to be investigated are MobileNetV2, EfficientNetB0, EfficientNetV2B0, Efficient-
NetV2S and InceptionResNetV2.

The models are run on the cloud GPU, edge device CPU and edge device TPU. To be able to run
the ML models on the edge device CPU, they need to be quantised and to run the ML models on the edge
device TPU, the quantised models need to be compiled for the TPU.

However, the current version of the edge compiler, 16.0.384591198, could only be used for Mo-
bileNetV2, EfficientnetV2B0 and InceptionResNetV2. An older version, version 15.0.340273435, could
be used for EfficientNetB0. However, for EfficientNetV2S, no edge TPU compiler version worked, and no
errors were mentioned. This is why for the parts of this experiment concerning running the model on the
edge TPU, the EfficientNetV2S model is missing.

These ML models are evaluated on classification performance and inference time. The power
consumption for the edge device is also measured for the models which are run on the edge device.

8.1.1 Model Inference and Evaluation

The JupyterLab [150] environment of the University of Twente was used to generate the different models
and run inference and evaluate them. The Google Coral TPU development board was used for the edge
compiled devices, together with a large SD card to read the images from. This edge device was chosen
after a Design Space Exploration (DSE), as explained in Section 4.2.

8.1.2 Experiment

The ML models that are used, are the same models which were trained in Chapter 6 and are thus trained
in the same way as explained in Section 6.1.2.

When running the inference of the models, the following metrics may be measured during the
tests:

50

• Accuracy

• F1-score

• Power Consumption (W)

• Inference speed (s)

The evaluation set that was used for the distributions consisted of all available images, thus 100 images
for 10 classes per distribution. This is the same as mentioned in Section 6.1.4, with the exception that
the number of evaluation images was not varied. To attain one value for the different ML architectures,
the results of all models are summed in one confusion matrix. For example, all six confusion matrices for
MobileNetV2 are summed, to calculate the classification performance metrics.

The current measurements are done with a Keysight 34461a Digital Multimeter (DMM) [176].
This DMM can log the current values during inference. The current was measured at the power supply
of the development board, thus measuring the total power consumption of the edge device. The current
measurements are taken 10 times for every ML model that runs on the edge device. These measurements
are then used to calculate an average current measurement for every model.

These measurements were taken over a few seconds time when the models were inferring images,
and 100 measurements were taken in this period which was averaged by the DMM. Together with the
earlier measured voltage, the total power draw is calculated. The time it takes to infer an image is also
essential, as this may make a difference in power requirements. Inference time was timed in the code
itself. The power consumed per image is calculated as shown in Equation 8.1.

PI = PW × T
1000

(8.1)

where:

PI = Power per Image (J/image)

PW = Power (W)

T = Time taken for inference (ms/image)

8.2 R E S U LT S

The final results of this experiment are the classification performance results for the different cloud
and edge hardware and quantisation levels as shown in Figure 20. More detailed results can be found in
Appendix B.1 in Tables 21 and 22. These performance metrics were retrieved from the summed confusion
matrixes as seen in Appendix B.2.
As shown in Figure 20 and Table 21 and 22, EfficientNetV2S was the best-performing model. It outper-
formed the other complete models in the cloud with 6% to 22%, the other quantised models in the cloud
8% to 25% and the other quantised models on the edge CPU with 9% to 24%. However, EfficientNetV2S
could not be converted to be used by the edge TPU and was omitted for the following experiments. This
indicates that for the classification on the edge TPU, EfficientnetV2B0 performed the best, outperform-
ing the other models with 8% to 24%. After EfficientNetV2S, EfficientnetV2B0 was the model which
performed the best across all devices and levels of quantisation. The outliers which are present for the
EfficientnetV2B0 models evaluated on the cloud are both evaluations where the park distribution was
the holdout set.
As is seen in Table 17, the power requirements per model per device and quantisation level are calculated,
showing that inference time was the biggest influence on power requirements. MobileNetV2 was the
cheapest regarding both time and power consumption per image, with an inference time of 133 ms and
0.5 Joule per image for inference on the edge CPU, and 8.5 ms and 0.03 Joule per image on the edge
TPU. Inference times were high for both EfficientNetV2S and InceiptionResNetV2, which took at least
ten times longer than other models, respectively 2570 ms and 10.5 Joules per image, and 3275 ms and
12.5 Joules per image. EfficientNetB0 and EfficientNetV2B0 had a 2 to 3 times higher time and power
consumption per image as compared to MobileNetV2.

51

Figure 20: The results for the different models on the different architectures. The whiskers denote the variation
in accuracy for the different distributions in the holdout set. The results are shown for the model and
quantised model in the cloud, as well as the quantised model on edge CPU and the compiled quantised
model on edge TPU.

Table 17: Power consumption and inference time of models on the edge device. Here the quantised models are
shown running on CPU and TPU. A metric for power consumed per 36.0KB image inferred is given.

Algorithm Quantised running on CPU Quantised running on TPU

Power (W) Time (ms/image) Power (J/image) Power (W) Time (ms/image) Power (J/image)

MobileNetV2 3.726 133.609 0.497 3.604 8.563 0.031

EfficientNetB0 4.053 280.544 1.137 3.993 24.126 0.096

EfficientNetV2B0 3.947 270.294 1.067 3.833 19.709 0.076

EfficientNetV2S 4.108 2573.29 10.571 N.A. N.A. N.A.

InceptionResNetV2 3.789 3278.6 12.423 3.903 141.246 0.551

8.3 D I S C U S S I O N

As most of the literature has said [49, 50], when quantisation occurs, the accuracy drops for all models.
This is expected as one misses the preciseness of numbers when moving from floating point numbers
to integers. However, a specific limitation was found when moving from the cloud to the edge, as the
same Tensorflow Lite file seems to have different accuracy when deployed, with the accuracy difference
ranging from 8% to 15%.

This problem has been investigated, and the same TF lite file seems to have different values when
loaded for some but not all neurons. This may occur due to the differences in mapping as in the cloud,
a GPU is used, and on the edge, a CPU and TPU. Another explanation would be the differences in the
libraries used. The official Tensorflow Keras library was used in the cloud, while on the Google Coral

52

TPU Development Board, the official Coral Tensorflow library was used. A last reason could be that the
models used are optimised to be run on the cloud instead of on the edge.

The consequence of the large drop in performance when moving the models from the cloud to
the edge is the fact that in later experiments, the edge performed better than the cloud. The trade-off
could then lead to the edge being more suitable than the cloud as it performs better, even when the
cloud-trained models perform a lot better on the cloud.

To reflect on the question posed, running the ML models on the cloud leads to consistently higher
performance than running the models on the edge. This drop in performance could not be counteracted.
When deploying the ML models on the edge, the accuracy difference in running the models on the
edge CPU and TPU is trivial, while performing the inference on TPU leads to significantly lower power
consumption. Thus when ML models are run on the edge, using a machine learning accelerator such as
a TPU is preferred.

8.4 C O N C L U S I O N

When comparing classification performance, EfficientNetV2S was the best-performing model, outper-
forming the other models across different devices and quantisation levels 6% to 25%. This model could
not be compiled for the edge TPU, thus leading EfficientNetV2B0 to be the best-performing model when
deployed on edge TPU, outperforming the other models with 8% to 24%.

Finally, when comparing power requirements when the models are deployed on the edge, Mo-
bileNetV2 performs best with a power consumption of 0.03 Joules per image on the edge TPU, with
EfficientNetB0 and EfficientNetV2B0 following closely, with 0.10 and 0.08 Joules per image respectively.
Conversely, EfficientNetV2S and InceptionResNetV2 both perform significantly worse, with InceptionRes-
NetV2 having a power consumption of 0.55 Joules per image on the edge TPU. The difference in power
usage per inference primarily resides in the difference in time inference takes, so lowering the inference
time could lead to more power-efficient models.

53

9
D I F F E R E N C E I N P E R F O R M A N C E B E T W E E N R U N N I N G C L O U D F I N E -T U N E D
M O D E L S I N T H E C L O U D A N D O N T H E E D G E

In this experiment, we focus on fine-tuning techniques in the cloud and running these fine-tuned models
both in the cloud and on the edge [19]. To address the drop in accuracy that can occur when deploying
cloud-trained models on the edge, we investigate the following sub-question:

What is the trade-off between inference of cloud fine-tuned models on cloud and edge, and how does
quantisation influence this?

We fine-tuned the ML models in three different ways: retraining the last layer from randomized weights,
tuning the weights of the last layer with a small learning rate, or tuning the weights of the entire model
with a small learning rate. We showed in Chapter 6, that for the dataset presented in this thesis, 20
images per class are needed for a reliable evaluation, so the other 80 images per class can be used for
fine-tuning the model. We show the cloud fine-tuned models performance on the cloud GPU and the
edge TPU.

9.1 M E T H O D O L O GY

In this section, the methodology is explained, which has been used to compare running cloud fine-tuned
models both in the cloud and on the edge. It describes which models are used, in what different ways
they are fine-tuned, and how these fine-tuned models are evaluated.

9.1.1 Model Choice

We used the MobileNetV2, EfficientNetB0 and EfficientNetV2B0 models. The EfficientNetV2S model can-
not be run on the edge TPU, thus this model is not further investigated. Secondly, fine-tuning on the edge
is limited to models which have an output embedding consisting of a vector length of 1280, thus to be
able to compare results, InceptionResNetV2 was excluded from this experiment.

9.1.2 Model Fine-tuning

The models are fine-tuned in three different ways, as these are primarily used. No names for these
fine-tuning strategies could be found, so they are named as follows: Last Layer Randomized weights
Training (LLRT), Last Layer Small Learning Rate (LLSLR) and All Layers Small Learning Rate (ALSLR).
Firstly, fine-tuning by randomising the weights of the last layer and training this last layer again, which
is LLRT [177]. Secondly, fine-tuning can be done by changing the learning rate to a small learning rate
and keeping on learning with the old weights [178, 179]. Using a small learning rate was done in two
ways. LLSLR considers only training the last layer with a small learning rate and freezing the rest of the
weights. ALSLR consists of unfreezing the weights and training all layers with a small learning rate.

Fine-tuning these models was performed while varying the number of training images, which can
be seen in Figure 21. This is done with training on 1, 5, 10, 15, 20, 30, 50, and 80 images per class. As
our dataset had 100 images per class per distribution, a maximum of 80 images per class were used for
fine-tuning.

9.1.3 Model Evaluation

Evaluation of the models was done with a 5-fold cross-evaluation, as shown in Figure 21. Using a 5-
fold evaluation, 20 images were used for evaluation of every fold. These results were summed for every
number of training images per distribution. Thus all evaluations for the park distribution, fine-tuned on
1 image per class, were summed, from which a summed confusion matrix could be made. This summed

54

Figure 21: Overview of how training has been done for fine-tuning the ML models that were fine-tuned with varying
numbers of training images.

confusion matrix was used to retrieve the classification performance of using a specific amount of training
images for fine-tuning.

9.1.4 Experiment

The method presented in Figure 21 was followed. The accuracy of the different models and fine-tuning
methods was retrieved and compared against each other. To calculate the accuracy, the confusion matrices
for every number of fine-tuning images in a distribution were added together. This means that all five
folds are combined into one accuracy for every number of fine-tuning images per distribution.

Then for every number of fine-tuning images, the average accuracy, as well as the standard devi-
ation, was calculated across all six distributions. This gives an overview of how well the different models
performed after fine-tuning on the different distributions, and how the performance varies between the
distributions for a given number of fine-tuning images

9.2 R E S U LT S

The result of running the fine-tuning in the cloud as compared to on the edge can be found in Appendix C
in Tables 23, 24. The results of the fine-tuned models are also illustrated in Figure 22. In this figure, only
EfficientNetV2B0 is shown, as it was the best-performing model, as seen in the previous experiment. The
figure also shows the standard deviation in performance between the domains for a given number of
fine-tuning images per class. The other models are shown in Appendix C in Figure 52.

In Figure 22 and 52, it can be seen that the overall performance of the cloud fine-tuned models on
the cloud is significantly better than the cloud fine-tuned models on the edge, with a maximum drop of
25%. It can also be seen that when fine-tuning with the LLRT method, fine-tuning with 1 image per class,
greatly improves performance for all models. The other methods for fine-tuning, LLSLR and ALSLR, also
experience an increase in performance, but this only occurs after more images are used for fine-tuning.

The classification performance increases by around 6% for every cloud fine-tuned model run on
the edge when 80 images per class are used for fine-tuning. The exception is EfficientNetV2B0 when
using the ALSLR method. Here, besides the performance drop that was already seen, there also seems
to be another drop in accuracy of 12% after 1 to 5 images per class. After fine-tuning for more than 20

55

Figure 22: The results for EfficientNetV2B0 fine-tuned models trained on the cloud and tested on both cloud and
edge to investigate the impact of testing on different platforms. The accuracy is given for the varying
amounts of fine-tuning images. The accuracy of 0 images per class is given by the non-fine-tuned models
as found in Chapter 8.

images per class, this performance drop is mitigated but only returns to its original performance when
fine-tuning on 80 images per class.

9.3 D I S C U S S I O N

From the results of this experiment, it can be seen that similar to the drop in performance we saw in
the previous experiment, a drop in accuracy of 25% can be seen when moving the same models from
inference in the cloud to inference on the edge. The drop in accuracy is larger in this experiment when
compared to the previous experiment, as the accuracy in the cloud was increased due to fine-tuning. We
think this drop is due to the same reasons as in the previous experiment, as the method of moving the
models from the cloud to the edge stayed the same.

Next to the drop in accuracy when moving from the cloud to the edge, EfficientNetV2B0 exper-
iences another drop in performance for the ALSLR method when deployed on the edge. This suggests
that this model is not as robust against the ALSLR fine-tuning method as compared to MobileNetV2 and
EfficientNetB0. However, the model performs well on the cloud, indicating that differences in libraries
or architecture may influence performance on the edge.

9.4 C O N C L U S I O N

On the edge, there was an increase of around 6% for the cloud fine-tuned models when fine-tuning for
80 images per class, except for the ALSLR method for EfficientNetV2B0 which had similar accuracy.

56

Similar to the previous experiment, when fine-tuning the models in the cloud, the model con-
verted to the edge drops 25% in classification accuracy. This drop in performance was greater than the
performance drop observed in the previous experiment due to the models in the cloud being more ac-
curate after fine-tuning than the models used in the previous experiment. The drop in performance is
thought to be due to the same reasons as the drop in performance seen in the experiment discussed in
Chapter 8.

Furthermore, for the EfficientNetV2B0 model, another drop of 12% has been found for the ALSLR
fine-tuning method, which is not seen for MobileNetV2 or EfficientNetB0. As the models run on the cloud
perform well, this can be attributed to the difference in libraries and architecture between the cloud and
the edge platforms.

57

10
T R A D E - O F F B E T W E E N F I N E -T U N I N G O N T H E E D G E A N D I N T H E C L O U D

Models can be fine-tuned on the cloud, but sending updated weights back from the cloud to the edge
device has a higher power consumption. A solution for this is to fine-tune algorithms on the edge, thus
potentially decreasing power consumption. The final question in this research concerns the optimization
of the performance of a deployed edge device with the help of fine-tuning.

What is the trade-off between fine-tuning on the edge and in the cloud?

To investigate the difference in classification performance between fine-tuning on the edge and the cloud,
the models are fine-tuned on images on the edge device. The classification heads of the edge compiled
models are removed, after which they are retrained by the Last Layer Randomized weights Training
(LLRT) method, as described in Section 9.1.2, for fine-tuning on the edge TPU.

The power consumption of the edge device is measured while fine-tuning the models. This can be
used to compare the power consumption of fine-tuning the model on the edge with the power consump-
tion of receiving updated weights when a model is fine-tuned on the cloud. These values are retrieved
from the theoretical values as found in Section 7.2. This comparison leads to a trade-off between power
consumption and classification accuracy after fine-tuning.

10.1 M E T H O D O L O GY

The different steps needed for fine-tuning in the cloud and on the edge are illustrated in Figure 23.

Figure 23: The different steps between fine-tuning on-device and fine-tuning in the cloud. The steps that happen on
the edge device are the power-consuming parts which need investigation.

In Figure 23, the difference in power consumption between cloud and edge fine-tuning, is the running
of fine-tuning on the edge, or the receiving of updated weights from the cloud. For the All Layers Small
Learning Rate (ALSLR) [179] cloud fine-tuning method, the weights of the entire model need to be sent
back, as opposed to the Last Layer Randomized weights Training (LLRT) [177] and Last Layer Small
Learning Rate (LLSLR) [179] methods, where only the weights of the last layer need to be sent. Of these
fine-tuning methods, which are described in Section 9.1.2, only LLRT is available for the edge.

10.1.1 Model Fine-tuning

The method for fine-tuning and evaluation, as shown in Figure 21, is the same for the edge. For fine-
tuning models on the edge, the Google Coral development board offers two methods, weight imprint-
ing [180] and backpropagation [181]. The backpropagation method was chosen as the weight imprint-
ing method requires models that are pre-made for the weight imprinting method. The backpropagation
method removes the last layer, where the model returns an image embedding of a vector of length 1280.

58

This vector can then be used as an input to a softmax layer, which is fine-tuned and runs on the CPU in-
stead of the TPU, increasing classification time marginally. The fact that the last softmax layer is executed
on the CPU instead of the TPU is a drawback of the backpropagation method [181].

10.1.2 Model Evaluation

The classification performance was measured the same as the previous experiment, as shown in Figure 21.
Additionally, the power consumption of the edge device and time taken per fine-tuning method were
measured, to evaluate the different ways of fine-tuning the deployed model. These measurements are
done in the same way as described in Section 8.1.2.

Next to that, theoretical values for the differences in transmission were calculated. This entails
the receiving of the updated model and weights for on-cloud fine-tuning and the power consumption
values for receiving the true labels for every image on the edge fine-tuning. As the sending of images is
needed both for edge and cloud, they will not be taken into account in the results of Section 10.2.2, but
they will be taken into account in the results in Section 10.2.4.

10.1.3 Data Size and Compression

In the previous experiments, it was found that power consumption was mostly influenced by transmission
time and thus the size of the data. To give some insights into viable options for reducing the size of the
images which need to be sent, a pragmatic approach is taken to show the difference in the quality of
the image and the image size. For this, three scenarios of data size and compression were taken into
account. This was because of the ease of implementation of the techniques presented in this research.
These compression techniques are:

• Image Compression Techniques: These are techniques to compress the images which are sent for
feedback and fine-tuning.

• Image Embeddings: This would mean that only image embeddings are sent, which can later be
reconstructed into an image. Image embeddings can also be used in a teacher-student configuration,
where a teacher model is deployed in the cloud.

• Compression through the deployed ML model: The Machine Learning model, which is deployed
on the edge device, already contains a way of data compression. Every layer compresses an input
image further, thus these activation layers can be used to send compressed images to the human
expert.

To see if the classes can be identified when the images are compressed, the compressed image can be
compared to the original image. The compression ratio in Equation 10.1 is used to describe how much
an image is compressed.

Compression Ratio =
Compressed Image Size

Original Image Size
(10.1)

10.1.4 Battery Charge over Time

To illustrate the typical power draw over time of a deployed edge device, a model for battery charge and
power usage can be used. This model uses the remote evaluation and fine-tuning methods added and
incorporates the values of Chapter 7. This model estimates how long a deployed edge device can operate,
given the inputs:

• Battery capacity: The full capacity of the battery used in the edge system.

• Inferences per day: The number of images that are inferred per day. In the case of the cloud, how
many images are sent. In the case of the edge, how many images are inferred on the edge.

59

• Occurrence of remote evaluation and fine-tuning: How many times per a certain time period the
system is remotely evaluated and fine-tuned.

• Fine-tuning method: The fine-tuning method that is used (LLRT, LLSLR, ALSLR), whether on the
edge or on the cloud.

• Incoming charge: An average incoming charge from an external source.

• Image size: The size of the images which are sent to the cloud.

• Nominal and idle power usage: The power which is consumed during operation and during down-
time, as well as the uptime.

10.1.5 Experiment

The fine-tuned models on the edge were prepared to be fine-tuned by the backpropagation method
available to the Google Coral TPU development board. The last layer was removed from the model and
then converted to a TF lite model and compiled as an edge TPU model. This model was then used
together with the API given by Google Coral to retrieve the image embeddings from these models. These
image embeddings were then used with the API [181], to train a new softmax layer on the TPU, which
was executed on the CPU to then infer images. The evaluation sets were then used to finally retrieve the
classification performance of the fine-tuned model. During the retrieval of image embeddings and the
fine-tuning process, power measurements and time measurements were taken.

10.2 R E S U LT S

The focus of this experiment was to track the differences in classification performance and the differences
in power consumption when deploying cloud fine-tuned models and edge fine-tuned models on the edge.
These two evaluation metrics are discussed separately. Furthermore, a pragmatic approach has been
taken to show the impact of data compression to investigate its viability. Finally, an example is given for
a trade-off between the lifetime of an edge device, and its classification performance.

10.2.1 Classification Performance

The classification performance difference of the edge fine-tuning method compared to the cloud fine-
tuning methods is shown in Figure 24. In this graph, only EfficientNetV2B0 is shown because this model
performed the best, like in the previous experiment as shown in Section 9.2. The results for the other
models are located in Appendix D and shown in Table 25 and Figure 53.

60

Figure 24: The results for EfficientNetV2B0 fine-tuned models that are trained on the cloud and tested on edge
and fine-tuned on the edge. The accuracy is given for the varying amounts of fine-tune training images.
The accuracy of 0 images per class is given by the non-fine-tuned models as given in experiment 3 in
Section 8.2.

The results in Figure 24 and 53, show that the edge fine-tuned models perform significantly better
than the cloud-trained models. There is an increase of 10% in accuracy over the best-performing edge-
deployed cloud fine-tuned model.

The classification performance increases by 5% when increasing the number of images per class
used for fine-tuning from 1 to 80. However, as shown in Figure 22, for one image per class, there is an
increase of almost 15%, which was also seen in the previous experiment.

10.2.2 Power Consumption for Fine-Tuning

Figure 25 shows the time needed for fine-tuning the different models on the Google Coral development
board is shown. The larger models take longer to train, mainly because retrieving the image embedding
takes longer.

61

Figure 25: Time taken for fine-tuning per edge model in seconds.

Figure 26 shows the power consumption for fine-tuning each model on the edge device is shown. Table 18
shows the total power needed for a model to be fine-tuned for different fine-tuning methods and loca-
tions. The complete power consumption figures are shown in Appendix D.2, Figures 54, 55 and Tables 26,
27 and 28.

Figure 27 shows the power that is consumed when fine-tuning the different models. Out of the
four models, three are trained on the edge and one on the cloud. All models are evaluated on the most
efficient transmission protocol. The power consumption of the last cloud-based fine-tuning method is
shown in Appendix D.2, in Figure 55. This was not shown here, due to the large difference in power
consumption, resulting in an unclear figure.

Table 18: The power consumption of fine-tuning different models on the edge device, as well as the power needed
to receive the updated weights from the cloud. These values are also shown in Figure 55.

Fine-Tuning Method Power (J/model) Extra Power (J/image)

Edge LLRT MobileNetV2 346.68 0.797

Edge LLRT EfficientNetB0 618.83 0.954

Edge LLRT EfficientNetV2B0 716.26 1.486

Cloud LLRT/LLSLR NB-IoT 728.64 0

Cloud ALSLR NB-IoT 16934.94 0

62

Figure 26: The power consumption of fine-tuning the edge models in Joule per model.

Figure 27: The power consumption of fine-tuning the edge models in Joule per model. The most power-efficient
cloud model and transmission protocol are shown (LLRT and LLSLR, no ALSLR).

When comparing edge fine-tuning methods to cloud fine-tuning methods, it is seen that the power per
model in this research is much higher for cloud-based training when compared to edge-based training,
as seen in Table 18.

The only exception is when comparing the least power-intensive way of cloud fine-tuning and the
most power-intensive edge-based fine-tuning for the largest model, EfficientNetV2B0, which is shown

63

in Figure 27. When up to 8 images per class were used for fine-tuning the EfficientNetV2B0 model, the
edge fine-tuning methods consume less power. After 8 images per class, it is more power-efficient to use
cloud-based fine-tuning.

10.2.3 Data Size and Compression

The pragmatic approach to data size and compression of data is to look at examples from the dataset, and
examine how these images would look when subjected to different compression techniques and if the
object is still discernible to human experts. In the dataset in this thesis, most of the different classes and
objects are very distinguishable. However, when data compression is attempted for fine-grained datasets,
the results can be different than those shown here.

For this example, the same images were used, as shown in Figure 12. Three good examples are
the teddy, the remote and the phone, as one is very clear, and the other two can be hard to distinguish.
The original images and compression are Figures 28 to 38.

Although the quality of the images is notably worse, the teddy can still be recognized in all of its
images. For the remote and the phone, this is more difficult. This is mostly due to their unrecognisable
colour, and their similarity to each other, as can be seen when comparing Figure 31 to Figure 38.

64

Figure 28: Original Teddy image
scaled to 224 x 224
pixels (36.0KB).

Figure 29: Teddy image with 15
of 224 Principal Com-
ponents (5.35KB).

Figure 30: Teddy image with
6% JPG compression
(2.51KB).

Figure 31: Original Remote Im-
age scaled to 224 x
224 pixels (32.0KB).

Figure 32: Remote image
with 15 of 224 Prin-
cipal Components
(2.86KB).

Figure 33: Remote image with
6% JPG compression
(1.78KB).

Figure 34: Remote image with 50
of 224 Principal Com-
ponents (9.52KB).

Figure 35: Remote image with
22% JPG compression
(4.47KB).

Figure 36: Original Phone Image
scaled to 224 x 224
pixels (54.3KB).

Figure 37: Phone image with 50
of 224 Principal Com-
ponents (28.0KB).

Figure 38: Phone image with
22% JPG compression
(4.41KB).

65

Figures 39 to 41 shows the different activation layers for the EfficientNetV2B0 model, showing that
image compression can be done with the already deployed ML models. The images are recognizable in
the first hidden layer, and progressively get more compressed and become more difficult to recognize.
PCA and JPG show similar compression results, in that the teddy seems to be recognizable up until the
fifth hidden layer, whereas the difference between the remote and the phone is harder to recognize in
itself. The fifth layer exists of 56 by 56 INT8 pixels, which results in 3136 pixels, thus 3.14KB.

Figure 39: Activation layers from the neural network used (EfficientNetV2B0) for the teddy image.

Figure 40: Activation layers from the neural network used (EfficientNetV2B0) for the remote image.

Figure 41: Activation layers from the neural network used (EfficientNetV2B0) for the phone image.

Table 19 shows the compression rate and the size of the compressed image, as compared to the original
image of 36.0KB. The compression techniques can compress the original image to 2.51KB and are the best
in compression to images that are still recognizable by human experts. If one uses the image embeddings
for labelling, then the size of a 36.0KB image can be compressed further into 1.28KB.

Table 19: Results of compression in size and percentage. The percentages are calculated with an original image size
of 36.0KB.

Compression technique Compressed size (KB) Compression (%)

Compression Techniques (JPG) 2.51 6.97

Image Embedding (Teacher-Student) 1.28 3.56

Activation Layers 3.14 8.72

10.2.4 Battery Charge over Time

Figure 42 visualizes the different ML models and different transmission protocols in a real-life application.
This graph shows the potential battery charge curve of an edge device, which is evaluated and fine-tuned
every month. The battery charge is chosen the same way as in experiment 2 in Section 7.2.2. The nominal
and idle power usage and the uptime of the edge device are also chosen in the same way. In this example,
80 images per class are used for fine-tuning the models. In the graph, one can see the steps every 31 days,

66

as an evaluation set is sent, as well as the fact that the models are fine-tuned. 31 days were chosen, to
be able to counteract the drift which occurs due to the changing of the seasons, while minimizing power
consumed.

To give a comparison between different scenarios, the transmission protocol and fine-tuning
method are varied. Figure 42 shows that ALSLR fine-tuning on the cloud leads to a significantly shorter
battery life of the EI device when compared to LLRT and LLSLR on the cloud.

When comparing both edge fine-tuned options, the difference in transmission protocol leads to a
reduced battery life. When comparing the cloud-based fine-tuning LLRT method to the edge-based fine-
tuning LLRT method, the edge-based fine-tuning uses more power when fine-tuning for 80 images per
class. Figure 42 shows the trade-off between power consumption and the different models, as fine-tuning
the ML models on the edge leads to the edge device having 4 days less battery life. Fine-tuning on the
edge also lead to a higher accuracy then fine-tuning on the cloud and deploying that model on the edge.

Figure 42: The battery charge of a 72Wh battery, when 100 36.0KB images are inferred every day, a 0.21% on time
with 3.9W nominal power usage, and 0.001W idle power usage, 0W incoming power. Furthermore, 20
images per class are sent for evaluation, and 80 images per class for fine-tuning, for a total of 10 classes.
The evaluation set, as well as fine-tuning, occurs every 31 days. In this graph, two different combinations
of models and transmission protocols are shown.

10.3 D I S C U S S I O N

There is an increase of 10% in classification performance of the edge fine-tuned models over the cloud
fine-tuned models. This is due to the high increase in accuracy after only one image per class is used for
fine-tuning on the edge. Besides that, the cloud fine-tuned models have a minimal increase in classifica-
tion performance when deployed on the edge. If the classification performance drop when moving from
the cloud to the edge is addressed, this could lead to the cloud and edge having similar performance or
the cloud having higher classification performance.

The increase in accuracy for fine-tuning on 1 image per class was also seen in Section 9.2 for the
LLRT cloud fine-tuned models. This suggests that the LLRT fine-tuning method works well for increasing
the classification performance with the real-world dataset which is used.

A crossover point can be approximated where fine-tuning a model on the edge consumes more
power than fine-tuning in the cloud. After this crossover point, it is more power-efficient to fine-tune the
model in the cloud. This is due to the fact that the edge fine-tuned models are dependent on the number

67

of images per class, and the cloud is not. This crossover point would be at approximately 480 images per
class for MobileNetV2, for EfficientNetB0 at approximately 115 images per class and for EfficientNetV2B0
at 8 images per class.

The results of the power consumption, as shown in Section 10.2.2, are not impacted by the com-
pression of images. Data compression has shown promising results, as images could be compressed
to 6.97% of the original size, while still being recognizable by a human. This can be reduced further to
3.56% to only an image embedding. Such image embeddings can be used by a teacher-student ML model,
but an image embedding will not be recognizable by a human. It should be taken into account that some
classes were similar to each other, as illustrated in Figure 31 until Figure 38. This means that for some
classes, the distinction between these classes will be even more difficult when missing high-level details.
It must be noted that even uncompressed images could be difficult to correctly label and identify for a
human expert when dealing with fine-grained classes or classes being similar to each other.

As Figure 42 shows, there are a lot of different parameters that influence the lifespan of an edge
device. These different parameters can all be adjusted, and the tool made in this experiment can be used
to visualize how large the impact of a change in these input parameters can be, as well as see how some
input parameters influence each other. The changing of these parameters could also influence the final
choice between fine-tuning on the edge and in the cloud for certain edge devices.

The difference of 4 days lifespan between edge and cloud fine-tuning, poses a trade-off with the
10% accuracy increase that edge fine-tuned models bring with them. As 4 days compared to a lifespan
of 165 images is negligible, it shows that edge-based fine-tuning is the preferred method of fine-tuning.

A limitation of this experiment is the scalability of the solution that is posed. When this system is
deployed, a human expert would still need to label every image that is sent from the EI edge devices to
the cloud. Even when the number of images that need to be checked for every edge device is small, a
lot of deployed devices still lead to a lot of images that need to be checked by a human expert. When a
student-teacher model would be employed, the human effort needed would decrease drastically, but this
could influence accuracy, as a teacher model could misclassify the evaluation image, leading to incorrect
fine-tuning.

10.4 C O N C L U S I O N

The classification performance for models that are fine-tuned on the edge is at least 10% higher than
for cloud fine-tuned models. For MobileNetV2, this ranges from 6% for a small number of fine-tuning
images to 10% for around 80 fine-tuning images per class. For EfficientNetV2B0, this increase is about
10%, regardless of the number of images used for fine-tuning. For EfficientNetB0, this is even more as it
is around 17%, regardless of the number of fine-tuning images.

Fine-tuning on the edge leads to less power consumed and higher classification performance
on the edge for MobileNetV2 and EfficientNetB0. This holds for MobileNetV2 when using less than
480 images per class, and EfficientNetB0 for less than 115 images per class. For MobileNetV2, this is
approximately 350 Joule per fine-tuning of the model, and for EfficientNetB0, this is approximately 100
Joule per fine-tuning. For both, this changes with how many images per class are used for fine-tuning the
models.

For the largest model, EfficientNetV2B0, the power consumption of fine-tuning on a few images
per class, is comparable to fine-tuning in the cloud. Comparing the classification performance then de-
cides the trade-off, as the edge fine-tuned model performs a lot better than the cloud fine-tuned model.

Combining the fact that the edge-based methods for fine-tuning consume less power for fine-
tuning while having a higher classification performance, the choice for edge-based fine-tuning is clear.

Furthermore, data compression could be a powerful method, to compress the images that are sent
back, and possibly to send the labels or the updated ML model. For the images used in this research, it
shows that some classes can be easily compressed without missing information, but for other classes, this
is not the case.

A tool was made that shows the impact of different parameters on each other and on the lifetime
of the deployed edge device. The presence of remote evaluation, as well as fine-tuning, can be seen in
the sudden decrease in battery capacity, as well as the fact that some fine-tuning options lead to more
power being consumed.

68

11
C O N C L U S I O N A N D F U T U R E W O R K

In this research, we investigated the reliable evaluation of deployed edge devices, the power consumption
of the different components of a deployed edge device and the improvement in classification perform-
ance of a deployed edge device. The focus of this research was the impact of Out-of-Distribution (OOD)
data and how real-life data influences the evaluation and improvement of classification performance. In
this chapter, the conclusions that are drawn in this research are presented, as well as future work and
limitations to be adressed.

11.1 C O N C L U S I O N S

Edge Intelligence (EI) devices have gained large interest in research in previous years, due to their ability
to reduce the large amounts of data which are generated by edge devices. A lot of research in deploying
these devices and their Machine Learning (ML) models has already been done. Despite this interest,
research has been limited with regards to post-deployment monitoring of these devices, their ability to
handle Out-of-Distribution (OOD) data, and to improve upon their classification performance with this
knowledge.

The main focus of this research was to solve these open issues, which discuss post-deployment
monitoring of EI devices and the OOD nature of real-world data while investigating the possibility of
increasing classification performance while minimizing power consumption. This research could improve
the scalability of edge devices, as well as give insight into where fine-tuning may occur to improve
classification performance while minimizing power consumption. To this end, the main question to be
answered by this research was formulated as follows:

How to achieve the best classification performance and reliable evaluation for a deployed edge
intelligent device while using the least amount of power?

To answer this question and conclude this research, this main research question is addressed by answer-
ing the five sub-questions.

How to make a standardised edge AI distribution shift dataset that allows supervision over different
distributions?

A real-world dataset is presented, comprising different domains to study the OOD nature of real-life data.
This dataset consists of six domains, in which ten different classes were placed for a total of 100 images
per class per domain. This resulted in a dataset of 6000 images. This dataset is easily extendable by
ensuring that the domains in which the objects are placed, and the objects themselves are accessible.

How many images are needed, for a statistically reliable evaluation of a multi-class classification?

This research has shown with 95% confidence that the maximum Confidence Interval would be 2% for
15 to 25 images per class. This indicates that around 15 to 25 images per class can be used for a reliable
evaluation of EI devices. Furthermore, the EfficientNet models outperformed IncepctionResNetV2 with
a 10% difference in accuracy across all distributions and MobileNetV2 with a 10 to 20% difference in
accuracy across all distributions. The domains most interesting for classification performance are the
uniform distribution, which generally performed the best, and the park distribution, which generally
performed the worst.

What is the trade-off between evaluation reliability, power usage, and human effort?

For the evaluation of EI edge devices, images and predictions need to be sent back to evaluate the
accuracy of the edge device by a human expert. This research identified the transmission of images to be
the most power-consuming component of the power-consuming components of an edge device.

NB-IoT is the most power-efficient with 198 J/image, with 4G being the second most power-
efficient with 217.0 J/image. It was found that with the NB-IoT protocol, about 36400 36.0 KB images

69

can be sent in about 65900 seconds before a 72Wh battery is drained with no incoming power. As around
150 to 250 images are needed for a reliable evaluation, a good evaluation can be attained with these
settings. All protocols can send enough images for a reliable evaluation set, but some could send a lot
more evaluation sets than others.

Reducing human effort was done by reducing the number of images needed for a reliable eval-
uation. To even further reduce human effort, a student-teacher approach can be taken by employing a
larger, more accurate cloud model to label the evaluation images and check the predictions of the edge
model.

What is the trade-off between inference on edge CPU or edge TPU, and how does quantisation influence
this?

When comparing classification performance, EfficientNetV2S was the best in classifying the classes of
the OOD distribution with 10 to 25% better accuracy than the other models. However, it could not be
compiled for the edge TPU. Therefore, in this research, EfficientNetV2B0 is the best model which could
be run on edge CPU and edge TPU, using quantisation to fit the model. EfficientNetV2B0 was 8 to 15%
better in classifying OOD distribution classes as compared to EfficientNetB0, InceptionResNetV2 and
MobileNetV2. Furthermore, a significant drop in classification performance was observed when running
the quantised TF lite model in the cloud compared to on edge. This drop varies from about 7 to 16%
between cloud and edge models, with the cloud models performing better. This drop was smaller for
EfficientNetV2S and EfficientNetV2B0, and bigger for MobileNetV2 and EfficientNetB0. This difference
in performance could be due to varying factors. For one, different hardware is used, which means that
different hardware mapping was used, thus influencing the performance. Due to the different hardware,
also different libraries needed to be used for this hardware. Although these libraries are officially suppor-
ted libraries, they may still interpret code differently. Lastly, there could be optimisations in check for the
different models when run on cloud hardware, which was not present for the edge, thus also influencing
the final performance.

Finally, the experiments have shown that the smaller models consume less power. For example,
MobileNetV2 consumes the least power while inferring captured images, with EfficientNetB0 and Effi-
cientNetV2B0 following. On the other hand, EfficientNetV2S and InceptionResNetV2 both significantly
increase power consumption, due to an increase in inference time.

What is the trade-off between inference of cloud fine-tuned models on cloud and edge, and how does
quantisation influence this?

Similar to inferring the non-fine-tuned models, when inferring the fine-tuned models on the edge, the
classification performance is significantly worse, with a difference of about 25%. This difference can
be attributed to the same reasons as the previous experiment, as the same difference in hardware and
software is present in this experiment. From this similarity in performance drop, it can be concluded that
the performance drop is not caused by the way how the model is trained but may be caysed by how the
model is quantised and compiled for the edge device. Moreover, the drop could also be caused by the
difference between libraries employed on the edge as compared to in the cloud.

What is the trade-off between fine-tuning on the edge and in the cloud?

Finally, the classification performance difference when fine-tuning on the edge as compared to in the
cloud is examined. Overall, all models performed better when inferring on the edge when fine-tuned on
the edge than when fine-tuned on the cloud. The difference in classification accuracy was about 10%
for EfficentNetV2B0 when compared to the best-performing cloud fine-tuned model (Last Layer Small
Learning Rate (LLSLR)). EfficientNetB0 achieved similar performance, increasing performance over the
best-performing cloud fine-tuned model (All Layers Small Learning Rate (ALSLR)) with over 17%.

Worth noting is that even with 1 image per class, classification performance increased with the
same percentages as mentioned above. An example of this is the performance of EfficientNetV2B0, rising
from 67.8% accuracy with no fine-tuning to 80.6% with just 1 image per class, and reaching a final
accuracy of 86.0% with 80 images per class. From these results, it can be seen that with 1 image per
class of fine-tuning on an edge device, performance can increase massively without consuming a lot of
power

70

Fine-tuning on the edge is, in most cases, worth the trade-off of performance and power con-
sumption. It is significantly more power-efficient to fine-tune and receive labels for the images used in
fine-tuning than to receive entire models or just the last layer in weights. This is due to the fact that label
files are smaller than weights and biases files, thus decreasing the amount of energy needed for receiving
these files. From the results that are presented, a trend line can be calculated. When fine-tuning on the
edge, MobileNetV2 is faster to fine-tune, thus reducing power consumption, whereas EfficientNetV2B0 is
the slowest model to fine-tune, thus increasing power consumption. When continuing the trend line for
power consumption for the MobileNetV2 model, it can be seen that one would need to fine-tune about
480 images per class for Last Layer Randomized weights Training (LLRT) or LLSLR cloud fine-tuning to
be viable. For the EfficientNetV2B0 model, one would need to fine-tune on 8 images per class before
using LLRT or LLSLR cloud fine-tuning would be a viable alternative. As already 1 image per class makes
a large difference in classification performance, fine-tuning on the edge would be suitable for all models
presented here. When using more images per class, the difference in lifespan is approximately 4 days for
a total of 165 days, but the trade-off of this is an increase of 10% in accuracy.

Overall, the performance of the edge fine-tuned models is better than that of the cloud fine-tuned
models. However, if the drop-off in cloud fine-tuned models deployed on the edge is mitigated, an actual
trade-off between accuracy and power can be made. When power consumption is less of a problem,
and one optimizes for performance, EfficientNetV2B0 is a viable option, as it classifies the best, but also
requires more power consumption. Lastly, when fine-tuning for more than 8 images per class, the LLRT
or LLSLR cloud fine-tuning techniques are more power efficient.

How to achieve the best classification performance and reliable evaluation for a deployed edge
intelligent device while using the least amount of power?

This research has shown the answer to this main research question in smaller steps. To be able to achieve
the best classification performance, first, the deployed device needs to be reliably evaluated. This can be
done with around 15 to 25 images per class. This reduction in images leads to reduced power consumed
for the transmission of these images to the cloud.

For the transmission of these images, it is best to use either NB-IoT or 4G as a radio to send these
images. These radio protocols have the smallest power consumption per data size, leading to a reduction
in power consumption over other protocols like LTE-M or Wi-Fi.

The trade-off for achieving the best classification performance for a ML model run on an edge
device was divided over multiple experiments. These experiments have shown that when deploying
a cloud-trained model, fine-tuned or not, the classification performance is significantly impacted. Fine-
tuning can be used to increase the classification performance of ML models deployed on the edge. For the
best classification performance for the investigated ML models, edge-based fine-tuning should be used.
For fine-tuning the model, a small number of images per class is needed for a relatively high increase in
classification performance, allowing for low power consumption for a large performance increase.

11.2 F U T U R E W O R K

The first experiment showed models that were pre-trained on ImageNet. The ImageNet dataset is ex-
tensive but is not focussed on the handling of OOD data. The COCO dataset would be more suitable for
pre-training the images on different classes and environments, due to the inherent OOD nature of the
images, next to the overlap in classes. The images of the COCO dataset often have multiple objects in the
image, so they would need to be chosen such, that there would be no other objects in the image, as this
could lead to wrong classification.

The second experiment mainly used theoretical values provided by manufacturers or widely used
networks. The power consumption model can be improved by performing real-world measurements. To
do these measurements, files with different data sizes can be sent with the transmission protocols of
interest. Besides varying file sizes, different modules for every transmission protocol can be investigated,
as different modules may have varying amounts of power consumption. From these measurements, a
graph can be made, to check if the power consumption of the different protocols is linear to the data size.
Furthermore, such a graph would show the ideal transmission protocol and accompanying module for a

71

certain file size. Likewise, it is interesting to further investigate compression techniques to reduce image
size and, thus, the power needed for sending and receiving data.

The results from the third experiment show a drop in performance when moving the TF lite model
from the cloud to the edge. In the discussion of the experiment, possible reasons were already discussed,
these being the different used libraries, the other hardware architecture, or optimisation for the cloud
instead of the edge. These various reasons would need to be investigated to see which adjustments would
improve the accuracy of the deployed and fine-tuned models running on the edge.

Eventually, it would be interesting to fully automate the learning of the ML models by using a big
cloud-based model to give the true label to the images used for fine-tuning, which would not need to
be done by a human expert. A bigger model would then lead to a teacher-student model structure, as
attempted on a smaller scale in the work of de Prado [13]. This would also lead to less human effort
needed to operate an extensive system of deployed edge devices, leading to better scalability.

As Figure 42 shows, there are a lot of different parameters that influence the uptime of an edge
device. These different parameters can all be adjusted, and the tool which has been made in experiment
2 and adjusted for experiment 5 can be used to visualize how large the impact of a change in these input
parameters can be. This model could be made into an interactive tool to create insights for other people
who have a system in how remote evaluation and fine-tuning could influence the lifetime of a deployed
edge device.

Lastly, a limitation of this research is that the results shown are limited to the given dataset
and problem statement. When another dataset is used, the specific results concerning the classification
performance of the models may differ from what is presented in this research, which could alter the
trade-off made in this thesis. The methods which are presented in this thesis may be followed to gather
the classification performance, fine-tuning performance and power consumption of running ML models
on edge devices for a different dataset than presented in Chapter 5.

72

B I B L I O G R A P H Y

[1] SeedScientific. ‘How Much Data Is Created Every Day? [27 Powerful Stats]’. URL: https://

seedscientific.com/how-much-data-is-created-every-day/. SeedScientific.

[2] Daniel Price. ‘Infographic: How much data is produced every day?’ URL: https://cloudtweaks.
com/2015/03/how-much-data-is-produced-every-day/. CloudTweaks.com.

[3] Subhas Chandra Mukhopadhyay et al. ‘Artificial Intelligence-Based Sensors for Next Generation
IoT Applications: A Review’. In: IEEE Sensors Journal 21.22 (Nov. 2021), pp. 24920–24932. ISSN:
15581748. DOI: 10.1109/JSEN.2021.3055618.

[4] Xiaofei Wang et al. ‘Convergence of Edge Computing and Deep Learning: A Comprehensive
Survey’. In: IEEE Communications Surveys and Tutorials 22.2 (Apr. 2020), pp. 869–904. ISSN:
1553877X. DOI: 10.1109/COMST.2020.2970550.

[5] Carlos Poncinelli Filho et al. ‘A Systematic Literature Review on Distributed Machine Learning in
Edge Computing’. In: Sensors 2022, Vol. 22, Page 2665 22.7 (Mar. 2022), p. 2665. ISSN: 1424-
8220. DOI: 10.3390/S22072665. URL: https://www.mdpi.com/1424-8220/22/7/2665/htm%
20https://www.mdpi.com/1424-8220/22/7/2665.

[6] Massimo Merenda, Carlo Porcaro and Demetrio Iero. ‘Edge Machine Learning for AI-Enabled IoT
Devices: A Review’. In: Sensors 2020, Vol. 20, Page 2533 20.9 (Apr. 2020), p. 2533. ISSN: 1424-
8220. DOI: 10.3390/S20092533. URL: https://www.mdpi.com/1424-8220/20/9/2533/htm%
20https://www.mdpi.com/1424-8220/20/9/2533.

[7] Unknown. ‘1. Embedded AI: bringing AI in the wild - Nederlandse AI Coalitie’. URL: https :

//nlaic.com/event-programma/1-embedded-ai-bringing-ai-in-the-wild/.

[8] Edge Impulse. ‘What is embedded ML, anyway?’ URL: https://docs.edgeimpulse.com/docs/
what-is-embedded-machine-learning-anyway.

[9] Tiffany Yeung. ‘What Is Edge AI and How Does It Work? | NVIDIA Blog’. URL: https://blogs.
nvidia.com/blog/2022/02/17/what-is-edge-ai/.

[10] Zhi Zhou et al. ‘Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Com-
puting’. In: Proceedings of the IEEE (2019). ISSN: 00189219. DOI: 10.1109/JPROC.2019.2918951.

[11] Sam Leroux et al. ‘TinyMLOps: Operational Challenges for Widespread Edge AI Adoption’. In:
(Mar. 2022). DOI: 10.48550/arxiv.2203.10923. URL: http://arxiv.org/abs/2203.10923.

[12] Du Phan. ‘A Primer on Data Drift.’ URL: https://medium.com/data-from-the-trenches/a-
primer-on-data-drift-18789ef252a6.

[13] Miguel de Prado et al. ‘Robustifying the Deployment of tinyML Models for Autonomous Mini-
Vehicles’. In: Sensors (Basel, Switzerland) 21.4 (Feb. 2021), pp. 1–16. ISSN: 14248220. DOI: 10.
3390/S21041339. URL: /pmc/articles/PMC7918899/%20/pmc/articles/PMC7918899/?report=
abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918899/.

[14] Puranjay Mohan, Aditya Jyoti Paul and Abhay Chirania. ‘A tiny cnn architecture for medical face
mask detection for resource-constrained endpoints’. In: Lecture Notes in Electrical Engineering
756 LNEE (2021), pp. 657–670. ISSN: 18761119. DOI: 10.1007/978-981-16-0749-3{_}52/
FIGURES/6. URL: https://link.springer.com/chapter/10.1007/978-981-16-0749-3_52.

[15] Dr Lachit Dutta and Swapna Bharali. ‘TinyML Meets IoT: A Comprehensive Survey’. In: Internet
of Things 16 (Dec. 2021), p. 100461. ISSN: 2542-6605. DOI: 10.1016/J.IOT.2021.100461.

[16] Partha Pratim Ray. ‘A review on TinyML: State-of-the-art and prospects’. In: Journal of King Saud
University - Computer and Information Sciences 34.4 (Apr. 2022), pp. 1595–1623. ISSN: 1319-
1578. DOI: 10.1016/J.JKSUCI.2021.11.019.

[17] Karina Zadorozhny and Giovanni Cinà. ‘Out-Of-Distribution Detection in Medical AI | by Pacmed
| Geek Culture | Medium’. URL: https://medium.com/geekculture/out-of-distribution-
detection-in-medical-ai-b638b385c2a3.

73

https://seedscientific.com/how-much-data-is-created-every-day/
https://seedscientific.com/how-much-data-is-created-every-day/
https://cloudtweaks.com/2015/03/how-much-data-is-produced-every-day/
https://cloudtweaks.com/2015/03/how-much-data-is-produced-every-day/
https://doi.org/10.1109/JSEN.2021.3055618
https://doi.org/10.1109/COMST.2020.2970550
https://doi.org/10.3390/S22072665
https://www.mdpi.com/1424-8220/22/7/2665/htm%20https://www.mdpi.com/1424-8220/22/7/2665
https://www.mdpi.com/1424-8220/22/7/2665/htm%20https://www.mdpi.com/1424-8220/22/7/2665
https://doi.org/10.3390/S20092533
https://www.mdpi.com/1424-8220/20/9/2533/htm%20https://www.mdpi.com/1424-8220/20/9/2533
https://www.mdpi.com/1424-8220/20/9/2533/htm%20https://www.mdpi.com/1424-8220/20/9/2533
https://nlaic.com/event-programma/1-embedded-ai-bringing-ai-in-the-wild/
https://nlaic.com/event-programma/1-embedded-ai-bringing-ai-in-the-wild/
https://docs.edgeimpulse.com/docs/what-is-embedded-machine-learning-anyway
https://docs.edgeimpulse.com/docs/what-is-embedded-machine-learning-anyway
https://blogs.nvidia.com/blog/2022/02/17/what-is-edge-ai/
https://blogs.nvidia.com/blog/2022/02/17/what-is-edge-ai/
https://doi.org/10.1109/JPROC.2019.2918951
https://doi.org/10.48550/arxiv.2203.10923
http://arxiv.org/abs/2203.10923
https://medium.com/data-from-the-trenches/a-primer-on-data-drift-18789ef252a6
https://medium.com/data-from-the-trenches/a-primer-on-data-drift-18789ef252a6
https://doi.org/10.3390/S21041339
https://doi.org/10.3390/S21041339
/pmc/articles/PMC7918899/%20/pmc/articles/PMC7918899/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918899/
/pmc/articles/PMC7918899/%20/pmc/articles/PMC7918899/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918899/
https://doi.org/10.1007/978-981-16-0749-3{_}52/FIGURES/6
https://doi.org/10.1007/978-981-16-0749-3{_}52/FIGURES/6
https://link.springer.com/chapter/10.1007/978-981-16-0749-3_52
https://doi.org/10.1016/J.IOT.2021.100461
https://doi.org/10.1016/J.JKSUCI.2021.11.019
https://medium.com/geekculture/out-of-distribution-detection-in-medical-ai-b638b385c2a3
https://medium.com/geekculture/out-of-distribution-detection-in-medical-ai-b638b385c2a3

[18] Han Cai et al. ‘Tiny Transfer Learning: Towards Memory-Efficient On-Device Learning’. In: (July
2020). DOI: 10.48550/arxiv.2007.11622. URL: https://arxiv.org/abs/2007.11622v2.

[19] Chip Huyen. ‘Slides ML - cs329s_2022_10_slides_ml_failure_diagnosis’. URL: https://docs.

google.com/presentation/d/1tuCIbk9Pye-RK1xqiiZXPzT8lIgDUL6CqBkFSYZXkbY/edit#slide=

id.g112c1e99806_0_791.

[20] Neerav Karani. ‘Tackling Distribution Shifts in Machine Learning-Based Medical Image Analysis’.
In: (2022).

[21] Digiteum. ‘Differences Between Cloud, Fog and Edge Computing | Digiteum’. URL: https://www.
digiteum.com/cloud-fog-edge-computing-iot/.

[22] Arun. ‘An Introduction to TinyML. Machine Learning Meets Embedded Systems | Towards Data
Science’. URL: https://towardsdatascience.com/an-introduction-to-tinyml-4617f314aa79.

[23] Weixing Su et al. ‘AI on the edge: a comprehensive review’. In: Artificial Intelligence Review 2022
(Mar. 2022), pp. 1–59. ISSN: 1573-7462. DOI: 10.1007/S10462- 022- 10141- 4. URL: https:

//link.springer.com/article/10.1007/s10462-022-10141-4.

[24] José Ángel et al. ‘CEML: Mixing and moving complex event processing and machine learning to
the edge of the network for IoT applications’. In: (2016). DOI: 10.1145/2991561.2991575. URL:
http://dx.doi.org/10.1145/2991561.2991575.

[25] Qiang Yang et al. ‘Federated machine learning: Concept and applications’. In: ACM Transactions
on Intelligent Systems and Technology 10.2 (2019). ISSN: 21576912. DOI: 10.1145/3298981. URL:
https://doi.org/10.1145/3298981.

[26] Yao Chung Chang and Ying Hsun Lai. ‘Campus Edge Computing Network Based on IoT Street
Lighting Nodes’. In: IEEE Systems Journal 14.1 (Mar. 2020), pp. 164–171. ISSN: 19379234. DOI:
10.1109/JSYST.2018.2873430.

[27] Jacob Wilhelm Kamminga. ‘Hiding in the Deep: Online Animal Activity Recognition using Motion
Sensors and Machine Learning’. In: (Sept. 2020). DOI: 10.3990/1.9789036550550. URL: https:
//research.utwente.nl/en/publications/hiding-in-the-deep-online-animal-activity-

recognition-using-motio.

[28] Vidya Zope et al. ‘TRAIL-TRACKER: ANTI-POACHING INTELLIGENCE USING AI AND IOT’. In: 8
(2020), p. 2063. URL: www.ijcrt.org.

[29] Thijs Suijten and Tim van Deursen. ‘Protecting wildlife with machine learning’. URL: https :

//engineering.q42.nl/hack-the-poacher/.

[30] Jacob Kamminga et al. ‘Poaching Detection Technologies—A Survey’. In: Sensors 2018, Vol. 18,
Page 1474 18.5 (May 2018), p. 1474. ISSN: 1424-8220. DOI: 10.3390/S18051474. URL: https:
//www.mdpi.com/1424-8220/18/5/1474/htm%20https://www.mdpi.com/1424-8220/18/5/1474.

[31] ‘What is a Machine Learning Pipeline? - Datatron’. URL: https://datatron.com/what-is-a-
machine-learning-pipeline/.

[32] Pete Warden and Daniel Situnayake. TinyML. 2020, p. 504. ISBN: 9781492052036. URL: https:
//www.oreilly.com/library/view/tinyml/9781492052036/.

[33] Ken Hoffman. ‘Machine Learning: How to Prevent Overfitting’. URL: https://medium.com/swlh/
machine-learning-how-to-prevent-overfitting-fdf759cc00a9.

[34] Chip Huyen. ‘Data Distribution Shifts and Monitoring’. URL: https://huyenchip.com/2022/02/
07/data-distribution-shifts-and-monitoring.html#data-shifts%20https://huyenchip.

com/2022/02/07/data-distribution-shifts-and-monitoring.html.

[35] Swapnil Sayan Saha, Sandeep Singh Sandha and Mani Srivastava. ‘Machine Learning for Microcontroller-
Class Hardware – A Review’. In: eps IEEE SENSORS JOURNAL XX (2022), p. 1. URL: http://arxiv.
org/abs/2205.14550.

[36] ‘University Library | Service Portal | University of Twente’. URL: https://www.utwente.nl/en/
service-portal/university-library.

[37] ‘Google Scholar’. URL: https://scholar.google.com/.

74

https://doi.org/10.48550/arxiv.2007.11622
https://arxiv.org/abs/2007.11622v2
https://docs.google.com/presentation/d/1tuCIbk9Pye-RK1xqiiZXPzT8lIgDUL6CqBkFSYZXkbY/edit#slide=id.g112c1e99806_0_791
https://docs.google.com/presentation/d/1tuCIbk9Pye-RK1xqiiZXPzT8lIgDUL6CqBkFSYZXkbY/edit#slide=id.g112c1e99806_0_791
https://docs.google.com/presentation/d/1tuCIbk9Pye-RK1xqiiZXPzT8lIgDUL6CqBkFSYZXkbY/edit#slide=id.g112c1e99806_0_791
https://www.digiteum.com/cloud-fog-edge-computing-iot/
https://www.digiteum.com/cloud-fog-edge-computing-iot/
https://towardsdatascience.com/an-introduction-to-tinyml-4617f314aa79
https://doi.org/10.1007/S10462-022-10141-4
https://link.springer.com/article/10.1007/s10462-022-10141-4
https://link.springer.com/article/10.1007/s10462-022-10141-4
https://doi.org/10.1145/2991561.2991575
http://dx.doi.org/10.1145/2991561.2991575
https://doi.org/10.1145/3298981
https://doi.org/10.1145/3298981
https://doi.org/10.1109/JSYST.2018.2873430
https://doi.org/10.3990/1.9789036550550
https://research.utwente.nl/en/publications/hiding-in-the-deep-online-animal-activity-recognition-using-motio
https://research.utwente.nl/en/publications/hiding-in-the-deep-online-animal-activity-recognition-using-motio
https://research.utwente.nl/en/publications/hiding-in-the-deep-online-animal-activity-recognition-using-motio
www.ijcrt.org
https://engineering.q42.nl/hack-the-poacher/
https://engineering.q42.nl/hack-the-poacher/
https://doi.org/10.3390/S18051474
https://www.mdpi.com/1424-8220/18/5/1474/htm%20https://www.mdpi.com/1424-8220/18/5/1474
https://www.mdpi.com/1424-8220/18/5/1474/htm%20https://www.mdpi.com/1424-8220/18/5/1474
https://datatron.com/what-is-a-machine-learning-pipeline/
https://datatron.com/what-is-a-machine-learning-pipeline/
https://www.oreilly.com/library/view/tinyml/9781492052036/
https://www.oreilly.com/library/view/tinyml/9781492052036/
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9
https://medium.com/swlh/machine-learning-how-to-prevent-overfitting-fdf759cc00a9
https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html#data-shifts%20https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html
https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html#data-shifts%20https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html
https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html#data-shifts%20https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html
http://arxiv.org/abs/2205.14550
http://arxiv.org/abs/2205.14550
https://www.utwente.nl/en/service-portal/university-library
https://www.utwente.nl/en/service-portal/university-library
https://scholar.google.com/

[38] Young Hyun Yoon et al. ‘Intellino: Processor for Embedded Artificial Intelligence’. In: Electronics
2020, Vol. 9, Page 1169 9.7 (July 2020), p. 1169. ISSN: 2079-9292. DOI: 10.3390/ELECTRONICS9071169.
URL: https://www.mdpi.com/2079-9292/9/7/1169/htm%20https://www.mdpi.com/2079-
9292/9/7/1169.

[39] Errin O’Connor. ‘Embedded Intelligence for (IoT) smart process and services - EPCGroup’. URL:
https://www.epcgroup.net/embedded-intelligence/.

[40] Mahadev Satyanarayanan et al. ‘The case for VM-based cloudlets in mobile computing’. In: IEEE
Pervasive Computing 8.4 (Oct. 2009), pp. 14–23. ISSN: 15361268. DOI: 10.1109/MPRV.2009.82.

[41] Ion Stoica et al. ‘A Berkeley View of Systems Challenges for AI’. In: (Dec. 2017). DOI: 10.48550/
arxiv.1712.05855. URL: https://arxiv.org/abs/1712.05855v1.

[42] Shuiguang Deng et al. ‘Edge Intelligence: The Confluence of Edge Computing and Artificial In-
telligence’. In: IEEE Internet of Things Journal 7.8 (Aug. 2020), pp. 7457–7469. ISSN: 23274662.
DOI: 10.1109/JIOT.2020.2984887.

[43] Fouad Sakr et al. ‘Machine Learning on Mainstream Microcontrollers’. In: Sensors 2020, Vol. 20,
Page 2638 20.9 (May 2020), p. 2638. ISSN: 1424-8220. DOI: 10.3390/S20092638. URL: https:
//www.mdpi.com/1424-8220/20/9/2638/htm%20https://www.mdpi.com/1424-8220/20/9/2638.

[44] Aleks Huč, Jakob Šalej and Mira Trebar. ‘Analysis of Machine Learning Algorithms for Anomaly
Detection on Edge Devices’. In: Sensors 2021, Vol. 21, Page 4946 21.14 (July 2021), p. 4946.
ISSN: 1424-8220. DOI: 10.3390/S21144946. URL: https://www.mdpi.com/1424-8220/21/14/
4946/htm%20https://www.mdpi.com/1424-8220/21/14/4946.

[45] H. Brendan McMahan et al. ‘Communication-efficient learning of deep networks from decentral-
ized data’. In: Proceedings of the 20th International Conference on Artificial Intelligence and Stat-
istics, AISTATS 2017. PMLR, Feb. 2017. ISBN: 1602.05629v3. DOI: 10.48550/arxiv.1602.05629.
URL: https://arxiv.org/abs/1602.05629v3.

[46] Wenyu Zhang et al. ‘Client Selection for Federated Learning with Non-IID Data in Mobile Edge
Computing’. In: IEEE Access 9 (2021), pp. 24462–24474. ISSN: 21693536. DOI: 10.1109/ACCESS.
2021.3056919.

[47] Google. ‘TensorFlow Lite | ML for Mobile and Edge Devices’. URL: https://www.tensorflow.
org/lite.

[48] ‘Convert TensorFlow models | TensorFlow Lite’. URL: https://www.tensorflow.org/lite/
models/convert/convert_models.

[49] Mohammed Zubair M. Shamim. ‘Hardware Deployable Edge-AI Solution for Pre-screening of
Oral Tongue Lesions using TinyML on Embedded Devices’. In: IEEE Embedded Systems Letters
(2022). ISSN: 19430671. DOI: 10.1109/LES.2022.3160281.

[50] Marco Giordano et al. ‘Design and Performance Evaluation of an Ultralow-Power Smart IoT
Device With Embedded TinyML for Asset Activity Monitoring’. In: IEEE Transactions on Instru-
mentation and Measurement 71 (2022), pp. 1–11. ISSN: 0018-9456. DOI: 10.1109/TIM.2022.
3165816. URL: https://ieeexplore.ieee.org/document/9758676/.

[51] Pang Wei Koh et al. ‘WILDS: A Benchmark of in-the-Wild Distribution Shifts’. In: (July 2020),
pp. 5637–5664. ISSN: 2640-3498. URL: https://proceedings.mlr.press/v139/koh21a.html%
20http://arxiv.org/abs/2012.07421.

[52] Baochen Sun and Kate Saenko. ‘Deep CORAL: Correlation Alignment for Deep Domain Adapta-
tion’. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics) 9915 LNCS (July 2016), pp. 443–450. ISSN: 16113349.
DOI: 10.1007/978-3-319-49409-8{_}35. URL: https://arxiv.org/abs/1607.01719v1.

[53] Martin Arjovsky et al. ‘Invariant Risk Minimization’. In: (July 2019). URL: https://arxiv.org/
abs/1907.02893v3.

[54] Shiori Sagawa et al. ‘Distributionally Robust Neural Networks’. In: (Apr. 2020).

[55] Shiori Sagawa et al. ‘Extending the WILDS Benchmark for Unsupervised Adaptation’. In: (Dec.
2021). URL: https://wilds.stanford.edu.%20http://arxiv.org/abs/2112.05090.

75

https://doi.org/10.3390/ELECTRONICS9071169
https://www.mdpi.com/2079-9292/9/7/1169/htm%20https://www.mdpi.com/2079-9292/9/7/1169
https://www.mdpi.com/2079-9292/9/7/1169/htm%20https://www.mdpi.com/2079-9292/9/7/1169
https://www.epcgroup.net/embedded-intelligence/
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.48550/arxiv.1712.05855
https://doi.org/10.48550/arxiv.1712.05855
https://arxiv.org/abs/1712.05855v1
https://doi.org/10.1109/JIOT.2020.2984887
https://doi.org/10.3390/S20092638
https://www.mdpi.com/1424-8220/20/9/2638/htm%20https://www.mdpi.com/1424-8220/20/9/2638
https://www.mdpi.com/1424-8220/20/9/2638/htm%20https://www.mdpi.com/1424-8220/20/9/2638
https://doi.org/10.3390/S21144946
https://www.mdpi.com/1424-8220/21/14/4946/htm%20https://www.mdpi.com/1424-8220/21/14/4946
https://www.mdpi.com/1424-8220/21/14/4946/htm%20https://www.mdpi.com/1424-8220/21/14/4946
https://doi.org/10.48550/arxiv.1602.05629
https://arxiv.org/abs/1602.05629v3
https://doi.org/10.1109/ACCESS.2021.3056919
https://doi.org/10.1109/ACCESS.2021.3056919
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/models/convert/convert_models
https://www.tensorflow.org/lite/models/convert/convert_models
https://doi.org/10.1109/LES.2022.3160281
https://doi.org/10.1109/TIM.2022.3165816
https://doi.org/10.1109/TIM.2022.3165816
https://ieeexplore.ieee.org/document/9758676/
https://proceedings.mlr.press/v139/koh21a.html%20http://arxiv.org/abs/2012.07421
https://proceedings.mlr.press/v139/koh21a.html%20http://arxiv.org/abs/2012.07421
https://doi.org/10.1007/978-3-319-49409-8{_}35
https://arxiv.org/abs/1607.01719v1
https://arxiv.org/abs/1907.02893v3
https://arxiv.org/abs/1907.02893v3
https://wilds.stanford.edu.%20http://arxiv.org/abs/2112.05090

[56] Olivia Wiles et al. ‘A fine-grained analysis of robustness to distribution shifts’. URL: https://
arxiv.org/abs/2110.11328..

[57] Yuge Shi et al. ‘How robust are pre-trained models to distribution shift?’ In: (June 2022). DOI:
10.48550/arxiv.2206.08871. URL: https://arxiv.org/abs/2206.08871v1%20http://arxiv.
org/abs/2206.08871.

[58] Sauptik Dhar et al. ‘A Survey of On-Device Machine Learning: An Algorithms and Learning The-
ory Perspective’. In: (2021). DOI: 10.1145/3450494. URL: https://doi.org/10.1145/3450494.

[59] Bin Wang et al. ‘A framework for self-supervised federated domain adaptation’. In: Eurasip
Journal on Wireless Communications and Networking 2022.1 (Dec. 2022), pp. 1–17. ISSN: 16871499.
DOI: 10.1186/s13638-022-02104-8. URL: https://link.springer.com/articles/10.1186/
s13638-022-02104-8%20https://link.springer.com/article/10.1186/s13638-022-02104-

8.

[60] QualComm. ‘Snapdragon 8 Series Mobile Platforms’. URL: https://www.qualcomm.com/products/
application/smartphones/snapdragon-8-series-mobile-platforms.

[61] HiSilicon. ‘Kirin 990 Chipset | HiSilicon Official Site’. URL: https://www.hisilicon.com/en/
products/Kirin/Kirin-flagship-chips/Kirin-990.

[62] HiSilicon. ‘HUAWEI Ascend 910 Chipset’. URL: https://www.hisilicon.com/en/products/
Ascend/Ascend-910.

[63] MediaTek. ‘MediaTek Helio P60’. URL: https://www.mediatek.com/products/smartphones-
2/mediatek-helio-p60.

[64] Google Cloud. ‘Cloud Tensor Processing Units (TPUs)’. URL: https://cloud.google.com/tpu/
docs/tpus.

[65] Intel. ‘Intel® Xeon® D-2100 Processor Product Brief’. URL: https://www.intel.com/content/
www/us/en/products/docs/processors/xeon/d-2100-brief.html.

[66] Samsung. ‘Exynos 9820 | Mobile Processor’. URL: https : / / semiconductor . samsung . com /

processor/mobile-processor/exynos-9-series-9820/.

[67] ‘GrAI Matter Labs | Fastest Edge AI Processor’. URL: https://www.graimatterlabs.ai/.

[68] Baetyl. ‘baetyl/baetyl: Extend cloud computing, data and service seamlessly to edge devices.’
URL: https://github.com/baetyl/baetyl.

[69] Microsoft Azure. ‘IoT Edge | Cloud Intelligence’. URL: https://azure.microsoft.com/nl-

nl/services/iot-edge/.

[70] EdgeXFoundry. ‘EdgeX’. URL: https://www.edgexfoundry.org/.

[71] NVIDIA. ‘EGX Platform for Accelerated Computing’. URL: https://www.nvidia.com/en-us/data-
center/products/egx/.

[72] Amazon Web Services. ‘Intelligence at the IoT Edge — AWS IoT Greengrass’. URL: https://aws.
amazon.com/greengrass/.

[73] Google Cloud. ‘Google Cloud IoT - Fully Managed IoT Services’. URL: https://cloud.google.
com/solutions/iot.

[74] ‘OpenVINO™ Documentation — OpenVINO™ documentation — Version(latest)’. URL: https:

//docs.openvino.ai/latest/index.html.

[75] Sparkfun. ‘SparkFun Edge Development Board - Apollo3 Blue - DEV-15170’. URL: https://www.
sparkfun.com/products/15170.

[76] Jisu Kwon and Daejin Park. ‘Hardware/Software Co-Design for TinyML Voice-Recognition Ap-
plication on Resource Frugal Edge Devices’. In: Applied Sciences 2021, Vol. 11, Page 11073 11.22
(Nov. 2021), p. 11073. ISSN: 2076-3417. DOI: 10.3390/APP112211073. URL: https://www.mdpi.
com/2076-3417/11/22/11073/htm%20https://www.mdpi.com/2076-3417/11/22/11073.

[77] STMicroelectronics. ‘STM32F4DISCOVERY - Discovery kit with STM32F407VG MCU * New order
code STM32F407G-DISC1 (replaces STM32F4DISCOVERY)’. URL: https://www.st.com/en/
evaluation-tools/stm32f4discovery.html.

76

https://arxiv.org/abs/2110.11328.
https://arxiv.org/abs/2110.11328.
https://doi.org/10.48550/arxiv.2206.08871
https://arxiv.org/abs/2206.08871v1%20http://arxiv.org/abs/2206.08871
https://arxiv.org/abs/2206.08871v1%20http://arxiv.org/abs/2206.08871
https://doi.org/10.1145/3450494
https://doi.org/10.1145/3450494
https://doi.org/10.1186/s13638-022-02104-8
https://link.springer.com/articles/10.1186/s13638-022-02104-8%20https://link.springer.com/article/10.1186/s13638-022-02104-8
https://link.springer.com/articles/10.1186/s13638-022-02104-8%20https://link.springer.com/article/10.1186/s13638-022-02104-8
https://link.springer.com/articles/10.1186/s13638-022-02104-8%20https://link.springer.com/article/10.1186/s13638-022-02104-8
https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms
https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms
https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/Kirin-990
https://www.hisilicon.com/en/products/Kirin/Kirin-flagship-chips/Kirin-990
https://www.hisilicon.com/en/products/Ascend/Ascend-910
https://www.hisilicon.com/en/products/Ascend/Ascend-910
https://www.mediatek.com/products/smartphones-2/mediatek-helio-p60
https://www.mediatek.com/products/smartphones-2/mediatek-helio-p60
https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/d-2100-brief.html
https://www.intel.com/content/www/us/en/products/docs/processors/xeon/d-2100-brief.html
https://semiconductor.samsung.com/processor/mobile-processor/exynos-9-series-9820/
https://semiconductor.samsung.com/processor/mobile-processor/exynos-9-series-9820/
https://www.graimatterlabs.ai/
https://github.com/baetyl/baetyl
https://azure.microsoft.com/nl-nl/services/iot-edge/
https://azure.microsoft.com/nl-nl/services/iot-edge/
https://www.edgexfoundry.org/
https://www.nvidia.com/en-us/data-center/products/egx/
https://www.nvidia.com/en-us/data-center/products/egx/
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://cloud.google.com/solutions/iot
https://cloud.google.com/solutions/iot
https://docs.openvino.ai/latest/index.html
https://docs.openvino.ai/latest/index.html
https://www.sparkfun.com/products/15170
https://www.sparkfun.com/products/15170
https://doi.org/10.3390/APP112211073
https://www.mdpi.com/2076-3417/11/22/11073/htm%20https://www.mdpi.com/2076-3417/11/22/11073
https://www.mdpi.com/2076-3417/11/22/11073/htm%20https://www.mdpi.com/2076-3417/11/22/11073
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html

[78] STMicroelectronics. ‘B-L475E-IOT01A - STM32L4 Discovery kit IoT node, low-power wireless,
BLE, NFC, SubGHz, Wi-Fi’. URL: https : / / www . st . com / en / evaluation - tools / b - l475e -

iot01a.html.

[79] Eta Compute. ‘Eta Compute ECM3532 AI Sensor Product Brief ECM3532 AI Sensor Board: Ul-
tra Low Power Sensor Board for Artificial Intelligence at the Edge’. In: (). URL: http://www.

etacompute.com/.

[80] Arduino. ‘Nano 33 BLE Sense’. URL: https://docs.arduino.cc/hardware/nano-33-ble-sense.

[81] Sachin Negi and Neeraj Sharma. ‘A standalone computing system to classify human foot move-
ments using machine learning techniques for ankle-foot prosthesis control’. In: https://doi-org.ezproxy2.utwente.nl/10.1080/10255842.2021.2012656
(2021). ISSN: 14768259. DOI: 10.1080/10255842.2021.2012656. URL: https://www-tandfonline-
com.ezproxy2.utwente.nl/doi/abs/10.1080/10255842.2021.2012656.

[82] OpenMV. ‘Quick reference for the openmvcam’. URL: https://docs.openmv.io/openmvcam/
quickref.html.

[83] Aditya Jyoti Paul, Puranjay Mohan and Stuti Sehgal. ‘Rethinking Generalization in American
Sign Language Prediction for Edge Devices with Extremely Low Memory Footprint’. In: 2020
IEEE Recent Advances in Intelligent Computational Systems, RAICS 2020 (Dec. 2020), pp. 147–
152. DOI: 10.1109/RAICS51191.2020.9332480.

[84] Sparkfun. ‘Himax WE-I Plus EVB Endpoint AI Development Board - DEV-17256’. URL: https:

//www.sparkfun.com/products/17256.

[85] Silicon Labs. ‘IoT Development Kit - Thunderboad Sense 2 - SLTB004A’. URL: https://www.

silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit.

[86] Sony. ‘Overview - Spresense’. URL: https://developer.sony.com/develop/spresense/.

[87] Syntiant. ‘TinyML Board’. URL: https://www.syntiant.com/tinyml.

[88] Arduino. ‘Portenta H7’. URL: https://store.arduino.cc/products/portenta-h7.

[89] Raspberry Pi. ‘Buy a Raspberry Pi 4 Model B’. URL: https://www.raspberrypi.com/products/
raspberry-pi-4-model-b/.

[90] NVIDIA Developer. ‘NVIDIA Jetson Nano Developer Kit | NVIDIA Developer’. URL: https://

developer.nvidia.com/embedded/jetson-nano-developer-kit. NVIDIA Developer.

[91] Bitcraze. ‘AI deck 1.1’. URL: https://www.bitcraze.io/products/ai-deck/.

[92] ArduCam. ‘Arducam Pico4ML TinyML Dev Kit’. URL: https://www.arducam.com/docs/pico/
arducam-pico4mltinymldevkit/.

[93] Arduino. ‘Arduino MKR Vidor 4000’. URL: https://store.arduino.cc/products/arduino-mkr-
vidor-4000.

[94] Arduino. ‘Nicla Sense ME’. URL: https://store.arduino.cc/products/nicla-sense-me.

[95] TI. ‘LAUNCHXL-CC1352P Development kit’. URL: https : / / www . ti . com / tool / LAUNCHXL -

CC1352P.

[96] Espressif System. ‘ESP-EYE AI Board I’. URL: https : / / www . espressif . com / en / products /

devkits/esp-eye/overview.

[97] GreenWaves Technologies. ‘Ultra low power GAP processors’. URL: https://greenwaves-technologies.
com/low-power-processor/.

[98] Nordic Semiconductor. ‘nRF52840 DK’. URL: https://www.nordicsemi.com/Products/Development-
hardware/nrf52840-dk.

[99] Nordic Semiconductor. ‘Nordic Thingy:91 Prototyping platform’. URL: https://www.nordicsemi.
com/Products/Development-hardware/Nordic-Thingy-91.

[100] NXP Semiconductors. ‘FRDM-K64F Platform|Freedom Development Board|Kinetis MCUs’. URL:
https://www.nxp.com/design/development- boards/freedom- development- boards/mcu-

boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F.

[101] Coral. ‘Coral’. URL: https://coral.ai/.

77

https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html
http://www.etacompute.com/
http://www.etacompute.com/
https://docs.arduino.cc/hardware/nano-33-ble-sense
https://doi.org/10.1080/10255842.2021.2012656
https://www-tandfonline-com.ezproxy2.utwente.nl/doi/abs/10.1080/10255842.2021.2012656
https://www-tandfonline-com.ezproxy2.utwente.nl/doi/abs/10.1080/10255842.2021.2012656
https://docs.openmv.io/openmvcam/quickref.html
https://docs.openmv.io/openmvcam/quickref.html
https://doi.org/10.1109/RAICS51191.2020.9332480
https://www.sparkfun.com/products/17256
https://www.sparkfun.com/products/17256
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://www.silabs.com/development-tools/thunderboard/thunderboard-sense-two-kit
https://developer.sony.com/develop/spresense/
https://www.syntiant.com/tinyml
https://store.arduino.cc/products/portenta-h7
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.bitcraze.io/products/ai-deck/
https://www.arducam.com/docs/pico/arducam-pico4mltinymldevkit/
https://www.arducam.com/docs/pico/arducam-pico4mltinymldevkit/
https://store.arduino.cc/products/arduino-mkr-vidor-4000
https://store.arduino.cc/products/arduino-mkr-vidor-4000
https://store.arduino.cc/products/nicla-sense-me
https://www.ti.com/tool/LAUNCHXL-CC1352P
https://www.ti.com/tool/LAUNCHXL-CC1352P
https://www.espressif.com/en/products/devkits/esp-eye/overview
https://www.espressif.com/en/products/devkits/esp-eye/overview
https://greenwaves-technologies.com/low-power-processor/
https://greenwaves-technologies.com/low-power-processor/
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.nordicsemi.com/Products/Development-hardware/Nordic-Thingy-91
https://www.nordicsemi.com/Products/Development-hardware/Nordic-Thingy-91
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F
https://coral.ai/

[102] ‘Sipeed MAix GO Suit for RISC-V AI+IoT - Seeed Studio’. URL: https://www.seeedstudio.com/
Sipeed-MAix-GO-Suit-for-RISC-V-AI-IoT-p-2874.html.

[103] ‘OAK-D-Lite — DepthAI Hardware Documentation 1.0.0 documentation’. URL: https://docs.
luxonis.com/projects/hardware/en/latest/pages/DM9095.html.

[104] Ahmed I. Awad et al. ‘Utilization of mobile edge computing on the Internet of Medical Things: A
survey’. In: ICT Express (May 2022). ISSN: 2405-9595. DOI: 10.1016/J.ICTE.2022.05.006.

[105] Ramon Sanchez-Iborra and Antonio F. Skarmeta. ‘TinyML-Enabled Frugal Smart Objects: Chal-
lenges and Opportunities’. In: IEEE Circuits and Systems Magazine 20.3 (July 2020), pp. 4–18.
ISSN: 15580830. DOI: 10.1109/MCAS.2020.3005467.

[106] Google. ‘TensorFlow Lite for Microcontrollers’. URL: https : / / www . tensorflow . org / lite /

microcontrollers.

[107] PyTorch. ‘Home | PyTorch’. URL: https://pytorch.org/mobile/home/.

[108] Microsoft. ‘The Embedded Learning Library - Embedded Learning Library (ELL)’. URL: https:
//microsoft.github.io/ELL/.

[109] ARM. ‘Arm NN SDK’. URL: https://www.arm.com/products/silicon-ip-cpu/ethos/arm-nn.

[110] CMSIS. ‘CMSIS NN Software Library’. URL: https://www.keil.com/pack/doc/CMSIS/NN/html/
index.html.

[111] STMicroelectronics. ‘AI:X-CUBE-AI documentation - stm32mcu’. URL: https://wiki.stmicroelectronics.
cn/stm32mcu/wiki/AI:X-CUBE-AI_documentation.

[112] Fraunhofer-IMS. ‘AIfES_for_Arduino: This is the Arduino® compatible port of the AIfES machine
learning framework, developed and maintained by Fraunhofer Institute for Microelectronic Cir-
cuits and Systems.’ URL: https://github.com/Fraunhofer-IMS/AIfES_for_Arduino.

[113] STMicroelectronics. ‘Home - NanoEdge™ AI Studio’. URL: https://cartesiam.ai/.

[114] Eloquentarduino. ‘micromlgen: Generate C code for microcontrollers from Python’s sklearn clas-
sifiers’. URL: https://github.com/eloquentarduino/micromlgen.

[115] Nok. ‘sklearn-porter: Transpile trained scikit-learn estimators to C, Java, JavaScript and others.’
URL: https://github.com/nok/sklearn-porter.

[116] BayesWitnesses. ‘m2cgen: Transform ML models into a native code (Java, C, Python, Go, JavaS-
cript, Visual Basic, C#, R, PowerShell, PHP, Dart, Haskell, Ruby, F#, Rust) with zero dependen-
cies’. URL: https://github.com/BayesWitnesses/m2cgen.

[117] Nok. ‘weka-porter: Transpile trained decision trees from Weka to C, Java or JavaScript.’ URL:
https://github.com/nok/weka-porter.

[118] Lucastsutsui. ‘EmbML: A tool to support using classification models in low-power and microcontroller-
based embedded systems.’ URL: https://github.com/lucastsutsui/EmbML.

[119] Emlearn. ‘emlearn: Machine Learning inference engine for Microcontrollers and Embedded devices’.
URL: https://github.com/emlearn/emlearn.

[120] UTensor. ‘uTensor: TinyML AI inference library’. URL: https://github.com/uTensor/uTensor.

[121] Eloquentarduino. ‘tinymlgen: Generate C code for microcontrollers from Tensorflow models’.
URL: https://github.com/eloquentarduino/tinymlgen.

[122] EEESlab. ‘CMix-NN: CMix-NN: Mixed Low-Precision CNN Library for Memory-Constrained Edge
Devices’. URL: https://github.com/EEESlab/CMix-NN.

[123] Pulp-platform. ‘fann-on-mcu’. URL: https://github.com/pulp-platform/fann-on-mcu.

[124] Neuton. ‘Neuton AI TinyML’. URL: https://neuton.ai/.

[125] Edge Impulse. ‘Adding sight to your sensors’. URL: https://docs.edgeimpulse.com/docs/

tutorials/image-classification%20https://docs.edgeimpulse.com/docs/image-classification.

[126] TensorFlow. ‘Building Machine Learning models with Edge Impulse - YouTube’. URL: https://
www.youtube.com/watch?v=gw1E5JZTim0.

78

https://www.seeedstudio.com/Sipeed-MAix-GO-Suit-for-RISC-V-AI-IoT-p-2874.html
https://www.seeedstudio.com/Sipeed-MAix-GO-Suit-for-RISC-V-AI-IoT-p-2874.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/DM9095.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/DM9095.html
https://doi.org/10.1016/J.ICTE.2022.05.006
https://doi.org/10.1109/MCAS.2020.3005467
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers
https://pytorch.org/mobile/home/
https://microsoft.github.io/ELL/
https://microsoft.github.io/ELL/
https://www.arm.com/products/silicon-ip-cpu/ethos/arm-nn
https://www.keil.com/pack/doc/CMSIS/NN/html/index.html
https://www.keil.com/pack/doc/CMSIS/NN/html/index.html
https://wiki.stmicroelectronics.cn/stm32mcu/wiki/AI:X-CUBE-AI_documentation
https://wiki.stmicroelectronics.cn/stm32mcu/wiki/AI:X-CUBE-AI_documentation
https://github.com/Fraunhofer-IMS/AIfES_for_Arduino
https://cartesiam.ai/
https://github.com/eloquentarduino/micromlgen
https://github.com/nok/sklearn-porter
https://github.com/BayesWitnesses/m2cgen
https://github.com/nok/weka-porter
https://github.com/lucastsutsui/EmbML
https://github.com/emlearn/emlearn
https://github.com/uTensor/uTensor
https://github.com/eloquentarduino/tinymlgen
https://github.com/EEESlab/CMix-NN
https://github.com/pulp-platform/fann-on-mcu
https://neuton.ai/
https://docs.edgeimpulse.com/docs/tutorials/image-classification%20https://docs.edgeimpulse.com/docs/image-classification
https://docs.edgeimpulse.com/docs/tutorials/image-classification%20https://docs.edgeimpulse.com/docs/image-classification
https://www.youtube.com/watch?v=gw1E5JZTim0
https://www.youtube.com/watch?v=gw1E5JZTim0

[127] Oduor_c. ‘Tflite to be used with Google Coral’. URL: https://forum.edgeimpulse.com/t/

tflite-to-be-used-with-google-coral/3891/5.

[128] A Krizhevsky, V Nair and G Hinton. ‘CIFAR-10 and CIFAR-100 datasets’. URL: https://www.cs.
toronto.edu/~kriz/cifar.html.

[129] Stanford Vision Lab, Stanford University and Princeton University. ‘ImageNet’. URL: https://
www.image-net.org/index.php.

[130] Microsoft. ‘COCO - Common Objects in Context’. URL: https://cocodataset.org/#explore%
20https://cocodataset.org/#home.

[131] Walter J. Scheirer et al. ‘Toward open set recognition’. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 35.7 (2013), pp. 1757–1772. ISSN: 01628828. DOI: 10.1109/TPAMI.
2012.256.

[132] Mark Sandler et al. ‘MobileNetV2: Inverted Residuals and Linear Bottlenecks’. In: (Jan. 2018).
DOI: 10.48550/arxiv.1801.04381. URL: https://arxiv.org/abs/1801.04381v4.

[133] Mingxing Tan and Quoc V. Le. ‘EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks’. In: 36th International Conference on Machine Learning, ICML 2019 2019-June (May
2019), pp. 10691–10700. DOI: 10.48550/arxiv.1905.11946. URL: https://arxiv.org/abs/
1905.11946v5.

[134] Mingxing Tan and Quoc V. Le. ‘EfficientNetV2: Smaller Models and Faster Training’. In: (Apr.
2021). DOI: 10.48550/arxiv.2104.00298. URL: https://arxiv.org/abs/2104.00298v3.

[135] Christian Szegedy et al. ‘Inception-v4, Inception-ResNet and the Impact of Residual Connections
on Learning’. In: ().

[136] Google Coral. ‘TensorFlow models on the Edge TPU’. URL: https://coral.ai/docs/edgetpu/
models-intro/.

[137] Google. ‘Edge TPU performance benchmarks’. URL: https://coral.ai/docs/edgetpu/benchmarks/
%20https://coral.ai/docs/edgetpu/benchmarks. Coral.

[138] Gao Huang et al. ‘Densely Connected Convolutional Networks’. In: Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017 2017-January (Aug. 2016),
pp. 2261–2269. DOI: 10.48550/arxiv.1608.06993. URL: https://arxiv.org/abs/1608.

06993v5.

[139] Andrew G. Howard et al. ‘MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications’. In: (Apr. 2017). DOI: 10.48550/arxiv.1704.04861. URL: https://arxiv.org/
abs/1704.04861v1.

[140] Kaiming He et al. ‘Deep Residual Learning for Image Recognition’. In: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition 2016-December (Dec.
2015), pp. 770–778. ISSN: 10636919. DOI: 10.48550/arxiv.1512.03385. URL: https://arxiv.
org/abs/1512.03385v1.

[141] Kaiming He et al. ‘Identity Mappings in Deep Residual Networks’. In: (). URL: https://github.
com/KaimingHe/.

[142] Suyog Gupta and Mingxing Tan. ‘Google AI Blog: EfficientNet-EdgeTPU: Creating Accelerator-
Optimized Neural Networks with AutoML’. URL: https : / / ai . googleblog . com / 2019 / 08 /

efficientnet-edgetpu-creating.html.

[143] Christian Szegedy et al. ‘Going deeper with convolutions’. In: ().

[144] Andrew Howard et al. ‘Searching for MobileNetV3’. In: (May 2019). DOI: 10.48550/arxiv.1905.
02244. URL: https://arxiv.org/abs/1905.02244v5.

[145] Ji Lin et al. ‘MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning’. In: ().
URL: https://mcunet.mit.edu.

[146] Alexander Wong, Mahmoud Famouri and Mohammad Javad Shafiee. ‘AttendNets: Tiny Deep
Image Recognition Neural Networks for the Edge via Visual Attention Condensers’. In: ().

[147] Oindrila Saha et al. ‘RNNPool: Efficient Non-linear Pooling for RAM Constrained Inference’. In:
(). URL: https://github.com/Microsoft/EdgeML..

79

https://forum.edgeimpulse.com/t/tflite-to-be-used-with-google-coral/3891/5
https://forum.edgeimpulse.com/t/tflite-to-be-used-with-google-coral/3891/5
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/index.php
https://www.image-net.org/index.php
https://cocodataset.org/#explore%20https://cocodataset.org/#home
https://cocodataset.org/#explore%20https://cocodataset.org/#home
https://doi.org/10.1109/TPAMI.2012.256
https://doi.org/10.1109/TPAMI.2012.256
https://doi.org/10.48550/arxiv.1801.04381
https://arxiv.org/abs/1801.04381v4
https://doi.org/10.48550/arxiv.1905.11946
https://arxiv.org/abs/1905.11946v5
https://arxiv.org/abs/1905.11946v5
https://doi.org/10.48550/arxiv.2104.00298
https://arxiv.org/abs/2104.00298v3
https://coral.ai/docs/edgetpu/models-intro/
https://coral.ai/docs/edgetpu/models-intro/
https://coral.ai/docs/edgetpu/benchmarks/%20https://coral.ai/docs/edgetpu/benchmarks
https://coral.ai/docs/edgetpu/benchmarks/%20https://coral.ai/docs/edgetpu/benchmarks
https://doi.org/10.48550/arxiv.1608.06993
https://arxiv.org/abs/1608.06993v5
https://arxiv.org/abs/1608.06993v5
https://doi.org/10.48550/arxiv.1704.04861
https://arxiv.org/abs/1704.04861v1
https://arxiv.org/abs/1704.04861v1
https://doi.org/10.48550/arxiv.1512.03385
https://arxiv.org/abs/1512.03385v1
https://arxiv.org/abs/1512.03385v1
https://github.com/KaimingHe/
https://github.com/KaimingHe/
https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html
https://doi.org/10.48550/arxiv.1905.02244
https://doi.org/10.48550/arxiv.1905.02244
https://arxiv.org/abs/1905.02244v5
https://mcunet.mit.edu
https://github.com/Microsoft/EdgeML.

[148] KS30. ‘Accuracy vs F1 score | Data Science and Machine Learning | Kaggle’. URL: https://www.
kaggle.com/questions-and-answers/178137.

[149] Avijit Hazra. ‘Using the confidence interval confidently’. In: Journal of Thoracic Disease 9.10 (Oct.
2017), pp. 4125–4130. ISSN: 20776624. DOI: 10.21037/jtd.2017.09.14. URL: https://www.
researchgate.net/publication/320742650_Using_the_confidence_interval_confidently.

[150] University of Twente. ‘Research support: Jupyter | JupyterLab | Jupiter | Cloud computing |
Service Portal’. URL: https://www.utwente.nl/en/service- portal/research- support/

research-support-topics/it-facilities-for-research/jupyterlab.

[151] WandB. ‘Weights & Biases - Developer tools for ML’. URL: https://wandb.ai/site. Wandb.

[152] Lutz Roeder. ‘Netron’. URL: https://netron.app/.

[153] OpenCV. ‘Home - OpenCV’. URL: https://opencv.org/.

[154] NVIDIA. ‘NVIDIA T4 TENSOR CORE GPU SPECIFICATIONS GPU Architecture NVIDIA Turing
NVIDIA Turing Tensor Cores 320 NVIDIA CUDA ® Cores 2,560’. In: (2018), pp. 8–9. URL: www.
nvidia.com/T4.

[155] Consult Red. ‘Feature Processor Arm GreenWaves’. In: (). URL: https://consult.red/discover-
red/.

[156] Ubuntu. ‘WSL | Ubuntu’. URL: https://ubuntu.com/wsl.

[157] Google. ‘Edge TPU Compiler | Coral’. URL: https : / / coral . ai / docs / edgetpu / compiler /

%20https://coral.ai/docs/edgetpu/compiler/#co-compiling-multiple-models.

[158] Google. ‘Camera | Coral’. URL: https://coral.ai/products/camera/%20https://coral.ai/
products/camera/#tech-specs.

[159] e-con Systems. ‘Cameras for Google Coral Dev Board’. URL: https://www.e-consystems.com/
cameras-for-google-coral.asp.

[160] Logitech. ‘Logitech C920 PRO HD Webcam, 1080p Video with Stereo Audio’. URL: https://www.
logitech.com/en-gb/products/webcams/c920-pro-hd-webcam.960-001055.html.

[161] Google. ‘TensorFlow models on the Edge TPU’. URL: https://coral.ai/docs/edgetpu/models-
intro/#quantization%20https://coral.ai/docs/edgetpu/models- intro/#supported-

operations. Coral.

[162] The Things Network. ‘The Things Network’. URL: https://www.thethingsnetwork.org/docs/
lorawan/limitations/.

[163] Taoufik Bouguera et al. ‘Energy consumption model for sensor nodes based on LoRa and LoR-
aWAN Energy consumption model for sensor nodes based Energy Consumption Model for Sensor
Nodes Based on LoRa and LoRaWAN’. In: Sensors 18.7 (2018). DOI: 10.3390/s18072104{\"{i}}.
URL: https://hal.science/hal-01828769.

[164] Li Peng. ‘Comparing 4G and 5G downlink energy consumption’. In: (2022), pp. 1–6. DOI: 10.
36227/techrxiv.21269118.v1.

[165] Emil Bjornson and Erik G Larsson. ‘How Energy-Efficient Can a Wireless Communication Sys-
tem Become?’ In: Conference Record - Asilomar Conference on Signals, Systems and Computers.
Vol. 2018-Octob. 2019, pp. 1252–1256. ISBN: 9781538692189. DOI: 10 . 1109 / ACSSC . 2018 .

8645227.

[166] Ming Yan et al. ‘Modeling the total energy consumption of mobile network services and ap-
plications’. In: Energies 12.1 (Jan. 2019). ISSN: 19961073. DOI: 10 . 3390 / EN12010184. URL:
https://www.researchgate.net/publication/330201584_Modeling_the_Total_Energy_

Consumption_of_Mobile_Network_Services_and_Applications.

[167] Nhu Ho. ‘LTE-M vs NB-IoT’. URL: https://www.emnify.com/blog/lte-m-nb-iot. EMnify Blog.

[168] 1NCE Data Broker. ‘Enhancing Battery Life on NB-IoT and LTE-M’. URL: https://1nce.com/en-
eu/resources/news-insights/blog/1nce-data-broker.

[169] Harald Naumann. ‘(26) SIGFOX versus NB-IoT - power estimation’. URL: https://www.linkedin.
com/pulse/sigfox-versus-nb-iot-power-consumption-harald-naumann/.

80

https://www.kaggle.com/questions-and-answers/178137
https://www.kaggle.com/questions-and-answers/178137
https://doi.org/10.21037/jtd.2017.09.14
https://www.researchgate.net/publication/320742650_Using_the_confidence_interval_confidently
https://www.researchgate.net/publication/320742650_Using_the_confidence_interval_confidently
https://www.utwente.nl/en/service-portal/research-support/research-support-topics/it-facilities-for-research/jupyterlab
https://www.utwente.nl/en/service-portal/research-support/research-support-topics/it-facilities-for-research/jupyterlab
https://wandb.ai/site
https://netron.app/
https://opencv.org/
www.nvidia.com/T4
www.nvidia.com/T4
https://consult.red/discover-red/
https://consult.red/discover-red/
https://ubuntu.com/wsl
https://coral.ai/docs/edgetpu/compiler/%20https://coral.ai/docs/edgetpu/compiler/#co-compiling-multiple-models
https://coral.ai/docs/edgetpu/compiler/%20https://coral.ai/docs/edgetpu/compiler/#co-compiling-multiple-models
https://coral.ai/products/camera/%20https://coral.ai/products/camera/#tech-specs
https://coral.ai/products/camera/%20https://coral.ai/products/camera/#tech-specs
https://www.e-consystems.com/cameras-for-google-coral.asp
https://www.e-consystems.com/cameras-for-google-coral.asp
https://www.logitech.com/en-gb/products/webcams/c920-pro-hd-webcam.960-001055.html
https://www.logitech.com/en-gb/products/webcams/c920-pro-hd-webcam.960-001055.html
https://coral.ai/docs/edgetpu/models-intro/#quantization%20https://coral.ai/docs/edgetpu/models-intro/#supported-operations
https://coral.ai/docs/edgetpu/models-intro/#quantization%20https://coral.ai/docs/edgetpu/models-intro/#supported-operations
https://coral.ai/docs/edgetpu/models-intro/#quantization%20https://coral.ai/docs/edgetpu/models-intro/#supported-operations
https://www.thethingsnetwork.org/docs/lorawan/limitations/
https://www.thethingsnetwork.org/docs/lorawan/limitations/
https://doi.org/10.3390/s18072104{\"{i}}
https://hal.science/hal-01828769
https://doi.org/10.36227/techrxiv.21269118.v1
https://doi.org/10.36227/techrxiv.21269118.v1
https://doi.org/10.1109/ACSSC.2018.8645227
https://doi.org/10.1109/ACSSC.2018.8645227
https://doi.org/10.3390/EN12010184
https://www.researchgate.net/publication/330201584_Modeling_the_Total_Energy_Consumption_of_Mobile_Network_Services_and_Applications
https://www.researchgate.net/publication/330201584_Modeling_the_Total_Energy_Consumption_of_Mobile_Network_Services_and_Applications
https://www.emnify.com/blog/lte-m-nb-iot
https://1nce.com/en-eu/resources/news-insights/blog/1nce-data-broker
https://1nce.com/en-eu/resources/news-insights/blog/1nce-data-broker
https://www.linkedin.com/pulse/sigfox-versus-nb-iot-power-consumption-harald-naumann/
https://www.linkedin.com/pulse/sigfox-versus-nb-iot-power-consumption-harald-naumann/

[170] Harald Naumann. ‘NB-IoT versus SIGFOX, LoRaWAN, and Weightless – power / energy the in-
convenient truth’. URL: https://www.gsm-modem.de/M2M/iot-university/nb-iot-power-
consumption/.

[171] Sigfox. ‘Sigfox Technical Overview’. In: Onsemi 1.January (2017), p. 26. URL: https://www.

disk91.com/wp-content/uploads/2017/05/4967675830228422064.pdf.

[172] Gunnar P Noordbruis. ‘Energy efficient WLAN using WiFi standards b/a/g/n/ac on an Archer C7
AC1750 access point’. In: (2020).

[173] William Antonelli and John Lynch. ‘What’s a Good Internet Speed? How to Upgrade Your Inter-
net’. URL: https://www.businessinsider.com/guides/tech/what- is- a- good- internet-
speed?international=true&r=US&IR=T.

[174] Hamed Valizadegan, Quang Nguyen and Milos Hauskrecht. ‘Learning Classification Models from
Multiple Experts’. In: Journal of biomedical informatics 46.6 (Dec. 2013), p. 1125. ISSN: 15320464.
DOI: 10.1016/J.JBI.2013.08.007. URL: /pmc/articles/PMC3922063/%20/pmc/articles/
PMC3922063/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922063/.

[175] Arish Sateesan et al. ‘A Survey of Algorithmic and Hardware Optimization Techniques for Vis-
ion Convolutional Neural Networks on FPGAs’. In: Neural Processing Letters 53.3 (June 2021),
pp. 2331–2377. ISSN: 1573773X. DOI: 10.1007/S11063-021-10458-1/TABLES/10. URL: https:
//link.springer.com/article/10.1007/s11063-021-10458-1.

[176] Keysight Technologies Inc. ‘34465A Digital Multimeter, 6½ Digit, Performance Truevolt DMM’.
URL: https://www.keysight.com/us/en/product/34461A/digital-multimeter-6-5-digit-
truevolt- dmm.html%20http://www.keysight.com/en/pd- 2519397- pn- 34465A/digital-

multimeter-6-digit-performance-truevolt-dmm?cc=DE&lc=ger.

[177] Nikiforos Pittaras et al. ‘Comparison of fine-tuning and extension strategies for deep convolu-
tional neural networks’. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 10132 LNCS (2017), pp. 102–114.
ISSN: 16113349. DOI: 10.1007/978-3-319-51811-4{_}9.

[178] Saulo Baretto. ‘What is a Monitor in Computer Science? | Baeldung on Computer Science’. URL:
https://www.baeldung.com/cs/fine-tuning-nn%20https://www.baeldung.com/cs/monitor.

[179] Aston Zhang et al. ‘Dive into Deep Learning’. In: Journal of the American College of Radiology
17.5 (June 2021), pp. 637–638. ISSN: 1558349X. DOI: 10.1016/j.jacr.2020.02.005. URL:
https://arxiv.org/abs/2106.11342v4.

[180] Google Coral. ‘Retrain a classification model on-device with weight imprinting | Coral’. URL:
https://coral.ai/docs/edgetpu/retrain-classification-ondevice/%20https://coral.

ai/docs/edgetpu/retrain-classification-ondevice/#overview.

[181] Google Coral. ‘Retrain a classification model on-device with backpropagation | Coral’. URL:
https://coral.ai/docs/edgetpu/retrain-classification-ondevice-backprop/.

81

https://www.gsm-modem.de/M2M/iot-university/nb-iot-power-consumption/
https://www.gsm-modem.de/M2M/iot-university/nb-iot-power-consumption/
https://www.disk91.com/wp-content/uploads/2017/05/4967675830228422064.pdf
https://www.disk91.com/wp-content/uploads/2017/05/4967675830228422064.pdf
https://www.businessinsider.com/guides/tech/what-is-a-good-internet-speed?international=true&r=US&IR=T
https://www.businessinsider.com/guides/tech/what-is-a-good-internet-speed?international=true&r=US&IR=T
https://doi.org/10.1016/J.JBI.2013.08.007
/pmc/articles/PMC3922063/%20/pmc/articles/PMC3922063/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922063/
/pmc/articles/PMC3922063/%20/pmc/articles/PMC3922063/?report=abstract%20https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922063/
https://doi.org/10.1007/S11063-021-10458-1/TABLES/10
https://link.springer.com/article/10.1007/s11063-021-10458-1
https://link.springer.com/article/10.1007/s11063-021-10458-1
https://www.keysight.com/us/en/product/34461A/digital-multimeter-6-5-digit-truevolt-dmm.html%20http://www.keysight.com/en/pd-2519397-pn-34465A/digital-multimeter-6-digit-performance-truevolt-dmm?cc=DE&lc=ger
https://www.keysight.com/us/en/product/34461A/digital-multimeter-6-5-digit-truevolt-dmm.html%20http://www.keysight.com/en/pd-2519397-pn-34465A/digital-multimeter-6-digit-performance-truevolt-dmm?cc=DE&lc=ger
https://www.keysight.com/us/en/product/34461A/digital-multimeter-6-5-digit-truevolt-dmm.html%20http://www.keysight.com/en/pd-2519397-pn-34465A/digital-multimeter-6-digit-performance-truevolt-dmm?cc=DE&lc=ger
https://doi.org/10.1007/978-3-319-51811-4{_}9
https://www.baeldung.com/cs/fine-tuning-nn%20https://www.baeldung.com/cs/monitor
https://doi.org/10.1016/j.jacr.2020.02.005
https://arxiv.org/abs/2106.11342v4
https://coral.ai/docs/edgetpu/retrain-classification-ondevice/%20https://coral.ai/docs/edgetpu/retrain-classification-ondevice/#overview
https://coral.ai/docs/edgetpu/retrain-classification-ondevice/%20https://coral.ai/docs/edgetpu/retrain-classification-ondevice/#overview
https://coral.ai/docs/edgetpu/retrain-classification-ondevice-backprop/

12
A P P E N D I C E S

A R E S U LT S E X P E R I M E N T 1

A.1 Individual Distribution Accuracies

Table 20: Mean accuracy and 95% Confidence Interval of algorithms tested on all distribution
versus the number of evaluation images per class. The distributions on the left were the distributions used
as the evaluation set.

Algorithm 1 2 5 10 15 25 50 75 100

MobileNetV2

Cityscape 0.51 ± 0.035 0.515 ± 0.077 0.48 ± 0.043 0.477 ± 0.027 0.471 ± 0.016 0.48 ± 0.014 0.485 ± 0.01 0.481 ± 0.005 0.482 ± 0.0

Forest 0.61 ± 0.122 0.655 ± 0.052 0.672 ± 0.029 0.678 ± 0.032 0.674 ± 0.023 0.654 ± 0.019 0.651 ± 0.007 0.655 ± 0.006 0.655 ± 0.

Office 0.64 ± 0.078 0.56 ± 0.05 0.572 ± 0.033 0.583 ± 0.028 0.591 ± 0.019 0.591 ± 0.009 0.577 ± 0.006 0.587 ± 0.003 0.586 ± 0.0

Park 0.4 ± 0.092 0.43 ± 0.066 0.392 ± 0.02 0.423 ± 0.025 0.415 ± 0.023 0.431 ± 0.013 0.413 ± 0.011 0.42 ± 0.005 0.419 ± 0.0

Pub 0.67 ± 0.083 0.695 ± 0.037 0.684 ± 0.031 0.68 ± 0.021 0.689 ± 0.011 0.675 ± 0.011 0.688 ± 0.008 0.688 ± 0.004 0.688 ± 0.0

Uniform 0.94 ± 0.043 0.85 ± 0.074 0.882 ± 0.03 0.895 ± 0.019 0.895 ± 0.011 0.894 ± 0.005 0.891 ± 0.006 0.89 ± 0.004 0.891 ± 0.0

EfficientNetB0

Cityscape 0.62 ± 0.076 0.635 ± 0.039 0.65 ± 0.034 0.636 ± 0.032 0.629 ± 0.016 0.629 ± 0.013 0.63 ± 0.006 0.632 ± 0.004 0.63 ± 0.0

Forest 0.82 ± 0.049 0.845 ± 0.056 0.832 ± 0.031 0.857 ± 0.018 0.813 ± 0.011 0.812 ± 0.012 0.808 ± 0.008 0.815 ± 0.004 0.815 ± 0.0

Office 0.69 ± 0.068 0.655 ± 0.071 0.672 ± 0.043 0.702 ± 0.02 0.713 ± 0.014 0.693 ± 0.007 0.693 ± 0.009 0.698 ± 0.003 0.696 ± 0.0

Park 0.58 ± 0.116 0.565 ± 0.076 0.556 ± 0.019 0.59 ± 0.019 0.589 ± 0.016 0.592 ± 0.011 0.587 ± 0.005 0.58 ± 0.005 0.583 ± 0.0

Pub 0.8 ± 0.065 0.825 ± 0.039 0.82 ± 0.033 0.815 ± 0.012 0.801 ± 0.022 0.817 ± 0.013 0.807 ± 0.004 0.805 ± 0.005 0.808 ± 0.0

Uniform 0.91 ± 0.02 0.915 ± 0.021 0.944 ± 0.023 0.949 ± 0.009 0.947 ± 0.01 0.941 ± 0.005 0.938 ± 0.004 0.939 ± 0.004 0.939 ± 0.0

EfficientNetV2B0

Cityscape 0.77 ± 0.066 0.74 ± 0.058 0.736 ± 0.027 0.741 ± 0.024 0.739 ± 0.022 0.745 ± 0.012 0.731 ± 0.007 0.733 ± 0.003 0.732 ± 0.0

Forest 0.87 ± 0.051 0.87 ± 0.03 0.864 ± 0.018 0.859 ± 0.015 0.852 ± 0.01 0.84 ± 0.013 0.857 ± 0.008 0.851 ± 0.003 0.853 ± 0.0

Office 0.75 ± 0.073 0.785 ± 0.07 0.756 ± 0.031 0.781 ± 0.024 0.767 ± 0.012 0.767 ± 0.011 0.761 ± 0.01 0.764 ± 0.004 0.766 ± 0.0

Park 0.58 ± 0.087 0.545 ± 0.049 0.558 ± 0.045 0.561 ± 0.023 0.576 ± 0.016 0.563 ± 0.017 0.575 ± 0.009 0.571 ± 0.006 0.571 ± 0.0

Pub 0.83 ± 0.072 0.86 ± 0.046 0.866 ± 0.023 0.85 ± 0.012 0.855 ± 0.014 0.855 ± 0.01 0.847 ± 0.008 0.852 ± 0.004 0.852 ± 0.0

Uniform 0.92 ± 0.049 0.92 ± 0.042 0.952 ± 0.019 0.952 ± 0.009 0.962 ± 0.007 0.961 ± 0.006 0.955 ± 0.004 0.956 ± 0.002 0.954 ± 0.0

EfficientNetV2S

Cityscape 0.78 ± 0.109 0.805 ± 0.056 0.804 ± 0.024 0.799 ± 0.016 0.821 ± 0.013 0.822 ± 0.017 0.819 ± 0.008 0.825 ± 0.004 0.822 ± 0.0

Forest 0.89 ± 0.054 0.94 ± 0.035 0.934 ± 0.019 0.921 ± 0.027 0.934 ± 0.013 0.924 ± 0.007 0.931 ± 0.006 0.93 ± 0.003 0.931 ± 0.0

Office 0.78 ± 0.082 0.81 ± 0.028 0.806 ± 0.045 0.803 ± 0.024 0.79 ± 0.012 0.797 ± 0.014 0.784 ± 0.007 0.787 ± 0.005 0.789 ± 0.0

Park 0.6 ± 0.072 0.675 ± 0.069 0.66 ± 0.041 0.686 ± 0.02 0.662 ± 0.022 0.684 ± 0.018 0.679 ± 0.004 0.672 ± 0.004 0.677 ± 0.0

Pub 0.92 ± 0.049 0.875 ± 0.044 0.91 ± 0.026 0.893 ± 0.017 0.899 ± 0.01 0.902 ± 0.011 0.9 ± 0.007 0.904 ± 0.003 0.9 ± 0.0

Uniform 0.99 ± 0.02 0.96 ± 0.02 0.974 ± 0.013 0.964 ± 0.006 0.959 ± 0.006 0.958 ± 0.002 0.964 ± 0.002 0.962 ± 0.001 0.963 ± 0.0

InceptionResNetV2

Cityscape 0.65 ± 0.084 0.575 ± 0.064 0.612 ± 0.029 0.604 ± 0.026 0.611 ± 0.017 0.612 ± 0.009 0.609 ± 0.007 0.607 ± 0.005 0.608 ± 0.0

Forest 0.83 ± 0.083 0.795 ± 0.049 0.824 ± 0.033 0.791 ± 0.03 0.807 ± 0.015 0.807 ± 0.008 0.807 ± 0.008 0.807 ± 0.004 0.808 ± 0.0

Office 0.65 ± 0.098 0.675 ± 0.049 0.662 ± 0.042 0.665 ± 0.025 0.641 ± 0.014 0.636 ± 0.008 0.644 ± 0.01 0.646 ± 0.004 0.648 ± 0.0

Park 0.51 ± 0.094 0.53 ± 0.082 0.512 ± 0.044 0.51 ± 0.033 0.491 ± 0.025 0.482 ± 0.019 0.492 ± 0.01 0.495 ± 0.005 0.495 ± 0.0

Pub 0.76 ± 0.089 0.87 ± 0.026 0.852 ± 0.029 0.815 ± 0.018 0.821 ± 0.013 0.807 ± 0.013 0.813 ± 0.006 0.817 ± 0.004 0.818 ± 0.0

Uniform 0.93 ± 0.083 0.945 ± 0.023 0.952 ± 0.012 0.958 ± 0.01 0.958 ± 0.008 0.955 ± 0.007 0.956 ± 0.004 0.957 ± 0.002 0.956 ± 0.0

82

A.2 Plots

Figure 43: Average accuracy and loss with Confidence Interval of MobileNetV2.

83

Figure 44: Average accuracy and loss with Confidence Interval of EfficientNetB0.

84

Figure 45: Average accuracy and loss with Confidence Interval of EffiecientNetV2B0.

85

Figure 46: Average accuracy and loss with Confidence Interval of EfficientNetV2S.

86

Figure 47: Average accuracy and loss with Confidence Interval of InceptionResNetV2.

87

B R E S U LT S E X P E R I M E N T 3

B.1 Classification Performances

Table 21: The performance of the quantised and full models. For every model, the accuracy of the summed confusion
matrixes is given, as well as the F1-score, precision, recall and time.

Algorithm Full Quantised

Accuracy F1-score Precision Recall
Time

(ms/image)
Accuracy F1-score Precision Recall

Time
(ms/image)

MobileNetV2 0.6202 0.6194 0.6202 0.6459 5.859 0.5997 0.5986 0.6265 0.5997 29.917

EfficientNetB0 0.7452 0.7423 0.7590 0.7452 4.505 0.7417 0.7378 0.7497 0.7417 58.396

EfficientNetV2B0 0.7882 0.7875 0.8077 0.7882 3.934 0.7705 0.7702 0.7961 0.7705 47.070

EfficientNetV2S 0.8470 0.8479 0.8523 0.8470 12.831 0.8525 0.8535 0.8584 0.8525 390.206

InceptionResNetV2 0.7303 0.7371 0.7596 0.7303 10.764 0.7275 0.7337 0.7555 0.7275 347.916

Table 22: Here the quantised models are shown running on CPU and TPU. For every model, the accuracy of the
summed confusion matrixes is given, as well as the overall F1-score, precision and recall.

Algorithm Quantised running on CPU Quantised running on TPU

Acc F1-score Precision Recall Acc F1-score Precision Recall

MobileNetV2 0.4312 0.4398 0.4993 0.4312 0.4313 0.4396 0.4976 0.4313

EfficientNetB0 0.6110 0.6152 0.6382 0.6110 0.6048 0.6091 0.6345 0.6048

EfficientNetV2B0 0.6808 0.6901 0.7205 0.6808 0.6778 0.6883 0.7227 0.6778

EfficientNetV2S 0.7778 0.7814 0.7975 0.7778 N.A. N.A. N.A. N.A.

InceptionResNetV2 0.6128 0.6257 0.6614 0.6128 0.6142 0.6272 0.6629 0.6142

88

B.2 Summed Confusion Matrices

Figure 48: Summed confusion matrixes of the full models ran on Jupyter Lab in experiment 3.

89

Figure 49: Summed confusion matrixes of the quantised models ran on Jupyter Lab in experiment 3.

90

Figure 50: Summed confusion matrixes of the quantised models ran on the edge CPU in experiment 3.

91

Figure 51: Summed confusion matrixes of the quantised models ran on the edge TPU in experiment 3.

92

C R E S U LT S E X P E R I M E N T 4

Table 23: The accuracy for the fine-tuned models in experiment 4.

Algorithm 1 5 10 15 20 30 50 80
In Distribution

trained 80

MobileNetV2 0.9248

GPU LLSLR 0.6397 0.6747 0.6900 0.7098 0.7215 0.7488 0.7915 0.8408

GPU ALSLR 0.6457 0.6770 0.6997 0.7422 0.7533 0.7818 0.8253 0.8427

GPU LLRT 0.9133 0.9250 0.9307 0.9420 0.9520 0.9617 0.9662 0.9780

GPU LLSLR on Edge 0.4530 0.4700 0.4765 0.4880 0.4965 0.5015 0.5155 0.5332

GPU ALSLR on Edge 0.4497 0.4717 0.4813 0.4947 0.5118 0.5343 0.5542 0.5620

GPU LLRT on Edge 0.5323 0.5345 0.5473 0.5585 0.5462 0.5518 0.5610 0.5473

EfficientNetB0 0.9807

GPU LLSLR 0.7698 0.8068 0.8383 0.8597 0.8760 0.9043 0.9345 0.9620

GPU ALSLR 0.7632 0.7807 0.8015 0.8185 0.8475 0.8858 0.9338 0.9792

GPU LLRT 0.9473 0.9472 0.9570 0.9657 0.9698 0.9752 0.9743 0.9843

GPU LLSLR on Edge 0.6113 0.6268 0.6418 0.6475 0.6557 0.6587 0.6658 0.6780

GPU ALSLR on Edge 0.6167 0.6120 0.6148 0.6310 0.6305 0.6540 0.6828 0.6827

GPU LLRT on Edge 0.6220 0.6337 0.6480 0.6458 0.6542 0.6600 0.6652 0.6592

EfficientNetV2B0 0.9815

GPU LLSLR 0.8028 0.8298 0.8590 0.8790 0.8930 0.9138 0.9367 0.9560

GPU ALSLR 0.7850 0.8023 0.8190 0.8783 0.9003 0.9437 0.9747 0.9918

GPU LLRT 0.9473 0.9530 0.9598 0.9678 0.9683 0.9728 0.9808 0.9858

GPU LLSLR on Edge 0.6860 0.6970 0.7088 0.7183 0.7228 0.7277 0.7425 0.7565

GPU ALSLR on Edge 0.6600 0.6418 0.5568 0.5750 0.5680 0.6142 0.6515 0.6932

GPU LLRT on Edge 0.7060 0.6963 0.7043 0.7137 0.7232 0.7223 0.7432 0.7355

93

Table 24: Performance of the full models with 80 images per class of In-Distribution data with 5-fold cross-validation.

Algorithm Full model with In Distribution Data

Accuracy F1-score Precision Recall
Time

(ms/image)

MobileNetV2 0.9248 0.9249 0.9255 0.9248 12.005

EfficientNetB0 0.9807 0.9807 0.9808 0.9807 9.493

EfficientNetV2B0 0.9815 0.9815 0.9817 0.9815 11.624

EfficientNetV2S 0.9827 0.9827 0.9830 0.9827 25.682

InceptionResNetV2 0.9225 0.9224 0.9226 0.9225 19.072

94

Figure 52: The accuracy for the varying amounts of OOD data for fine-tuned models that are trained on the Cloud
and tested on both Cloud and Edge to investigate the impact of testing on different platforms. The accur-
acy of 0 images per class is given by the non-fine-tuned models as given in experiment 3.

95

D R E S U LT S E X P E R I M E N T 5

D.1 Classification Performance

Table 25: The accuracy and F1 score of the fine-tuned models in the cloud and on the edge.

Algorithm 1 5 10 15 20 30 50 80

MobileNetV2

GPU LLSLR on Edge 0.4530 0.4700 0.4765 0.4880 0.4965 0.5015 0.5155 0.5332

GPU ALSLR on Edge 0.4497 0.4717 0.4813 0.4947 0.5118 0.5343 0.5542 0.5620

GPU LLRT on Edge 0.5323 0.5345 0.5473 0.5585 0.5462 0.5518 0.5610 0.5473

EdgeTPU LLRT 0.5853 0.5922 0.6115 0.6153 0.6155 0.6273 0.6565 0.6653

EfficientNetB0

GPU LLSLR on Edge 0.6113 0.6268 0.6418 0.6475 0.6557 0.6587 0.6658 0.6780

GPU ALSLR on Edge 0.6167 0.6120 0.6148 0.6310 0.6305 0.6540 0.6828 0.6827

GPU LLRT on Edge 0.6220 0.6337 0.6480 0.6458 0.6542 0.6600 0.6652 0.6592

EdgeTPU LLRT 0.7878 0.7992 0.8008 0.8050 0.8158 0.8288 0.8393 0.8498

EfficientNetV2B0

GPU LLSLR on Edge 0.6860 0.6970 0.7088 0.7183 0.7228 0.7277 0.7425 0.7565

GPU ALSLR on Edge 0.6600 0.6418 0.5568 0.5750 0.5680 0.6142 0.6515 0.6932

GPU LLRT on Edge 0.7060 0.6963 0.7043 0.7137 0.7232 0.7223 0.7432 0.7355

EdgeTPU LLRT 0.8058 0.8113 0.8158 0.8192 0.8205 0.8295 0.8400 0.8603

96

Figure 53: The accuracy for the varying amounts of OOD data for fine-tuned models that are trained on the Cloud
and tested on Edge, as well as the models fine-tuned on the Edge. The accuracy of 0 images per class is
given by the non-fine-tuned models as given in experiment 3.

97

D.2 Power Consumption

Table 26: The average time in seconds required per fine-tuning for each edge TPU model.

Algorithm Power (W) Time (s/model) for number of fine-tuned images per class

1 5 10 15 20 30 50 80

MobileNetV2 3.439 101.45 101.274 101.904 102.514 103.129 104.437 106.97 110.758

EfficientNetB0 3.595 173.427 173.067 174.495 175.757 177.104 179.713 184.996 193.038

EfficientNetV2B0 3.706 194.135 194.635 196.08 197.642 199.199 202.159 208.214 217.435

Table 27: The average power in Joule required per fine-tuning for each edge TPU model.

Algorithm Power (W) Power (J/model) for number of fine-tuned images per class

1 5 10 15 20 30 50 80

MobileNetV2 3.439 348.887 348.281 350.448 352.546 354.661 359.159 367.87 380.897

EfficientNetB0 3.595 623.47 622.176 627.31 631.846 636.689 646.068 665.061 693.972

EfficientNetV2B0 3.706 719.464 721.317 726.672 732.461 738.231 749.201 771.641 805.814

Figure 54: The power consumption in Joule per cloud and edge model, which is consumed for fine-tuning. The
protocols are shown for images of 36.0kB.

98

Table 28: Here the cloud fine-tuned models are shown. The average Power in Joule needed per fine-tuning a model is
shown. This is needed by the edge device for receiving the updated weights for the fine-tuning techniques
LLRT, LLSLR and ALSLR.

Algorithm Power (J/model) for sending the weights to the edge

LoRaWAN

Cloud trained ALSLR 59693.10

Cloud trained LLRT / LLSLR 2568.35

4G

Cloud trained ALSLR 18565.14

Cloud trained LLRT / LLSLR 798.78

LTE-M

Cloud trained ALSLR 23093.10

Cloud trained LLRT / LLSLR 993.60

NB-IoT

Cloud trained ALSLR 16934.94

Cloud trained LLRT / LLSLR 16934.94

Sigfox

Cloud trained ALSLR 505161.56

Cloud trained LLRT / LLSLR 1735.00

Wi-Fi

Cloud trained ALSLR 32929.05

Cloud trained LLRT / LLSLR 1416.80

Figure 55: The power consumption in Joule per cloud and edge model, which is consumed for fine-tuning. The
protocol which is most power efficient is shown.

99

	Abstract
	Preface
	Contents
	1 Introduction
	1.1 Open issues
	1.2 Research Questions
	1.3 Approach
	1.4 Thesis Organization

	2 Background
	2.1 Computing Structures
	2.1.1 Cloud Computing
	2.1.2 Edge Computing
	2.1.3 Fog Computing

	2.2 Edge Intelligence
	2.2.1 Applications of Edge Intelligence

	2.3 Machine Learning
	2.3.1 Learning methods
	2.3.2 Model Training
	2.3.3 Model Validation
	2.3.4 Model Compression
	2.3.5 Model Inference

	2.4 Distribution Shift
	2.4.1 Detecting Distribution Shift

	3 Literature Review
	3.1 Methodology
	3.1.1 Terminology

	3.2 Edge Intelligence
	3.2.1 History of Edge Intelligence
	3.2.2 AI in Edge Intelligence
	3.2.3 Evaluation of Deployed Edge Devices

	3.3 Distribution Shift
	3.3.1 Tackling Distribution Shift
	3.3.2 Similar Studies

	3.4 Challenges
	3.4.1 Resource Constraints
	3.4.2 Non-IID Data, Data Drift and Deployment of Edge devices
	3.4.3 Computational Limits

	3.5 Open Issues
	3.5.1 Methods beside Supervised Learning and Federated Learning
	3.5.2 Non-Independent and Identically Distributed and Out-of-Distribution Data
	3.5.3 Further Quantisation
	3.5.4 Post Deployment Monitoring
	3.5.5 Lack of Evaluation Platforms for Edge Intelligent Models

	3.6 Conclusion Literature Review

	4 State of the Art
	4.1 Discussion of Software Platforms
	4.2 Discussion of Edge Hardware

	5 Standardised Edge AI Distribution Shift Dataset
	5.1 Methodology
	5.1.1 Data Acquisition
	5.1.2 Dataset Evaluation

	6 Determining the amount of Evaluation Images
	6.1 Methodology
	6.1.1 Model Choice
	6.1.2 Model Training
	6.1.3 Model Inference
	6.1.4 Model Evaluation
	6.1.5 Platform Choice
	6.1.6 Downsampling Techniques

	6.2 Results
	6.3 Discussion
	6.4 Conclusion

	7 Trade-off between Remote Evaluation and Power Usage
	7.1 Methodology
	7.1.1 Creating an overview of critical power components
	7.1.2 Platform Choice

	7.2 Results
	7.2.1 Creating an overview of critical power components
	7.2.2 Modelling Battery Capacity vs Photos sent and Time
	7.2.3 Human Effort

	7.3 Discussion
	7.4 Conclusion

	8 Trade-off between Inference on Edge CPU or Edge TPU and Quantization
	8.1 Methodology
	8.1.1 Model Inference and Evaluation
	8.1.2 Experiment

	8.2 Results
	8.3 Discussion
	8.4 Conclusion

	9 Difference in performance between running Cloud fine-tuned models in the Cloud and on the Edge
	9.1 Methodology
	9.1.1 Model Choice
	9.1.2 Model Fine-tuning
	9.1.3 Model Evaluation
	9.1.4 Experiment

	9.2 Results
	9.3 Discussion
	9.4 Conclusion

	10 Trade-off between Fine-Tuning on the Edge and in the Cloud
	10.1 Methodology
	10.1.1 Model Fine-tuning
	10.1.2 Model Evaluation
	10.1.3 Data Size and Compression
	10.1.4 Battery Charge over Time
	10.1.5 Experiment

	10.2 Results
	10.2.1 Classification Performance
	10.2.2 Power Consumption for Fine-Tuning
	10.2.3 Data Size and Compression
	10.2.4 Battery Charge over Time

	10.3 Discussion
	10.4 Conclusion

	11 Conclusion and Future Work
	11.1 Conclusions
	11.2 Future Work

	Bibliography
	12 Appendices
	A Results Experiment 1
	A.1 Individual Distribution Accuracies
	A.2 Plots

	B Results Experiment 3
	B.1 Classification Performances
	B.2 Summed Confusion Matrices

	C Results Experiment 4
	D Results Experiment 5
	D.1 Classification Performance
	D.2 Power Consumption

