
MSc Computer Science
Final Project

Integrating the Five
Steps of Plotting:
A Plotting Tool Design

Mart van Assen

Supervisors: Timon ter Braak
Faizan Ahmed
Nacir Bouali

Committee: Nicola Strisciuglio
Faizan Ahmed
Nacir Bouali

14 June, 2023

Department of Computer Science,
Faculty of Electrical Engineering
Mathematics and Computer Science,
University of Twente



Contents

1 Introduction 5
1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Limitation of Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Problem Investigation 8
2.1 Plotting Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Five Steps of Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Current Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Broader Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Stakeholders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Stakeholder Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Demcon Engineers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Demcon Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Business Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Existing Solutions 14
3.1 Plotting Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Solution Proposal 19
4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Architectural Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Solution Evaluation 36
5.1 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Qualitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Concluding Remarks 42
6.1 Discussion of Research Goals & Solution Proposal . . . . . . . . . . . . . . . 42
6.2 Discussion of Broader context . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A Research Topics 48

B Technical Requirements 58

C Test Data 66



Abstract

Demcon develops mechatronic devices. Recording and visualising data to gain insights
into its behaviour is crucial during development. Many tools are used for debugging and
verification, making the workflow tedious and cumbersome. Furthermore, this solution is
not generalised, meaning the various projects at Demcon use their own plotting solutions.
A new solution which integrates all aspects of plotting into a single tool that all projects
at Demcon can utilise, despite their varying data sources, is desired. In this project,
we introduce the five steps of plotting, investigate the current and existing solutions and
propose a new solution consisting of an architecture, a design and an implementation as
proof of concept which integrates the five steps of plotting into a single tool.

Keywords: Live plotting, Architecture, Design, Time series data, Data visualisation



Chapter 1

Introduction

Currently, Demcon uses a chain of tools to plot data generated from a medical device in a
project which will be called ’X‘ throughout this thesis. This medical device contains about
10.000 internal (debug) signals from sensors and processed sensor data. When a test of the
medical device is conducted, Demcon needs to save a selection of signal data. This data is
stored as CSV (Comma Separated Values) and is required to observe, analyse and debug
the device. A Python tool acquires the data from the device and saves it to a CSV file.
A visualisation tool can then plot the CSV file’s data. This process is live but requires
multiple tools, and real-time analysis and navigation through large data sets is tedious and
cumbersome. Using this tool is not trivial for domain experts, and software engineers are
currently needed to modify this Python script to save a new selection of signals. Due to
these limitations and difficulties of the current solution, Demcon initiates this project to
create a better solution that will integrate all steps and provide a better workflow.

Many plotting tools exist that can plot data. However, these tools often focus on data
visualisation and lack data acquisition and data storage capabilities. Demcon requires a
plotting system that can do everything from data acquisition to visualisation. Latency
and throughput are two essential aspects. A low latency requirement makes it difficult
to achieve high throughput. Conversely, a high throughput requirement makes it difficult
to achieve low latency. Generally, low latency is desired for data visualisation, and high
throughput is desirable for data acquisition. Demcon requires a tool focused on high
throughput and correctness of data acquisition. The latency should be sufficiently low,
but it is a second priority.

In this project, plotting tools are dissected into five steps that can be chronologically
ordered: data acquisition, storage, navigation, analysis, and visualisation. These five
steps will be called "the steps of data plotting". These steps are further investigated
and explained in the problem investigation.

1.1 Approach

The approach of this project is modelled after the design cycle described in Design Science
Methodology for Information Systems and Software Engineering by Roel Wieringa [30].
The book defines design science as "the design and investigation of artefacts in context"
and categorises design science into two types. The first category is the design cycle, and
the second is the empirical cycle. A design cycle is most suitable for this project as we
deal with a design problem. The book specifies a design problem as a call for change in

5



the world, requiring a solution. This coincides with this project, as there is a call for
change by Demcon which requires a specification of how to solve it. Finally, this solution
must be evaluated on utility, goal contribution, limitations, assumptions and reusability.
A design cycle, therefore, contains the following steps; problem investigation, treatment
design and treatment validation. Here, he uses the word ‘treatment’ instead of ‘solution’
to indicate that no solution truly solves all issues but rather treats problems, much like
medical doctors do. In this project, we use the term ‘solution’.

1.2 Research Questions

We formulate the following research questions to ensure the project investigates, discusses,
and solves most relevant aspects. The main research question is the central question to
which the sub-questions contribute.

Main research question:

How can data stored in a database be plotted, analysed and navigated
through, during and together with the acquisition of new data, when
integrated into a single tool?

Sub questions:

1. What is the goal of plotting tools, and how does the current solution fall short?

2. What existing solutions are available?

2.1. Which steps of plotting does the solution solve, and how does it solve them?

3. How can a single application solve and integrate each plotting step?

3.1. How does the application handle data acquisition?

3.2. How does the application handle data storage?

3.3. How does the application handle data navigation?

3.4. How does the application handle data analysis?

3.5. How does the application handle data visualisation?

1.3 Limitation of Scope

Any project may continue forever if no limitations to the scope are set. Therefore, we
define the limitations of the scope of this project.

• The project is restricted to a single design cycle.

• The context of the project is limited to the X project at Demcon. This means the
problem investigation, solution and evaluation are limited to suit the X project.

• The project’s duration is limited to 20 weeks and an additional month to wrap up
the course.

6



1.4 Definitions

Term Definition
Source A source is a data generating or containing object. In the

context of this project most often a medical device.
Time Series A sequence of data points each containing a Timestamp.
Data Point A value and associated Timestamp.
Timestamp A moment in time with nanosecond precision.
Graph A time series. It has two sub-types: Signal and Function.
Signal A time series generated by a data Source.
Function A time series calculated from a mathematical expression.
Sample A value that represents an aggregation of data points for a

Window.
Window A finite range of time of which the data points are aggregated

into a Sample.
Period The width of Windows applied to a time series.

Table 1.1: Definitions

1.5 Structure

Chapter 2 explains plotting tools and explains the Five Steps of Plotting. The problem
statement will introduce and analyse the concerns and goals of important stakeholders,
from which requirements are defined. Chapter 3 goes on to investigate existing solutions,
their weaknesses and strengths based on the Five Steps of Plotting. The chapter also
discusses the Research Topics paper on time series databases [28]. Chapter 4 then dives
into the complexity of integrating the five steps of plotting and proposes design decisions
to deal with these challenges. The chapter then proposes the system architecture, in which
these design decisions are incorporated. Chapter 5 continues by evaluating the proposed
solution. Finally, Chapter 6 discusses the results, concludes and suggests future work.

7



Chapter 2

Problem Investigation

This chapter dives deeper into plotting tools and how this project proposes to dissect
plotting tools into the five steps of plotting. Then, it investigates the current situation. It
will discuss the existing artefacts and the context of the X project, as well as the broader
context. The chapter also analyses the stakeholders to establish stakeholder concerns
and goals. Based on these concerns, goals and input from the product owner, business
requirements are defined.

2.1 Plotting Tools

In a broad sense, plotting tools are software applications that visualise some data. Various
types of data can be visualised in many ways. Think of simple line graphs, pie diagrams,
histograms and many more diagrams. Plotting tools are therefore used in many different
disciplines. Accountants may want to visualise income and expenses. Weather apps may
want to visualise the temperature for a day as a line graph. There are many other scenarios
where data needs to be plotted to gain valuable insights into the data. This means there
are many varying requirements for plotting tools depending on their environment.

2.1.1 Five Steps of Plotting

To structure plotting tools and better understand what happens within them, this
project proposes dissecting plotting tools conceptually into the five steps of plotting. By
structuring plotting tools like this, the shortcomings of the current situation and existing
solutions become more apparent. It also serves the solution proposal, as a solution for
each step can be proposed.

The following explains the five steps; first, data is gathered and entered into the tool.
This step is called data acquisition. Then, this data needs to be stored. This can be
in memory or persistent storage. This step is called data storage. After the data is
stored, the application must navigate through it to find the specific data range it needs to
visualise, for example, all data for one particular today. This could result in many data
points, so this step is also responsible for aggregating data into windows. This step is
called data navigation. Some analysis might then be required. Data analysis in weather
apps could, for example, determine if a section of the data is below or above the freezing
point. Usually, this step involves functions and equations to manipulate data. This step
is called data analysis, and it is important to note that not every tool requires it in

8



every use case. The final step is visualising the data in the data visualisation step. This
step displays the data on a screen in some form, like a line graph. Figure 2.1 shows the
five steps, with current tools and protocols below the steps they are used for. Section 2.2
further examines this current solution.

Data 
Acquisition

Data 
Storage

Data
Navigation

Data 
Analysis

Data 
Visualization

Source Screen

Python Script

KSTEmbedded Debugger

CSV

Figure 2.1: Five Steps of Plotting Current Situation

2.2 Current Situation

Data Acquisition

Currently, Demcon uses a chain of tools to plot data generated from a medical device.
This medical device contains about 10.000 internal (debug) signals from sensors and
processed sensor data. Demcon needs to acquire a selection of sensor data from a
medical device when a test of the device is conducted. This is the data acquisition
step. Such a test requires the ’Embedded Debugger’ protocol, an accompanying tool
and a Python script for this step. Embedded Debugger is a protocol used for the
communication of sensor data in the medical device and enables these signals to be
read. The accompanying tool for the Embedded Debugger protocol can be used to
discover available signals in a device. The Python script can then request data from
the medical device using the Embedded Debugger protocol.

Data Storage

The Python script also saves the signals to a CSV file. This is the data storage
step. The issue with this script is that it is incapable of merging data from multiple
sources in live tests. Other Python scripts exist to merge the data from multiple
sources, but these can only merge data after a test is completed. The Python script
for acquisition and storage is also catered to a specific medical device and must often
be changed to select which signals it records.

Data Navigation

Demcon uses a tool called KST [8] to navigate, analyse and visualise the data. KST
can open CSV files to load signals and data into the tool. A range is selected when
loading data, which gets loaded into memory. This is the only data navigation
the tool does. After this initial selection, a user can still zoom in and out, but all
data is kept in memory.

9



Data Analysis

KST offers various functions that can be applied to signals to analyse the data for the
data analysis step. Standard functions include rolling averages and linear shifts;
user-defined equations can also be used. These equations can use multiple signals
as input. Plugins can be created to define new functions. While there is a lot of
functionality, engineers at Demcon indicated that they did not use this functionality
as its interface is complex and the functionality is not documented. Still, they indicate
that functions could be useful.

Data Visualisation

Finally, the tool visualises the data to complete the data visualisation step. The
tool supports a dynamic number of plots, each capable of containing multiple graphs.
These plots can be linked to each other to synchronise the x-axis. While the tool
has all the required visualisation functionality, it looks outdated and is not trivial
to use due to its complexity. Engineers still find new functionality after years of
using the tool.

KST can only plot data live from a single file simultaneously. The Python script can
also only acquire data from a single source. Multiple instances of the script must be
running when testing multiple sources simultaneously. In testing, having multiple sources
is common. An example is the following: When the medical device is being tested, a
’testbox’ can be used to validate the medical device. A testbox is a mock version of the
object being operated. This testbox contains calibrated sensors, which can measure what
the medical device is doing to the object. In such a test, there are multiple sources that
must be recorded simultaneously in order to analyse the device. The data generated in
such a test can not be visualised live in a single KST instance. Another Python script
can merge the two CSV files into one, after which the two sources are included in the
same CSV file, but this is not live.

The current solution requires multiple tools to accomplish the five steps of plotting
because the primary plotting tool, KST, does not handle the first three steps. Therefore,
a user of the current solution must have programming skills, but the workflow is tedious
even then. In an ideal situation, a single tool handles the five steps of plotting.

2.3 Broader Context

Many projects within Demcon rely on plotting to observe, analyse and debug complex
devices they develop. These projects use different tools. Often no single tool fulfils all
plotting steps and are generally difficult to use. Other devices generate different data
formats with varying sample rates. Current tools don’t support their data in all forms,
lacking precision or throughput. In this project, the medical device outputs signals with
a maximum sample rate of 1KHz per signal, but there are other projects at Demcon with
higher rates. Many engineers are not software experts and would benefit from a plotting
tool that they can quickly adapt to their data format and source interface, is easier to use
and can be a one-stop solution for every project that requires plotting within Demcon.

Although the solution is tailored towards Demcon, at the methodological level the
approach of the project can be adapted to fit similar contexts. Admittedly, the specific
requirements will differ and therefore the implementation will differ as well.

10



2.4 Stakeholders

Engineers at Demcon that work on the medical device are the main stakeholders of the
plotting tool. They use the current solution daily to observe, analyse and debug the
machine. Tests are not run every day, but they may still view the data days after a test
to investigate what happened with the device during the test. Their main issue with the
current solution is that adding new signals from a source during a test is tedious. Changing
a Python script and restarting a test takes a long time. Another key issue is the limitation
to a single source during live plotting. Engineers would like to view data of the medical
device and testbox simultaneously.

The other stakeholder is the software manager at Demcon. The manager is an
important stakeholder, as his employees work with the current solution daily. The
manager’s main issue with the tool is that the workflow is tedious, and users need various
skills, namely, programming skills and tool proficiency. The required proficiency also means
that new employees or employees that switch from another project to the project require
a relatively long work-in period.

2.5 Stakeholder Goals

We base stakeholder goals on concerns they have with the current situation. The issues
with the current solution were identified in the previous sections, along with stakeholders
and a few concerns. This section presents stakeholder concerns as concise items. For each
concern, a corresponding goal is listed.

2.5.1 Demcon Engineers

Concerns:

C1.1. The current solution requires a lot of steps to add new signals to recordings.

C1.2. The current solution requires programming knowledge for adding new signals to
recordings.

C1.3. The current situation requires multiple tools.

C1.4. The current plotting tool is very complex.

C1.5. The current plotting tool doesn’t support large data sets, as data is read into memory.

C1.6. Current tools don’t allow for acquiring data from multiple sources while also
visualising both sources in the same tool.

C1.7. Current tools can drop data points when the tool cannot keep up with the sample
rate. In tests, every sample must be stored for analysis.

Goals:

G1.1. Make the workflow of recording new signals easier and faster.

G1.2. The workflow of recording new signals should not require any programming skills.

G1.3. Plotting should be possible with a single tool.

G1.4. The plotting tool should be easier to use than the current solution.

G1.5. Support long tests with lots of data by saving it to persistent storage.

11



G1.6. It should be possible to acquire and visualise data from multiple sources
simultaneously.

G1.7. No data must be lost from data acquisition to persistent storage.

2.5.2 Demcon Managers

Concerns:

C2.1. The current solution requires many tools to complete the five steps of plotting.

C2.2. The current solution is project specific. This increases the work-in period for
employees switching between projects and when setting up a new project.

Goals:

G2.1. Plotting should be possible with a single tool.

G2.2. Every project at Demcon should be able to use the same tool to reduce tool variation
between projects.

2.6 Business Requirements

We create business requirements based on the stakeholders’ goals. The proposed
requirements are then discussed, refined, and defined with the product owner. This results
in a set of 17 business requirements. The requirements can be found in Table 2.1. The
table includes an identifier. BR stands for Business Requirement, numbered from 1 to
17. Each requirement is linked to stakeholder goals; the Goals lists the linked goals. The
description column contains the actual requirement text. MoSCoW is used to indicate
the prioritisation of the requirements [22]. The column named Step indicates to what
step of plotting the requirements belong. Some requirements are not specific for a step of
plotting. In such a case, the value is None.

12



Nr. Goal Description MoSCoW Step
BR1 G1.4 The tool’s database is portable Would Storage
BR2 G1.1

G1.2
G1.5

The tool is able to create a new database Must Storage

BR3 G1.1
G1.2
G1.5

The tool is able to open an existing database Must Storage

BR4 G1.1
G1.2
G1.5

The tool is able to delete data from the database Must Storage

BR5 G1.3
G2.2

The tool is able to import data from various file formats Must Acquisition

BR6 G1.6 The tool is able to ingest data from various real-time sources Must Acquisition
BR7 G2.2 The tool is able to save and display data with microsecond timestamp

precision
Must All

BR8 G2.2 The tool is able to be executed on Windows & Linux Must None
BR9 G1.1

G1.4
The tool is able to be executed without complex installation or
configuration

Should None

BR10 G1.4 The tool is able to save and load GUI layout configuration Should Visualisation

BR11 G1.7 The tool is able to ingest at least 20 signals at a sample rate of 1KHz or
10 signals at 10KHz each on Demcon-issued employee laptops

Must Acquisition
& Storage

BR12 G1.5 The tool is able to aggregate time series data based on timestamps
efficiently and with various aggregation functions

Could Navigation

BR13 G1.4 The tool is able to save Mathematical functions to the database Must Analysation
BR14 G1.6 The tool uses a data model that is based on time units, not on datapoint

counts
Must None

BR15 G1.3
G2.2

The tool supports CSV data sources Must Acquisition

BR16 G1.3
G2.2

The tool supports Embedded Debugger sources Should Acquisition

BR17 G1.3
G2.2

The tool supports InfluxDB Line protocol sources Should Acquisition

Table 2.1: Business Requirements

Demcon already initiated the new tool before this design cycle, and though the inner
workings are not designed, the new tool is written in C++. Therefore, a requirement
besides the business requirements is that the new solution is written in C++. Using
C++ in the implementation is, therefore, a constraint. The list below lists pre-existing
constraints like the C++ constraint.

• C++ language for tool implementation.

• Qt framework for tool implementation framework.

• QCustomPlot library for visualisation step.

• Software dependencies must be open-source.

• The tool must not use networking for communication between its components.

13



Chapter 3

Existing Solutions

This chapter evaluates existing tools to determine if they are suitable solutions for the
problem in this project. The chapter splits existing software into two categories; Plotting
tools and databases. A selection of the plotting tools is introduced. For each tool, the
five steps of plotting are evaluated, and some strong and weak points are discussed. Each
plotting tool is assigned a score from negative to positive in a five-step rating for each
step of plotting. The scores are gathered in an attribute table. Section 3.2 will investigate
databases. The research into databases suitable for this project is conducted as part of the
Research Topics course at the University of Twente. This section is therefore based on the
existing research. The research paper is included as Appendix A.

Based on the two sections, it can be decided what existing solutions could be used
to form a solution proposal, or if there are no existing solutions that are good enough,
a new solution needs to be created.

3.1 Plotting Tools

Grafana: Grafana [16] is a well known plotting tool. Grafana can be purchased as
a cloud solution, self-managed on a server, or locally on a workstation. Grafana uses
dashboards. These dashboards need to be configured. Dashboards can have logging and
plots. When setting up plots, SQL-like queries are created for data retrieval. The resulting
data can then be displayed in a plot with many settings for graph type and other GUI
elements. Grafana Live can be used to display real-time data. Grafana notes that their
real-time is a soft real-time, and delivered messages can be delayed up to several hundred
milliseconds. When analysing Grafana with the five steps of plotting in mind, the following
becomes clear: Grafana is a data visualisation tool and does not do data acquisition and
data storage. Grafana requires a separate data acquisition and database solution. Data
navigation is possible via the queries used to retrieve data from the database, and these
queries can contain data aggregations to reduce the amount of data samples. Data analysis
is also possible while configuring the dashboard. Alerts can be created for signals with
configurable thresholds. Data transformation functions can also be configured and applied.
The tool looks modern, and many graph types are present for configuration.

Grafana is a highly configurable, nice-looking tool that can be tailored to the needs of
a user or user group by using dashboards. While Grafana is reasonably trivial to configure
for software engineers, it is not for domain experts, as changes to existing dashboards
or creating a new dashboard would require knowledge about the underlying data storage

14



solution and its data model, as well as SQL proficiency. This is partially due to Grafana
not being a one-in-all tool and does not handle its own data acquisition and data storage
but instead relies on other software to handle these steps. This means Grafana does not
have the required information on how to approach the data stored in the database, and
SQL queries need to be configured by engineers.

ChartDirector: ChartDirector [5] is a chart and graph plotting library. The library
has many small example applications to plot data in a specific way. A license must be
bought to use the library in any way. However, the code is available and could be used as
inspiration to build a tool. One of the examples of ChartDirector is the Real-time Chart
example [6]. This example shows how a real-time chart could be coded using ChartDirector
and explains how separate threads could be used for data acquisition and visualisation. A
lot of code needs to be developed to use this library to create a full-fledged plotting tool.
The library, therefore, does not fulfil any of the steps of plotting on its own besides the
visualisation step, and even this step is not fully satisfied for any use-case that diverges
from the examples.

ChartDirector offers good insight into visualising data and shows more architectural
considerations via the examples. However, the library is not particularly useful out of
the box, and a lot of development is still required to create a useful plotting tool. The
examples also look outdated visually.

PlotJuggler: PlotJuggler [10] is an open-source project. Plotjuggler supports multiple
data sources, which can be streaming sources. The tool provides an intuitive interface to
select which signals to graph, even if there are many signals in the source data. While the
tool has connectors for many data sources, it relies on pre-processed data for acquisition.
It could, therefore, not acquire data directly from the medical device. The tool does also
not store any data in persistent storage. Since the tool relies on pre-processed data, it
does not do any data navigation and keeps the data in memory or the file it is reading
from without sampling. However, the tool offers great data analysis. Creating complex
functions based on signal data and global variables is possible. These functions can then be
applied to signal data to create a new virtual signal. The tool adequately displays the data
with some graph types. Here its strength is mainly run-time configuration and the ability
to save and load layout configurations. There are zoom and auto-scroll functionalities
available. However, it is not intuitive to remove a graph from a plot.

PlotJuggler is a good tool but lacks in data acquisition, storage and navigation
functionality. Separate tools are needed to handle data acquisition and data storage.

Simulation Data Inspector: The Data Inspector [26] is an extension for Simulink
[27]. The Data inspector lets a user plot signals from Simulink. It is mainly used to
visualise variables at various points in a simulation. Actual data can also be fed to the
tool via CSV. The tool does not do real data acquisition but does data acquisition for
simulations. Since the data from a simulation is easily simulated, the tool does not store
data continuously. However, data exports can be created. These exports can easily be
loaded in another session. When working with real data, the tool relies on another tool
to have already stored the data in a file. The data inspector can then read from this file
and display the data as a graph. So while the tool is technically capable of storing data,
it does not do data acquisition and storage from a physical device. The tool does not
do any data navigation and displays the data as-is. The tool does allow for some data

15



analysis. Signals can be compared against each other, resulting in a new graph that shows
the difference between the two. Thresholds can be created to plot acceptable error bands.
This visualises whether the system operates within or out of acceptable bounds. Data
visualisation is adequate; the tool visualises time series data as a line graph. Plots can be
exported as images or to an HTML file for quick sharing.

Simulation Data Inspector is a good tool for certain requirements but is not suited to
be used as a general-purpose plotting tool that can be used effectively in various projects
due to limitations in data acquisition, data storage and data navigation.

QCustomPlot: QCustomPlot [4] is a QT [11] widget for plotting. QT is a cross-
platform C++ framework for creating graphical applications. QCustomPlot focuses on
enabling the creation of visually pleasing diagrams and offering high performance for
plotting applications. QCustomPlot is capable of visualising all sorts of diagrams. It
is mostly focused on line graphs but also supports bar charts, statistical box plots and
more. A new tool is quicker to develop with this widget. Many plot options can easily
be edited, and the data is kept in an array-like structure. Data can be added or removed
from the list. These changes are then also reflected visually. The tool does not do any data
acquisition, storage, navigation or analysis and is therefore not useful as a stand-alone tool.
Though, this is not its purpose. Its purpose is to be used as a visualisation component
of a custom tool, which it does well.

So, while the library is not a plotting tool, it offers another tool built using the
QT framework, to quickly achieve visualisation with many customisation options for the
developer.

KST: KST [8] is an open-source plotting tool that is expandable with plugins and
extensions. The tool supports new file types and data sources via the usage and creation
of plugins. Data sources are, however, always files. This means KST can not get data
from sources directly and only from intermediate files. Thus, KST lacks data acquisition
functionality. KST offers functionality to save a session. This means that KST writes
all data in memory to a file that can be read in the following session to restore the tool
to the previous session’s state, enabling a user to continue working with the same data
for multiple workdays, for example. This storage functionality could be considered a data
storage step. However, since the tool relies on other tools to handle initial data acquisition
and storage from physical devices, this is not useful data storage. KST offers basic data
navigation: A user can specify the range of data the tool visualises. The tool will then
only load the part of the file that contains that data, and by doing so, it reduces memory
usage. The tool has some data analysis features. Various default functions are defined,
and plugins can add new functions. Even though this functionality exists, it is not self-
explanatory and not well documented. The tool visualises the data reasonably well. Even
though the GUI looks outdated, it is fast and responsive.

As discussed in Chapter 2, the current solution at Demcon uses KST as the visualisation
tool. Engineers indicate that the tool is very complex but offers the required functionality
for visualisation. Since KST only handles data analysis and visualisation, other tools are
used to solve the data acquisition, storage, and navigation steps.

Table 3.1 shows the rating for each plotting step for each existing solution discussed
above. The last row indicates the highest score for each column. Simulation Data Inspector
is abbreviated to SDI in the table. The table visualises where most tools lack functionality.
Most tools score well on analysis and visualisation and poorly on data navigation, though

16



Grafana scores well. All tools offer insufficient data acquisition and storage functionality
and rely on another tool or simple files that they can read into memory. None of the
surveyed tools fulfils the requirements for the solution. Since most tools lack acquisition,
storage and navigation, a new solution must focus on solving these steps. Since the
data storage step is adjacent to the acquisition and navigation steps in the five steps of
plotting, the data storage solution plays a significant role in solving these steps. Therefore,
additional research into database solutions is required to solve these steps and is discussed
in Section 3.2.

Tool Acquisition Storage Navigation Analysis Visualization
Grafana −− −− + + ++

ChartDirector −− −− −− −− −/+

PlotJuggler −/+ −− −− ++ +

SDI −− − −− −/+ +

QCustomPlot −− −− −− −− ++

KST −− −− −/+ + +

Best score −/+ − + ++ ++

Table 3.1: Tool Ratings For the Five Steps of Plotting

3.2 Databases

As discussed in the previous section, none of the surveyed solutions offers adequate data
acquisition and storage. We must, therefore, further investigate database options, as a
database is a crucial component of the data acquisition, storage and navigation steps.
Since our solution works with time series data, it is only logical to investigate time series
databases, though some other types of databases are also considered.

The Research Topics article on databases [28] investigates databases that could be
useful for a plotting tool that uses time series data. Time-series data often consists of a
timestamp and a value or an array of values. Time series databases are optimised to handle
this data. Other types of databases can also handle this data but don’t offer the same
functionality and optimisations. Notable optimisations are efficient data compression and
timestamp filtering. Noteworthy additional functionality is time-based data aggregation.
However, due to these optimisations, time series databases also have constraints. Typical
constraints are the order-of-arrival requirement and timestamp precision. The paper
analyses five databases, namely; InfluxDB [14], Akumuli [1], RocksDB [18], Beringei [9],
and QuestDB [23]. All databases are rated in the database attribute Table 3.2. This
attribute table shows that InfluxDB and QuestDB are the most capable databases.

A multi-attribute maturity model, described by Petre et al. [21], is then applied
to InfluxDB and QuestDB. This model shows that, while InfluxDB is the more mature
database, QuestDB also scores well. The paper concludes that, while QuestDB is not
the best database, its ability to be used as an embedded library makes it suitable for
this project. Unfortunately, the library is not embedded for C++, but rather Java. This
requires some communication bridge between C++ and Java. The paper proposes JNI.
With JNI, C++ can create objects in the Java JVM and call methods in these objects.
The report shows the performance of QuestDB when generating data points in C++ and

17



Database C++
Client

Embedded Timeseries
functionality

Dev Status OS Order-Of-
Arrival

Constraints

Timestamp
Precision

License

InfluxDB ++ − ++ Active Windows, Linux, MacOS No Nanoseconds MIT
Akumuli −/+ C++ + Abandoned Linux In-Order Nanoseconds Apache License 2.0
RocksDB ++ C++ & Java −− Maintained Windows, Linux, MacOS No Nanoseconds Apache License 2.0
Beringei −/+ C++ + Abandoned Linux In-Order Seconds BSD
QuestDB + Java ++ Active Windows, Linux, MacOS No Microseconds Apache License 2.0

Table 3.2: Database Attribute Comparison

sending these to QuestDB via JNI. The solution can write up to about 500.000 data points
per second. This indicates that a new tool could comfortably reach the required ingest
throughput of 10 signals at 10kHz or 20 signals at 1kHz using QuestDB and JNI, leaving
performance capacity required for visualising graphs.

18



Chapter 4

Solution Proposal

The previous chapter shows that no existing solution combines all steps of plotting into a
single tool. However, to drastically improve the situation, the steps need to be handled by
a single tool. While each individual step is not complex, integrating all the steps into a
single tool is complex because the many steps are interwoven. This means that decisions
for one of the steps impact the other steps, especially the adjacent steps. We must create
a design proposal to combine all steps into a single solution, which takes the effects of
decisions in one step into account to create one coherent design. Therefore, the core of the
solution proposal and this design cycle is a strategy to combine all steps into a single tool
that is still performant enough to satisfy the engineer’s requirement.

The data generated from the medical device is time series data. In time series data,
each data point contains a timestamp and a value, and each data point belongs to a series
of data points. A timestamp indicates what moment in time the value is measured [15]. We
have two types of data; signals and functions. A signal is a time series that is generated by
a data source. In contrast, a function is a time series calculated by the plotting tool from
a mathematical expression, which could have other functions or signals as input. When
the source that generated the data points is a precise device, millions of data points per
second could be generated for each series.

The two main goals of the plotting tool are to acquire signal data and visualise graphs.
The tool will be able to visualise data in several plots. Each plot can contain multiple
graphs, and a graph is a visualisation of a signal or function’s data. To visualise the graphs,
their data must be loaded into memory. We propose the DataContainer component to
manage the data of a graph. Each graph’s data is then managed by its own DataContainer.
Even when the tool does not visualise a graph, its data could be required as input for a
function. In this case, the graph’s data is also loaded into memory and managed in a
DataContainer. A database is still required to save signals to persistent storage because
data from a test should be saved for later use. By creating the DataContainer, which acts
as a central data manager for a graph, the impact of design decisions is mostly contained
within this component.

Figure 4.1 illustrates a high-level architecture highlighting the DataContainers when
signal 1 and function 1 are plotted, where function 1 relies on signal 1 and signal 2. For
signal 1 and function 1 a DataContainer is created which is responsible for the data to
visualise these graphs. Since signal 2 is not plotted, it would not require a DataContainer,
however, since function 1 relies on its data points, a DataContainer is created to provide
function 1 with the required data.

19



DataContainer
Signal 2

Plot

Function 1

Data Source 1
Signal 1

DataContainer
Signal 1

DataContainer
Function 1

Data Source
Signal 2

DB

Figure 4.1: DataContainer

In longer-running tests or when using data sources that generate a lot of data per
second, the size of data for a graph could be too much to load into memory. Especially
since the tool may need to visualise a number of these graphs simultaneously, they could
easily exceed the available memory of the hardware. By analysing what data is required
to be plotted, we can design some optimisations in memory usage. Limiting the amount
of data the tool actively loads into memory and uses will improve performance.

Firstly, an engineer is often not interested in visualising all test data and would analyse
a part of the time series at a time. In this case, the tool only needs to visualise a specific
time range of the graphs. Therefore, a DataContainer only needs to provide the plot with
data within the time range that is currently being visualised. A DataContainer should thus
be able to navigate the data of its graph based on the x-axis of the plot. It should load
the required data points into memory and remove unnecessary data points from memory.

Secondly, when an engineer is visualising an extensive time range, they are not
interested in the small details of the graph and its individual data points but rather in
the overall characteristics of the graph. In this case, the granularity of the presented data
could be changed based on the zoom level of the plot. Changing the granularity of the

20



data means the DataContainer could take aggregates of the raw data, thereby reducing
the data’s size loaded into memory. The DataContainer is responsible for providing data
to the plot at a granularity that matches the zoom level. It also needs to ensure the data
is loaded into memory with the correct granularity.

The following paragraphs will discuss challenges and accompanying design decisions to
solve the challenge concerning DataContainer data management. First, X-Axis is discussed,
which is a discussion on what time range the DataContainer tries to load for its signal.
Then, the data granularity and sampling are discussed in the Windows paragraph, which
aims to dynamically reduce memory usage based on the required detail of a graph.

X-Axis - The X-axis represents the time since the epoch. Strictly, a plot only
requires the data points of its graphs within the time range of the plot’s current
x-axis. However, a user might scroll on the x-axis; whenever this happens, the plot’s
time range changes. The tool should immediately visualise the new range’s data
to provide a smooth experience. In order to provide the necessary data as fast as
possible, the DataContainer should not simply load data within the current range
but create a buffer on either side of the plot to ensure the required data is already
loaded into memory when the x-axis changes. This functionality is designed in such
a way that the buffer tries to be at least as wide as the X-axis range on either
side of the plot and is allowed to grow to two times the width of the X-axis on
either side before data points are removed from memory. Figure 4.2 visualises the
buffer. The bright green block in the middle shows the current range that the plot
visualises. The data within the green blocks on either side are actively loaded into
memory. The data in the yellow blocks is not actively loaded but also not deleted
from memory, as this data might need to be visualised at some point. The data in
the red blocks is removed from memory, and these red blocks span infinitely to either
side. By limiting the range of data the DataContainer loads into memory, the tool
can visualise more signals or longer-running tests without performance degradation
due to memory saturation.

0 1 2 3 4 5 6 7-6 -5 -4 -3 -2 -1-7

Actively AcquireActively Delete Actively Delete

Seconds

Figure 4.2: Active Data Range

Windows - Consider the following example: a source generates data points with
an interval of one microsecond. If the zoom level is such that 500 milliseconds are in
the plot’s range, displaying each actual data point would require loading in at least
500.000 data points. Using windows with a millisecond period brings this number
down to 500 samples. Similarly, during a test where a sensor records the rotations
per minute of an engine for twenty-four hours at an end and returns measurements at
an interval of one-tenths of a second, visualising the entire day would require loading

21



in 864.000 data points. However, by aggregating these data points to windows with
a period of a minute, the amount of samples that must be shown is reduced to 1.440
while still visualising the characteristics of the data if the proper aggregation function
is used. The design to downsample is as follows. Each window has a certain width
and is represented by a single sample value, which results from aggregating actual
data points within the window’s time range. Various aggregation functions could
be applied for various use cases. If a test analyses whether a device has breached
thresholds, a min or max aggregation function might be elected, where the average or
largest triangle three buckets downsampling, as discussed by Sveinn Steinarsson [25],
might be preferred when data is simply visualised. Largest triangle three buckets
downsampling is an algorithm to downsample data while maintaining the visual
characteristics of data. Windows can have different widths that change based on the
zoom level of the plot. The width of a window is its period. A period could be a
millisecond, a second, a minute and so on. A window with a millisecond period has a
time range of a millisecond. The exact window widths are not set in stone and should
be tweaked as part of maturing the system. Figure 4.3 visualises the aggregation that
happens by using windows. (a) Shows the raw data graph. (b) Shows the windowed
data with a period of 1 second and average aggregation function. Note that this
example is an exaggeration but shows the principle of windowing.

0

0.5

1

1 2 3 4 5 6
Seconds

Va
lu
e

(a) Raw Data

0

0.5

1

1 2 3 4 5 6
Seconds

Va
lu
e

(b) Windowed Data

Figure 4.3: Windowing Data Example

The DataContainer navigates the data as the x-axis and windowing design dictates.
While the DataContainer acts as a central component to tie all steps of plotting together
and thereby gather the complexity to a central point, it is only a part of the solution,
and complex design decisions remain open. Now that the navigation design decisions are
proposed, we need to analyse the impact these have on the rest of the tool and plotting
steps. All steps preceding the navigation step need to support these optimisations, and
these optimisations impact all steps after the navigation step.

The data storage step is connected to the data navigation step. The data storage
component should support and enable the navigation step and the DataContainer to
achieve the optimisations. Section 3.2 indicates QuestDB as a suitable database to handle
the data storage step. QuestDB is a time series database featuring functionality to
query a specific time range and functionality to aggregate data into samples for variable
window sizes. Leveraging the database to query the required time range and calculate
the aggregates takes this burden off the DataContainer. The DataContainer only needs
to query the database with the appropriate query to receive the desired time range and
data granularity for its signal.

22



The analysis step comes right after the navigation step, and the optimisations greatly
impact it. In order to understand the impacts, we must first discuss what the analysis
step aims to achieve and how it does this.

Functions - As seen in Figure 4.1, functions can be plotted. These functions
can have other functions or signals as input. Each calculated data point requires a
corresponding data point from the input signal or function. Users can define functions
when the tool is running. When a function relies on a single signal or function
as input, it can evaluate the expression for each timestamp of the input signal or
function, thereby creating a new time series of data with the same timestamps as
the input series. This is straightforward even when samples represent the input
data, as the function is evaluated for each sample’s timestamp. However, when a
function relies on two or more signals, this strategy falls apart when the timestamps
of the input data do not align. In this case, not all input variables are known for
each timestamp that the expression needs to be evaluated. Figure 4.4 visualises the
problem. The top timeline shows that for almost all timestamps of signal 1, the
function cannot take a corresponding value from signal 2, as the timestamps are
misaligned due to their different intervals. The timeline below shows that even when
windowing would naively be applied in order to create the same amount of data
points, the start times of each signal’s windows are misaligned.

Signal 2

Signal 1 Windowed Signal 2

Windowed Signal 1

Figure 4.4: Function Input Misalignment

While there are a few options to solve this issue, we opt to solve it by aligning
the windows. Another option would be to find corresponding windows across signals
by calculating which window’s start time is closest to each window’s start time
of one of the signals. However, this would require a lot of computation as such
an algorithm requires iterating over the base signal and other signals within the
base iteration. Aligning the sample timestamps instead enables iterating over the
data array while being able to take matching data samples for other signals without
additional computation is desired.

23



Function Input Alignment - In this example, we will consider function 1,
which uses signals 1 and 2 as input. In order to align the timestamps of the signals
so that function 1 can use them as inputs, a few criteria need to be met. The first
is that the two signals have precisely the same number of samples. In order to have
the same number of samples for the two signals, they must have the same period
(window sizes). For instance, when signal 1 has windows of one millisecond, then
signal 2 should also be aggregated into windows of one millisecond. This ensures
that signals 1 and 2 have the same number of samples in memory for any given time
range. If the total time range is one second, both signals have 1000 samples. The
second criterion is the actual timestamp alignment of the samples. The signals have
windows of one millisecond, but the start of the corresponding windows of the two
signals might not start at the same moment. The plotting tool supports nanosecond
precision, meaning there are one million possible timestamps to start a window of
one millisecond. Likewise, there are one billion timestamps a window of one second
could be started. In order to align the moments a window can start, a window should
always start at the beginning of its period. In other words:

isV alid(start) ⇐⇒ start mod microseconds(period) = 0

Figure 4.5 shows that by sampling the data and aligning the windows to start at
the start of the period of the window, the timestamps of signals 1 and 2 are now
aligned. Function 1 can now easily find a corresponding input value for every signal.
When the function gets calculated, it has the same windowing as the signals from
which it is constructed.

Signal 2Signal 1 Function 1

Figure 4.5: Function Input Alignment

An issue that still needs to be resolved is when an input signal does not have any
data points for the time range of a window. In this case, the tool cannot calculate
the window’s aggregate value and would again create a lack of corresponding samples
between two signals. In order to solve this, the tool should use interpolation. Since
a source has not generated a new value, it should be assumed that the last known
value is still valid. Therefore the interpolation strategy should fill gaps with the
previous data point or sample’s value, as opposed to other strategies like linear.

All issues in the data analysis stemming from design decisions taken in the navigation
step now appear resolved. The data should be able to be visualised the same way, with
or without windowing.

24



QT & QCustomPlot - QT is a cross-platform C++ framework for creating
graphical applications. QT was already chosen as a framework before this design
cycle for its graphical C++ capabilities and the availability of the QCustomPlot
library. As discussed in Section 3.1, QCustomPlot is an excellent plotting library
that offers customisation and is quickly integrated into a new tool. QT has messaging
functionality via its signals and slots and is designed for communication between
objects. This functionality makes it possible to publish and subscribe to events in
the application. For example, when a database instance is created, other objects
can be notified to enable certain functionality that interacts with the database. The
messaging functionality also makes it trivial to notify various threads that work
concurrently about the state of other objects.

QCustomPlot uses doubles to store timestamps where anything before the decimal
separator is seconds since the epoch, and everything after the separator is the fraction
of time within that second. This means that QCustomPlot dictates that timestamps are
saved in a floating point data type. At first sight, this seems like a trivial issue, and the
timestamps can be represented as doubles throughout the plotting tool and plotting steps.
However, floating-point data types are not precise variables and are approximations. A
64-bit double is not precise enough to hold nanosecond precision time when ten digits are
needed on the left side of the separator to represent seconds since the epoch. By using
doubles to store timestamps, using the function input alignment design would no longer
be possible due to the limited precision inherent to floating-point data types. Not only the
analysis step would be impacted, but the general precision of the system also suffers. When
a source generates data with sub-microsecond intervals, two measurements are likely to get
the same timestamp assigned. This creates undesired consequences for every plotting step.
A solution to this problem must be designed.

Timestamp Data Types - As opposed to doubles, integers are precise data
types. The application needs to support nanosecond precision. Therefore, the
timestamps in the application are represented as nanoseconds since the epoch, which
is set to the 1st of January 1970. Nineteen decimal digits are currently needed to
contain the number of nanoseconds since the epoch. A 32-bit integer is the standard
integer size in C++; however, this only stores ten decimal digits and would be
enough to store four seconds. A 64-bit integer is needed and can hold time until
the year 2554. In order to preserve the design decisions in the steps preceding
the visualisation step, integer timestamps will be used in the acquisition, storage,
navigation and analysis steps. Only when the data is ready for visualisation will the
timestamps be parsed to doubles in order for QCustomPlot to plot the data. This
way, precision is kept for as long as possible. A drawback of this decision is that the
tool cannot display timestamps with a precision greater than 250 milliseconds, but
the data in the database, and function outcomes are reliable.

A few limitations remain. Firstly, if the plot is zoomed in so far that the raw data
should be shown instead of windows, the alignment design decisions are not applicable,
and an algorithm for finding corresponding data points is still required. Since signals could
have varying data generation rates, there might be more data points for one signal than
the other. In this case, the choice has to be made to calculate a function’s data points
between the signal with the most or the least data points per time range. Choosing the
signal with the most data points will result in a more detailed function. However, data
points will need to be interpolated for the other signals. Choosing the signal with the least

25



data points will mean a less detailed function but may reflect the real world better, and no
interpolation is required. The first option requires more computation than the latter. At
this point, it is impossible to say which is better since it depends heavily on the use case.
Secondly, casting integers to doubles for QCustomPlot to be able to visualise the graphs
is expensive, and it would be better if this conversion were not necessary. Therefore, if
the performance impact of this cast is too significant, and there is enough justification for
spending development time on eliminating this issue, QCustomPlot could be modified to
use integers instead of doubles which is not a trivial task.

Introducing the DataContainer and optimisation designs of the navigation step and
subsequent analysis of the impacts this has on other steps of plotting the problem’s
complexity is shown, and design decisions have been proposed that deal with the resulting
challenges of the navigation optimisations. Due to the project’s time constraints, we have
not covered every challenge, and not all challenges can be foreseen. However, it is possible
to create an implementation by following the design decisions and architecture as proposed
in Section 4.1.

4.1 Architecture

Now that we have looked at the main challenges and have designed solutions, these design
decisions should be incorporated into an architecture. Together these form a blueprint to
create an implementation. The creation of the architecture is done iteratively within the
design science design cycle. Each iteration selects a set of architectural design patterns to
construct the architecture addressing the architectural drivers. Architectural drivers are a
system’s functional and non-functional quality attributes, prioritised based on stakeholder
concerns and goals. Architectural drivers indicate which quality attributes are important
and which are less important. The final architecture must strike a balance between the
architectural drivers. Each new iteration and architecture design leads to new insights
requiring a modification to improve the architecture incrementally. This approach is called
Patterrn-Driven Architectural Partitioning [19]. This section discusses two architecture
iterations; the first is an architecture created early in the project, and the second is this
design cycle’s final architecture.

In order to pick design patterns for the architecture, we must first establish the
architectural drivers. From the stakeholder analysis, it is clear that functional correctness is
the most important attribute. However, performance is also important since the tool must
achieve an ingestion rate of 10 signals at 10kHz or 20 signals at 1kHz. It is also important
to note that interoperability and extensibility are important since the architecture should
allow new data sources to be defined and added. Maintainability is also an important
attribute, as the tool should be used throughout Demcon; the tool should continue to
operate for many years, as larger projects at Demcon can last many years. The tool
must therefore be maintainable to enable Demcon to adapt the tool to new contexts and
requirements over time. Performance efficiency is also important; the tool runs on laptops,
and attention should therefore be given to time behaviour and resource utilisation. On the
other hand, attributes like co-existence, security and confidentiality are less important, as
the tool will be used exclusively by Demcon without access to the world wide web, and
there will not be co-existing tools.

26



Figure 4.6 shows the initial architecture. When a data event happens, signals push
data to the putSignal function in the C++ Manager thread. On the C++ side, the tool
starts a ReaderWriter thread for each signal that can handle PUT and GET requests. The
architecture uses QuestDB as database, as it was determined to be a suitable database
for this project as discussed in Section 3.2. Using Java and C++ in the same application
means the two sides must communicate. Luckily, JNI solves this. QuestDB is configured
to run as an embedded database. This means the entire application is a single instance and
does not use networking to communicate between Java and QuestDB. In order to store the
data points, the putSignal function receives a data point from a source and sends it to the
corresponding ReaderWriter thread. Here, the putQueue caches the request. The thread
will handle requests in their queues. When a ReaderWriter thread takes a put request, it
creates an object in the JVM via JNI and invokes the putSignal method of the Manager
in Java. The Manager will then choose the correct ReaderWriter for the signal ID. Like
in C++, the request is cached until the thread has time to handle the request. When the
thread takes the put request, it invokes QuestDB to store the data point. PutRequests
are write-only; therefore, QuestDB returns no answer.

Each DataContainer holds a data array that the plotting library visualises. Each
DataContainer contains data for one graph. Depending on the x-axis, a range of data points
must be loaded into the DataContainer. The Datacontainer calls the getSignal function in
the Manager to get this data from the database. This call contains parameters for data
navigation. The Manager then puts this request on the queue of the ReaderWriter for the
signal. The ReaderWriter thread then creates a JVM object and calls the Manager in Java.
The Java Manager then puts the request in the Java ReaderWriter. The ReaderWriter
thread then takes the request from the queue and queries QuestDB. QuestDB creates a
response, which the thread puts in the getResultQueue. The Manager takes the result and
sends it back to the C++ ReaderWriter, which returns it to the Manager, which returns it
to the DataContainer requesting the data. The data can then be analysed and visualised.

The architecture focuses too heavily on performance, sacrificing the other architectural
drivers. The architecture uses concurrency to parallelise tasks; this ensures good
performance and performance efficiency. It also uses the fastest communication method
between C++ and Java, namely the Java Native Interface. Creating objects in the JVM
with C++ code using JNI only takes several hundred nanoseconds. The database research’s
JNI performance test indicates that a sustained write speed of almost 500.000 data points
is possible [28]. While the write speed of an actual implementation of the tool will be
lower than in the test due to the application needing to read and visualise data which
also takes up processing.

However, C++ code that interacts with the JVM using JNI is complex and requires
implicit extra maintenance. Changes in Java require changes on the C++ side. A simple
refactor, like a method name change in Java, must be mirrored in C++. Due to the
two components being linked this tightly, software developers must have proficiency in
both languages when developing and maintaining parts of code that live near the border.
Currently, a facade pattern keeps this border as small as possible, reducing complexity
and improving maintainability. A facade is a piece of code that aims to create a unified
interface to a set of interfaces in a sub-system [7]. While this component could be removed
to achieve higher performance, this would increase the complexity of the code since the

27



border between C++ and Java would become larger. Using JNI can also cause a lot of
complex exception handling, as C++ needs to monitor exceptions in the JVM and handle
the exceptions appropriately. To do this, C++ must query the JVM to check if an exception
has occurred, which requires extra processing capacity.

While the architecture scores well on the Performance Efficiency attribute group, the
complex exception handling impacts the system’s reliability due to fault tolerance and
recoverability complexity, the architecture also lacks maintainability due to the weaving
necessary when using JNI the way the architecture suggests; the application is not
modular. The components are then also not reusable. The architecture also impairs
the tool’s modifiability due to the implicit changes required to C++ when a developer or
maintainer changes the Java code. The architecture’s reliability and maintainability should
be improved while keeping good performance efficiency. Additionally, the data sources have
not been given enough attention and a pattern should be used to support interoperability.

28



F
ig

u
r
e

4.
6:

In
it

ia
lJ

N
I

A
rc

hi
te

ct
ur

e

29



A new architecture is created based on the shortcomings of the initial architecture and
other design decisions and insights. The final architecture aims to improve maintainability
while maintaining performance and achieving interoperability for its sources. The final
architecture is shown in Figure 4.7.

The first major change is that the new architecture uses plugins to support data
acquisition, and can be seen as a microkernel pattern approach, where a plugin can be
created that conforms to the interface’s specification and parses the data source to data
that is compatible with the interface. Harrison and Avgeriou discuss architectural patterns
in their paper [12]. They indicate that microkernel patterns’ key strength and liability are
to improve maintainability and could cause high overhead, respectively. While the potential
lower performance is undesired, the improved maintainability outweighs it, especially since
functional correctness is more important than the performance of the data acquisition
step. The new architecture describes that a SourceThread is created for each Source. The
SourceThreads poll their sources for observations, after which they pass the data points
on to the putSignal function of the QuestDB Manager. The Adapter pattern was also
considered and is also known as a wrapper. In general, an adapter aims to convert the
interface of a class into another interface clients expect [7]. In our case the adapter would
convert the interface of a data source into the interface the tool can work with. While we
aim to adapt data sources to a data format we expect, an adapter is applicable when both
components already exist and need to work together. In our case, the plugins do not yet
exist as reusable components. Therefore, such a plugin must be coded from scratch; this
means the plugin could use the correct interface directly without needing an adapter.

The other major change is the switch from JNI to a message queue (0MQ) pattern.
This change reduces the interface’s complexity between the database component and the
other parts of the tool. Using a message queue standardises the interface. This means the
architecture becomes more modular and generic. Minor changes in the database component
do not imply changes to the other side anymore. The database component can now also be
replaced with another sub-system more easily. The facade is also removed. The facade was
wanted in the initial architecture due to the reduction in complexity it brought. However,
now that JNI is no longer used removing the facade and making the threads on either side
interact with zeroMQ directly also removes the performance reduction that the facade
caused. At first glance, this might appear to increase complexity. However, making
each thread responsible for its socket improves fault tolerance and recoverability. The
specific choice for ZeroMQ (Zero Message Queue / 0MQ) [3] was made because Demcon
has experience using this implementation of message queues. An alternative to the message
queue pattern is the client-server pattern. Much like a message queue, it enables two
components or two applications to communicate with each other. However, client-server
solutions are designed for a many-to-one relation, where many clients communicate with
one server. In our case, we want exactly one component on either side. Furthermore,
message queues offer more fault tolerance because messages are kept in memory when
either side of the communication goes down, which is not the case in client-server solutions
[13]. It is important no datapoints are lost during data acquisition and storage. Therefore,
the message queue pattern is more suitable.

In the initial architecture, the threads were responsible for both reading and writing
for their signal. This poses a high overhead in scenarios where the sources have many
signals but at lower sample rates. Each thread might be sleeping most of the time, which
negatively impacts performance, as waking up and putting threads to sleep takes processing

30



power. Besides the potential performance impacts, the original design made each thread
responsible for too many things simultaneously. The new design, therefore, has threads
based on their functionality; reading, writing and managing. This separation of concern is
also known as the single responsibility principle of the SOLID method [29] and prescribes
that a class should have a single responsibility. While the architecture uses one thread
instance at most for each class, the algorithm could be extended to start multiple threads
of the same type to balance the load and, by doing so, divide the processing over the
available hardware. However, this depends on the specific context’s needs.

31



F
ig

u
r
e

4.
7:

F
in

al
A

rc
hi

te
ct

ur
e

32



Finally, based on the architectural drivers, a good balance between architectural quality
attributes has been found. While there could be infinitely many iterations, improving the
architecture with diminishing returns, this is the final architecture in this design cycle
due to time constraints and a lack of insight. Only when the tool is implemented will the
actual results of the architecture and the system become known. The design decisions, thus
far, and the architecture provide a blueprint to implement the plotting tool. Additional
architectural design decisions remain open and will are covered in Section 4.2.

4.2 Architectural Design Decisions

Plugins - As discussed in the architecture section, plugins are used to extend supported
sources for data acquisition easily. The Dynamix library lets users compose and modify
polymorphic objects at run time. This way, plugins can be added even while the tool is
running to add support for new data sources. As the problem investigation uncovered, the
previous solution did not have a standardized way for adding new data sources, as the tools
were created for the specific project and its data source. Even recording new signals from
an already-defined source has a cumbersome workflow. Alternatively, to plugins and the
micro-kernel architecture, a more straightforward interface could have been defined, which
could be implemented by various implementations to achieve compatibility with new data
sources and data types. In functionality, this would be similar to the current approach.
However, the interface strategy would not allow for hot-swappable plugins and would mean
that all implementations always come with the application.

ZeroMQ - The architecture describes three types of classes that communicate with
each other using Zero Message Queue [3]. The Reader and Manager use a request-reply
pattern. They need to communicate, so they need to send messages back and forth. Each
request expects an answer; therefore, the Reader and Manager use the "Rep" socket type
[2]. This is not the case for the Writer, as the acquisition side only needs to send, and
the storage side only needs to receive. The Writer, therefore, uses a publish-subscribe
pattern. The data acquisition side publishes data, which the data storage side subscribes
to. Since no data may be lost, the ZeroMQ "Pair" socket type is used, which limits the
number of publishers and subscribers to one. Since the storage side of the application is
designed to run on the same hardware as the other components of the application, the
design only plans for one thread per Rearer, Writer and Manager. More threads on the
same hardware would not necessarily mean a performance increase because the application
uses many threads for other components. Therefore, to avoid threads being put to sleep
and waiting on one another and the overhead that this brings, the choice to limit the
number of threads is made.

User Defined Functions - Users can define functions while the application is running.
Various mathematical functions are available, like trigonometry and aggregation functions,
logical operators, control structures and much more. This is enabled by The C++
Mathematical Expression Toolkit Library (ExprTk) [20]. Other functions and signals can
also be used as input for another function. This way, mathematical functions can be
applied to signals to analyse them. For example, the difference between two signals can be
calculated and shown as a separate graph. Another function, like a logic threshold function,
can be applied to the new graph. This way, an engineer can easily visualise and analyse.

33



Apart from a few cases, when using a signal as input for a function, each data point must
be used to calculate a new data point for the new signal. This means the same windowing
needs to be used for the calculation between signals and functions. It also means that the
data points need to be aligned. Each data point needs to have the same timestamp.

Protocol - Besides the socket type, the protocol needs to be designed. Protocols
consist of multiple layers. ZeroMQ handles multiple layers and allows the developers to
build additional layers on top of it. In this project, we need to create two layers on top
of ZeroMQ. The first layer indicates the byte layout, and the second layer defines the
meaning of the bytes.

We choose between a custom byte and JSON layouts in the first layer. The advantages
of a custom byte layout and JSON are listed below. Each benefit of one solution is a
disadvantage of the other.

Custom:

+ Variables’ bytes can be directly copied to the message.

+ Most space-efficient solution achievable.

JSON:

+ Widely known standard

+ Many supporting libraries in all languages

+ No design needed

+ Easier to develop due to existing libraries and human-readable messages.

The advantages show that a custom layout is the most efficient solution but is more
challenging to design and implement. In contrast, the JSON solution is less efficient but
easier to implement, primarily due to the many JSON parsers for many languages. In
C++, nlohmann [17] is chosen as it is straightforward to develop with. It implements
the same interface as C++’s standard library data structures. While there are faster
JSON parsers, nlohmann’s version performs adequately [31]. The JSONIter library offers
a high-level API and excellent performance, as benchmarked in the "java-json-benchmark"
Github repository [24]. While these libraries offer very fast JSON parsing, a custom layout
would still be capable of reaching faster speeds and better space complexity. However, the
data throughput possible with these JSON libraries appears to be so high that the ease of
implementation outweighs the probably unnoticeable performance difference.

The second layer dictates the objects that can be sent over ZeroMQ. There are three
types of objects; entities, requests and responses. Requests and responses are the top-level
objects that consist of entities and variables. No entities can be sent over the sockets
without being encapsulated by a request or response. Figure 4.8 shows the three object
types. Requests are always sent from left to right in the architecture Figure 4.7, and
responses are always sent from right to left. As noted before, writes do not expect answers;
therefore, no WriteResponse exists. A Read - or ManagerRequest is always expected to be
responded to with their respective Read - or ManagerResponse. Certain fields are nullable.
For instance, when a ManagerRequest is created to start a database, the field createTable

34



and metaData could be null: createTable: null, metaData: null, and the startDB field
could be: startDB: "./data/database". This request means a database should be started
on the indicated path. Once the database is started, it sends back a response containing
all available tables in the newly started database. While the objects, as shown, fulfil
all functionality of the implementation, the objects could easily be expanded, and new
objects could be created.

WriteRequest

tableID : string

datapoint : Datapoint

ReadRequest

tableID : TableID

period : Int8

starttime : Int64

endtime : Int64

ReadResponse

tableID : TableID

period : Int8

starttime : Int64

endtime : Int64

datapoints : Datapoint[]

Datapoint

timestamp : Int64

value : double

CreateTable

tableID : TableID

AvailableTableIDs

tableID : string[]

StartDB

path : string

Entities Requests Responses

ManagerRequest

startDB : StartDB

createTable : CreateTable

metaData : MetaData

ManagerResponse

availableTableIDs : AvailableTableIDs

metaData : MetaData

metaData

metaData : string[]

Figure 4.8: JSON ZMQ Objects

35



Chapter 5

Solution Evaluation

This chapter evaluates the solution. The first section dives into quantitative performance
and correctness. The second section qualitatively evaluates the solution.

5.1 Quantitative Evaluation

There are two important aspects of the solution to evaluate quantitatively. The first is
the correctness, and the second is the performance. For correctness, we test whether data
points are lost during data acquisition, and for performance, we test the time it takes for the
data acquisition to store data, and on the other hand, how long it takes the DataContainer
to load data from the database to the data array that gets visualised by QCustomPlot.

5.1.1 Correctness

To test the correctness of the data acquisition, a test is created that measures the number of
data points at the start of the pipeline, and the number saved in the database is measured.
The tool did not drop any data points if these numbers were the same. After conducting
the test, we can say that no data points are lost in the acquisition between Acquisitor and
the database. The Acquisitor is the object that gets data from the source plugins. The
current implementation of the embedded debugger plugin only ingests at about 3500Hz,
divided over the signals it is measuring. Therefore, the tool can only be evaluated based
on this maximum speed. A greater acquisition speed could cause unforeseen issues that do
not arise at lower rates. However, the tool does not yet use all available hardware, and a
higher acquisition speed should be possible with regard to performance, but this does not
say anything about the correctness of the acquisition at higher rates. While developing
the Embedded Debugger plugin is not part of the core design cycle, it appears to be the
bottleneck. Due to time constraints, it is only possible to evaluate the tool’s correctness
based on the 3500Hz that the plugin currently reaches. The tool acquires one million data
points in the correctness test and tries to write them to the database. If the number of
rows in the database equals one million at the end of the test, no data points are lost in
the process. This test is conducted while measuring one signal and when measuring five
signals simultaneously. For both tests, the amount of data points the tool has written to
the database is one million. Based on this outcome, the tool’s data acquisition functions
correctly at an ingest speed of 3500Hz. It is correct for a single signal at 3.5kHz and when
this frequency is shared over multiple signals.

36



5.1.2 Performance

The performance evaluation consists of three parts. The first part investigates the
acquisition’s throughput and latency. The second part evaluates the performance of the
requests made by the DataContainer. Lastly, the impact of JSON is measured, as it
appears to be a large contributor to the time the communication over ZeroMQ takes.

Part One: Acquisition throughput & latency - Besides the correctness of the data
acquisition, throughput and latency are important for a smooth user experience. First, we
examine the latency. Latency is important because the data should be visualised live. This
means the time between the generation of any data point and the storage of the data point
should be sufficiently low. Therefore, the test compares the timestamp of the data point
generation and the timestamp it is written to the database.

Based on 38 thousand writes, this test results in an average latency of 204 microseconds,
with a maximum of about one millisecond. The throughput of the data acquisition is
limited by the Embedded Debugger plugin at 3500 data points per second. A test is
created to measure the number of data points written to the database each second and
the number of data points in the write queue. This test shows 3500 data points per
second on average and a near-empty queue with 0 or 1 data point. Occasionally the queue
reaches 20 or 30 data points.

This is likely due to the thread sleeping for a little while. When the writer thread is
awakened, it quickly reduces the size of the queue back to zero, only receiving about three
new data points while doing so. This indicates the queue could potentially handle ten
times the current frequency, 30kHz. While this is an estimation, the throughput could be
increased with micro-batching. Currently, each data point is sent separately. Sending data
in batches increases throughput at the cost of some latency because data points are kept
in a queue until the batch is of sufficient size to send. However, since the current latency
is more than sufficiently low, we could trade some latency for an increase in throughput.

Part Two: DataContainer latency - In normal use, the DataContainer requests new
data at a rate where about 30 data samples are loaded from the database into memory. At
this frequency, the latency of data navigation is measured from when a query is constructed
to when the data array is modified to contain the newly navigated data. Besides the test
created for a typical use case, one is also made for a heavy and extreme case, where an
average of 1.326 and 111.445 data points are loaded into memory. While the medium test
could occur in normal usage of the tool, the extreme case rarely occurs during normal usage
and certainly will not occur when viewing data live. In the extreme test, a time range of
almost two minutes with a period of one millisecond is loaded into memory simultaneously,
while the medium test loads just over a second of data at a millisecond window size.

The outcome of these tests is displayed in Figure 5.1 and shows that during normal
usage of the tool, requested data is ready to be visualised in about 6,4 milliseconds.
Detailed test data can be found in Table C.1 of Appendix C. With the low write time,
the aim of displaying newly generated within a frame (16 milliseconds) is achieved. The
heavy and extreme tests show that the time increases to an average of 118 milliseconds
and 1.2 seconds. The medium test’s requests thus complete in a few frames, whereas the
extreme test takes a noticeable time but does not make the tool unusable, as, due to its
rarity, waiting about a second for a substantial amount of data is not an issue. Due to the
significant increase in latency as the payload of the request grows, we should investigate
how much impact JSON has on the latency.

37



Figure 5.1: DataContainer Latency Test (Milliseconds)

Part Three: Impact of JSON serialisation and deserialisation - The same tests
are performed as in Part 2. However, this time the serialisation and deserialisation of the
JSON are measured, both in C++ and Java. The results of the tests are displayed in
Figure 5.2. More detailed test data can be found in Table C.2, Table C.3 and Table C.4
of Appendix C. The average and percentages of total latency are also calculated for each
column. The tests show that the JSON serialisation and deserialisation play an insignificant
role in the total time in the case of the normal test but that this part increases significantly
in the medium and extreme test cases, where it ends up consuming 11% and 96% of the total
time respectively. This is almost all of the total time in the extreme case. Because JSON
in the request does not change in size, the serialisation and deserialisation of the request
stay constant across tests and represents an insignificant amount of time. However, a lot
of time is needed for serialising and deserialising the response. Serialising JSON is quicker
than deserialising, taking about 30 times shorter in our cases. The percentage of time
JSON causes is reasonable in the normal and medium case, only becoming a real problem
in the extreme case. So, while JSON performs well enough in most scenarios, it impacts
performance in extreme cases. The choice for JSON over a custom protocol was made
because JSON is more straightforward to implement due to the vast amount of available
libraries across languages; In contrast, the performance of a custom protocol could be much
better. Spending development time on it is likely not worth it for Demcon. However, they
will have to consider whether the latency in extreme cases is significant enough to warrant
spending development time to implement the change to a custom protocol.

38



Figure 5.2: JSON Time Tests

5.2 Qualitative Evaluation

In this section, we will discuss the tool and its design, categorised in the five steps of
plotting, as well as some general evaluation of the tool, the integration of the steps and
the design cycle.

Data Acquisition - Using plugins appears to work well as new data sources can
be defined and connected to through these plugins. Two plugins have been created; the
Embedded Debugger and noise plugins. The Embedded Debugger plugin is used to retrieve
data from the medical device in the X project, while the noise plugin generates mock data
resulting in a graph whose value ranges between zero and one. While the requirements
for the tool specify additional plugins for CSV and Influx Line Protocol, they have not
yet been created. However, since two plugins have successfully been added, we can say
that the design works and new plugins for sources can be added. The implementation of
the Embedded Debugger plugin is not optimised yet and proves to be a limiting factor in
the current tool’s data acquisition speed, as discussed in Section 5.1. So, while the design
proves to be effective, the performance can be improved.

39



Data Storage - QuestDB can keep up with the throughput of the tool in the data
storage step, as expected and discussed in Section 3.2, and does not currently form the
bottleneck in the data acquisition and data storage pipeline. However, QuestDB is early
in its development, which is noticeable by its timestamp precision and caching behaviour.
Currently, QuestDB supports up to microsecond timestamp precision, while our goal is to
work with nanosecond precision. This causes performance issues, as each timestamp has
to be converted from nanoseconds to microseconds for saving in QuestDB. However, the
X project does not use a data source that requires such high precision, and microsecond
precision is sufficient; other projects at Demcon require nanosecond precision. Support for
nanosecond precision is on the roadmap for QuestDB, and when this gets implemented,
the performance issue and suitability for other projects will be resolved. Another issue
is QuestDB’s current caching solution. Whenever a row is written to a table, it occurs
in memory instead of directly to persistent storage. This improves the performance of
QuestDB, as commits happen in batches of rows instead of for each row separately.
However, this data cannot be read before it is committed. Since the tool requires the newly
stored data to be available for visualisation immediately, we must force QuestDB to commit
each row without batching. The database can keep up with current data acquisition even
when forcing commits.

Data Navigation - Besides data storage, QuestDB is also used for data navigation.
The DataContainer constructs queries to query data for a specific time range and
aggregation options. The DataContainer only has to build the appropriate query, after
which QuestDB does all the work to return the requested data. Using the DataContainer
as a manager and the database itself as a worker in this way proves effective in terms
of development time and complexity. QuestDB already provides the algorithms needed,
whereas the DataContainer only needs to ensure the right ones are used. However,
this has one major drawback; Only the aggregation functions contained in QuestDB are
available, and new ones are not easily added due to the complexity of QuestDB itself. The
Largest Triangle Bucket downsampling tactic, discussed in the paragraph about windows
in Chapter 4, is unavailable in QuestDB. QuestDB proved to be fast enough to return the
results of a query within the timeframe of a single frame during normal use with the X
project’s data source, as shown in Figure 5.1. However, this data source only generates
a maximum of 1kHz per signal. This means the aggregation operations in this project
require relatively little computation compared to data sources where a signal produces
data points at much greater speeds because then each sample would be calculated based
on more input values. As indicated, the DataContainer plays a managerial role and is
central in integrating the various plotting steps into a single tool. The design of the
DataContainer shows its worth when using the tool. The data is loaded into memory and
made available for visualisation, making for smooth X-axis scrolling and enabling the tool
to show a wide time range for a graph by changing the granularity of data in memory.
Even with longer running tests, the tool never struggles to visualise the data due to this
smart memory management.

Data Analysis - While the design for data analysis has been created, it has not been
implemented due to time constraints. Because the data analysis plays a vital role in the
overall design of the DataContainers, this functionality of the DataContainers can not be
tested either. We have noted a few issues that could arise when implementing the design;
however, the actual results remain unknown. Therefore, it is difficult to say anything
concrete about the quality of the design concerning the data analysis step and remains
open as future work for the following design cycle.

40



Data Visualisation - QT and QCustomPlot have provided a framework and
visualisation library that works well. The tool looks and looks modern and is less tedious
to work with than KST, as the user interface is more intuitive.

41



Chapter 6

Concluding Remarks

The final chapter discusses the solution proposal, evaluation, research goals and broader
context. Then it forms a conclusion and indicates future work.

6.1 Discussion of Research Goals & Solution Proposal

At the start of the thesis, we posed the main research question:

How can data stored in a database be plotted, analysed and navigated
through, during and together with the acquisition of new data, when
integrated into a single tool?

The answer to this question is every finding in the design cycle, but mainly the proposed
solution in the solution proposal. This proposal exists of a design, architecture and
implementation. Essential aspects of the design that enable a single tool to perform all five
steps of plotting are the plugins for data source and interface support, QuestDB as database
and for its time series functionality, the DataContainer to handle data navigation and to
provide the user-defined functions and visualisation steps with relevant data. Finally,
QCustomPlot handles the actual visualisation.

The architecture and design have successfully integrated the five steps of plotting into
a single tool. While the design is not fully implemented into the tool, the tool shows
the five steps of plotting are indeed integrated, except for functions that use graphs as
inputs. Simpler functions are already supported. Figure 6.1 shows that the new tool now
handles each plotting step.

Proposed Solution Tool

Data 
Acquisition

Data 
Storage

Data
Navigation

Data 
Analysis

Data 
Visualization

Source Screen

Figure 6.1: Five Steps of Plotting Proposed Solution

The tool already shows it can acquire data from various sources. Currently, two plugins
exist. This shows that the tool could be used in multiple projects at Demcon, where
only a new plugin for data sources has to be developed for the tool to be usable for the
project. The original solution could acquire data from various sources by using multiple

42



tools simultaneously but could not merge this data live and, therefore not be analysed
and visualised during a test. The new solution merges the data from various sources into
the same database, enabling data analysis and visualisation of multiple sources live during
a test. Additionally, many projects at Demcon use the Embedded Debugger protocol,
and the tool should be able to handle these data sources and could thus immediately be
used in these projects.

While it has been shown that the architecture of using QuestDB and the required
message queue for communication yields sufficiently low latency from data acquisition
to visualisation, having an external database component adds additional complexity,
latency and hardware requirements due to the communication overhead compared to a
truly embedded database, at the same time, QuestDB offers some functionality that
is not provided by embedded databases in C++, it also reduces the flexibility of the
downsampling strategy, as QuestDB only offers a specific set of aggregation functions.
However, QuestDB proves to be effective at structuring the data. This benefits the
DataContainer as it can rely on the requested data being returned with a specific structure.
This, in turn, forms the basis for the window alignment design for functions and would not
be possible without structured data. In the case of unstructured data, an algorithm that
searches the closest data point of the other signals for each data point would be required.
The computational cost of such an algorithm could prove to be too much for real-time
data analysis when multiple signals are used as inputs. However, this is speculation, and
more research is needed for a conclusion on this issue. Besides these impacts, it has also
been noted that an external shared database could enable a project team to share and
work on the same data more effectively and could therefore be desired. While the current
architecture did not initially consider this, the existing architecture would allow for such
a shared database, which would not be possible with a truly embedded database or at
least much more complicated to implement.

The performance and correctness of the current implementation show that the data
points are written to the database correctly without dropping some. An important
requirement is for the data generated by source devices to be visualised live. The evaluation
of the tool shows that data points are recorded and subsequently loaded for visualisation
within ten milliseconds during typical usage. This is well within the required latency
of visualising newly generated data in a few frames. Besides the correctness of data
acquisition, the throughput of data acquisition is important. Currently, the throughput is
lower than the minimum specified by the requirements. However, increasing the throughput
to a satisfactory level should be possible with the current design and architecture by
revising the embedded debugger plugin, and dynamically adding more SourceThreads
when a specific source requires high throughput.

The current implementation of the tool is a prototype and should not be used for critical
tests of devices at this time. More work is needed to ensure a high enough data acquisition
rate and correctness of acquisition at those speeds. The current state of the tool functions
as a proof of concept which shows that such a tool can improve the original situation at
Demcon concerning mechatronic device development by making the testing and analysis
workflow less tedious for engineers. Furthermore, by leveraging its plugin design, the tool
can also be used in various projects at Demcon, which is a goal of the managers.

43



6.2 Discussion of Broader context

As discussed in the problem investigation, Chapter 2, the design cycle focuses on the
X project at Demcon. The solution proposal and implementation are therefore tailored
towards this project. However, due to the consideration of using a single plotting tool
across projects, the design allows for creating plugins for supporting various data sources.
Through these plugins, the tool can quickly be adapted to the data source of the various
projects and can therefore be used in many projects at Demcon. Even more, if the tool
is published as open-source software, projects beyond Demcon could similarly adapt it for
their needs. However, the tool has limitations, such as its current microsecond granularity,
making it unsuitable for some projects.

6.3 Conclusion

In Chapter 1 and Chapter 2, we have investigated the goal of plotting tools at Demcon and
how the current solution falls short. We noted that KST and a few other tools are used to
visualise and analyse data. We have dissected plotting tools into the five steps of plotting;
data acquisition, storage, navigation, analysis and visualisation. We have uncovered that
the current solution falls short in data acquisition, storage, navigation and analysis and that
other tools are used to handle acquisition and storage. This makes for a tedious workflow.

In Chapter 3, we have investigated what solutions are available, how they perform on
the various plotting steps, and how they achieve this. We conclude that no single existing
solution can solve our issue and that a new tool is required.

The new tool must integrate all five steps of plotting, and we have discussed this
complex task and proposed a design and architecture in Chapter 4. Central to this solution
is the DataContainer, which integrates each plotting step apart from the data acquisition.
The data acquisition step is realised as a separate pipeline supported by plugins, threading
and queueing enabling the acquisition of data from various sources. This enables the
live merging of data from multiple sources, which was impossible with the original setup.
The data storage is handled mainly by QuestDB, which provides essential data navigation
functionality. The DataContainer then uses this functionality to navigate through the
data and provide data in memory for the data analysis and visualisation steps. Users can
define mathematical and logical expressions for data analysis. Finally, QCustomPlot is the
library used for visualising the data. The solution proposal discussed challenges caused
by integrating the five steps into a single tool and proposed a design and architecture.
An implementation, functioning as a proof of concept, has been created, showing the
design’s feasibility and helps uncover previously hidden challenges. Regrettably, the proof
of concept does not contain the implementation of the data analysis due to time constraints.
The implementation has been evaluated in Chapter 5, and the results indicate a satisfactory
latency between data generation and visualisation. The throughput is not up to a sufficient
level, mainly due to the acquisition speed of the embedded debugger plugin. Increasing
the throughput to a satisfactory level should be possible with the current design and
architecture. Based on this, we have answered the research questions and can consider
the design cycle a success.

44



6.4 Future Work

The following steps must be taken to use the initialised plotting tool at Demcon. First, the
data acquisition must be improved to increase acquisition speed. Accompanying correctness
tests for this higher speed need to be conducted. The data analysis step needs to be
implemented, as only the design has been proposed. Implementing the design further
could uncover new challenges which need to be solved. Optionally, the usage of JSON over
the message queue could be replaced by a custom protocol to decrease latency caused by
the deserialisation of JSON. However, this costs development time, which may not yield
significant improvements and is something for Demcon to decide. The current design allows
for a decentralised database but requires development time to synchronise all concurrency
issues. If a centralised database is deemed desired, this could be an interesting development
direction to support collaboration in project teams. The version of QuestDB used by the
tool should be updated once nanosecond precision is supported.

It is up to Demcon to take the tool into use and develop it further. Before the tool
can be used by projects for critical tests and analysis, the tool must be matured. Error
handling needs to be improved, and the existence of memory leaks needs to be investigated
and solved if it does. Finally, to integrate the tool into new projects, plugins to support
the data sources used in the project need to be developed.

45



Bibliography

[1] Akumuli. Open source time series database, Mar 2023. URL: https://akumuli.org/.

[2] The ZeroMQ authors. Socket api, Apr 2023. URL: https://zeromq.org/
socket-api/.

[3] The ZeroMQ authors. Zeromq, Apr 2023. URL: https://zeromq.org/.

[4] Emanuel Eichhammer. Qt plotting widget qcustomplot - introduction, Mar 2023.
URL: https://www.qcustomplot.com/.

[5] Advanced Software Engineering. Chartdirector chart component and control library
for .net (c/vb), java, c++, asp, com, php, perl, python, Mar 2023. URL: https:
//www.advsofteng.com/index.html.

[6] Advanced Software Engineering. Multithreading real-time chart, Mar 2023.
URL: https://www.advsofteng.com/tutorials/real_time_chart_multithread/
real_time_chart_multithread.html.

[7] Ralph Johnson John Vlissides Erich Gamma, Richard Helm. Design Patterns:
Elements of Reusable Object-Oriented Software. 1994.

[8] KDE e.V. Kst - visualize your data - kst - visualize your data, Mar 2023. URL:
https://kst-plot.kde.org/.

[9] Facebook. Beringei is a high performance, in-memory storage engine for time series
data., Mar 2023. URL: https://github.com/facebookarchive/beringei.

[10] Davide Faconti. Plotjuggler, Mar 2023. URL: https://plotjuggler.io/.

[11] Qt Group. Qt | cross-platform software design and development tools, Apr 2023. URL:
https://www.qt.io/.

[12] N.B. Harrison and P. Avgeriou. Leveraging architecture patterns to satisfy
quality attributes. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
2007. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-38348999375&doi=10.1007%2f978-3-540-75132-8_21&partnerID=40&md5=
f913f3c5cfccb0a5d8345acbc37e3b7e, doi:10.1007/978-3-540-75132-8_21.

[13] IBM, Jun 2023. URL: https://www.ibm.com/docs/en/ibm-mq/9.2?topic=
queuing-main-features-benefits-message.

[14] Influxdata. Influxdb times series data platform, Mar 2023. URL: https://www.
influxdata.com/.

46

https://akumuli.org/
https://zeromq.org/socket-api/
https://zeromq.org/socket-api/
https://zeromq.org/
https://www.qcustomplot.com/
https://www.advsofteng.com/index.html
https://www.advsofteng.com/index.html
https://www.advsofteng.com/tutorials/real_time_chart_multithread/real_time_chart_multithread.html
https://www.advsofteng.com/tutorials/real_time_chart_multithread/real_time_chart_multithread.html
https://kst-plot.kde.org/
https://github.com/facebookarchive/beringei
https://plotjuggler.io/
https://www.qt.io/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-38348999375&doi=10.1007%2f978-3-540-75132-8_21&partnerID=40&md5=f913f3c5cfccb0a5d8345acbc37e3b7e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-38348999375&doi=10.1007%2f978-3-540-75132-8_21&partnerID=40&md5=f913f3c5cfccb0a5d8345acbc37e3b7e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-38348999375&doi=10.1007%2f978-3-540-75132-8_21&partnerID=40&md5=f913f3c5cfccb0a5d8345acbc37e3b7e
https://doi.org/10.1007/978-3-540-75132-8_21
https://www.ibm.com/docs/en/ibm-mq/9.2?topic=queuing-main-features-benefits-message
https://www.ibm.com/docs/en/ibm-mq/9.2?topic=queuing-main-features-benefits-message
https://www.influxdata.com/
https://www.influxdata.com/


[15] Influxdata. What is time series data?, May 2023. URL: https://www.influxdata.
com/what-is-time-series-data/.

[16] Grafana Labs. Grafana: The open observability platform | grafana labs, Mar 2023.
URL: https://grafana.com/.

[17] Niels Lohmann. Json for modern c++, May 2023. URL: https://json.nlohmann.
me/.

[18] Meta. A persistent key-value store, Mar 2023. URL: http://rocksdb.org/.

[19] Paris Avgeriou Neil Harrison. Pattern-driven architectural partitioning: Balancing
functional and non-functional requirements. 2007 Second International Conference
on Digital Telecommunications (ICDT’07), 2007. doi:10.1109/ICDT.2007.65.

[20] Arash Partow. C++ mathematical expression library, Apr 2023. URL: http://www.
partow.net/programming/exprtk/index.html.

[21] I. Petre, R. Boncea, C. Z. Radulescu, A. Zamfiroiu, and I. Sandu. A time-series
database analysis based on a multi-attribute maturity model. Studies in Informatics
and Control, 2019.

[22] Product Plan. What is moscow prioritization? | overview of the moscow method, Mar
2023. URL: https://www.productplan.com/glossary/moscow-prioritization/.

[23] QuestDB. Questdb: Fast sql for time-series, Mar 2023. URL: https://questdb.io/.

[24] Fabien Renaud. Benchmark of java json libraries, Apr 2023. URL: https://github.
com/fabienrenaud/java-json-benchmark.

[25] Sveinn Steinarsson. Downsampling time series for visual representation. 2013. URL:
http://hdl.handle.net/1946/15343.

[26] Inc. The MathWorks. Create plots using the simulation data inspector,
Mar 2023. URL: https://nl.mathworks.com/help/simulink/ug/
create-plots-with-the-simulation-data-inspector.html.

[27] Inc. The MathWorks. Simulink - simulation and model-based design, Apr 2023.
URL: https://nl.mathworks.com/products/simulink.html?s_tid=hp_products_
simulink.

[28] M.H. van Assen. Real-time Plotting Databases. 2023.

[29] H. Wang and H. Zhou. Basic design principles in software engineering. Proceedings
- 4th International Conference on Computational and Information Sciences, ICCIS
2012, 2012.

[30] Roel J. Wieringa. Design Science Methodology for Information Systems and Software
Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. doi:10.1007/
978-3-662-43839-8.

[31] Milo Yip. Native json benchmark, Apr 2023. URL: https://github.com/miloyip/
nativejson-benchmark.

47

https://www.influxdata.com/what-is-time-series-data/
https://www.influxdata.com/what-is-time-series-data/
https://grafana.com/
https://json.nlohmann.me/
https://json.nlohmann.me/
http://rocksdb.org/
https://doi.org/10.1109/ICDT.2007.65
http://www.partow.net/programming/exprtk/index.html
http://www.partow.net/programming/exprtk/index.html
https://www.productplan.com/glossary/moscow-prioritization/
https://questdb.io/
https://github.com/fabienrenaud/java-json-benchmark
https://github.com/fabienrenaud/java-json-benchmark
http://hdl.handle.net/1946/15343
https://nl.mathworks.com/help/simulink/ug/create-plots-with-the-simulation-data-inspector.html
https://nl.mathworks.com/help/simulink/ug/create-plots-with-the-simulation-data-inspector.html
https://nl.mathworks.com/products/simulink.html?s_tid=hp_products_simulink
https://nl.mathworks.com/products/simulink.html?s_tid=hp_products_simulink
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark


Appendix A

Research Topics

48



Real-time Plotting Databases
Research Topics

M.H. VAN ASSEN, University of Twente, Demcon

Timeseries databases are a type of database optimized for timeseries data. There are various timeseries databases to choose
from when designing a system that ingests and graphs timeseries data in real time. In this High Performance Plotting project
at Demcon, the requirement is to write timeseries data at a rate of 10KHz for at least 10 signals simultaneous. The aim of
this paper is to identify important attributes and limitations of timeseries databases and subsequently choose an appropriate
database based on business requirements and the important timeseries database attributes. To choose a database an attribute
rating table is created and evaluated, followed by a maturity model and its outcomes for timeseries databases. Finally, a
performance test is conducted to show the performance of the chosen database is sufficient to ingest data from a number of
signals at a rate greater than 10kHz each. It shows that QuestDB is a mature timeseries database that has the performance to
be used in high performance plotting tools where data is written and plotted in real-time with more than 100.000 datapoints
per second.

Additional Key Words and Phrases: tsdb, timeseries, database, embedded database, jni

1 INTRODUCTION
The goal of this research is to better understand time-series databases and use the information in the academic
literature and other sources to choose a database for the High performance Plotting Tool project at Demcon.
The project requires a database that can function as a timeseries database that is embeddable in the plotting
tool which runs on laptops during the development and test phases of medical devices. An embedded database
is a database that runs within another application. The structure of this research paper is as follows; Section 2
discusses the problem statement, followed by the methodology in Section 3. Section 4 presents the literature
review, while Section 5 presents the results discussion. The paper ends with conclusions in Section 6.

2 PROBLEM STATEMENT
Plotting data is a difficult problem. This problem becomes even more difficult when the data needs to be shown in
real-time during data acquisition itself. No plotting can truly be real-time as there is always some time between
the generation of data and the visualization of data, as processing and rendering data takes time. Therefore, in
this project real-time plotting is defined as; Newly generated data must be displayed within a few frames. Most
monitors run at a frame rate of 60 per second. At this rate, each frame is shown for about 16 milliseconds. The
data generated during each frame, should be shown in one of the following frames. This is a short amount of time
to read, write and display new data. Especially high frequency data, which gets generated at a speed of hundreds
or thousands of datapoints per frame, can not simply be plotted. Plotting this amount of data would take up too
much random access memory (RAM) and rendering power when plotting multiple signals simultaneous for a
longer period. Rather, averages, or a different aggregation function, need to be calculated for windows of data to
reduce the amount of datapoints that need to be visualized, where each window is a set width of time range. For
example, each window could span a period of 1 millisecond. The samples that fall into such a window can be
aggregated into a single value that is representative for that window. This vastly reduces the required memory
while still representing the actual data. The database is a crucial part of this process. The database needs to write
and read these datapoints. In an ideal solution the database also offers functionality for the described windows,
calculating and providing this data aggregation as a result of simple queries.

1



Research Topics, University of Twente, Demcon, the Netherlands M.H. van Assen

Demcon needs such a tool to view and analyse data generated by a medical device in order to see anomalies and
other issues during development. The main use case is to observe, analyse and debug the system during longer
running experiments. This tool needs to be able to read the incoming data, write it to persistent storage and
simultaneously plot this data. The incoming data stream contains multiple signals at a frequency of 1KHz or
higher. There currently exists a tool with which data can be viewed live while recording, but real-time analysis
and navigation through large data-sets is cumbersome. Using this tool is not easy for domain experts and software
engineers are currently needed to parse the data. Therefore, a new tool is initiated. Some design decisions and
related issues have been identified that need to be solved. A main research question is posed:

Main research question:

• How can data stored in a database be plotted, analysed and navigated through, during and together with
the acquisition of new data?

This question has many sub-questions. This paper will answer the following sub-question:

• What database (type) is most suitable for the project and why?

3 METHODOLOGY
The goal of this paper is to to choose a database to use in the High Performance Plotting project at Demcon. To
support this decision, information about timeseries databases must be gathered. This information will be gathered,
first through the literature review. This literature review will uncover important attributes and constraints
of timeseries databases, among other useful insights. Then an attribute table will be filled out for each of the
databases chosen for consideration. From this table, the most promising databases will be picked to further
investigate. The multi-attribute maturity model for timeseries databases will be applied to these databases.
This maturity model is discussed in section 4. From this result the most promising database will be picked and
a performance test will be conducted to examine if the database is fast enough to read and write at least as
much data per second as specified by the requirement of supporting 10 signals at 10KHz or 20 signals at 1KHz each.

The attribute table will be comprised of attributes that are important for business requirements as well as technical
requirements. The first attributes of the table are the availability of a C++ client library for the databases, whether
the database is embedded and timeseries functionality. The timeseries functionality attribute is a measure of the
amount and importance of features provided by the database that make the database more useful for timeseries
data when compared to classic relational databases. Examples of this are efficient and simple query clauses that
aggregate data based on time, but also the data compression optimized for timeseries data. It is also important
that the database is actively being developed or bug-fixed, therefore the development status attribute is added.
Based on the literature review the timestamp precision and order-of-arrival constraints are added to the table.
Business requirements include the support for both Windows and Linux platforms. The license of the database
software shall allow for free usage without legal obligation to publish the tool under the same license, or as
open-software.

The multi-attribute maturity model will then be applied to a subset of databases to evaluate the maturity of
the databases. This maturity model is discussed in the literature review. All maturity attributes will be listed
with exception of the rating from the experts that Petre et al. [14] discuss, because it is not possible to interview
database experts in this project.

2



Real-time Plotting Databases Research Topics, University of Twente, Demcon, the Netherlands

Finally, the most promising database needs to be tested for performance. The database must be able to write 10
signals at 10KHz or 20 signals at 1KHz. The time it takes to write a datapoint to the database should therefore be
on the scale of Microseconds at most. This will be tested by executing a write function which writes a datapoint
to the database and times the duration. This function will be executed on 10 threads 10,000,000 times on each
thread in parallel. The execution time of 10 million writes on each of the 10 threads will be recorded 10 times. The
maximum average duration of this test is 1000 seconds, as this is equal to a write speed of 10kHz. Therefore the
database passes the test when it stays below this maximum. The test will also be executed on 20 threads 1,000,000
times on each thread with a maximum time of 1000 seconds. These tests will run on a laptop in a Ubuntu VM
with 6 cores of the Intel i7-1165G7 processor and 27Gb memory. Figure 1 shows the high-level architecture of the
test setup.

Fig. 1. Test Architecture

The databases included in the comparison in table 1 only include free options. engine-db.com [13] was used to
get a list of available options with attributes and other information. Additionally, the websites or papers of the
various databases were used for information, as well as their Github [11] repositories. All databases in the table
are timeseries databases, except for RocksDB. All databases picked for examination are open access.

InfluxDB: InfluxDB is an open source timeseries database created by InfluxData and initially released in 2013.
Influx data provides InfluxDB as a cloud solution with development support. InfluxDB has many customers,
ranging from startups to Fortune 500 enterprises [8].
Akumuli: Akumuli is an open source timeseries database created by a single developer. Their motivation is that
they don’t like most open source timeseries databases. Saying that some lack compression or are slow and focus
on the wrong problems [1].
RocksDB: RocksDB is an open source in-memory key-value store developed by Facebook, and builds on earlier
work of LevelDB developed at Google. Its initial goal was to improve performance for server workloads [10].

3



Research Topics, University of Twente, Demcon, the Netherlands M.H. van Assen

Beringei: Beringei, also known as Gorilla is an open source timeseries database also developed by Facebook.
Beringei is intended to use for server monitoring of servers in Facebook’s data centres around the world.
Monitoring things like CPU load, error rate and latency. Beringei was therefore designed with the requirement of
handling tens of millions of datapoints per second [5].
QuestDB: QuestDB is an open source timeseries database, originally created by a single developer. It received 15
million dollars of investment in 2021. Since this investment there is now a team working on QuestDB, however,
only a few people work on the actual database with the others creating a cloud solution around the database,
much like what InfluxDB already has [15].

4 LITERATURE
Timeseries data is data that contains a timestamp. The timestamp indicates what moment in time the data is
generated. This type of data is generated by a lot of devices nowadays. Think of network devices and sensors, like
thermometers that report the temperature in a certain interval but also more precise sensors like pressure sensors
in high precision devices. These devices log all sorts of information at short time intervals. Timeseries Databases
are databases designed to store and read timeseries data. These databases often offer aggregation functions and
efficient compression, that other types of databases do not offer [9].

Timeseries data often consists of a timestamp and a value or an array of values. Because of the consistent
format of this data, timeseries databases can store this data very efficiently. An early timeseries database, tsdb,
uses QuickLZ to compress partitions of a series’ datapoints [4]. QuickLZ is an implementation of the LZ (Lempel
Ziv) compression algorithm [16]. The LZ algorithm is a lossless compression algorithm. LZ achieves an optimal
compression rate for individual data sequences as the sequence grows to infinity. An optimal compression rate
is equal to the entropy of a sequence, as this entropy is the lower bound. The entropy of data is a measure of
unpredictability of the data. If the values in the sequence is not expected to change often over time, or if the data
has has many repeating patterns, the data’s predictability is high. In contrast, for data generated by more precise
sensors that measure small differences, or for non-cyclic data, the unpredictability of the data is greater. Meaning,
the LZ algorithm is only a good compression solution when the data is predictable.

Pelkonen et al. [13] discusses the in-memory timeseries data compression of their timeseries database named
Gorilla (later renamed to Beringei). It uses a delta of delta between timestamps of adjacent datapoints, and
the distances between true bits of an XOR comparison between values. The delta of delta algorithm is very
memory efficient when the interval between datapoints is consistent. They achieve a 12x size reduction with their
data-set. The XOR compression algorithm is very fast, as computers can do bitwise XOR operations very quickly.
In contrast to the LZ algorithm, it also achieves a good compression ratio on data series for which the value
varies often. This compression algorithm is therefore better for data sequences in which the value changes often.
However, a drawback of this algorithm is that it requires the datapoints to arrive in-order, since back-insertion
is impossible without re-compressing the entire bit array from the point of the insertion. This order-of-arrival
constraint is an important limitation of many timeseries databases. However, the most important limitation of
Gorilla is its time granularity (precision). The minimum time difference between each datapoint in the same
series is 1 second. This limitation is, like the order-of-arrival constraint, an important attribute when deciding
between databases.

Andersen and Culler [2] aim to create a similar approach with BTrDB but, like in this project, need sub-
second-precision timestamps and also mention the lack of out-of-order insertions of Gorilla. Their solution

4



Real-time Plotting Databases Research Topics, University of Twente, Demcon, the Netherlands

supports timestamps with nanosecond precision and out-of-order data arrival. To achieve out-of-order arrival
their database creates a new version of the data series each time a datapoint arrives that would need to be inserted,
and leaves the old version in storage for analysis. This approach was chosen because they expect measuring
device re-calibration, which re-calibrates the time on the device. If the time is set back it would mean faulty data,
since the actual measuring order would be disrupted. For compression they also use delta of delta’s like Gorilla,
however, here it is applied to all fields of a datapoint instead of just their timestamps. The result is then further
compressed when saved to long term storage using the Huffman coding [7] using a fixed tree. They note that,
like discussed with QuickLZ, this Huffman coding does also not achieve a good compression ratio when the data
is produced by high-precision devices, because the delta’s vary a lot for each datapoint.

Besides writing to databases, reading data from databases is also important. QuestDB [12], a timeseries database,
explains in a blog how their read queries are implemented. QuestDB keeps recently appended data is kept in
memory by using a sliding window. This sliding window keeps a certain amount of rows in memory. Operations
on in-memory data (hot data) are about 20 times faster than operations on persistent data (cold data). In plotting
tools, recent data is more likely to get queried than older data. Since plotting of timeseries data is a common
use case, but other use cases for timeseries data also often require more recent data, this optimization is more
effective in a timeseries database than in other types of databases. Multi-threading also plays a role in speeding
up queries. For example, with a filter operation over a column, the column is partitioned into equal parts. These
parts are then divided over the available processor cores, splitting up the work into smaller parallel jobs. This
concept is also applied to other queries where work can be divided, like aggregation functions. The concept of
dividing the work into smaller jobs is not exclusive to timeseries databases.

Timestamp precision and order-of-arrival constraints are two important attributes of timeseries databases, and
are important to consider when choosing a timeseries database. Besides these attributes other business require-
ments should be considered, as well as the maturity of the database. Petre et al. [14] proposes a multi-attribute
maturity model for timeseries databases. They separate the attributes into two types; quantitative and qualitative
attributes. Quantitative attributes includes total number of code commits, average time for solving an issue and
google trends score. The qualitative attributes include data replication, support libraries and supported query
languages. Finally, a maturity score can be assigned to each database and a selection can be made. However,
database experts are needed to come to a final score. This is a major issue with the model, as the model should be
a tool for developers that are not experts and could therefore benefit the most from such a model.

In this project data comes from high-precision medical devices. The data from these devices does not have
great predictability as the sensors are very precise, making the LZ algorithm sub-optimal. The XOR compression
used by Pelkonen et al. [13] is therefore better suited for this project than LZ-based and Huffman algorithms.
However, other compression algorithms or a combination of algorithms that were not discussed might even
achieve a better compression ratio. Besides write operations, read operations are also important and timeseries
databases offer optimizations that are often not included in other types of databases as their typical data would
not benefit as much from these optimizations. However, the optimizations of timeseries databases also come with
some attributes that should be considered when choosing a database. The order-of-arrival constraint discussed
by Pelkonen et al. [13] and the timestamp precision attribute are important to take into account in the database
choice. The timeseries database maturity model is also an important factor in the decision.

5



Research Topics, University of Twente, Demcon, the Netherlands M.H. van Assen

5 RESULTS & DISCUSSION
There is no database that fulfills all requirements. QuestDB does not support nanosecond timestamp precision,
but rather microsecond precision. nanoseconds are accepted but get truncated to microseconds. Full support
for nanosecond timestamps is on the road-map, but has been for some time. QuestDB is also not embedded in
C++, but rather in Java. C++ can communicate with the JVM (Java Virtual Machine) through the JNI (Java Native
Interface) library. This might be a viable option, but further research is required to analyse the performance
impact. RocksDB fulfills the requirements but is a Key-Value store, making it sub-optimal because it does not
leverage performance improvements that are possible with timeseries data, and does not contain timeseries
optimized queries. InfluxDB does not fulfill the embedded requirement, but does fulfill all other requirements.
This leaves three sub-optimal options; InfluxDB, RocksDB and QuestDB.

Database C++
Client

Embedded Timeseries
functionality

Dev Status OS Order-Of-
Arrival

Constraints

Timestamp
Precision

License

InfluxDB ++ - ++ Active Windows, Linus, MacOS No Nanoseconds MIT
Akumuli -/+ C++ + Abandoned Linus In-Order Nanoseconds Apache License 2.0
RocksDB ++ C++ & Java – Maintained Windows, Linus, MacOS No Nanoseconds Apache License 2.0
Beringei -/+ C++ + Abandoned Linus In-Order Seconds BSD
QuestDB + Java ++ Active Windows, Linus, MacOS No Microseconds Apache License 2.0

Table 1. Database Attribute Comparison [8] [1] [10] [5] [15] [6]

The insights on database maturity found in the paper by Petre et al. [14] show that InfluxDB is a mature
database. RocksDB cannot be analysed with this model since it is applicable to timeseries databases. It can be
applied for QuestDB.

Table 2 shows the total number of commits (TNC), total code lines (TLC) and the total amount of contributors
to the Github projects. InfluxDB has about 10 times as many commits with about 5 times as much lines of code.
The databases do use different coding languages, making these numbers not directly comparable. However, since
the difference is so large, InfluxDB is clearly further in development.
Table 3 shows the average solving time of issues on the main Github page, the ratio between the number of

open bugs and closed bugs (BSS) and ratio between open issues and closed issues (ISS). The average solving time
for QuestDB is much longer than for InfluxDB. This is partly because there were a few long standing issues that
were solved with a rework on some join function. With InfluxDB this was not the case. While the median solving
time may be closer between the two databases, this still shows InfluxDB is further in development and thus more
mature than QuestDB. The ratio of bugs and issues also shows this.

Active Development
TSDB TNC TCL TCT

InfluxDB 35232 460331 446
QuestDB 3885 87860 102

Table 2. Active Development

Development Velocity
TSDB AST BSS ISS

InfluxDB 8.85 0.089 0.076
QuestDB 49.35 0.261 0.404

Table 3. Development Velocity

Table 4 shows the age of the databases, the Github stars (GS), Amount of Stack Overflow questions with the
database’s tag (SOF) and the Google trend score (GTS). QuestDB is the older database by a slim margin. The
database was initially created by a single person and has recently (about 3 years ago) had its name changed along
with subsequent investments, which grew the team. Their focus over the last years has been to create a timeseries
database as a service. In the other sub-attributes InfluxDB scores much better, showing there is much more public
interest in the product.

6



Real-time Plotting Databases Research Topics, University of Twente, Demcon, the Netherlands

Table 5 shows the data partitioning and data replication methods and options. Both databases support sharding
for data partitioning. "Database sharding is the process of storing a large database across multiple machines" [3].
QuestDB does currently not support any data replication, where InfluxDB does.

Market Maturity & Interest
TSDB Age GS SOF GTS

InfluxDB 9 24700 2836 83
QuestDB 10 10000 193 2

Table 4. Market Maturity & Interest

Replication & Partitioning
TSDB Data Parti-

tioning
Data

Replication
InfluxDB Sharding Selectable

replication factor
QuestDB Sharding None, but on

road-map
Table 5. Replication & Partitioning

Table 6 shows the support libraries. Both databases support a wide variety of support libraries (clients) for
various languages, with InfluxDB supporting a few more than QuestDB.

Support Libraries
TSDB Support Libraries

InfluxDB .Net; Dart; Go; Java; JavaScript; Kotlin; Node.js; PHP; Python; R; Ruby: Scala; Swift
QuestDB .Net; Go; Java; Python; JavaScript (Node.js); Rust; C; C++; Scala

Table 6. Support Libraries

Table 7 shows the access tools available for the databases, whether there is SQL to query the databases,
what OS the databases can run on and how many cybersecurity vulnerabilities are publicly disclosed for the
databases. In these attributes both databases are near each other. InfluxDB has however had more CVEs (Common
Vulnerabilities and Exposures) it is reasonable to say that QuestDB is not mature enough, or at least not commercial
for long enough to have had CVEs. Even though InfluxDB appears to be worse, it does show some maturity.

API & Access
TSDB Access Tools SQL OS CVEs

InfluxDB Influx user interface, REST,
CLI

SQL-like query
language

Linux, MacOS,
Windows

5

QuestDB REST, Postgres, InfluxDB
line protocol, Java

(Embedded)

Yes Linux, MacOS,
Windows

0

Table 7. API & Access

As discussed in the literature review, an actual final score for the databases relies on database experts. Therefore
this final score is not calculated. However, comparing InfluxDB and QuestDB shows that InfluxDB is a more
mature database. Petre et al. [14] also showed that InfluxDB is the most mature database of the databases
scored in their paper. When comparing QuestDB with the other databases in the paper it compares well on the
quantitative attributes and very well on the qualitative attributes. Without business requirements InfluxDB is the
best timeseries database at this moment. However, Demcon requires the database to be added as a library and
communication between the application and database to require no networking. The application is written in C++
and QuestDB only supports this functionality in Java. However, with the JNI library C++ can communicate with
the JVM without networking. This means QuestDB does fulfill the requirements. There is a performance concern

7



Research Topics, University of Twente, Demcon, the Netherlands M.H. van Assen

with this solution as the communication between C++ and Java may be relatively slow. This performance impact
needs to be examined before QuestDB can be chosen as database for the project.
The performance tests are created by creating threads in C++ and a correlating thread in the JVM for each

signal. the C++ threads create a datapoint object in the JVM and calls a function in Java which assigns the
datapoint to a queue of datapoints that need to be written of the correlating Java thread. These Java threads loop
through a while-loop with a check if there is a datapoint in their queue. If there is, it invokes the write function
of the QuestDB writer with the datapoint as parameter and if there is no datapoint in the queue it waits for 1
millisecond and tries again.

Signals Datapoints 1 2 3 4 5 6 7 8 9 10 Average

10 10m 14.7s 13.9s 15.7s 15.2s 12.6s 13.1s 15.2s 13.7s 13.3s 15.6s 14.3s
100m 225s 239s 236s 235s 209s 228.8s

20 1m 5.3s 5.2s 5.3s 6.1s 5.8s 5.5s 5.4s 5.6s 6.0s 5.7s 5.6s
10m 47.5s 42.6s 47.5s 42.7s 41.9s 44.4s

Table 8. Performance Test

As shown in table 8 the time it takes to complete the tests is orders of magnitudes lower than the required
completion time. Since the 10 million test is so fast, the 100 million test is added to show that the sustained write
speed is still high enough to satisfy the required write speed. These tests are synthetic and real signals may be
more complex to process, however the tests show there is room for this and for other tasks the program may
need to perform at the same time. Like reading from the database and plotting a graph.

6 CONCLUSION
Timeseries databases offer considerable benefits when working with timeseries data. They offer data compression,
fast writes and useful aggregation functions optimized for timeseries data. These optimizations often come at a
limitation or cost like order of arrival constrains and timestamp precision. Many mature timeseries databases
offer mitigations to these limitations making them a better choice than other types of databases when working
with timeseries.

While there is no database available that satisfies all requirements, QuestDB comes closest to fulfilling all
requirements. QuestDB has good maturity and good performance, but lacks in timestamp precision and is not
directly embeddable in C++ applications. InfluxDB is a better timeseries database at this time as it offers good
timeseries database functionality with nanosecond timestamp precision and better maturity, but does not offer
embedded access from C++ at all. The performance tests which test the cost of communication and database
writes between C++ and the JVM showed that this cost is not an issue in this project and that the required write
speeds can be achieved with QuestDB. Therefore, QuestDB is the chosen database for this project.

8



Real-time Plotting Databases Research Topics, University of Twente, Demcon, the Netherlands

REFERENCES
[1] Akumuli. 2022. Open source time series database. https://akumuli.org/
[2] M. P. Andersen and D. E. Culler. 2016. BTrDB: Optimizing storage system design for timeseries processing. In Proceedings of the 14th

USENIX Conference on File and Storage Technologies, FAST 2016. 39–52. www.scopus.com Cited By :58.
[3] AWS. 2023. What is database sharding? https://aws.amazon.com/what-is/database-sharding/
[4] L. Deri, S. Mainardi, and F. Fusco. 2012. Tsdb: A compressed database for time series. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 7189 LNCS. 143–156 pages. www.scopus.com
Cited By :28.

[5] Facebook. 2022. Beringei is a high performance, in-memory storage engine for time series data. https://github.com/facebookarchive/
beringei

[6] Solid IT gmbh. 2022. DB-Engines - Knowledge Base of Relational and NoSQL Database Management Systems. https://db-engines.com/
[7] David A. Huffman. 1952. A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the IRE 40, 9 (1952), 1098–1101.

https://doi.org/10.1109/JRPROC.1952.273898
[8] Influxdata. 2022. InfluxDB times series Data Platform. https://www.influxdata.com/
[9] Influxdata. 2022. Time series database (TSDB) explained. https://www.influxdata.com/time-series-database/#what-is
[10] Meta. 2022. A persistent key-value store. http://rocksdb.org/
[11] Microsoft. 2022. Github. http://github.com/
[12] A. Pechkurov. 2022. 4Bn rows/sec query benchmark: Clickhouse vs QuestDB vs Timescale | QuestDB. https://questdb.io/blog/2022/05/

26/query-benchmark-questdb-versus-clickhouse-timescale/#filter-query
[13] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro, Q. Huang, J. Meza, and K. Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory time

series database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816–1827. www.scopus.com Cited By :137.
[14] I. Petre, R. Boncea, C. Z. Radulescu, A. Zamfiroiu, and I. Sandu. 2019. A time-series database analysis based on a multi-attribute maturity

model. Studies in Informatics and Control 28, 2 (2019), 177–188. www.scopus.com Cited By :5.
[15] QuestDB. 2022. QuestDB: Fast SQL for time-series. https://questdb.io/
[16] J. Ziv and A. Lempel. 1978. Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory 24, 5

(1978), 530–536. https://doi.org/10.1109/TIT.1978.1055934

9



Appendix B

Technical Requirements

Nr. BR Description Information Step
TR1 BR2 Let the user choose a

project name.
Let the user choose a project name.
Let the user choose a directory
to create this project in. Create
the directory. Start the database
instance.

Data
Storage

TR2 BR2 Let the user choose a
directory to create a
project in.

Let the user choose a project name.
Let the user choose a directory
to create this project in. Create
the directory. Start the database
instance.

Data
Storage

TR3 BR2 Create a directory for a
project.

Let the user choose a project name.
Let the user choose a directory
to create this project in. Create
the directory. Start the database
instance.

Data
Storage

TR4 BR2,
BR3

Start the database instance
with a dynamic directory.

Let the user choose a project name.
Let the user choose a directory
to create this project in. Create
the directory. Start the database
instance; Let the user choose from
a list of recent projects OR let the
user choose a directory to open as
project. Start database instance.
Load all available tables as available
signals.

Data
Storage

TR5 BR3 Let the user choose from
a list of recent projects to
open.

Let the user choose from a list
of recent projects OR let the user
choose a directory to open as
project. Start database instance.
Load all available tables as available
signals.

Data
Storage

58



TR6 BR3 let the user choose a
directory to open as
project.

Let the user choose from a list
of recent projects OR let the user
choose a directory to open as
project. Start database instance.
Load all available tables as available
signals.

Data
Storage

TR7 BR3 Load all available tables as
available signals.

Let the user choose from a list
of recent projects OR let the user
choose a directory to open as
project. Start database instance.
Load all available tables as available
signals.

Data
Storage

TR8 BR4 Show user available tables
from the database.

Get a list of available signals. Delete
the table of a signal. Delete the
range of dates of the signal.

Data
Storage

TR9 BR4 Delete a table of a signal
from the database.

Get a list of available signals. Delete
the table of a signal. Delete the
range of dates of a signal.

Data
Storage

TR10 BR4 Delete range of dates of
signal from the database.

Get a list of available signals. Delete
the table of a signal. Delete the
range of dates of a signal.

Data
Storage

TR11 BR1,
BR5

User is able to start import
by clicking a button or
dragging a file into the
frame.

User is able to start the import. The
importer can recognize the file type
and select the appropriate import
implementation.

Data
Acquisition

TR12 BR1,
BR5

Importer can recognize
the file type and select
the appropriate import
implementation.

User is able to start the import. The
importer can recognize the file type
and select the appropriate import
implementation.

Data
Acquisition

TR13 BR6 User is able to start data
recording of a signal.

User is able to start data recording.
Ingester can recognize protocol
and select appropriate ingest
implementation (source plugin)

Data
Acquisition

TR14 BR6 Ingester can recognize
the protocol of signal and
select appropriate ingest
implementation (source
plugin)

User is able to start data recording.
Ingester can recognize protocol
and select appropriate ingest
implementation (source plugin)

Data
Acquisition

TR15 BR7 Database supports
nanoseconds precision
OR database supports
Microsecond precision and
nanosecond is stored in a
separate column.

Sensors generate data with
nanosecond timestamp precision.
The database supports nanoseconds
precision OR the database
supports Microsecond precision
and nanosecond is stored in a
separate column. GUI graph can
zoom until data points are shown
on nanosecond precision.

Data
Storage

59



TR16 BR7 GUI graphs can zoom in
until data points are shown
on nanosecond precision.

Sensors generate data with
nanosecond timestamp precision.
The database supports nanoseconds
precision OR the database
supports Microsecond precision
and nanosecond is stored in a
separate column. GUI graph can
zoom until data points are shown
on nanosecond precision.

Data
Visualisation

TR17 BR8 TODO: The application is
able to function without an
internet connection. That
is, receive a signal over
a wire. Ingest this data
and write it to persistent
storage on the same device,
using a database. Start
the database without
complex installation
and write to it without
networking. Commandline
or embedded is good.

TODO: The application is able
to function without an internet
connection. That is, receive a
signal over a wire. Ingest this
data and write it to persistent
storage on the same device, using
a database. Start the database
without complex installation and
write to it without networking.
Commandline or embedded is good.

none

TR18 BR9 Application is able to
discern between Windows
and Linux and each
operation that is platform
specific needs to execute
the correct code for
the platform OR build
two different versions of
the application, one for
Windows and one for
Linux.

Application is able to discern
between Windows and Linux and
each operation that is platform-
specific needs to execute the correct
version OR build two different
versions of the application, one for
Windows and one for Linux.

none

TR19 BR10 The application is easy
to use: When it is
downloaded on a machine
it should start with a
single click.

The application should be easy to
use. When it is downloaded on a
machine it should start with a single
click.

none

60



TR20 BR11 The application
has a default GUI
layout/configuration
(view).

The application should have
a default GUI layout. The
application’s GUI should be able
to be configured. The application
should be able to save the layout
for the current project. The user
should be able to provide a name
to the configuration (view) when
saving a configuration (view). The
application should auto-save the
configuration to a separate auto-
save.

Data
Visualisation

TR21 BR11 The application’s view can
be configured.

The application should have
a default GUI layout. The
application’s GUI should be able
to be configured. The application
should be able to save the layout
for the current project. The user
should be able to provide a name
to the configuration (view) when
saving a configuration (view). The
application should auto-save the
configuration to a separate auto-
save.

Data
Visualisation

TR22 BR11 The application can save
the view for the current
project.

The application should have
a default GUI layout. The
application’s GUI should be able
to be configured. The application
should be able to save the layout
for the current project. The user
should be able to provide a name
to the configuration (view) when
saving a configuration (view). The
application should auto-save the
configuration to a separate auto-
save.

Data
Visualisation

TR23 BR11 The user can provide a
name to the view when
saving a view.

The application should have
a default GUI layout. The
application’s GUI should be able
to be configured. The application
should be able to save the layout
for the current project. The user
should be able to provide a name
to the configuration (view) when
saving a configuration (view). The
application should auto-save the
configuration to a separate auto-
save.

Data
Visualisation

61



TR24 BR11 The application should
auto-save the view to a
separate save instance.

The application should have
a default GUI layout. The
application’s GUI should be able
to be configured. The application
should be able to save the layout
for the current project. The user
should be able to provide a name
to the configuration (view) when
saving a configuration (view). The
application should auto-save the
configuration to a separate auto-
save.

Data
Visualisation

TR25 BR12 The application is able to
load a view.

The application should be able to
load a GUI layout configuration
(view). The application should
load the most recent auto-save
configuration when loading the
project. The application should
be able to change the view on
the command of the user. The
user should be able to reset
the application to the default
configuration.

Data
Visualisation

TR26 BR12 The application loads the
most recent auto-save view
when loading the project.

The application should be able to
load a GUI layout configuration
(view). The application should
load the most recent auto-save
configuration when loading the
project. The application should
be able to change the view on
the command of the user. The
user should be able to reset
the application to the default
configuration.

Data
Visualisation

TR27 BR12 The application can change
the view on the command
of the user.

The application should be able to
load a GUI layout configuration
(view). The application should
load the most recent auto-save
configuration when loading the
project. The application should
be able to change the view on
the command of the user. The
user should be able to reset
the application to the default
configuration.

Data
Visualisation

62



TR28 BR12 The user can reset the
application GUI to the
default configuration.

The application should be able to
load a GUI layout configuration
(view). The application should
load the most recent auto-save
configuration when loading the
project. The application should
be able to change the view on
the command of the user. The
user should be able to reset
the application to the default
configuration.

Data
Visualisation

TR29 BR13 TODO: What are the
technical requirements for
this customer requirement?
Threading for each signal?
Threaded Messaging
system? Etc. . .

TODO: What are the technical
requirements for this customer
requirement? Threading for each
signal? Threaded Messaging
system? Etc. . .

none

TR30 BR14 The application is able
to load data based on
timescales. Nanoseconds,
Microseconds,
Milliseconds, Seconds,
Minutes, Hours, Days.

The application should be able to
load data based on timescales.
Nanoseconds, Microseconds,
Milliseconds, Seconds, Minutes,
Hours, Days. All data points
contained in one such unit should be
aggregated based on a configurable
aggregation function. Supported
functions must be: Average, Min,
Max, ...

Data
Navigation

TR31 BR14 All data points contained
in a timescale unit are
aggregated based on a
configurable aggregation
function per signal graph.

The application should be able to
load data based on timescales.
Nanoseconds, Microseconds,
Milliseconds, Seconds, Minutes,
Hours, Days. All data points
contained in one such unit should be
aggregated based on a configurable
aggregation function. Supported
functions must be: Average, Min,
Max, ...

Data
Navigation

TR32 BR14 Support aggregation
functions: Average, Min,
Max.

The application should be able to
load data based on timescales.
Nanoseconds, Microseconds,
Milliseconds, Seconds, Minutes,
Hours, Days. All data points
contained in one such unit should be
aggregated based on a configurable
aggregation function. Supported
functions must be: Average, Min,
Max, ...

Data
Navigation

63



TR33 BR15 Users can define a
mathematical function.

Users can define a mathematical
function. This function should be
saved to the database under a user-
provided name OR as literal. A list
of saved functions should be shown
to the user, thus functions should be
able to be loaded.

Data
Analysis

TR34 BR15 Mathematical functions
can be saved to the
database under a user-
provided name or as
literal.

Users can define a mathematical
function. This function should be
saved to the database under a user-
provided name OR as literal. A list
of saved functions should be shown
to the user, thus functions should be
able to be loaded.

Data
Analysis

TR35 BR15 Mathematical functions
can be loaded from the
database.

Users can define a mathematical
function. This function should be
saved to the database under a user-
provided name OR as literal. A list
of saved functions should be shown
to the user, thus functions should be
able to be loaded.

Data
Analysis

TR36 BR15 A list of saved
mathematical functions is
shown to the user.

Users can define a mathematical
function. This function should be
saved to the database under a user-
provided name OR as literal. A list
of saved functions should be shown
to the user, thus functions should be
able to be loaded.

Data
Analysis

TR37 BR16 Data aggregations are not
based on counts, rather
on units (like second,
millisecond, etc

Data aggregations are not based on
counts, rather on units (like second,
millisecond, etc

Data
Navigation

TR38 BR17 Import implementation
for CSV. Support at least
one type of predefined
CSV format OR support
automatic detection OR
support by user-chosen
CSV format from a
predefined list of formats.

Import implementation for CSV.
Support at least one type of
predefined CSV format OR support
automatic detection OR support
by user-chosen CSV format from a
predefined list of formats.

Data
Acquisition

TR39 BR18 Ingest implementation for
Embedded Debugger.

Ingest implementation for
Embedded Debugger.

Data
Acquisition

64



TR40 BR19 Ingest implementation for
influxDB Line Protocol.
Either read the messages
and convert them to
datapoint OR send pass on
the messages to QuestDB
directly

Ingest implementation for influxDB
Line Protocol. Either read the
messages and convert them to
datapoint OR send pass on the
messages to QuestDB directly

Data
Acquisition

Table B.1: Technical Requirements

65



Appendix C

Test Data

Normal Heavy Extreme
1 5.764 117.114 1.233.281
2 5.111 144.960 1.361.373
3 8.108 132.406 1.205.067
4 6.207 107.702 1.204.053
5 5.789 123.333 1.254.518
6 8.630 110.023 1.099.099
7 5.698 119.630 1.336.989
8 6.493 112.792 1.242.441
9 6.055 103.099 1.244.679
10 6.066 108.863 1.143.300

Average 6.392 117.992 1.232.480

Table C.1: Normal DataContainer Latency Test (Microseconds)

Latency C++
Serialise

Java
Deserialise

Java
Serialise

C++
Deserialise

Total JSON
Time

Data
Points

1 1.233.281 8 13 40.144 1.146.514 1.186.679 111.494
2 1.361.373 8 12 41.188 1.248.428 1.289.636 109.957
3 1.205.067 9 12 46.544 1.110.740 1.157.305 110.402
4 1.204.053 8 11 39.727 1.117.133 1.156.879 109.880
5 1.254.518 8 9 44.900 1.169.773 1.214.690 111.912
6 1.099.099 7 12 31.091 1.017.741 1.048.851 113.140
7 1.336.989 10 10 36.234 1.255.200 1.291.454 112.452
8 1.242.441 7 28 31.902 1.163.736 1.195.673 112.210
9 1.244.679 11 10 50.209 1.153.058 1.203.288 110.679
10 1.143.300 6 11 37.748 1.063.562 1.101.327 112.323

Avg 1.232.480 8,2 13 39.969 1.144.589 1.184.578 111.445
Pct 100% >1% >1% 3% 93% 96%

Table C.4: Extreme JSON DataContainer Latency Test (Microseconds)

66



Latency C++
Serialise

Java
Deserialise

Java
Serialise

C++
Deserialise

Total JSON
Time

Data
Points

1 5.764 7 9 16 332 364 28
2 5.111 10 12 18 424 464 27
3 8.108 10 10 15 284 319 22
4 6.207 6 10 20 356 392 25
5 5.789 9 13 26 236 284 17
6 8.630 6 16 16 334 372 25
7 5.698 7 11 19 423 460 31
8 6.493 6 13 19 315 353 23
9 6.055 8 12 41 350 411 28
10 6.066 7 12 26 272 317 26

Avg 6.392 7,6 12 22 333 374 25
Pct 100% >1% >1% >1% 5% 6%

Table C.2: Normal JSON DataContainer Latency Test (Microseconds)

Latency C++
Serialise

Java
Deserialise

Java
Serialise

C++
Deserialise

Total JSON
Time

Data
Points

1 117.114 6 13 281 10.244 10.544 1.331
2 144.960 7 9 417 17.260 17.693 1.459
3 132.406 10 12 436 16.487 16.945 1.291
4 107.702 10 10 495 10.679 11.194 1.291
5 123.333 6 10 361 13.173 13.550 1.343
6 110.023 8 11 338 10.431 10.788 1.204
7 119.630 8 17 390 13.235 13.650 1.455
8 112.792 8 13 401 13.631 14.053 1.332
9 103.099 6 12 356 10.811 11.185 1.316
10 108.863 10 12 357 9.890 10.269 1.243

Avg 117.992 7.9 12 383 12.584 12.987 1.327
Pct 100% >1% >1% >1% 11% 11%

Table C.3: Medium JSON DataContainer Latency Test (Microseconds)

67


	Introduction
	Approach
	Research Questions
	Limitation of Scope
	Definitions
	Structure

	Problem Investigation
	Plotting Tools
	Five Steps of Plotting

	Current Situation
	Broader Context
	Stakeholders
	Stakeholder Goals
	Demcon Engineers
	Demcon Managers

	Business Requirements

	Existing Solutions
	Plotting Tools
	Databases

	Solution Proposal
	Architecture
	Architectural Design Decisions

	Solution Evaluation
	Quantitative Evaluation
	Correctness
	Performance

	Qualitative Evaluation

	Concluding Remarks
	Discussion of Research Goals & Solution Proposal
	Discussion of Broader context
	Conclusion
	Future Work

	Research Topics
	Technical Requirements
	Test Data

