
University of Twente

Faculty of Electrical Engineering, Mathematics and Computer
Science

Uncovering the Potential of Deep Learning in
Algorithmic Trading

A Critique of: Deep reinforcement learning stock market trading, utilizing a
CNN with candlestick images

Applied Mathematics - Master Data Science

Author:
Frits S. Tuininga
f.s.tuininga@student.utwente.nl

Supervisors:
Prof. Dr. Wouter M. Koolen

w.m.koolen@utwente.nl

Dr.Ir. Wouter van Heeswijk
w.j.a.vanheeswijk@utwente.nl

June 14, 2023

University of Twente F. Tuininga

Abstract

Our study found that a specific form of technical analysis in combination with deep learning cannot
be utilized to outperform the market. According to the research paper titled Deep Reinforcement
Learning Stock Market Trading, Utilizing a CNN with Candlestick Images (Brim et al. 2022) , incor-
porating a Convolutional Neural Network (CNN) into a Double Deep Q-learning Network (DDQN)
can help predict the best position to take on stock price movements. The study focuses on the 30
largest stocks in the S&P500 index. The approach employed in the study involves training and
testing individual models for each stock. The performance of each model is measured in terms of
geometric return, and the average performance across all stocks is calculated at the conclusion of
the testing period. The study reveals that the proposed strategy of using a CNN in a DDQN frame-
work outperforms the S&P500 in the period January 1st, 2020 to June 30th, 2020, by identifying
advantageous positions using candlestick images. The utilization of visual representations, such as
candlestick images, for making investment decisions is commonly referred to as technical analy-
sis. According to prevailing financial theory (Hull 2003) , technical analysis is considered incapable
of consistently generating above average returns. However, the study conducted by Brim et al.
presents potentially contradictory findings. Our study aims to investigate and determine whether
deep learning in combination with technical analysis can consistently outperform the market or
that prevailing beliefs regarding the efficacy of technical analysis hold true. We aim to contribute
to the ongoing discourse surrounding the effectiveness of technical analysis in the field of financial
decision-making.
In our opinion, several modifications are warranted in the research methodology employed by Brim
et al. Most importantly, their study did not examine whether their model consistently converged
to the same solution during training regardless of the initial weight parameter settings. This raises
an important question: Are the findings reported by Brim et al. the result of systematic factors
or mere chance? To address this issue, we conducted a similar study with modifications to the
research methodology. Our modifications encompassed training and testing exclusively on S&P500
data, evaluating a DDQN and a Prioritized Replay Dueling DDQN (PRD-DDQN), training the two
models with 100 distinct initial weight parameters to assess convergence, incorporating a non-crisis
test set to evaluate model performance in non-crisis periods (Brim et al. focused solely on a crisis
period), and evaluating five strategies: daily long strategy in S&P500, trained DDQN, trained
PRD-DDQN, untrained DDQN, and untrained PRD-DDQN. The inclusion of untrained models
allows us to discern any significant differences in behavior compared to their trained counterparts.
The PRD-DDQN model, which is an enhanced version of the DDQN, was included in our analysis
with the specific aim of investigating its potential for superior performance compared to the DDQN.
Our findings indicate that the trained models did not converge towards a similar solution. More-
over, the average geometric return achieved by each model type was found to be close to 0%.
Notably, while the Prioritized Replay Dueling Double Deep Q-learning Network (PRD-DDQN)
model demonstrated the ability to establish associations between features (input) and targets (de-
sired output) during the training phase, it exhibited poor generalization and performance during
testing. As a result, we were unable to obtain evidence that supports the claim of Brim et al. that
a DDQN with an incorporated CNN can outperform the market.

University of Twente | MDS 1

University of Twente F. Tuininga

Acknowledgements

I would like to express my gratitude to my academic supervisors, Prof. Dr. Wouter Koolen and
Dr. Ir. Wouter van Heeswijk, whose invaluable guidance and expertise have been instrumental in
the successful completion of this master thesis. Their unwavering support and technical insights
on model creation were invaluable throughout this research process. In addition, I would like
to express my gratitude to my corporate supervisor, Jaap Stolp, for his important guidance and
insightful discussions throughout the course of this thesis. His input provided valuable direction
and proved to be instrumental in the successful completion of this work.

I am also grateful to Bas van Tintelen and Ruben Lucas for their significant contribution to dis-
cussions on selecting the best course of action and selecting the most suitable artificial intelligence
models in order to achieve the best results. Their insights and involvement were paramount to the
quality of this thesis.

I would like to thank Annelies and Ype Tuininga for their unwavering support throughout my
academic journey and for the discussions on linguistic details, which helped to enhance the clarity
of this thesis.

Finally, I would like to extend my sincere appreciation to Mart Nijkamp for his unwavering support,
encouragement, and for providing a conducive environment for a relaxed and productive working
atmosphere. His insightful discussions on models and theses were instrumental in shaping the
direction of this research.

University of Twente | MDS 2

University of Twente F. Tuininga

Contents

List of Figures 4

List of Tables 4

1 Introduction 1

2 Theoretical Framework 4
2.1 Applications of Deep Learning in Finance . 4
2.2 Double Deep Q-learning Network . 5
2.3 DDQN for Stock Trading . 6
2.4 Contribution to Literature . 8

3 Methodology 8
3.1 Phase 1: Data Transformation . 8
3.2 Phase 2: Experiment Setup . 11

3.2.1 Convolutional Neural Network . 11
3.2.2 Double Deep Q-learning Network . 11
3.2.3 Prioritized Replay Dueling DDQN . 14
3.2.4 Research Approach . 15

4 Results 17

5 Discussion 22

6 Conclusion 25

References 27

A Candlestick Chart Generation (Python Code) 29

B Standard Double Deep Q-learning Network 32

C Prioritized Replay Dueling Double Deep Q-learning Network 39

D Average Geometric Return with Error Bars 47

University of Twente | MDS 3

University of Twente F. Tuininga

List of Figures

1 Daily high, low, open, and close stock prices are converted to a candlestick image. Gray
candles indicate upward price movement, and black candles indicate a downward price
movement. (Brim et al. 2022) . 2

2 Illustration of a Dueling Architecture, which splits the final linear layer into two streams:
one for estimating the action value and the other for estimating the state value (Wang
et al. 2016) . 7

3 A visual representation of negative and positive candlesticks commonly used in financial
analysis. The candlesticks are color-coded, with black and gray representing negative
and positive stock movements, respectively. (Investopedia 2021) 9

5 CNN Architecture as described by Brim et al., where the colors red, blue, and yellow
indicate the convolutional, pooling, and linear layers, respectively. The first, second, and
third convolutional and pooling layer each contain 8, 16, and 32 channels, respectively. 11

6 Interaction between Agent and Environment (LeCun et al. 2015) 12
7 Experiment 1 - Geometric returns generated by trained and untrained DDQNs, trained

and untrained PRD-DDQNs, and S&P500 index between January 1st 2020 and June
30th 2020. 18

8 Experiment 2 - Geometric returns generated by trained and untrained DDQNs, trained
and untrained PRD-DDQNs, and S&P500 index between January 1st 2021 and Decem-
ber 31st 2021. 18

9 Experiment 2 - Geometric returns generated by trained and untrained DDQNs, trained
and untrained PRD-DDQNs, without S&P500 index between January 1st 2021 and
December 31st 2021. 19

10 Experiment 3 - Geometric returns generated by top 10 trained and untrained DDQNs,
top 10 trained and untrained PRD-DDQNs, and S&P500 index between January 1st
2020 and June 30th 2020. 19

11 Experiment 3 - A Histogram Analysis of Model Preference for Long, Neutral, and Short
Positions, where -100% implies all Models went Short, whereas 100% implies all Models
went Long. 20

12 Experiment 4 - A Histogram Analysis of Model Preference for Long, Neutral, and Short
Positions, where -100% implies all Models went Short, whereas 100% implies all Models
went Long. 20

13 Experiment 4 - Geometric returns generated by top 10 trained and untrained DDQNs,
top 10 trained and untrained PRD-DDQNs, and S&P500 index between January 1st
2021 and December 31st 2021. 21

14 Geometric returns derived from a daily long position in the S&P 500 index spanning
from January 1st, 2012 to December 31st, 2012. 21

15 Geometric returns generated during training by 100 DDQNs between January 1st 2013
and December 31st 2019. 21

16 Geometric returns generated during training by 100 PRD-DDQNs between January 1st
2013 and December 31st 2019. 22

List of Tables

1 Summary of Experimental Design: Four experiments were conducted utilizing the iden-
tical training set (January 1st, 2013 to December 31, 2019) while employing varying test
sets. Experiments 3 and 4 incorporate a validation set. 8

2 Example S&P500 index Data in USD . 11

University of Twente | MDS 4

University of Twente F. Tuininga

3 Summary of Experimental Design: Four experiments were conducted utilizing the iden-
tical training set (January 1st, 2013 to December 31, 2019) while employing varying test
sets. Experiments 3 and 4 incorporate a validation set. 16

4 Summary of the quantity of trained and tested models for Experiments 1 and 2. DDQN*
and PRD-DDQN* denote the untrained models. Additionally, Tr. and Ts. correspond
to the Train and Test set, respectively. 17

5 Summary of the quantity of trained and tested models for Experiments 3 and 4. DDQN*
and PRD-DDQN* denote the untrained models. Additionally, Tr. and Ts. correspond
to the Train and Test set, respectively. 17

List of Algorithms

1 Q-learning (Watkins et al. 1992) . 13
2 DDQN (Van Hasselt et al. 2016) . 13
2 DDQN (Van Hasselt et al. 2016) . 14
3 DDQN (Van Hasselt et al. 2016) . 15
2 PRD-DDQN (Schaul et al. 2015; Wang et al. 2016; Van Hasselt et al. 2016) 15

University of Twente | MDS 5

University of Twente F. Tuininga

1 Introduction

The field of Deep Learning is currently undergo-
ing rapid growth and development, as evidenced
by its success in breakthrough applications such
as MuZero (Schrittwieser et al. 2020) and Chat-
GPT (Downling et al. 2023; Aydin et al. 2022).
In the financial sector, deep learning has garnered
considerable attention due to its potential to im-
prove the decision-making processes (Huang et al.
2020) . An example of this is presented in the
paper Deep Reinforcement Learning Stock Market
Trading, Utilizing a CNN with Candlestick Images
(Brim et al. 2022) . In this paper, a new approach
to stock market trading is introduced which com-
bines deep Reinforcement Learning with a Convo-
lutional Neural Network (CNN). The approach in-
volves transforming financial time-series data into
images, and use deep learning models to gener-
ate predictions regarding the best position to take
given patterns within the image. This method is
used to develop a trading policy that the authors
claim outperformed the market with 17.2% during
the start of the corona crisis (January 1st, 2020 to
June 30th, 2020).
Utilizing images for investment purposes, as ex-
pounded by Brim et al., is a form of technical anal-
ysis. This technique involves the use of statistical
patterns in historical data to predict future price
movements. However, standard economic theory
states that technical analysis historically failed to
consistently generate above-average returns (Hull
2003) . In addition to the critiques put forward by
Hull, there are additional points of improvement
from the perspective of deep learning. If finan-
cial data is transformed into an image format, this
transformation does not provide any additional in-
formation beyond what was already contained in
the raw data. Furthermore, such a transformation
may even introduce extraneous data, which could
slow down the learning process and ultimately fail
to enhance the predictive abilities of the model.
Given these factors, it is reasonable to approach
the research conducted by Brim et al. with a criti-
cal mindset, taking into account both the perspec-
tives of financial analysis and deep learning.
The research of Brim et al., however, is interesting
from an academic perspective. Their findings indi-
cate the identification of a new area in which deep

learning can excel. Conversely, if Brim et al. are
mistaken, the standpoint that technical analysis
does not work would be confirmed. For investors,
this holds additional significance as it could lead
to the discovery of a new way of trading or provide
further support to investors who subscribe to the
model as discussed by mathematical finance (Hull
2003) .
The aim of our study is to evaluate whether a CNN
within a Deep Learning framework can use im-
ages to predict the best position to take regarding
asset price movements. To achieve this, we con-
duct similar research as described by Brim et al.
with a few adjustments to the research method-
ology including the introduction of an improved
model. Before these adjustments are elaborated
upon, it is important to discuss the research of
Brim et al. in more detail. Their study com-
bines Deep Reinforcement Learning with a CNN
in which the latter is employed for image recogni-
tion. Reinforcement Learning is a deep learning
field that involves an agent interacting with its
environment to determine a good policy. In this
context, the paper (Brim et al. 2022) utilizes can-
dlestick charts as input for the CNN. Candlesticks
represent price movements of an asset and display
four price points for each time period: open, close,
high and low price (Lee et al. 1999) . If the clos-
ing price is higher than the opening price during
a given time period, candlestick color indicates a
profitable period. Conversely, candlestick color in-
dicates a loss when opening price is higher than
closing price. The paper (Brim et al., 2022) em-
ploys a color scheme of gray and black to repre-
sent profit and loss respectively. The body of each
candle represents the difference between the clos-
ing and opening price, whereas the wicks represent
the high and low prices. By analyzing a time series
of candlesticks in a single chart, a trader hopes to
observe stock market trends and make informed
investment decisions. An example of a candlestick
chart (Brim et al. 2022) is given in Figure 1.

University of Twente | MDS 1

University of Twente F. Tuininga

Figure 1: Daily high, low, open, and close stock prices
are converted to a candlestick image. Gray candles in-
dicate upward price movement, and black candles indi-
cate a downward price movement. (Brim et al. 2022)

Brim et al. transformed asset price data into can-
dlestick charts, which were utilized as inputs to a
CNN. The CNN is applied within the framework
of a deep Reinforcement Learning model, which
enables the identification of the most appropriate
action to take based on the candlestick charts. The
set of possible actions, denoted as A, is comprised
of three distinct elements: long position, no posi-
tion, and short position, which are represented by
1, 0, and −1 respectively. Actions are taken on
a daily basis and the duration of asset holdings is
limited to a single day. Specifically, if a long posi-
tion is taken at the beginning of the day, then the
asset is sold at the end of the day. Similarly, if a
short position is taken at the beginning of the day,
asset will be repurchased at the end of the day.
In addition, trading is being restricted to a single
asset and trading costs are not performed. Can-
dlestick charts of historical asset price movements
are utilized as input for a CNN, which generate a
position to be taken at the commencement of the
present day. At the end of the day, the position
is terminated and a profit (positive, negative, or
zero) is realized. Hence, each trading day starts
with a neutral position. The underlying premise
of this approach is that future asset price move-
ments can be predicted by analyzing past asset
price movements.

The model utilized (Brim et al. 2022) achieved
impressive cumulative rewards and outperformed
the Standard and Poor’s 500 index (S&P500 in-
dex) by 17.2% during the start of the corona cri-
sis (January 1st, 2020 - June 30th, 2020). The
S&P500 index is a stock market index that mea-
sures the performance of the 500 largest publicly

traded companies in the United States. In regard
to the research methodology employed by Brim et
al., our study contends that a sensitivity analy-
sis should be conducted to assess the influence of
initial weight parameters on the obtained solution.
The extent to which the described model can iden-
tify a meaningful relationship between features and
target is of utmost importance. In cases where
such a relationship exists, the model’s convergence
to a consistent solution remains unaffected by the
initial weight parameters. Conversely, when the
model struggles to establish this relationship, its
reliance on the initial weight parameters becomes
more pronounced, resulting in a broader range of
disparate solutions. If the described model is able
to identify a relationship between features and tar-
get, then regardless of initial weight parameters
the model would converge approximately to the
same solution. In contrast, if the model is unable
to identify a relationship between features and tar-
get, then the model becomes heavily reliant on ini-
tial weight parameters resulting in a wide range of
different solutions. By incorporating a sensitivity
analysis, a more comprehensive evaluation of the
robustness and reliability of the findings of Brim
et al. can be achieved. A CNN makes predictions
based on its weight parameters. In the beginning,
the CNN is initialized with random weight param-
eters and the weight parameters are adjusted dur-
ing training in order to find a suitable solution.
If the CNN fails to converge towards a suitable
solution, and is unable to establish a relationship
between the input and output, the initial weight
parameters have a substantial impact on the final
performance of the model. To enhance the va-
lidity of their findings, Brim et al. have trained
and tested multiple Reinforcement Learning mod-
els with varying weight initialization parameters,
thereby ensuring performance is either due to ran-
domness or due to relations found between features
and target. For this reason, our research incor-
porates a sensitivity analysis. In addition to the
sensitivity analysis, we apply three adjustments to
the research methodology of Brim et al.:

1. Non-crisis test period: It is possible that
the model may demonstrate exceptional per-
formance solely during periods of crisis due
to large price swings, while underperforming
during periods of relative stability. In order

University of Twente | MDS 2

University of Twente F. Tuininga

to gain a more comprehensive understanding
of model performance, it could be beneficial
to evaluate model performance during peri-
ods of non-crisis as well.

2. Comparing performances: The study con-
ducted by Brim et al. entailed training and
testing their model on the 30 largest stocks
in the S&P500 index, followed by comparing
its performance against the overall S&P500
index performance during the early stages of
the corona crisis (January 1st, 2020 - June
30th, 2020). While it is customary to bench-
mark investment strategies against a rele-
vant index, it is more informative to assess
model performance relative to the average
asset returns on which the model was trained.
During the start of the corona crisis, the 30
largest stocks in the S&P500 index exhibited
a decline of -6.60%, while the overall S&P500
index experienced a decline of -4.04%. These
results suggest that relative model perfor-
mance might be even better than initially
reported. To gain a better understanding
of model performance, training and testing
can be applied on S&P500 index data alone.
To implement this approach, one would train
and test a model on an Exchange Traded
Fund (ETF) designed to emulate the price
movements of the S&P500 index, rather than
relying on training the model on each of the
500 stocks individually. It is worth noting
that the S&P500 index is widely considered
to be a benchmark, and as such, Brim’s com-
parison is reasonable. Nevertheless, to ob-
tain a more precise assessment of model per-
formance, the adjustments mentioned earlier
may be helpful.

3. Improved model: Brim et al. utilized a
Reinforcement Learning model called a Dou-
ble Deep Q-learning Network (DDQN) (Van
Hasselt et al. 2016) . This model can be sig-
nificantly improved by applying prioritized
sampling methods (Schaul et al. 2015) and
by separating the DDQN into two streams
- one for estimating the state value and one
for estimating the action value (Wang et al.
2016) . Hence, Brim’s original model could
potentially be improved through the inte-

gration of prioritized sampling techniques in
conjunction with a dueling architecture. We
refer to this model as the Prioritized Replay
Dueling DDQN (PRD-DDQN).

In our study, we integrate the aforementioned sen-
sitivity analysis and three areas of improvement
into our experimental design, and subsequently
evaluate whether similar outcomes to those
reported by Brim et al. can be achieved. If this
is the case, it would suggest that technical anal-
ysis has the potential to generate above-average
returns consistently, in the context described by
Brim et al. that is. To execute the sensitivity
analysis, we train 100 models of the same type (ei-
ther DDQN or PRD-DDQN) with varying initial
weight parameter configurations. This allows us to
evaluate the impact of initial parameter settings on
the predictive capabilities of a given model type.
A comprehensive account of the executed experi-
ments is presented in the Methodology section. To
enable a comparative analysis of our findings with
those of Brim et al., Equation 1 can be used.

Ri = ΠT
t=1(1 + ai,tyt)− 1 (1)

In this equation, T denotes the final day of test-
ing and yt is the daily percentage change in stock
price from day t− 1 to day t. The resulting cumu-
lative return, Ri, is the geometric return on day
T for model i. In order to gauge the overall per-
formance per model type, we calculate the Average
Geometric Return, R̄, by taking the average of the
geometric returns of all models on day T , as indi-
cated in Equation 2, in which 100 denotes the total
number of models tested.

R̄ =
1

100

100∑
i=1

Ri (2)

We selected the Average Geometric Return (Equa-
tion 2) as the performance metric for the experi-
ments, which addresses the following research ques-
tion:

To what extent can technical analysis be employed
to achieve sustained above-average returns when
converting stock data into candlestick charts and

University of Twente | MDS 3

University of Twente F. Tuininga

subsequently utilizing it as input for a
Reinforcement Learning model to forecast the

percentage price movement of a stock from one
trading day to the next?

The original study by Brim et al. could be en-
hanced by incorporating a sensitivity analysis on
parameter initialization, using a non-crisis test set,
exclusively utilizing S&P500 index data for com-
paring performance, and improving the
DDQN model by implementing Prioritized sam-
pling and a Dueling architecture. The primary
objective of our research is to contribute to the
scientific body of knowledge by evaluating whether
the specific form of technical analysis as described
by Brim et al. can consistently generate above-
average returns. Our research aims to evaluate
the conclusion drawn in the original study (Brim
et al. 2022) , which claims that a DDQN model
outperforms the S&P500 index when tested during
the start of the corona crisis (January 1st, 2020 to
June 30th, 2020) and to evaluate whether a DDQN
model is capable of outperforming the S&P500 in-
dex in a non-crisis period. It should be noted that
in this context, outperforming the S&P500 index
refers to generating returns superior to those ob-
tained through the strategy of taking a long posi-
tion in the S&P500 index on a daily basis and accu-
mulating the resulting returns over time. The pro-
posed methodology aims to extend and improve
upon the work of Brim et al., thereby evaluating
the feasibility of an alternative model that may
provide superior results compared to the original
model. If successful, this alternative model may
have practical implications and could potentially
be used in real-world algorithmic trading. The
research may demonstrate the potential of deep
learning methods in finance, encouraging further
research in this area to explore untapped poten-
tial in the financial sector.

The remainder of work is structured as follows:
in the Theoretical Framework section, a compre-
hensive literature search is conducted to identify
related works and relevant studies, which are then
discussed in detail. Furthermore, this section ad-
dresses the gaps in existing literature that we aim
to fill. The Methodology section presents a detailed
argumentation and layout of all experiments. The

Results section presents a clear and concise overview
of the observations made during research, using
appropriate visual aids and statistical analyses where
necessary. The Discussion section presents an in-
depth interpretation of the results, along with a
discussion of potential opportunities for future re-
search. Furthermore, the Discussion discusses the
possibility of replacing the CNN by other deep
learning models. Finally, the Conclusion section
summarizes the main findings of the study and
draws appropriate conclusions.

2 Theoretical Framework

In this section, we first describe the various ways
in which deep learning is applied within the fi-
nancial sector in general. Subsequently, we focus
on a specific deep learning algorithm known as a
Double Deep Q-learning Network (DDQN) and its
applications within finance. The aim is to demon-
strate the ways in which deep learning in general
and specifically a DDQN are relevant to the finan-
cial sector. Next, we examine the article Deep Re-
inforcement Learning Stock Market Trading, Uti-
lizing a CNN with Candlestick Images (Brim et
al. 2022) . We describe the research, its relevance
to the literature, potential areas for improvement,
and the value that such improvements would add
to the existing body of knowledge. The mathe-
matics behind the techniques used is discussed in
the Methodology section.

2.1 Applications of Deep Learning in
Finance

Deep learning is a subset of machine learning which
revolves around deep neural networks. These neu-
ral networks are designed to process data and can
learn to identify patterns on their own, thereby en-
abling them to provide accurate predictions (Good-
fellow et al. 2016) . Their widespread applicabil-
ity is seen in domains such as image recognition,
natural language processing, and speech recogni-
tion. The article entitled Sequence classification
for credit-card fraud detection (Jurgovsky et al.
2018) , employs a Long Short-Term Memory (LSTM)
model to detect credit card fraud. The LSTM
is a deep learning model which has the ability
to analyze time series data. The dataset used in

University of Twente | MDS 4

University of Twente F. Tuininga

this research is composed of real-world credit card
transactions, which are classified as either fraud-
ulent or legitimate. The study evaluated model
performance on two types of transactions: online
(e-commerce) and offline (point-of-sale or face-to-
face) transactions. LSTM and Random Forest mod-
els were applied to the dataset to predict fraudu-
lent transactions. The findings suggest that ap-
plying an LSTM greatly improves the accuracy of
fraud detection in comparison to Random Forest
for offline transactions. However, for online trans-
actions, utilizing an LSTM does not enhance the
predictive power of the model beyond that of Ran-
dom Forest. Overall, the study contributes to the
field of fraud detection by highlighting the impor-
tance of transaction history in identifying fraudu-
lent credit card transactions, and emphasizes the
potential of the LSTM in this area.
The paper titled A Deep Reinforcement Learning
Framework for the Financial Portfolio Manage-
ment Problem (Jiang et al. 2017) presents an ap-
proach to portfolio management by utilizing deep
reinforcement learning. Reinforcement learning in-
volves the iterative process of trial-and-error where
the model interacts with an environment to learn a
strategy that maximizes the accumulated reward.
The proposed model employs a deep neural net-
work to determine the optimal allocation of capi-
tal among 12 different cryptocurrencies in a port-
folio. The objective is to compare the performance
of the deep reinforcement learning-based model
with traditional portfolio management techniques
in terms of profitability. The results of the study
indicate that the proposed model outperforms all
surveyed traditional portfolio-selection methods in
terms of profitability. This demonstrates the effi-
cacy of deep reinforcement learning in finance and
highlights the potential of this approach for opti-
mizing portfolio management strategies.

2.2 Double Deep Q-learning Network

A specific application of deep reinforcement learn-
ing is the Double Deep Q-learning Network
(DDQN) (Van Hasselt et al. 2016) . The DDQN
algorithm is rooted in Q-learning and involves an
agent that interacts with an environment. The
environment can be seen as a video game and the
agent can be seen as a player. The current situ-
ation in which the agent finds itself is called the

state. At each state, the agent selects an action,
and the environment generates a reward and a new
state based on this action. Q-learning iteratively
approximates a value assigned to each state-action
pair to determine the best actions to take in each
state. The value assigned to each state-action pair
is called the Q-value and is determined by the ex-
pected cumulative reward. The set of the best
actions given the states is called the policy. As
the agent interacts with the environment, it learns
from its previous experiences and adjusts its be-
havior to maximize its long-term reward. The Q-
learning algorithm is guaranteed to converge to an
optimal solution (Watkins et al. 1992) .
Q-learning becomes computationally expensive when
the state and/or action space becomes too large,
rendering the algorithm impractical. The Q-learning
algorithm involves the storage of Q-values in a tab-
ular format, with each individual state-action pair
assigned a corresponding entry in the table. As the
state or action space grows in size, the table storing
the Q-values expands as well, ultimately resulting
in a computational burden that renders it imprac-
tical for use. The DDQN overcomes the issue of
a large state space by utilizing neural networks.
The DDQN algorithm employs neural networks to
approximate Q-values and generalize over states.
The DDQN algorithm has been effectively applied
in various financial applications, such as portfolio
optimization and algorithmic trading. The paper
A deep Q-learning portfolio management frame-
work for the cryptocurrency market (Lucarelli et
al. 2020)
presents an approach of using DDQNs to man-
age portfolios. In the context of finance, a port-
folio refers to a collection of securities, such as
stocks, held by an individual or a computer pro-
gram. The objective of portfolio management is
to allocate capital to investments that are antic-
ipated to experience the greatest appreciation in
value. The paper proposes a framework that in-
tegrates DDQNs with portfolio management. The
framework is composed of two key components: (i)
a set of local DDQN agents that are responsible
for trading individual assets in the portfolio and
(ii) a global agent that assigns rewards to each lo-
cal agent based on a common reward function (i.e.
global reward). While the local DDQN agents are
tasked with determining an effective trading strat-

University of Twente | MDS 5

University of Twente F. Tuininga

egy for a particular asset, the global DDQN agent
assumes the responsibility of optimally allocating
capital across all local DDQN agents to enhance
returns while minimizing the potential risk of in-
curring significant losses. This Q-learning portfo-
lio management approach is evaluated on a port-
folio comprised of four popular cryptocurrencies:
Bitcoin, Litecoin, Ethereum, and Ripple. The per-
formance of the deep Q-learning agent is compared
against several benchmark strategies (such as buy-
and-hold strategy and a mean-variance optimiza-
tion) to assess its efficacy in generating returns
on investment and managing risk. The results of
the analysis demonstrate that the deep Q-learning
agent outperforms the benchmark strategies in both
return on investment and risk-adjusted returns,
thus providing a useful approach for financial port-
folio management utilizing DDQNs for trading cryp-
tocurrencies.
In addition, DDQNs have been utilized in the field
of algorithmic trading to improve the performance
of investment strategies. The paper entitled Hy-
brid Deep Reinforcement Learning for Pairs Trad-
ing (Cartea et al. 2021) investigates the use of
DDQNs for pairs trading. Pairs trading is a sta-
tistical arbitrage strategy that exploits the short-
term price divergences between two assets that
have historically moved together. In the stock
market, pairs traders simultaneously open a short
position in an overvalued stock and a long posi-
tion in an undervalued stock. Once the prices of
the two stocks converge, the positions are closed
by taking opposite positions, which results in a
profit.
To evaluate the effectiveness of the proposed al-
gorithm, the authors chose to test it on twenty
stock pairs. The proposed algorithm utilizes one
DDQN for trading actions, specifically for deter-
mining whether to take a long or short position,
while the another DDQN was used to determine
stop-loss boundaries, which dictate at which price
stock positions will be closed. The authors com-
pared the performance of the proposed algorithm
with state-of-the-art reinforcement learning meth-
ods for pairs trading.
The results of the experiment showed that the pro-
posed algorithm achieved an average return rate
of 82.4%, which is 25.7% higher than that of the
second-best method. Furthermore, the proposed

algorithm yielded significantly positive return rates
for all stock pairs. Therefore, the use of DDQNs in
pairs trading can lead to more effective investment
strategies that take advantage of short-term price
divergences between closely related stocks.

2.3 DDQN for Stock Trading

In the article titled Deep Reinforcement Learn-
ing Stock Market Trading, Utilizing a CNN with
Candlestick Images (Brim et al. 2022) , a Convo-
lutional Neural Network (CNN) is employed in a
DDQN framework. The approach involves trans-
forming historical stock data into images, and
subsequently using a DDQN in conjunction with
a CNN to identify meaningful patterns in these
images, and using this information to predict the
best action to take with regards to price move-
ments from day t to day t+1. This method is used
to develop a trading policy that the authors claim
could outperform the market during the corona
crisis (January 1st, 2020 to June 30th, 2020).

To confirm that Brim et al. identified a unique
area of research in the application of a DDQN in
conjunction with candlestick images for stock trad-
ing, a citation search we conducted. This revealed
no prior relevant research was conducted in this
particular domain.
Despite the impressive results achieved by Brim et
al., there is a possibility that their findings are a
product of chance. Notably, the absence of a sensi-
tivity analysis to assess the impact of initial weight
parameters makes it unclear whether the DDQN
successfully identified meaningful relationships be-
tween features and the target. Hence, a sensitiv-
ity analysis on parameter initialization could be
implemented to boost the credibility of results.
After all, without a sensitivity analysis the find-
ings could be the result of favorable initial pa-
rameter settings. Furthermore, it is possible that
the model may demonstrate exceptional perfor-
mance solely during periods of crisis. Hence, the
model must be tested during periods of non-crises
as well. In addition, the model is trained on a
sub-set of S&P500 data while being compared to
the entire S&P500 index. To obtain a more com-
prehensive understanding of model performance,
the model can be exclusively trained and tested
on the S&P500 index data set. Lastly, the DDQN

University of Twente | MDS 6

University of Twente F. Tuininga

can be improved through the integration of prior-
itized sampling techniques in conjunction with a
dueling architecture.
First, we will investigate the notion of prioritized
sampling. In a standard DDQN, an agent actively
interacts with its environment and captures four
essential components of the exchange. These com-
ponents are the current state, the action taken, the
immediate reward, and the next state achieved.
The agent then stores this information in its Re-
play Buffer for later use. Following the interaction
with the environment, the agent randomly samples
pieces of information from Replay Buffer. Ran-
dom sampling allows the agent to learn from pre-
vious experiences, however, not all interactions are
equally valuable for the agent’s learning process re-
garding the identification of relationships between
features and target. When an agent made a cor-
rect prediction regarding which action to take on
a specific day, then that interaction may not offer
significant learning opportunities, as there are no
significant updates required to change the agents
behavior in that situation. In contrast, when an
agent makes incorrect predictions, the specific in-
teraction offers valuable learning opportunities, as
the agent can update its knowledge and improve
its predictions. An incorrect prediction is charac-
terized by the model taking a long position while
the S&P500 index declines, a short position while
the index increases or taking no position. In the-
ory, the act of taking no position can be considered
’correct’ if there is no change in the price of the
S&P500 index from day t to day t + 1. However,
in practice, this scenario is exceedingly rare. No-
tably, taking no position is preferable to taking a
long position while the S&P500 index decreases or
taking a short position while the index increases.
If the model is uncertain about the optimal action
to take, it may choose to take no position and min-
imize the magnitude of an erroneous prediction. In
the paper Prioritized experience replay (Schaul et
al. 2015) , the authors suggest ranking elements in
Replay Buffer based on their prediction accuracy.
When the agent interacts with its environment,
each element in Replay Buffer is assigned a prob-
ability based on the quality of its prediction, with
poorly predicted elements receiving higher proba-
bilities and well-predicted elements receiving lower
probabilities. Subsequently, when the DDQN fin-

ishes its interaction with the environment and be-
gins sampling elements from Replay Buffer, ele-
ments with higher probabilities are more likely to
be sampled than those with lower probabilities.
Consequently, the model is updated mostly based
on its worst predictions, where it stands to gain
the most. The authors applied a DQN with Prior-
itized Sampling to Atari games and achieved supe-
rior results when compared to the standard DQN
with uniform replay.
The introduction of Prioritized Sampling signifi-
cantly enhances the performance of a DQN and,
by extension, a DDQN (Schaul et al. 2015) . As
a result, Prioritized Sampling has been acknowl-
edged as a valuable extension to the conventional
DDQN approach.
Let us now discuss the Dueling DDQN (Wang et
al. 2016) . In comparison to a conventional DDQN,
a Dueling DDQN evaluates the value of individual
states and actions as opposed to merely assessing
state-action pairs.

Figure 2: Illustration of a Dueling Architecture,
which splits the final linear layer into two streams: one
for estimating the action value and the other for esti-
mating the state value (Wang et al. 2016)

Figure 2 shows the dueling architecture. The top
architecture represents a conventional DDQN,
whereas the bottom architecture represents a du-
eling DDQN. Note that the dueling architecture
splits the linear layers in two streams of which the
upper layers are dedicated to estimating individ-
ual state values, and the lower layers dedicated to
estimating individual action values. The aggrega-
tion of state and action values, as described by
Equation 3, is illustrated by the green lines.

University of Twente | MDS 7

University of Twente F. Tuininga

Q(s, a) = V (s) +

(
A(s, a)− 1

|A|
∑
a′

A(s, a′)

)
(3)

In here, V (s) and A(s, a) refer to the individual
state and action value learned. The results pre-
sented by the authors in Dueling network archi-
tectures for deep reinforcement learning (Wang et
al. 2016) exhibit that the Dueling DDQN model
surpasses other state-of-the-art models, including
the conventional DDQN, in the Atari 2600 domain.
Such findings suggest that the Dueling DDQN could
potentially outperform a standard DDQN model
in other contexts as well. Furthermore, the au-
thors note that the dueling architecture is char-
acterized by a more efficient learning process, as
it allows for the independent evaluation of states
and actions. As a consequence, the dueling archi-
tecture is a valuable extension to the conventional
DDQN approach.

2.4 Contribution to Literature

This study contributes to the existing body of
knowledge in two ways. First, we made improve-
ments to the experimental setup as proposed by
Brim et al. Specifically, our approach involves
training and testing the algorithm on the S&P500
index and comparing its performance to the over-
all performance of the S&P500 index. Second, our
modified algorithm is also applied to a non-crisis
period, thus augmenting our understanding of its
performance during both crisis and non-crisis pe-
riods. The implementation of these changes serves
to enhance the credibility of the claims made by
Brim et al. Secondly, the standard DDQN as de-
scribed by Brim et al. is adjusted by implementing
a Dueling architecture in combination with Prior-
itized Sampling. This Prioritized Replay Dueling
DDQN (PRD-DDQN) is compared with a stan-
dard DDQN in terms of Average Geometric Return
(see Introduction). The aim of this comparison is
to ascertain whether the PRD-DDQN outperforms
a standard DDQN. If so, the former algorithm can
be seen as a viable alternative to the latter in this
specific context.

Our study makes two contributions to the scien-
tific body of knowledge. First, the research ap-

proach of Brim et al. is improved by conducting a
sensitivity analysis, applying the models on non-
crisis data, and training and testing on S&P500
index data instead of individual stocks. These im-
provements contribute to literature by addressing
potential limitations in the research of Brim et
al. and by providing a more comprehensive un-
derstanding of model performance. Second, the
standard DDQN, as described by Brim et al., is
compared to the PRD-DDQN. The goal is to ex-
amine whether or not the PRD-DDQN is able to
systematically outperform the standard DDQN in
the context as described by Brim et al. This con-
tributes to literature by exploring the effectiveness
of the PRD-DDQN in conjunction with candlestick
images for stock trading.

3 Methodology

The research methodology comprises two distinct
phases. In the first phase, the data is imported and
subjected to preprocessing procedures. In the sec-
ond phase, a series of four experiments, as outlined
in Table 1, are carried out for both Brim’s original
Double Deep Q-learning Network (DDQN) (Brim
et al. 2022) and the Prioritized Replay Dueling
Double Deep Q-learning Network (PRD-DDQN).
The comparative analysis of the outcomes is based
on the Average Geometric Return.

Ex. Validation Test
1 - [01/01/2020, 30/06/2020]

2 - [01/01/2021, 31/12/2021]

3 [01/01/2012, 31/12/2012] [01/01/2020, 30/06/2020]

4 [01/01/2012, 31/12/2012] [01/01/2021, 31/12/2021]

Table 1: Summary of Experimental Design: Four ex-
periments were conducted utilizing the identical train-
ing set (January 1st, 2013 to December 31, 2019) while
employing varying test sets. Experiments 3 and 4 in-
corporate a validation set.

3.1 Phase 1: Data Transformation

The research commences with the first phase, which
follows the approach as described by Brim et al.
This phase involves the extraction of Standard and
Poor’s 500 index (S&P500 index) data from Yahoo
Finance. The data is divided into four distinct
time periods, which include the training set, test

University of Twente | MDS 8

University of Twente F. Tuininga

set 1, test set 2, and validation set. The follow-
ing S&P500 index data is retrieved from Yahoo
Finance for the respective time periods:

1. Train set: [01/01/2013, 31/12/2019]

2. Test set 1: [01/01/2020, 30/06/2020]

3. Test set 2: [01/01/2021, 31/12/2021]

4. Validation set: [01/01/2012, 31/12/2012]

The retrieved data contains several variables which
are the same for all sets. To be more specific,
the variables ‘date’, ‘open’, ‘high’, ‘low’, ‘close’,
‘adj close’, and ‘volume’ are included. The vari-
ables ‘open’, ‘high’, ‘low’, and ‘close’ refer to the
price of the stock at the beginning of the day, the
highest price reached during the day, the lowest
price reached during the day, and the price at the
end of the day, respectively. Notably, ‘close’ differs
from ‘adj close’ in that the latter accounts for any
dividend or capital gain distributions, while the
former does not, although both adjust for stock
splits. Lastly, ‘volume’ denotes the number of
shares traded during the day. Candlestick charts
represent price movements of a stock and display
four price points for each time period: open, close,
high and low price (Lee et al. 1999) . To generate
candlestick charts and daily percentage changes,
the ‘date’, ‘adj close’, and ‘volume’ columns are
irrelevant and are therefore removed from the data
set.
The graphical representation of financial data,
known as candlesticks, provides insight into the di-
rection and magnitude of price movements within
a given time frame. Figure 3 illustrates the man-
ner in which candlesticks convey both positive and
negative price changes. Specifically, when the
‘open’ price exceeds the ‘close’ price, the associ-
ated stock experienced a negative movement dur-
ing the designated time-period. Conversely, when
the ‘close’ price exceeds the ‘open’ price, the cor-
responding stock underwent a positive movement
during that same time-period. Utilizing candle-
stick patterns as the basis for an investment strat-
egy represents a form of technical analysis, whereby
statistical trends in past price movements are ana-
lyzed to predict future price movements. However,
according to Hull, there is limited evidence that
technical analysis can consistently generate above

average returns. Instead, the book argues that
stock price behavior is more accurately character-
ized by a stochastic process known as geometric
Brownian motion (Hull 2003) , which is expressed
in Equation 4.

St = S0 · e(µ−
σ2

2
)t+σ2z(t) (4)

The variables in Equation 4, namely St, S0, µ, σ,
and z(t), represent the stock price at time t, the
stock price at the start of the period (i.e. t = 0),
the drift rate, the volatility, and a standard nor-
mal random variable, respectively. The standard
normal random variable represents the random-
ness of price movements. Note that asset prices
are dependent on each other (i.e. St+1 depends on
St). Our study assesses the potential of a specific
technical analysis method, as described by Brim et
al., to consistently generate above-average returns.
Our analysis seeks to either support this assertion
or provide evidence that challenges Hull’s claim.

Figure 3: A visual representation of negative and pos-
itive candlesticks commonly used in financial analysis.
The candlesticks are color-coded, with black and gray
representing negative and positive stock movements,
respectively. (Investopedia 2021)

Our study seeks to evaluate Hull’s assertion re-
garding the efficacy of technical analysis in produc-
ing consistent above-average returns. To do so, we
adopt the methodology put forth by Brim et al. for
assessing the potential of candlestick charts com-
bined with deep learning to generate such returns.
Within the scope of our analysis, trades are lim-
ited to a single day, with each candlestick on the
chart corresponding to the price variations of the
S&P500 index within that one day. In line with
the methodology outlined by Brim et al., the study

University of Twente | MDS 9

University of Twente F. Tuininga

incorporates 28 trading days for the candlestick
chart. This implies that the previous 28 trading
days are represented by a candlestick plot to deter-
mine the optimal position to take in order to max-
imize profit, given the percentage change in stock
prices between the close of today and tomorrow.
Consequently, the candlestick charts employed in
this study conform to the structure delineated in
Figure 4. The candle body is 3 pixels wide, while
the wicks are 1 pixel wide. The height reflects
price movements, and candle color represents up-
ward and downward movements - gray indicates
an up trend, and black denotes a downward trend.

Figure 4: Daily high, low, open, and close stock prices
are converted to a candlestick image. Gray candles in-
dicate upward price movement, and black candles indi-
cate a downward price movement. (Brim et al. 2022)

Candlestick charts are utilized as input data for
a CNN in order to predict the best action to take
given future price movements. The primary objec-
tive of the CNN is to analyze patterns between the
input data and output data, where the output data
represents price movements expressed as a per-
centage. This output data is calculated as the per-
centage change in the closing price of the next day
in comparison to the current day’s closing price.
Equation 5 shows this principle, in which ‘Closei’,
‘Closei−1’ and ‘yi’ refer to the close price of day i,
the closing price of the previous day (i−1), and the
percentage change observed on day i, respectively.

yi =
Closei − Closei−1

Closei−1
(5)

The preference for using percentages over absolute
price movements arises from the exponential na-
ture of stock market price trends, rendering the
prediction of absolute price movement therefore
considerably more challenging. In addition, in-
vestors prefer relative returns over absolute returns.

In this regard, the approach of Brim is followed in
which only percentage changes are considered.
The candlestick charts represent a historical depic-
tion of price movements over a period of 28 days,
and the CNN is tasked with interpreting these pat-
terns to generate useful predictions.
The creation of charts involves the transformation
of raw data into images. Resulting images exhibit
a 3-pixel width for each candlestick body and 1-
pixel width for each wick, a configuration that
aligns with the study by Brim et al. This approach
guarantees that the images remain as compact as
possible while still preserving all the pertinent in-
formation. It is key to keep images as compact
as possible to reduce computation time. As the
method relies on the previous 28 trading days, and
each candlestick body is 3 pixels wide, the result-
ing candlestick images are of dimensions 3 ∗ 28 =
84 pixels, both in height and width. To estab-
lish a consistent visual representation, candlesticks
are scaled over 84 pixels in the vertical dimension
which is in accordance with Brim et al. The rela-
tive highest and lowest positions of the chart are
determined by the candle with the highest wick
and the candle with the lowest wick, respectively.
Furthermore, it is worth noting that a distinctive
color scheme is employed in this study, wherein
every positive candle is depicted using the color
code rgb(105, 105, 105), while negative candles are
represented by the color code rgb(0, 0, 0) and the
background color is represented by rgb(255, 255,
255) as in accordance with Brim et al.

To illustrate the process by example, consider Ta-
ble 2 which focuses on S&P500 index data re-
trieved from Yahoo Finance. A candlestick chart
is generated using 28 trading days, starting from
row 1 up and until row 28. The daily change be-
tween rows 28 and 29 is then calculated based on
the closing price, using Equation 5:
(3916.38−3909.88)

3909.88 ≈ 0.17%. Subsequently, the next
candlestick chart is generated, spanning from row
2 up to 29, and the associated output value is
calculated as 0.47%. Candlestick charts are con-
structed up and until row 30 and the percentage
change is calculated up and until row 31. In this
example, three candlestick charts with correspond-
ing daily changes are constructed. It is important
to observe that every candlestick chart displays a
total of 28 candles corresponding to the price fluc-

University of Twente | MDS 10

University of Twente F. Tuininga

tuations of the preceding 28-day period.

The process of constructing the train, test 1, test
2, and validation sets follow a similar methodology
as illustrated in the preceding example. The train,
test 1, test 2, and validation sets comprise a total
of 1764, 127, 253, and 250 candlestick charts, each
accompanied by their subsequent daily change. The
set of candlestick charts employed as the input for
a CNN is denoted as X, while the set of associated
daily changes expressed in percentages is denoted
as y. The code employed to generate the candle-
stick charts, accompanied by the computation of
daily changes, has been presented in Appendix A.

Day Open High Low Close
1 3,733.27 3,760.20 3,726.88 3,756.07
2 3,764.61 3,769.99 3,662.71 3,700.65
3 3,698.02 3,737.83 3,695.07 3,726.86
4 3,712.20 3,783.04 3,705.34 3,748.14
5 3,764.71 3,811.55 3,764.71 3,803.79
6 3,815.05 3,826.69 3,783.60 3,824.68
7 3,803.14 3,817.86 3,789.02 3,799.61
8 3,801.62 3,810.78 3,776.51 3,801.19
9 3,802.23 3,820.96 3,791.50 3,809.84
10 3,814.98 3,823.60 3,792.86 3,795.54
11 3,788.73 3,788.73 3,749.62 3,768.25
12 3,781.88 3,804.53 3,780.37 3,798.91
13 3,816.22 3,859.75 3,816.22 3,851.85
14 3,857.46 3,861.45 3,845.05 3,853.07
15 3,844.24 3,852.31 3,830.41 3,841.47
16 3,851.68 3,859.23 3,797.16 3,855.36
17 3,862.96 3,870.90 3,847.78 3,849.62
18 3,836.83 3,836.83 3,732.48 3,750.77
19 3,755.75 3,830.50 3,755.75 3,787.38
20 3,778.05 3,778.05 3,694.12 3,714.24
21 3,731.17 3,784.32 3,725.62 3,773.86
22 3,791.84 3,843.09 3,791.84 3,826.31
23 3,840.27 3,847.51 3,816.68 3,830.17
24 3,836.66 3,872.42 3,836.66 3,871.74
25 3,878.30 3,894.56 3,874.93 3,886.83
26 3,892.59 3,915.77 3,892.59 3,915.59
27 3,910.49 3,918.35 3,902.64 3,911.23
28 3,920.78 3,931.50 3,884.94 3,909.88
29 3,916.40 3,925.99 3,890.39 3,916.38
30 3,911.65 3,937.23 3,905.78 3,934.83
31 3,939.61 3,950.43 3,923.85 3,932.59

Table 2: Example S&P500 index Data in USD

3.2 Phase 2: Experiment Setup

The second phase of our study comprises of four
experiments as illustrated in Table 1. Prior to
the presentation of these experiments, an elabo-
ration on several key concepts is provided, namely
Convolutional Neural Networks (CNNs), Double
Deep Q-learning Networks (DDQNs), and Priori-
tized Replay Dueling Double Deep Q-learning Net-
works (PRD-DDQNs).

3.2.1 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a deep
learning model which is used for image recognition.
The fundamental building blocks of a CNN include
three distinct types of layers: convolutional layers,
pooling layers, and linear layers. These layers work
together to identify important patterns in the pro-
vided image which are then subsequently leveraged
to formulate predictions.

Figure 5: CNN Architecture as described by Brim et
al., where the colors red, blue, and yellow indicate the
convolutional, pooling, and linear layers, respectively.
The first, second, and third convolutional and pooling
layer each contain 8, 16, and 32 channels, respectively.

Figure 5 is a visualization of the CNN architecture
as described by Brim et al. As shown, the CNN is
initially presented with a candlestick image. Sub-
sequently, as the image traverses through the CNN
from left to right, it undergoes a series of transfor-
mations, progressively modifying the input. Upon
reaching the final linear layer, the depth dimension
is eliminated, and the CNN produces a set of three
Q-values that correspond to each possible action.

3.2.2 Double Deep Q-learning Network

A Double Deep Q-learning Network (DDQN) is a
reinforcement learning model utilized to determine
good actions in a particular environment, yet be-
fore delving into the details of the DDQN, it is
imperative to clarify the fundamental principles of
Q-learning.
The Q-learning algorithm involves an agent and an

University of Twente | MDS 11

University of Twente F. Tuininga

environment. The agent can be seen as an investor
and the environment can be seen as the stock mar-
ket. The situation the agent finds itself in is called
a state. The agent interacts with its environment
by taking actions in a given state. The environ-
ment responds by generating a reward and a next
state that the agent transitions to. This concept
is visualized in Figure 6.

Figure 6: Interaction between Agent and Environ-
ment (LeCun et al. 2015)

The rewards accumulate over time and the objec-
tive of the agent is to find the best action to take in
each state such that the discounted long-term re-
ward is maximized. To achieve this, the Q-learning
algorithm assigns a Q-value to each state-action
pair and stores them in a Q-table. The Q-value
represents the value of a state-action pair. The
Q-learning algorithm is guaranteed to converge in
the limit to an optimal solution (Watkins et al.
1992) .
In the context of Q-learning, an agent must effec-
tively balance the competing goals of exploration
and exploitation. Exploration is characterized by
randomly selecting actions in order to avoid be-
coming trapped in local optima. As an off-policy
method, Q-learning learns the value of a policy
while following a different policy, in contrast to on-
policy methods like SARSA that learn the value
of a policy while following that policy. This differ-
ence implies that the impact of exploration on the
policy discovered in Q-learning is more dampened
than in on-policy methods. Exploitation involves
choosing the best known action in a given state to
optimize outcomes. Successful outcomes in an en-
vironment often require a balanced approach that
combines both exploration and exploitation. The
idea is to visit state-action pairs of high quality on
a regular basis, in order to obtain accurate sample
estimates, while also allowing for the discovery of
even better state-action pairs.

A good approach involves utilizing exploration to
discover new possibilities and exploitation to refine
and optimize existing knowledge. Numerous meth-
ods exist to achieve this balance, but in our study,
we employ an exponentially decaying epsilon-greedy
approach. Let epsilon represent the probability
that the agent takes a random action. An expo-
nentially decaying epsilon (where ϵ > 0.5) implies
prioritizing exploration at the beginning of played
games, with the epsilon decreasing exponentially
as the number of played games progresses. Con-
sequently, the agent increasingly emphasizes ex-
ploitation in later games. To ensure continued ex-
ploration, a minimum exploration rate of 10% was
used. The base number used for exponentially de-
caying exploration rate was set at c ≈ 0.998.
Let ϵ denote the exploration rate, where larger val-
ues imply a greater probability of exploration and
smaller values imply a greater probability of ex-
ploitation. Additionally, let c be a real number
between 0 and 1 representing the rate at which
the model gradually shifts from exploration to ex-
ploitation, and let epoch represent the agent’s cur-
rent game. Equation 6 illustrates the calculation
of epsilon when applying exponential decay.

ϵ = max{cepoch, 0.1}, c ∈ R(0,1) (6)

Algorithm 1 shows how the Q-learning algorithm
works in detail.The symbol η herein denotes the
learning rate, which characterizes the size of the
steps taken by the algorithm towards a solution.
Additionally, γ represents the discount rate, which
serves to diminish the weight of future rewards and
place greater emphasis on present rewards.
For all its advantages, Q-learning does have a sig-
nificant drawback. As the state or action space
increases, the computation time required for the
Q-learning algorithm to converge increases signif-
icantly. As a result, if either the state or action
space becomes too large, the Q-learning algorithm
does not converge in reasonable time. As previ-
ously stated, our study employs candlestick images
as input for a CNN. Candlestick images come in
many forms, and are viewed as states in our study.
As a consequence, the size of the state space be-
comes very large, rendering the use of simple Q-
learning infeasible.
The DDQN algorithm was created to solve the
problem of handling a large state space. This al-
gorithm outputs the Q-values, but generalizes over

University of Twente | MDS 12

University of Twente F. Tuininga

Algorithm 1 Q-learning (Watkins et al. 1992)
1: Define: State and action space S and A, resp.
2: Initialize: Learning rate η, time step t, dis-

count rate γ, reward matrix R, number of
epochs N , base number used for exponentially
decaying exploration rate c, terminal state
T = False, and Q-table with zeros

3: for epoch in 1, ..., N) do:
4: Calculate: ϵ = max{cepoch, 0.1}
5: Initialize current state: s0
6: while T == False do:
7: Generate a random number p ∼ U(0, 1)
8: if p < ϵ then:
9: Explore: Take random action at

10: else:
11: Exploit: Take action at associated
12: with the greatest Q-value for this
13: state-action pair
14: end if
15: Observe next state st+1

16: Obtain reward rt(st, at) from reward
17: matrix R
18: Update Q-table:
19: Qnew(st, at)← Q(st, at)+
20: α · (rt(st, at) + γ ·maxaQ(st+1, a)
21: −Q(st, at))
22: Reset current state: st = st+1

23: t = t+ 1
24: if Final state is reached then:
25: T = True
26: end if
27: end while
28: end for

the state space with the aid of neural networks. By
utilizing a neural network the DDQN can calculate
Q-values in reasonable time.
The DDQN comprises of two steps, namely the
environment and update step. In the environ-
ment step, the agent interacts with its environ-
ment and collect valuable information. This infor-
mation consists of the current state, action taken,
obtained reward, and next state. This quadruple
is stored in the Replay Buffer. After the agent
has completed an epoch, the update step begins.
During this step, quadruples are randomly sam-
pled from the Replay Buffer, and neural networks
are updated based on these experiences and errors
in estimated and observed Q-values. This process

facilitates learning from past experiences and en-
hances the agent’s ability to make better decisions
in future interactions with the environment. To
learn from experience, the DDQN employs a loss
function and update method. In the context of
machine learning and optimization, a loss func-
tion evaluates the disparity between a model’s pre-
dicted output and the desired output, serving as
a measure of error or loss incurred by the model’s
predictions. The objective is to minimize the loss
function during training by iteratively adjusting
the model’s parameters. The DDQN algorithm
employs the Mean Squared Error (MSE) as loss
function, as depicted in Equation 7.

L(Qθ(st, at) = (Qθ(st, at)−Q∗(st, at))
2 (7)

The update method leverages the loss function to
iteratively update the model. In our investigation,
we adopt the ADAM update method (Goodfellow
et al. 2016) , renowned for its effectiveness in op-
timizing deep learning models. The DDQN algo-
rithm, is outlined in detail in Algorithm 2.

Algorithm 2 DDQN (Van Hasselt et al. 2016)
1: Define: State and action space S and A, resp.
2: Initialize: Learning rate η, time step t, dis-

count rate γ, reward function rt(st, at), num-
ber of epochs N , base number used for expo-
nentially decaying exploration rate c, terminal
state T , Replay Buffer D, batch size z, num-
ber of updates UPDATES, primary network
Qθ, and target network Qθ′

3: for epoch in 1, ..., N do:
4: Calculate: ϵ = max{cepoch, 0.1}
5: Initialize current state: s0
6: Set terminal state: T = False
7: while T == False do:
8: Generate a uniform number p ∈ (0, 1)
9: if p < ϵ then:

10: Explore: Take random action at
11: else:
12: Exploit: Take action at associated
13: with the greatest Q-value for this
14: state-action pair
15: end if
16: Observe next state: st+1

17: Obtain reward: rt(st, at)
18: Save: [st, at, rt(st, at), st+1] to D

University of Twente | MDS 13

University of Twente F. Tuininga

Algorithm 2 DDQN (Van Hasselt et al. 2016)
19: if Final state is reached then:
20: T = True
21: end if
22: t = t+ 1
23: end while
24: for update in UPDATES do:
25: Sample: z quadruples from D
26: Calculate:
27: Q∗(st, at) ≈ rt(st, at) + γ·
28: Qθ′(st+1, argmaxa′Qθ(st+1, a

′))
29: Calculate: L(Qθ(st, at)
30: Apply ADAM to update Qθ(st, at)
31: if (update+1) mod 100 == 0 then:
32: Update Qθ′ by learning from the
33: mistakes made
34: end if
35: end for
36: end for

Note that in the context of our study, rewards are
calculated as shown in Equation 8.

rt(st, at) = yt · at ·NRM (8)

In this equation, yt represents the percentage
change in the S&P500 index price from today to
tomorrow. The parameter at denotes the posi-
tion taken by the model, which is either a long
position (at = 1), no position (at = 0), or short
position (at = −1). The Negative Rewards Mul-
tiplier (NRM) is an additional parameter intro-
duced by Brim et al. to modify the impact of neg-
ative rewards. This constant is a positive integer
value that is multiplied exclusively with negative
rewards to encourage the model to take no posi-
tion in uncertain situations. However, Brim et al.
did not specify a particular value for the NRM in
their research. We have assumed an NRM of 1,
which implies that no penalty is applied to nega-
tive rewards.

3.2.3 Prioritized Replay Dueling DDQN

In contrast to the standard DDQN, the Prioritized
Replay Dueling DDQN (PRD-DDQN) applies pri-
oritized sampling and a dueling architecture. The
discussion will focus on prioritized sampling fol-
lowed by an examination of the dueling architec-
ture.

The drawback of random sampling in a standard
DDQN is that not all interactions are equally use-
ful for learning. When the agent makes a correct
prediction, the interaction does not offer signifi-
cant learning opportunities, whereas an incorrect
prediction provides valuable learning opportuni-
ties for the agent to update its knowledge and im-
prove its predictions.
The PRD-DDQN approach represents a significant
advancement over a standard DDQN, by introduc-
ing the notion of prioritized sampling. This tech-
nique enables the agent to focus on the most in-
formative interactions, which in turn improve its
overall learning process. To achieve this, the PRD-
DDQN assigns a probability to each quadruple
(st, at, rt(st, at), st+1) in its Replay Buffer, based
on the absolute difference between prediction and
target. This probability distribution is used to
selectively prioritize those interactions that pro-
vide the most valuable learning opportunities. Let
priority pi denote the absolute difference between
the prediction and target of observation i, and
let K represent the number of quadruples in Re-
play Buffer. The parameter α ∈ (0, 1) determines
the degree of prioritization applied, with a low
value indicating a uniform distribution, while a
high value indicates highly prioritized sampling.
Equation 9 was defined by Schaul et al. and shows
how the probability for each piece of information
in memory is calculated.

P (i) =
pαi∑K
k=1 p

α
k

(9)

Brim et al. employed a CNN in their research,
which culminated in a linear layer of three nodes.
Each node in this layer corresponds to a specific
action that can be undertaken by the neural net-
work, namely a long position, no position, or a
short position. The PRD-DDQN expands upon
this linear layer by introducing a dueling architec-
ture as illustrated in Figure 2. In here, the conven-
tional DDQN is shown on top, whereas the dueling
DDQN is shown below. As can be seen, the duel-
ing DDQN splits the linear layer into two streams:
a state-value stream (layers above) an action ad-
vantage stream (layers below). As the names sug-
gest, the action advantage stream aims to allocate
values to all possible actions, while the state-value

University of Twente | MDS 14

University of Twente F. Tuininga

stream assigns values to a specific state. By con-
sidering the values of the actions and states inde-
pendently, the dueling architecture is able to ana-
lyze them more than when considering only state-
action pairs. The aggregation of state and action
values, as described by Equation 3, is illustrated
by the green lines. This approach yields a deeper
understanding of the interactions between states
and actions, resulting in more meaningful insights.
Algorithm 2 shows how a PRD-DDQN functions
in which the changes with respect to Algorithm 2
are shown in blue.

Algorithm 3 DDQN (Van Hasselt et al. 2016)
1: Define: State and action space S and A, resp.
2: Initialize: Learning rate η, time step t, de-

gree of prioritization α, discount rate γ, re-
ward function rt(st, at), number of epochs N ,
base number used for exponentially decaying
exploration rate c, terminal state T , Replay
Buffer D, batch size z, number of updates
UPDATES, primary network Qθ, and target
network Qθ′

3: for epoch in 1,...,N do:
4: Calculate: ϵ = max{cepoch, 0} (6)
5: Initialize current state: s0
6: Set terminal state: T = False
7: while T == False do:
8: Generate a uniform number p ∈ (0, 1)
9: if p < ϵ then:

10: Explore: Take random action at
11: else:
12: Exploit: Take action at associated
13: with the greatest Q-value for this
14: state-action pair
15: end if
16: Observe next state: st+1

17: Obtain reward: rt(st, at)
18: Calculate:
19: Q∗(st, at) ≈ rt(st, at) + γ·
20: Qθ′(st+1, argmaxa′Qθ(st+1, a

′))
21: Calculate priorities pt = |Q∗(st, at)−
22: Q(st, at)|
23: Save: [st, at, rt(st, at), st+1, pt] to D
24: if Final state is reached then:
25: T = True
26: end if
27: end while
28: Calculate priority probabilities P (i) (8)

Algorithm 2 PRD-DDQN (Schaul et al. 2015;
Wang et al. 2016; Van Hasselt et al. 2016)
29: for update in 1,...,UPDATES do:
30: Sample (priority): z quintuples from D
31: with replacement
32: Calculate: Q∗(st, at)
33: Update: Qθ batch-wise
34: t = t+ 1
35: if (update+1) mod 100 == 0 then:
36: Update Qθ′

37: end if
38: end for
39: end for

3.2.4 Research Approach

As for the scope of our study, Brim et al. have not
provided a clear specification of model and exper-
iment parameter settings. Consequently, certain
assumptions have to be made in this regard. The
first assumption is regarding the CNN architecture
in which Brim et al. indicate that the CNN archi-
tecture consists of an input layer (84 x 84 pixels),
followed by three convolutional layers with 128,
256, and 512 neurons, respectively. The 128 neu-
rons in the first convolutional layer could suggest
that a kernel size of 4 was utilized in conjunction
with 8 channels (4 · 4 · 8 = 128). However, it could
also indicate that a kernel size of 8 was used with
2 channels (8 · 8 · 2 = 128). Similar uncertain-
ties apply to the other convolutional layers. We
assume that each layer employs a kernel size of
4 with 8, 16, and 32 channels, respectively. Addi-
tionally, Brim et al. did not clarify other pertinent
parameters. Consequently, it is assumed that the
Adam optimizer, Mean Squared Error (MSE) loss,
and a batch size of 64 were used (see Terminol-
ogy for an explanation of these terms). Further-
more, Brim introduced a variable referred to as
the Negative Rewards Multiplier (NRM), which is
used to scale negative rewards. This strategy pe-
nalizes inaccurate predictions and encourages the
model to exercise caution and sometimes choose
"no position" when uncertain. Brim did not dis-
close the specific value used for the NRM during
training. We assume an NRM of 1. In addition,
it is suggested that an enhanced experiment setup
could be achieved through the utilization of a se-
quential deep learning model instead of a convolu-

University of Twente | MDS 15

University of Twente F. Tuininga

tional neural network (CNN), which would elimi-
nate the need for data transformation into image
format and may produce superior results. In order
to ensure comparability with the results obtained
by Brim et al., it is imperative that we adhere to
the data transformation techniques utilized by the
aforementioned researchers. Hence, we make the
decision to retain the CNN and the candlestick im-
age input.
The study conducted by Brim et al. claimed that
a Double Deep Q-learning Network (DDQN) could
surpass the performance of the S&P500 index dur-
ing the period of January 1st 2020 to June 30th
2020. The purpose of our research is to validate
this claim and extend it to a non-crisis period. Ad-
ditionally, we introduce a new model called Prior-
itized Dueling Replay DDQN (PRD-DDQN) and
compare its performance with the standard DDQN.
We train both the standard DDQN and PRD-
DDQN on candlestick images obtained from the
S&P500 index data set spanning from January 1st
2013 to December 31st 2019, which is the same
time period as used by Brim et al. The training
procedure follows that of Brim et al. and entails
1,000 epochs. To assess the efficacy of the trained
models in learning meaningful relationships be-
tween features and targets, we subject both trained
and untrained PRD-DDQNs and DDQNs to test-
ing. If the performance of the untrained models
is comparable to that of the trained models, it
may indicate a failure of the trained models to
establish and exploit the necessary feature-target
relationships during the training phase. Finally,
we include the geometric returns of taking a long
position in the S&P500 index as a benchmark in
accordance with Brim et al.

Ex. Validation Test
1 - [01/01/2020, 30/06/2020]

2 - [01/01/2021, 31/12/2021]

3 [01/01/2012, 31/12/2012] [01/01/2020, 30/06/2020]

4 [01/01/2012, 31/12/2012] [01/01/2021, 31/12/2021]

Table 3: Summary of Experimental Design: Four ex-
periments were conducted utilizing the identical train-
ing set (January 1st, 2013 to December 31, 2019) while
employing varying test sets. Experiments 3 and 4 in-
corporate a validation set.

Our research methodology comprises four experi-
ments, as illustrated in Table 3. The objective of
each experiment is to undertake a sensitivity anal-
ysis and to assess the average performance of each
model type with regard to the Average Geomet-
ric Return metric. The sensitivity analysis entails
training and testing models with varying initial
weight parameter configurations on S&P500 in-
dex data. If these models fail to converge towards
a near optimal solution, it may be deduced that
they have not successfully identified a meaningful
relationship between the features and target. In
each experiment, we consider a trained DDQN, an
untrained DDQN, a trained PRD-DDQN, an un-
trained PRD-DDQN, and the geometric returns
generated by taking a daily long position in the
S&P500 index.
The trained DDQN and PRD-DDQN models are
constructed based on S&P500 index data, with the
training phase ranging between January 1st, 2013
and December 31st, 2019. Note that this is the
same training set as used by Brim et al. in their
study.
Experiments 1 and 3 utilize a testing set of S&P500
index data spanning from January 1st 2020 to June
30th 2020, which is the same testing period used
by Brim et al. Experiments 2 and 4 utilize a test-
ing set of S&P500 index data ranging from Jan-
uary 1st 2021 to December 31st 2021 in order to
include a non-crisis period during testing.
Our study employs a four-experiment design,
wherein 100 different initial weight parameter set-
tings are utilized for each model type (namely, un-
trained
DDQN, trained DDQN, untrained PRD-DDQN,
or trained PRD-DDQN). In Experiments 1 and 2,
these 100 models are tested, and the average per-
formance of each model type is compared.
In contrast, Experiments 3 and 4 entail a slightly
different approach. Here, the 100 models of each
type are applied to a validation set spanning from
January 1st 2012 to December 31st 2012. From
these models, the top 10 best performing ones are
selected based on the realized geometric returns at
December 31st 2012. Only the top 10 models per
type are then tested, with the goal of providing a
more focused and precise assessment of model per-
formance.
This experimental design enables a comprehensive

University of Twente | MDS 16

University of Twente F. Tuininga

evaluation of the different types of models under
varying initial parameter settings and validation
conditions, contributing to a better understanding
of their performance in different contexts. Tables 4
and 5 provide an overview of the number of models
of each type employed during training, validation
and testing.

DDQN* PRD-DDQN* DDQN PRD-DDQN S&P500

Tr. - - 100 100 -
Ts. 100 100 100 100 1

Table 4: Summary of the quantity of trained and
tested models for Experiments 1 and 2. DDQN* and
PRD-DDQN* denote the untrained models. Addition-
ally, Tr. and Ts. correspond to the Train and Test set,
respectively.

DDQN* PRD-DDQN* DDQN PRD-DDQN S&P500

Tr. - - 100 100 -
Val. 100 100 100 100 -
Ts. 10 10 10 10 1

Table 5: Summary of the quantity of trained and
tested models for Experiments 3 and 4. DDQN* and
PRD-DDQN* denote the untrained models. Addition-
ally, Tr. and Ts. correspond to the Train and Test set,
respectively.

Model types are compared based on Average Geo-
metric Return (AGR). Hence, for each experiment
five AGRs corresponding to each model type and
geometric returns generated by a long position in
the S&P500 index are calculated. To gain insight
into the selection of the 10 models in Experiments
3 and 4, a daily long position in the S&P500 index
has been included in the Results section. Addition-
ally, the trained models are evaluated using the
training set to observe to which extent the models
established meaningful feature-target relationships
during training.
In the following section, the results are presented
and analyzed.

4 Results

Table 6 presents the results of four experiments
that were carried out. The primary objective of
these experiments is to assess whether the models

converge towards a near-optimal solution. Addi-
tionally, the experiments aim to evaluate whether
the Average Geometric Return of all models of the
same type significantly exceeds that of adopting a
daily long position in the S&P500 index.

Ex. Validation Test
1 - [01/01/2020, 30/06/2020]

2 - [01/01/2021, 31/12/2021]

3 [01/01/2012, 31/12/2012] [01/01/2020, 30/06/2020]

4 [01/01/2012, 31/12/2012] [01/01/2021, 31/12/2021]

Table 6: Summary of Experimental Design: Four ex-
periments were conducted utilizing the identical train-
ing set (January 1st, 2013 to December 31, 2019) while
employing varying test sets. Experiments 3 and 4 in-
corporate a validation set.

Figures 7-13 present the development of geometric
return over time per model type. For each fig-
ure, the y-axis denotes the relative profitability in
comparison to the initial capital invested at the
starting day. The value 1.0 denotes neither profit
nor loss, while values below 1.0 indicate losses and
values above 1.0 indicate profits.
Figures 7 and 10 correspond to Experiments 1 and
3, which were conducted to evaluate the perfor-
mance of models in the time-period January 1st
2020 to June 30th 2020. Both experiments in-
clude taking a daily long position in the S&P500
index. The profit development generated by a
daily long position in the S&P500 index is the
same for both experiments. The difference be-
tween the experiments lies in the number of models
utilized. In Experiment 1, 100 models of the same
type were applied to the test set (Table 4), and
the average profitability was subsequently calcu-
lated. In contrast, Experiment 3 employed the
top 10 models that demonstrated superior per-
formance on the validation set (Table 5), subse-
quently testing and calculating their average prof-
itability. This methodology facilitates a more nu-
anced evaluation of model efficacy. The hypothe-
sis is that the ten selected models will outperform
the 100 models on the same test dataset. This is
due to the higher probability of the selected mod-
els having discovered meaningful relationships be-
tween features and target, which can be utilized
during testing.
Figures 8 and 13 depict the outcomes of Experi-

University of Twente | MDS 17

University of Twente F. Tuininga

ments 2 and 4, respectively, which were conducted
to assess the performance of models during the
time-period spanning January 1st, 2021 to Decem-
ber 31st, 2021. As can be seen, the S&P500 in-
dex performed exceptionally well during this year.
Both experiments include a daily long position in
the S&P500 index, and the resultant profit devel-
opment generated by this strategy is the same for
the two experiments. However, the experiments
vary in terms of the number of models employed.
Specifically, Experiment 2 utilized 100 models of
the same type on the test set, and the average
profitability was subsequently determined. In con-
trast, Experiment 4 selected the top 10 models
that exhibited superior performance on the val-
idation set, subsequently testing and calculating
their average profitability.

Type Ex.1 Ex.2 Ex.3 Ex.4
DDQN* -0.99% -1.66% 6.55% 26.09%
PRD-DDQN* -3.70% -0.14% -3.29% 28.00%
DDQN -4.84% -0.76% 0.35% 22.64%
PRD-DDQN 2.49% -1.82% 4.59% 1.36%
S&P500 -4.04% 26.89% -4.04% 26.89%

Table 7: Average Geometric Return generated per
model type and experiment. DDQN* and PRD-
DDQN* refer to the untrained model types, whereas
DDQN and PRD-DDQN refer to the trained model
types. The S&P500 index refers to the strategy of a
daily long position in the S&P500 index. The best re-
sults are displayed in bold.

Table 7 refers to the achieved results per strategy
and experiment in terms of Average Geometric Re-
turn. For more information regarding the worst
and best performing models per experiment, see
Appendix D. Figures 15 and 16 demonstrate the
geometric returns realized by 100 trained DDQNs
and PRD-DDQNs, which were applied to the train
set spanning January 1st, 2013 to December 31st,
2019.

Figure 7: Experiment 1 - Geometric returns gener-
ated by trained and untrained DDQNs, trained and
untrained PRD-DDQNs, and S&P500 index between
January 1st 2020 and June 30th 2020.

Figure 7 shows that adopting a daily long posi-
tion in the S&P500 index during the corona crisis
might not be a viable strategy, since the model
experienced a loss of approximately −30% on day
55, followed by a swift recovery, ultimately end-
ing in a loss of −4.04%. This approach exhib-
ited significant volatility. In contrast, the aver-
age performance of 100 model types exhibited rel-
atively lower volatility. The untrained models per-
formed relatively well, with both the untrained
DDQNs and untrained PRD-DDQNs outperform-
ing the trained DDQN in terms of Average Geo-
metric Return.
Among the models, the trained PRD-DDQN re-
alized the greatest Average Geometric Return of
2.49%. However, these results fall short of the
Average Geometric Return of 13.16% achieved by
Brim et al.

Figure 8: Experiment 2 - Geometric returns gener-
ated by trained and untrained DDQNs, trained and
untrained PRD-DDQNs, and S&P500 index between
January 1st 2021 and December 31st 2021.

University of Twente | MDS 18

University of Twente F. Tuininga

Figure 9: Experiment 2 - Geometric returns gener-
ated by trained and untrained DDQNs, trained and un-
trained PRD-DDQNs, without S&P500 index between
January 1st 2021 and December 31st 2021.

Figure 8 shows that adopting a daily long posi-
tion in the S&P500 index by far outperforms all
other strategies, as it achieved an impressive Av-
erage Geometric Return of 26.89%, whereas all
other strategies resulted in losses. Interestingly,
there seems to be no substantial difference in per-
formance between the trained and untrained mod-
els. The experimental results, presented in Figure
9, were obtained by comparing the profit develop-
ment of multiple models during Experiment 2 in
the absence of S&P500 index. The purpose of this
comparison is to provide a clearer visual represen-
tation of the disparities between the models.

Figure 10: Experiment 3 - Geometric returns gener-
ated by top 10 trained and untrained DDQNs, top 10
trained and untrained PRD-DDQNs, and S&P500 in-
dex between January 1st 2020 and June 30th 2020.

Figure 10 shows that all models surpass the Av-
erage Geometric Return generated by the daily
long strategy in the S&P500 index at the final day
(30th of June). The trained and untrained mod-
els exhibit comparable behavior with respect to
profit development. This indicates that the selec-

tion process of the validation phase leads to the
identification of untrained models that show com-
parable behavior. The untrained DDQNs exhibit
the greatest Average Geometric Return in compar-
ison to all other models on June 30th, 2020. Con-
versely, the trained PRD-DDQN demonstrate im-
pressive performance during the sharp downturn
observed in the market. Taken as a whole, there
does not seem to be large differences in the Aver-
age Geometric Return achieved by each strategy
on June 30th, 2020.
In order to evaluate the daily decision-making pro-
cess of each model type, a histogram was con-
structed for Experiments 3 and 4. The x-axis of
the histogram represents the model’s preference
for going long, neutral, or short. A preference of
−100% denotes that all models have opted for a
short position in a specific state, while 100% in-
dicates a unanimous decision for a long position
in a specific state. The y-axis displays the fre-
quency among days of a specific position chosen.
For instance, Figure 11b illustrates that all models
unanimously agreed on a long position for 125 days
during testing. For Experiment 3, the histograms
are presented in Figures 11a-11d.

University of Twente | MDS 19

University of Twente F. Tuininga

(a) (b)

(c) (d)

Figure 11: Experiment 3 - A Histogram Analysis of Model Preference for Long, Neutral, and Short Positions,
where -100% implies all Models went Short, whereas 100% implies all Models went Long.

(a) (b)

(c) (d)

Figure 12: Experiment 4 - A Histogram Analysis of Model Preference for Long, Neutral, and Short Positions,
where -100% implies all Models went Short, whereas 100% implies all Models went Long.

University of Twente | MDS 20

University of Twente F. Tuininga

The figures show that the trained PRD-DDQN
model slightly favors long positions. On the other
hand, the trained DDQN, untrained DDQN, and
untrained PRD-DDQN models show a strong pref-
erence for long positions.

Figure 13: Experiment 4 - Geometric returns gen-
erated by top 10 trained and untrained DDQNs, top
10 trained and untrained PRD-DDQNs, and S&P500
index between January 1st 2021 and December 31st
2021.

Figure 13 shows that most models behave simi-
lar in terms of profit development, with trained
DDQNs, untrained DDQNs, untrained
PRD-DDQNs, and daily long positions in the
S&P500 index demonstrating similar patterns.
However, a notable deviation is observed in the
performance of the trained PRD-DDQN at De-
cember 31st, which shows the worst Average Ge-
ometric Return. In contrast, the untrained PRD-
DDQNs achieve the highest Average Geometric Re-
turn.
Figures 11a-11d displayed the preference per model
type for long, neutral, or short positions in Exper-
iment 3. Similarly, Figures 12c-12d illustrate the
corresponding preferences observed in Experiment
4. In Figure 12d, a normal distribution is observed,
suggesting that when models exhibit uncertainty
regarding position selection, there is a likelihood of
long-term cancellation (i.e., an approximate equal
number of long and short positions taken on aver-
age). This phenomenon, depicted in Figure 12d,
indicates that the models lack clear direction in
determining their positions within Experiment 4.
Figure 14 showcases the geometric return obtained
from a daily long position in the S&P500 index
during the validation period from January 1st, 2012
to December 31st, 2012.

Figure 14: Geometric returns derived from a daily
long position in the S&P 500 index spanning from Jan-
uary 1st, 2012 to December 31st, 2012.

Figure 14 illustrates that the application of a daily
long position strategy in the S&P500 index during
the validation period results in a geometric return
of 11.16%. Consequently, this outcome leads to
the selection of models that favor a long position
during the validation phase.

Figure 15: Geometric returns generated during train-
ing by 100 DDQNs between January 1st 2013 and De-
cember 31st 2019.

Figure 15 shows the development of geometric re-
turns generated by each trained DDQN model when
applied to the train set. The figure demonstrates
that the trained DDQN attains a maximum geo-
metric return of approximately 2.5, while several
trained models generate a loss (i.e., a geometric re-
turn below 1). Notably, consistently taking a long
position in the S&P 500 on a daily basis yields an
approximate geometric return of 2.26.

University of Twente | MDS 21

University of Twente F. Tuininga

Figure 16: Geometric returns generated during train-
ing by 100 PRD-DDQNs between January 1st 2013 and
December 31st 2019.

Figure 16 shows the development of geometric re-
turns generated by each trained PRD-DDQN model
when applied to the train set. The figure displays
that certain trained PRD-DDQNs achieved excep-
tionally high geometric returns, with the highest
recorded geometric return exceeding 1,500,000%.
While this does not imply a complete overfit, it
does approach a state of substantial overfitting.
This observation implies that a small subset of
the trained PRD-DDQN models were able to effec-
tively leverage the relationships between the fea-
tures and target during the training process.

5 Discussion

The experimental results presented in Figures 7-13
indicate that the trained PRD-DDQN exhibits dis-
tinct behavior from the remaining strategies. This
difference in behavior becomes especially evident
in Figures 8-13, where the trained PRD-DDQN
frequently moves in different directions compared
to the other strategies. In contrast, the trained
DDQN displays similar behavior to the untrained
models. This observation suggests that the PRD-
DDQN was able to learn a relationship between
the input features and target variable during train-
ing, while the DDQN was not. This theory is
supported by the training performances of both
trained models. A model that correctly predicts
every action during training has the potential to
achieve a geometric return of 21,446 times its ini-
tial investment. This is, of course, an outcome
based on perfect foresight, but it remains a possi-
bility during the training process. Figure 16 clearly
demonstrates that several PRD-DDQN models were

able to attain an exceptionally high geometric re-
turn when applied to the train set, with a few even
achieving a geometric return of more than 15,000.
Conversely, Figure 15 illustrates that the DDQN
failed to generate geometric returns of comparable
magnitude. These observations imply that certain
PRD-DDQN models may converge to a policy that
exhibits outstanding performance during training
and, unlike the DDQN, that the PRD-DDQN may,
in some instances, establish relationships between
features and target. However, these results do not
generalize to testing, indicating that some of the
PRD-DDQN models overfit. As can be seen in Fig-
ure 16 and Table 7, the PRD-DDQN models that
did not perform exceptionally well during training
did not overfit but also did not generate impressive
results during testing. Therefore, it seems that
the PRD-DDQN was only able to establish useful
relationships between features and target during
training, while the DDQN was not able to establish
notable relationships between features and target
during training. As demonstrated in Table 7, both
the trained PRD-DDQN and trained DDQN were
incapable of consistently outperforming the other
strategies during testing. These findings indicate
that the PRD-DDQN and DDQN were unable to
consistently leverage useful patterns in the candle-
stick plots to accurately predict target values.
Given the exceptional performance of the PRD-
DDQN model during training, it is plausible to
argue that the deep learning architecture effec-
tively captured the intricate relationship between
the features and target. The DDQN model was
unable to achieve similar performance and, as a re-
sult, did not establish useful relationship between
features and target. However, one could posit that
by modifying the model’s parameters, the DDQN
framework could also acquire the ability to dis-
cern and incorporate this relationship. Moreover,
expanding the size of the dataset could potentially
enhance the performance of the DDQN model, as
it is conceivable that the existing dataset might
have been insufficient for establishing robust rela-
tionships between features and target. As illus-
trated in Figure 16, a subset of the PRD-DDQN
models displayed signs of overfitting, prompting
the exploration of regularization techniques to al-
leviate this propensity and ultimately yield im-
proved outcomes on the test data sets. Notably,

University of Twente | MDS 22

University of Twente F. Tuininga

since all models failed to effectively generalize the
acquired knowledge from training to the test set,
it is worth considering alternative data represen-
tations to enhance the predictive capacity, as can-
dlestick images may not be the most optimal form
of data representation. The exploration of alter-
native data representations holds promise for po-
tentially attaining more favorable results.
As presented in Table 7, all models performed bet-
ter in Experiments 3 and 4 in comparison to Ex-
periments 1 and 2, respectively. Given that all
models, except for the PRD-DDQN model, exhibit
a consistent inclination towards assuming long po-
sitions in Experiments 3 and 4, the outcomes ob-
tained align closely with those derived from exclu-
sively adopting a long position in the S&P500 in-
dex on a daily basis. In the event that the trained
DDQN fails to identify a policy that performs quite
well during training, its predictions become highly
reliant on the initial parameter settings. Given the
use of 100 different initial parameter settings, the
DDQN may follow several distinct paths when ap-
plied to the validation set. It is important to note
that a daily long position in the S&P500 index
yields a geometric return of 11.16% during vali-
dation. Thus, if the DDQN cannot identify use-
ful relationships between features and target (as
suggested by Figure 15), it would be prudent to
prefer a daily long position. Consequently, the
top 10 DDQN models selected during validation
prefer a long position and exhibit behavior that
is highly similar to taking a daily long position
in the S&P500 index during testing. This theory
is supported by the results found in Figures 11c-
11b, Figures 11c-12b. This shows that the trained
DDQN far more often prefers adopting a long po-
sition in Experiments 3 and 4, as compared to the
trained PRD-DDQN. Similar reasoning applies to
the untrained models. The trained PRD-DDQN
exhibited distinct behavior, lending support to the
notion that the model was able to establish a rela-
tionship between features and target during train-
ing, while the DDQN could not. It is important
to note that increasing the number of epochs dur-
ing training may lead to the DDQN converging to
a policy. Nevertheless, in order to explore the po-
tential benefits of increasing the number of epochs,
we conducted additional training with two DDQN
models using 10,000 epochs. Subsequently, we eval-

uated the performance of these models in the pe-
riod January 1st, 2020 to June 30th, 2020. Sur-
prisingly, both models exhibited the same action
on only 54 out of the 127 testing days, indicat-
ing a lack of convergence to a similar solution.
Naturally, this observation does not offer sufficient
empirical evidence to definitively support or re-
fute the proposition that increasing the number of
epochs for the DDQN leads to convergence. How-
ever, this does provides us with an indication of
the potential consequences associated with such
an increase.
As stated in Theoretical Framework, Prioritized
Sampling ensures that the PRD-DDQN would con-
verge faster than the standard DDQN. This is ex-
actly what is observed.
In our study, we were unable to achieve similar re-
sults as obtained by Brim et al. in Experiments
1 and 3. There are several potential reasons for
this outcome. First, Brim et al. trained their
DDQN on the 30 largest stocks in the S&P500 in-
dex (the DDQN was trained and tested on individ-
ual stocks), which may have led to better perfor-
mance. Second, Brim et al. employed a different
set of parameters that resulted in better outcomes.
Third, it is possible that the models were not able
to identify a meaningful relationship between fea-
tures and target during training because there is
none, and that the results achieved by Brim et
al. were simply the result of chance. Since the 30
largest stocks in the S&P500 are correlated with
the S&P500 index overall, the first reason seems
unlikely.

The assertion that model parameters alone are re-
sponsible for the observed unsatisfactory perfor-
mance cannot accepted with absolute certainty.
However, Brim et al. did not carry out a sensi-
tivity analysis to investigate the impact of initial
weight parameter configurations. As a result, the
impressive outcomes found by Brim et al. may be
attributable to favorable initial weight parameter
settings. Consequently, there is uncertainty as to
whether the assertion made by Brim et al. that
a DDQN trained on candlestick plots outperforms
the S&P500 index during the corona crisis is valid.
To exclude the possibility that the impressive re-
sults achieved by Brim et al. are a consequence
of favorable initial parameter settings, it is recom-
mended to perform a sensitivity analysis. Since

University of Twente | MDS 23

University of Twente F. Tuininga

Brim and colleagues did not include a sensitivity
analysis and we were unable to achieve comparable
outcomes, our findings do not provide support for
the notion that technical analysis can consistently
generate above-average returns. This further rein-
forces the perspective put forth by Hull.
In addition to the primary recommendations of
utilizing the parameters as employed by Brim et
al. and performing a sensitivity analysis, we pro-
pose several additional recommendations with re-
gard to conducting similar research. Firstly, ex-
tending the training period to provide the DDQN
with more data to establish a reliable policy is rec-
ommended. According to the paper Revisiting the
duration dependence in the US stock market cy-
cles (Zakamulin 2022) , the average duration of a
market cycle in the US stock market is 3.5 years.
Therefore, to accurately capture the returning pat-
terns in these cycles, it is recommended to train
the model on multiple market cycles. For instance,
a suitable approach would be to expand the train-
ing dataset to 14 years, which would encompass
four market cycles.
Secondly, it is advisable to apply a deep learning
model directly to the raw data, rather than em-
ploying a methodology that involves transforming
the data into a candlestick image and then utiliz-
ing a CNN for analysis. Throughout our research,
we adhered mainly to the methodology outlined by
Brim et al., which involves transforming data into
candlestick images and feeding it to a CNN. Al-
though this approach was essential for validating
the work of Brim et al., it may not be the opti-
mal method, as the raw data contains the same
information as the image and the image includes a
great deal of extraneous data, such as large white
spaces. This makes the model computationally
more expensive and does not add to the predictive
capabilities of a model. Therefore, we recommend
directly applying a CNN to the raw data or using
a sequential model on the raw data. A suitable
sequential model, such as the Transformer model
described in the paper Attention is All You Need
(Vaswani et al. 2017) , could significantly reduce
computation time and potentially enhance perfor-
mance, or at least not negatively impact perfor-
mance.
The third recommendation focuses on the fact that
Brim et al. concentrated on the corona crisis,

but for an investor, a model that is confirmed to
perform well only during a crisis may be insuffi-
cient. An investor desires to know if the model
performs well during both crisis and non-crisis pe-
riods. Therefore, it is advisable to include a non-
crisis period during testing.
The fourth recommendation is to train and test
exclusively on the S&P500 index. This facilitates
direct comparisons with taking a daily long posi-
tion in the S&P500 index.
The fifth recommendation is including the PRD-
DDQN during experiments. If a standard DDQN
can consistently outperform the S&P500 index,
then the PRD-DDQN should be capable of achiev-
ing similar or even better outcomes for reasons dis-
cussed in Theoretical Framework. In our study,
however, we failed to uncover substantial evidence
supporting the assertion that the DDQN model
consistently outperforms the S&P500 index bench-
mark. Moreover, our experimental results indicate
that the PRD-DDQN model, in the conducted ex-
periments, was unable to surpass the performance
of the DDQN model.
The sixth recommendation is to take risk into ac-
count as investors are not exclusively interested
in Average Geometric Returns. The Sharpe Ratio
(SR), defined in Equation Equation 10, is a tool
to achieve this.

SR =
E[Ra −Rf]

σa
(10)

In the equation, Ra, Rf , and σa represent the re-
alized return of the asset, risk-free rate of return
(e.g., 10Y US-Treasury bond rate), and volatil-
ity of returns, respectively. However, it should
be noted that the Sharpe Ratio assumes normal-
ity of asset returns, which may not always be the
case. For instance, when Ra and Rf exhibit expo-
nential growth over time, the differences between
them may become exceedingly large towards the
end of the time-period. This phenomenon implies
that the returns realized at the end of the time pe-
riod will have a significant impact on the expected
value, leading to a distortion of the Sharpe Ratio.
The research question was:

To what extent can technical analysis be employed
to achieve sustained above-average returns when
converting stock data into candlestick charts and

University of Twente | MDS 24

University of Twente F. Tuininga

subsequently utilizing it as input for a
Reinforcement Learning model to forecast the

percentage price movement of a stock from one
trading day to the next?

Our study could not obtain similar results as sug-
gested by the study titled Deep Reinforcement Learn-
ing Stock Market Trading, Utilizing a CNN with
Candlestick Images (Brim et al. 2022) . Since Brim
et al. did not report a sensitivity analysis, there
is reasonable doubt if the results accurately reflect
model performance. Hence, we could not find evi-
dence to disprove the claim of Hull that technical
analysis cannot achieve consistent above-average
returns. Moreover, our analysis revealed that both
the DDQN and the PRD-DDQN models failed to
outperform a simple strategy of taking a daily long
position in the S&P500 index, suggesting neither
model could identify useful relationships between
features and target. The PRD-DDQN model es-
tablished a relationship that is solely advantageous
during training, as it only recognizes distinctive
features that only exist in the training dataset.
Hence, the model could not generalize and discern
useful patterns in the candlestick plot. Due to its
poor performance in both training and testing, the
DDQN model was unable to detect any meaningful
relationships between features and targets too.

6 Conclusion

The study Deep Reinforcement Learning Stock Mar-
ket Trading, Utilizing a CNN with Candlestick Im-
ages (Brim et al. 2022) proposes an approach to
stock market trading by combining a Double Deep
Q-learning Network (DDQN) with a Convolutional
Neural Network (CNN). Specifically, the approach
involves the transformation of financial data into
candlestick images, which are subsequently used
as inputs for the DDQN. The premise is that the
DDQN can identify patterns in the candlestick im-
ages, which enables it to anticipate the best course
of action for the succeeding day. The action space
consists of three actions: long position, no position
or short position. The aim is to maximize profit.
Our objective was to replicate the results obtained
by Brim et al. while introducing several modifi-
cations to the experimental setup. First, an ad-
ditional testing period was introduced to assess

model performance during non-crisis periods. Sec-
ond, the model was trained and tested solely on the
S&P500 index to enable direct comparisons with
a daily long position in the S&P500 index. Third,
we introduced a second model, the Prioritized Re-
play Dueling DDQN (PRD-DDQN). Lastly, we
conducted a sensitivity analysis to evaluate the im-
pact of the initial weight parameter configuration
on the model’s predictive capabilities.

To comprehensively evaluate model performance
measured with the Average Geometric Return, we
utilized five different strategies, including a
trained DDQN, a trained PRD-DDQN, an
untrained DDQN, an untrained PRD-DDQN, and
a daily long position in the S&P500 index. The
inclusion of untrained models was intended to as-
sess the extent to which trained models outper-
formed their untrained counterparts, thereby indi-
cating the degree to which the models had learned
an effective policy during training. Regarding the
trained models, the train set consists of S&P500
index data spanning from January 1st, 2013 to De-
cember 31st, 2019.
In our study, four experiments are conducted. These
experiments are designed to ascertain whether sim-
ilar results can be obtained under the similar con-
ditions as those described in the research of Brim
et al. Experiments 1 and 3 utilize a test set of
S&P500 index data spanning from January 1st
2020 to June 30th 2020, which is the same test
period used by Brim et al. who view this period
as a crisis. Experiments 2 and 4 utilize a test set
of S&P500 index data ranging from January 1st
2021 to December 31st 2021 in order to include a
non-crisis period during testing. In Experiments
1 and 2, 100 models are tested, and the average
performance of each model type is compared. In
contrast, Experiments 3 and 4 entail a slightly dif-
ferent approach. Here, 100 models of each type are
applied to a validation set spanning from January
1st 2012 to December 31st 2012. From these mod-
els, the top 10 best performing ones are selected
based on the realized geometric returns at Decem-
ber 31st 2012. Solely the best-performing 10 mod-
els of each type undergo testing. The idea is that
a subset of the 100 models might have the ability
to recognize recurring patterns in the candlestick
chart, enabling them to make informed decisions
about which position to adopt on the succeeding

University of Twente | MDS 25

University of Twente F. Tuininga

day. By selecting the top 10 models based on per-
formance, the testing procedure can maximize the
possibility of identifying the most accurate predic-
tive models. For each experiment, a daily long po-
sition in the S&P500 index is taken into account.
What becomes apparent from the experiment out-
comes is that the trained DDQN exhibited compa-
rable behavior to its untrained counterparts across
all experiments. In contrast, the PRD-DDQN de-
monstrated distinct behavior compared to all other
models. Figure 16 illustrates that certain PRD-
DDQNs achieved extremely high geometric returns
during training by identifying the correlations be-
tween features and target. Nonetheless, these mod-
els overfitted during training because they were
unable to produce similar results during testing.
Furthermore, PRD-DDQNs that did not perform
well during training also performed poorly during
testing. Additionally, in Experiments 3 and 4 (see
Figures 10 and 13), the trained DDQN, untrained
DDQN, and untrained PRD-DDQN demonstrated
similar behavior.
As suggested by Figure 15, the DDQN did not
discover meaningful relationships between features
and target during training. This indicates that
the DDQN might be heavily reliant on the ini-
tial weight parameter settings, and thus, when a
set of 100 trained DDQNs are employed on the
validation dataset, each model’s trajectory differs
considerably. Some DDQNs could opt for an over-
all short position regardless of the state they find
themselves in, while others might opt for an over-
all long position. Given that taking a daily long
position in the S&P500 index during validation re-
sults in a geometric return of 11.16%, the DDQNs
that tend towards an overall long position are se-
lected for testing. Consequently, the top 10 trained
DDQN models roughly adhere to a daily long posi-
tion in the S&P500 index in Experiments 3 and 4.
Similar reasoning applies to the untrained models.
Note that the trained PRD-DDQN did not follow
an overall long position in Experiments 3 and 4.
As indicated by Figure 16, this is probably due to
the fact that the PRD-DDQN did learn a policy
which worked well during training and did iden-
tify relationships between features and target. As
a result, the 100 PRD-DDQNs applied to the val-
idation set do not favor an overall long position
regardless of input. Once again this underlines

the hypothesis that the PRD-DDQN was able to
learn an effective policy during training whereas
the DDQN was not. As discussed in Theoreti-
cal Framework, the PRD-DDQN might converge
faster than the DDQN due to the usage of Priori-
tized Sampling. Note that the DDQN might con-
verge as the number of epochs is increased. Nev-
ertheless, we opted to preserve the parameter of
1,000 epochs as defined by Brim et al. in their
research. This decision was motivated by our aim
to closely align our experimental approach with
theirs, in order to obtain similar outcomes.
In our study, we were unable to replicate the re-
sults obtained by Brim et al. in Experiments 1
and 3. There are several potential reasons for
this outcome. First, Brim et al. trained their
DDQN on the 30 largest stocks in the S&P500,
which may have led to better performance. Sec-
ond, Brim et al. may have employed a different
set of parameters that resulted in better outcomes.
Third, it is possible that the models were not able
to identify a meaningful relationship between fea-
tures and target during training, and that the re-
sults achieved by Brim et al. were simply the re-
sult of chance. Since the 30 largest stocks in the
S&P500 are highly correlated with the S&P500 in-
dex overall, the first reason seems unlikely.
In order to rule out the possibility that unsatisfac-
tory performance was due to model parameters,
such as kernel size or Negative Rewards Multiplier
(NRM), we attempted to clarify which parameters
were employed by seeking contact with Dr. Brim.
We were unable to retrieve the original parameter
settings, and as a result, we cannot dismiss the
probability that incorrect model parameters con-
tributed to the suboptimal performance observed.
However, Brim et al. did not report that a sensi-
tivity analysis was conducted to examine the in-
fluence of initial weight parameter configurations.
Therefore, the impressive outcomes reported by
Brim et al. could be attributed to favorable ini-
tial weight parameter settings. This uncertainty
raises questions about the validity of the claim
that a DDQN trained on candlestick plots outper-
forms the S&P500 index during the corona crisis.
To eliminate the possibility that the remarkable
results attained by Brim et al. are due to ad-
vantageous initial parameter settings, a sensitivity
analysis is recommended. This analysis would aid

University of Twente | MDS 26

University of Twente F. Tuininga

in excluding any possibility that the exceptional
outcomes achieved are a consequence of favorable
initial parameter settings.
The research question was:

To which extent can technical analysis be used to
generate consistent above-average returns when
following the approach as described in "Deep

Reinforcement Learning Stock Market Trading,
Utilizing a CNN with Candlestick Images"?

In our research, we were unable to obtain outcomes
comparable to those reported by Brim et al. No-
tably, the lack of a sensitivity analysis brings into
question the reliability of the conclusions
reached by Brim and colleagues. As a result, we
have found no grounds to challenge Hull’s assertion
that technical analysis cannot consistently produce
superior returns.

References

Brim, A., & Flann, N. S. (2022). Deep reinforce-
ment learning stock market trading, utilizing a cnn
with candlestick images. Plos one, 17 (2), e0263181.
https://doi.org/10.1371/journal.pone.0263181

Cartea, Á., Jaimungal, S., & Sánchez-Betancourt,
L. (2021). Deep reinforcement learning for algo-
rithmic trading. Available at SSRN 3812473.

Goodfellow, I., Bengio, Y., & Courville, A. (2016).
Deep learning [http : / / www . deeplearningbook .
org]. MIT Press.

Huang, J., Chai, J., & Cho, S. (2020). Deep learn-
ing in finance and banking: A literature review
and classification. Frontiers of Business Research
in China, 14 (1), 1–24. https://doi.org/10.1186/
s11782-020-00082-6

Hull, J. C. (2003). Options futures and other deriva-
tives. Pearson Education India.

Investopedia. (2021). Candlestick charting: What
is it? Investopedia. https : //www. investopedia .
com/trading/candlestick-charting-what-is-it/

Jiang, Z., Xu, D., & Liang, J. (2017). A deep re-
inforcement learning framework for the financial
portfolio management problem. arXiv preprint arXiv:1706.10059.

Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto,
S., Portier, P.-E., He-Guelton, L., & Caelen, O.
(2018). Sequence classification for credit-card fraud
detection. Expert Systems with Applications, 100,
234–245. https://doi.org/j.eswa.2018.01.037

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep
learning. nature, 521 (7553), 436–444. https://doi.
org/10.1038/nature14539

Lee, K., & Jo, G. (1999). Expert system for pre-
dicting stock market timing using a candlestick
chart. Expert systems with applications, 16 (4), 357–
364. https : //doi . org/10 .1016/S0957 - 4174(99)
00011-1

Lucarelli, G., & Borrotti, M. (2020). A deep q-
learning portfolio management framework for the
cryptocurrency market. Neural Computing and Ap-
plications, 32, 17229–17244. https://doi.org/10.
1007/s00521-020-05359-8

Schaul, T., Quan, J., Antonoglou, I., & Silver, D.
(2015). Prioritized experience replay. arXiv preprint

University of Twente | MDS 27

https://doi.org/10.1371/journal.pone.0263181
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1186/s11782-020-00082-6
https://doi.org/10.1186/s11782-020-00082-6
https://www.investopedia.com/trading/candlestick-charting-what-is-it/
https://www.investopedia.com/trading/candlestick-charting-what-is-it/
https://doi.org/j.eswa.2018.01.037
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/S0957-4174(99)00011-1
https://doi.org/10.1016/S0957-4174(99)00011-1
https://doi.org/10.1007/s00521-020-05359-8
https://doi.org/10.1007/s00521-020-05359-8

University of Twente F. Tuininga

arXiv:1511.05952. https : / / doi . org / 10 . 48550 /
arXiv.1511.05952

Schrittwieser, J., Antonoglou, I., Hubert, T., Si-
monyan, K., Sifre, L., Schmitt, S., Guez, A., Lock-
hart, E., Hassabis, D., Graepel, T., et al. (2020).
Mastering atari, go, chess and shogi by planning
with a learned model. Nature, 588 (7839), 604–609.
https://doi.org/10.1038/s41586-020-03051-4

Van Hasselt, H., Guez, A., & Silver, D. (2016).
Deep reinforcement learning with double q-learning.
Proceedings of the AAAI conference on artificial
intelligence, 30 (1). https : / /doi . org / 10 . 48550/
arXiv.1509.06461

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polo-
sukhin, I. (2017). Attention is all you need. Ad-
vances in neural information processing systems,
30. https://doi.org/10.48550/arXiv.1706.03762

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanc-
tot, M., & Freitas, N. (2016). Dueling network
architectures for deep reinforcement learning. In-
ternational conference on machine learning, 1995–
2003.

Watkins, C. J., & Dayan, P. (1992). Q-learning.
Machine learning, 8, 279–292. https://doi.org/10.
1007/BF00992698

Zakamulin, V. (2022). Revisiting the duration de-
pendence in the us stock market cycles. Applied
Economics, 1–12.

University of Twente | MDS 28

https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.48550/arXiv.1509.06461
https://doi.org/10.48550/arXiv.1509.06461
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698

University of Twente F. Tuininga

A Candlestick Chart Generation (Python Code)

1 import torch
2 import numpy as np
3 import yfinance as yf
4 import torchvision.transforms as transforms
5 from pandas.tseries.offsets import BDay
6 from datetime import datetime
7 from joblib import dump
8 from tqdm import tqdm
9 from PIL import Image

10

11 def normaliser(data):
12

13 #get maximum and minimum of highs and lows in 28 days
14 max_val = data["High"].max()
15 min_val = data["Low"].min()
16

17 #normalise outputs and multiply with 84 (to scale candles in figure)
18 output = ((data[["High", "Low", "Open", "Close"]]-min_val) / (max_val -min_val))

*84
19

20 #round all values to nearest integer
21 output = output.round (0).astype("int")
22

23 #reset window index
24 return output.reset_index(drop=True)
25

26 #parameter selection
27 SYMBOLS = ["^GSPC"]
28 TYPE = "Test"
29 START_DAY = 1
30 START_MONTH = 1
31 START_YEAR = 2020
32 END_DAY = 30
33 END_MONTH = 6
34 END_YEAR = 2020
35

36 #define path
37 path = f"X\\{ TYPE}"
38

39 #create 2d numpy array (84 x84) with only white pixels
40 fig = np.zeros ((84 ,84))
41 fig.fill (255)
42

43 #define torch transformations
44 transform = transforms.Compose ([
45 transforms.ToTensor (),
46 transforms.Grayscale ()
47])
48

49 for symbol in tqdm(SYMBOLS):
50

51 #import data
52 df = yf.download(
53 symbol ,
54 start=datetime(START_YEAR , START_MONTH , START_DAY)-BDay (29),
55 end=datetime(END_YEAR , END_MONTH , END_DAY)+BDay (1),
56 interval=’1d’,
57 progress=False

University of Twente | MDS 29

University of Twente F. Tuininga

58).reset_index ()
59

60 #calculate number of images to generate
61 N = len(df) - 28
62

63 #initialisation
64 images = []
65 labels = []
66

67 for i in tqdm(range(N)):
68

69 #create window
70 window = normaliser(df[i:i+28]. copy())
71

72 #copy white canvas
73 canvas = fig.copy()
74

75 for j in range (28):
76

77 #calculate body of the candle
78 body = window["Close"][j] - window["Open"][j]
79

80 if body < 0:
81

82 #calculate start and end body (negative body implies Open > Close)
83 start_body = window["Close"][j]
84 end_body = window["Open"][j]
85

86 #to generate images body must by nonnegative
87 body = abs(body)
88

89 #black color is assigned to negative candles
90 color = 0
91

92 else:
93

94 #calculate start and end body (positive body implies Close > Open)
95 start_body = window["Open"][j]
96 end_body = window["Close"][j]
97

98 #gray color is assigned to positive candles
99 color = 105

100

101 #add body to canvas for corresponding day
102 canvas[start_body:end_body ,3*j:3*j+3] = color
103

104 #add high to canvas for corresponding day
105 canvas[end_body:window["High"][j],3*j+1] = color
106

107 #add low to canvas for corresponding day
108 canvas[window["Low"][j]:start_body ,3*j+1] = color
109

110 #horizontal flip to ensure correct form
111 canvas = np.flip(canvas , axis =0)
112

113 #convert numpy array to PIL image (RGB)
114 canvas = Image.fromarray(canvas)
115 canvas = canvas.convert(’RGB’)
116

117 #append images with transformed canvas (now a grayscale tensor)
118 images.append(transform(canvas.copy()))

University of Twente | MDS 30

University of Twente F. Tuininga

119

120 #append labels with percental change of this day to the next
121 labels.append(torch.tensor ([(df["Close"][i+28]-df["Close"][i+27])/df["Close"

][i+27]]))
122

123 dump(torch.stack(images , dim=0), f"{path }\\{ symbol}_X.joblib")
124 dump(torch.stack(labels , dim=0), f"{path }\\{ symbol}_y.joblib")

University of Twente | MDS 31

University of Twente F. Tuininga

B Standard Double Deep Q-learning Network

1 import copy
2 import math
3 import torch
4 import numpy as np
5 import pandas as pd
6 import torch.nn as nn
7 import torch.optim as optim
8 import torch.nn.functional as F
9 import matplotlib.pyplot as plt

10 from joblib import load , dump
11 from tqdm import tqdm
12 import time as time
13

14 #set random seed
15 torch.manual_seed (42)
16 torch.cuda.manual_seed (42)
17

18 def plot(x, title="MSE Loss", label="Error", xlabel="Epochs", ylabel="Error"):
19

20 #define figure and axis
21 fig , ax = plt.subplots ()
22

23 #define x- and y-axis (+label)
24 ax.plot([i for i in range(1,len(x)+1)], x)
25

26 #define title
27 plt.title(title)
28

29 #define labels
30 plt.xlabel(xlabel)
31 plt.ylabel(ylabel)
32

33 #show plot
34 plt.show()
35

36 class CNN(nn.Module):
37 def __init__(self ,
38 img_size ,
39 conv_layers =(1 ,8,16 ,32),
40 conv_kernel =4,
41 conv_padding =0,
42 conv_stride =1,
43 pool_kernel =2,
44 pool_padding =0,
45 pool_stride =2):
46 super(CNN , self).__init__ ()
47

48 #initialisation
49 self.img_size = img_size
50 self.conv_kernel = conv_kernel
51 self.conv_padding = conv_padding
52 self.conv_stride = conv_stride
53 self.pool_kernel = pool_kernel
54 self.pool_padding = pool_padding
55 self.pool_stride = pool_stride
56 self.conv_len = len(conv_layers) - 1
57 self.conv_output = conv_layers [-1]
58

University of Twente | MDS 32

University of Twente F. Tuininga

59 #declare convolutional layers
60 self.conv_layers = nn.ModuleList ([nn.Conv2d(in_channels=conv_layers[i],

out_channels=conv_layers[i + 1], kernel_size=conv_kernel , stride=conv_stride ,
padding=conv_padding) for i in range(len(conv_layers) - 1)])

61

62 #declare last linear layer
63 self.fc = nn.Linear(self.conv_to_lin (), 3)
64

65 def conv_to_lin(self):
66

67 #initialise size
68 size = self.img_size
69

70 #iterate over all convolutional layers
71 for i in range(self.conv_len):
72

73 #calculate size after convolutional layer (i.e. rounddown ((size - k + 2p)
/stride) + 1)

74 size = math.floor((size -self.conv_kernel +2* self.conv_padding)/self.
conv_stride) + 1

75

76 #calculate size after pooling layer (i.e. rounddown ((size - k + 2p)/
stride) + 1)

77 size = math.floor((size -self.pool_kernel +2* self.pool_padding)/self.
pool_stride) + 1

78

79 #calculate number of required neurons (i.e. width*height*channels)
80 size = (size*size)*self.conv_output
81

82 return size
83

84 def forward(self , x):
85

86 #pass data through conv layers and apply max. pooling
87 for layer in self.conv_layers:
88 x = F.max_pool2d(input=F.relu(layer(x)), kernel_size=self.pool_kernel ,

stride=self.pool_stride , padding=self.pool_padding)
89

90 #ensure correct dimension is used
91 if len(x.shape) == 3:
92 s = 0
93 else:
94 s = 1
95

96 #flatten image for linear layers
97 x = torch.flatten(x, start_dim=s)
98

99 #pass x trough last linear layer
100 x = self.fc(x)
101

102 #get final prediction
103 return x
104

105 class ExperienceReplay ():
106 def __init__(self):
107

108 #initialization
109 self.quadruple = [’states ’, ’actions ’, ’rewards ’, ’next_states ’]
110 self.buffer = {key :[] for key in self.quadruple}
111

112 def size(self):

University of Twente | MDS 33

University of Twente F. Tuininga

113 return len(self.buffer[’actions ’])
114

115 def add(self , x):
116

117 #if buffer size exceeds maximum , then remove oldest items
118 if self.size() >= 1763:
119

120 #get batch size to delete old items
121 del_len = len(x[0])
122

123 #remove all oldest batches with size del_len from buffer
124 for key in self.quadruple:
125 self.buffer[key] = self.buffer[key][del_len :]
126

127 #add new items
128 for i, key in enumerate(self.quadruple):
129 self.buffer[key]. extend(x[i])
130

131 def sample(self):
132

133 #initialise output
134 output = []
135

136 #sample replay indices
137 idx = torch.randint(low=0, high =1763, size =(64,))
138

139 #apply sampling and select 64 quadruples
140 for elem in self.quadruple:
141 output.append(torch.stack ([self.buffer[elem][i] for i in idx], dim=0))
142

143 return output
144

145 class Agent ():
146 def __init__(self):
147

148 #initialization
149 self.gamma = 0.95
150

151 def take_actions(self , states_batch):
152

153 #initialization
154 batch_size = len(states_batch)
155 actions = torch.randint (0,3,(batch_size ,)).to(device)
156 p = torch.rand((batch_size ,))
157

158 #get state indices to exploit based on epsilon
159 exploit_indices = (p>epsilon).nonzero ().flatten ()
160

161 #get actions
162 actions[exploit_indices] = self.predict(primary_model , states_batch[

exploit_indices]).argmax(dim =1)
163

164 return actions
165

166 def predict(self , model , states_batch):
167

168 #get prediction and do not accumulate gradients
169 with torch.no_grad ():
170 return model(states_batch)
171

172 class Fit():

University of Twente | MDS 34

University of Twente F. Tuininga

173 def __init__(self):
174

175 #intialization
176 self.nrm = 1
177 self.optimizer = optim.Adam(primary_model.parameters (), lr=1e-3)
178

179 def environment_step(self , y, primary_model , target_model):
180

181 for i in range(0, 1763, 64):
182

183 #get states batch
184 states_batch = states[i:i+64]
185

186 #get next states batch
187 next_states_batch = next_states[i:i+64]
188

189 #get y batch
190 y_batch = y[i:i+64]
191

192 #get actions
193 actions_batch = agent.take_actions(states_batch)
194

195 #get rewards
196 rewards_batch = y_batch *(actions_batch -1)
197

198 #multiply rewards by Negative Rewards Multiplier (NRM)
199 rewards_batch[rewards_batch <0] = rewards_batch[rewards_batch <0]* self.nrm
200

201 #add quadruples to replay buffer
202 replay.add([states_batch , actions_batch , rewards_batch , next_states_batch

])
203

204 def update_step(self , primary_model , target_model):
205

206 #initialization
207 error = []
208

209 for update in range(UPDATES):
210

211 #sample from replay buffer
212 states_batch , actions_batch , rewards_batch , next_states_batch = replay.

sample ()
213

214 #get primary model predictions for next states
215 primary_pred = primary_model(next_states_batch)
216

217 #identify best actions
218 primary_best_actions = primary_pred.argmax(dim=1)
219

220 #get target model predictions for next states
221 target_pred = target_model(next_states_batch)
222

223 #select Q-values based on previously calculated actions
224 target_best_qs = target_pred[torch.arange (64), primary_best_actions]
225

226 #calculate Q* (target)
227 q_star = rewards_batch + agent.gamma*target_best_qs
228

229 #get primary model predictions for current states
230 q_pred = agent.predict(primary_model , states_batch)
231

University of Twente | MDS 35

University of Twente F. Tuininga

232 #get Q* in the correct form
233 q_star_matrix = q_pred.clone ()
234 q_star_matrix[torch.arange (64), actions_batch] = q_star
235

236 #set gradient equal to zero to prevent unwanted accumulation of gradients
237 self.optimizer.zero_grad ()
238

239 #get loss
240 loss = loss_function(q_pred , q_star_matrix)
241

242 #append error
243 error.append(loss)
244

245 #calculate gradients for each layer in model (backwards fashion)
246 loss.backward ()
247

248 #update model with specified update method
249 self.optimizer.step()
250

251 #update target network
252 if update %99 == 0:
253

254 #copy primary model to target model
255 target_model = copy.deepcopy(primary_model)
256

257 #return average error as tensor and as a percentage
258 return torch.stack(error , dim=0).mean()*100
259

260 #PARAMETER SELECTION ---
261

262 RUNS = 100
263 EPOCHS = 1000
264 UPDATES = 100
265

266 EPSEXP = 0.15
267

268 USE_CUDA = True
269

270 #PARAMETER SELECTION ---
271

272 #use either GPU or CPU
273 if USE_CUDA and torch.cuda.is_available ():
274 device = torch.device(’cuda’)
275 print("GPU is used!")
276 else:
277 device = torch.device(’cpu’)
278 print("CPU is used!")
279

280 #import X and y
281 X_train = load("C:\\ Users \\Frits\\ OneDrive \\ Desktop \\ University of Twente \\AM Thesis

\\ Zanders \\ Prediction Program \\Data\\ Train \\^ GSPC_X.joblib").float ().to(device)
282 y_train = torch.squeeze(load("C:\\ Users\\Frits \\ OneDrive \\ Desktop \\ University of

Twente \\AM Thesis \\ Zanders \\ Prediction Program \\Data\\ Train \\^ GSPC_y.joblib")).
float().to(device)*100

283 X_test = load("C:\\ Users \\Frits\\ OneDrive \\ Desktop \\ University of Twente \\AM Thesis \\
Zanders \\ Prediction Program \\Data\\Test \\^ GSPC_X.joblib").float().to(device)

284 y_test = torch.squeeze(load("C:\\ Users \\Frits \\ OneDrive \\ Desktop \\ University of
Twente \\AM Thesis \\ Zanders \\ Prediction Program \\Data\\Test \\^ GSPC_y.joblib")).
float().to(device)*100

285

286 #initialize loss function

University of Twente | MDS 36

University of Twente F. Tuininga

287 loss_function = nn.MSELoss ()
288

289 #calculate base used for exponential decay
290 eps_base = EPSEXP **(1/ math.floor(EPOCHS /2))
291

292 #truncate X- and y-train for calculation (the last state can never transition into a
new state)

293 states = X_train [:-1]
294 next_states = X_train [1:]
295 y = y_train [:-1]
296

297 #initialize dataframe to store rewards
298 df_rewards = pd.DataFrame(np.arange (127), index=np.arange (127), columns =["Index"])
299

300 #register start time for iteration
301 stime = time.time()
302

303 for run in range(RUNS):
304

305 #initialization
306 primary_model = CNN (84).to(device)
307 target_model = copy.deepcopy(primary_model)
308 replay = ExperienceReplay ()
309 agent = Agent ()
310 fit = Fit()
311 train_errors = []
312 test_rewards = []
313

314 for epoch in tqdm(range(EPOCHS)):
315

316 #get exponentially decaying epsilon with minimum exploration rate of 10%
317 epsilon = max(eps_base **epoch , 0.1)
318

319 #take environment step
320 fit.environment_step(y, primary_model , target_model)
321

322 #take update step and store train errors
323 train_errors.append(fit.update_step(primary_model , target_model).cpu().detach

().numpy ())
324

325 #initialization
326 rewards = []
327

328 #do not accumulate gradients
329 with torch.no_grad ():
330 for x_, y_ in zip(X_test , y_test):
331

332 #get action given X-test
333 action = primary_model(x_).argmax(dim =0) - 1
334

335 #get reward
336 reward = y_*action
337

338 #append rewards
339 rewards.append(reward.cpu().detach ().item())
340

341 #clear memory
342 torch.cuda.empty_cache ()
343

344 #store test rewards
345 test_rewards.append(np.mean(rewards))

University of Twente | MDS 37

University of Twente F. Tuininga

346

347 #store model
348 dump(primary_model , f’Standard \\ model_{run}. joblib ’)
349

350 #store rewards
351 df_rewards[f"RUN_{run}"] = rewards
352

353 #plot results
354 plot(train_errors)
355 plot(test_rewards , title="Average Rewards", label="Average Reward", xlabel="Epochs",

ylabel="Average Rewards (%)")
356 plot(rewards , title="Rewards (01-01 -2020, 30 -06 -2020)", label="Reward", xlabel="Days"

, ylabel="Rewards (%)")
357

358 #write df to excel
359 df_rewards.to_excel(’df_Standard_Rewards.xlsx’)
360

361 print(f"Total computation time: {time.time()-stime}s")

University of Twente | MDS 38

University of Twente F. Tuininga

C Prioritized Replay Dueling Double Deep Q-learning Network

1 import copy
2 import math
3 import torch
4 import numpy as np
5 import time as time
6 import pandas as pd
7 import torch.nn as nn
8 import torch.optim as optim
9 import torch.nn.functional as F

10 import matplotlib.pyplot as plt
11 from joblib import load , dump
12 from tqdm import tqdm
13

14 #set seed
15 torch.manual_seed (42)
16 torch.cuda.manual_seed (42)
17

18 def plot(x, title="MSE Loss", label="Error", xlabel="Epochs", ylabel="Error"):
19

20 #define figure and axis
21 fig , ax = plt.subplots ()
22

23 #define x- and y-axis (+label)
24 ax.plot([i for i in range(1,len(x)+1)], x)
25

26 #define title
27 plt.title(title)
28

29 #define labels
30 plt.xlabel(xlabel)
31 plt.ylabel(ylabel)
32

33 #show plot
34 plt.show()
35

36 class CNN(nn.Module):
37 def __init__(self ,
38 img_size ,
39 conv_layers =(1 ,8,16 ,32),
40 conv_kernel =4,
41 conv_padding =0,
42 conv_stride =1,
43 pool_kernel =2,
44 pool_padding =0,
45 pool_stride =2):
46 super(CNN , self).__init__ ()
47

48 #initialisation
49 self.img_size = img_size
50 self.conv_kernel = conv_kernel
51 self.conv_padding = conv_padding
52 self.conv_stride = conv_stride
53 self.pool_kernel = pool_kernel
54 self.pool_padding = pool_padding
55 self.pool_stride = pool_stride
56 self.conv_len = len(conv_layers) - 1
57 self.conv_output = conv_layers [-1]
58

University of Twente | MDS 39

University of Twente F. Tuininga

59 #declare convolutional layers
60 self.conv_layers = nn.ModuleList ([nn.Conv2d(in_channels=conv_layers[i],

out_channels=conv_layers[i + 1], kernel_size=conv_kernel , stride=conv_stride ,
padding=conv_padding) for i in range(len(conv_layers) - 1)])

61

62 #value stream for states
63 self.fc_h_v = nn.Linear(self.conv_to_lin (), 3)
64 self.fc_z_v = nn.Linear(3, 1)
65

66 #advantage stream for actions
67 self.fc_h_a = nn.Linear(self.conv_to_lin (), 3)
68 self.fc_z_a = nn.Linear(3, 3)
69

70 def conv_to_lin(self):
71

72 #initialise size
73 size = self.img_size
74

75 #iterate over all convolutional layers
76 for i in range(self.conv_len):
77

78 #calculate size after convolutional layer (i.e. rounddown ((size - k + 2p)
/stride) + 1)

79 size = math.floor((size -self.conv_kernel +2* self.conv_padding)/self.
conv_stride) + 1

80

81 #calculate size after pooling layer (i.e. rounddown ((size - k + 2p)/
stride) + 1)

82 size = math.floor((size -self.pool_kernel +2* self.pool_padding)/self.
pool_stride) + 1

83

84 #calculate number of required neurons (i.e. width*height*channels)
85 size = (size*size)*self.conv_output
86

87 return size
88

89 def forward(self , x):
90

91 #pass data through conv layers and apply max. pooling
92 for layer in self.conv_layers:
93 x = F.max_pool2d(input=F.relu(layer(x)), kernel_size=self.pool_kernel ,

stride=self.pool_stride , padding=self.pool_padding)
94

95 #ensure correct dimension is used
96 if len(x.shape) == 3:
97 s = 0
98 else:
99 s = 1

100

101 #flatten image for linear layers
102 x = torch.flatten(x, start_dim=s)
103

104 #get state layer values
105 v = self.fc_h_v(x)
106 v = self.fc_z_v(v)
107

108 #get action layer values
109 a = self.fc_h_a(x)
110 a = self.fc_z_a(a)
111

112 #combine streams

University of Twente | MDS 40

University of Twente F. Tuininga

113 q = v + a - a.mean()
114

115 #get final prediction
116 return q
117

118 class ExperienceReplay ():
119 def __init__(self):
120

121 #initialization
122 self.alpha = 0.95
123 self.quintuple = [’states ’, ’actions ’, ’rewards ’, ’next_states ’, ’priorities ’

]
124 self.buffer = {key :[] for key in self.quintuple}
125

126 def size(self):
127 return len(self.buffer[’actions ’])
128

129 def add(self , x):
130

131 #if buffer size exceeds maximum , then remove oldest items
132 if self.size() >= 1763:
133

134 #get batch size to delete old items
135 del_len = len(x[0])
136

137 #remove all oldest batches with size del_len from buffer
138 for key in self.quintuple:
139 self.buffer[key] = self.buffer[key][del_len :]
140

141 #add new items
142 for i, key in enumerate(self.quintuple):
143 self.buffer[key]. extend(x[i])
144

145 def sample(self , probs):
146

147 #initialise output
148 output = []
149

150 #sample replay indices
151 idx = torch.multinomial(probs , 64, replacement=True)
152

153 #apply priority sampling and select 64 quintuples
154 for elem in self.quintuple [: -1]:
155 output.append(torch.stack ([self.buffer[elem][i] for i in idx], dim=0))
156

157 return output
158

159 def get_probs(self):
160

161 #calculate priority probabilities
162 prob = [el**self.alpha for el in replay.buffer[’priorities ’]]
163 probsum = sum(prob)
164 probs = [el/probsum for el in prob]
165

166 #convert to tensor
167 return torch.stack(probs , dim=0)
168

169 class Agent ():
170 def __init__(self):
171

172 #initialization

University of Twente | MDS 41

University of Twente F. Tuininga

173 self.gamma = 0.95
174

175 def take_actions(self , states_batch):
176

177 #initialization
178 batch_size = len(states_batch)
179 actions = torch.randint (0,3,(batch_size ,)).to(device)
180 p = torch.rand((batch_size ,))
181

182 #get state indices to exploit based on epsilon
183 exploit_indices = (p>epsilon).nonzero ().flatten ()
184

185 #get actions
186 actions[exploit_indices] = self.predict(primary_model , states_batch[

exploit_indices]).argmax(dim =1)
187

188 return actions
189

190 def get_preds(self , states_batch , actions_batch , rewards_batch , next_states_batch
):

191

192 #get batch size
193 batch_size = len(states_batch)
194

195 #get primary model predictions for next states
196 primary_pred = self.predict(primary_model , next_states_batch)
197

198 #identify best actions
199 primary_best_actions = primary_pred.argmax(dim=1)
200

201 #get target model predictions for next states
202 target_pred = self.predict(target_model , next_states_batch)
203

204 #select Q-values based on previously calculated actions
205 target_best_qs = target_pred[torch.arange(batch_size), primary_best_actions]
206

207 #calculate Q* (target)
208 q_star = rewards_batch + self.gamma*target_best_qs
209

210 #get primary model predictions for current states and current actions
211 q_pred = self.predict(primary_model , states_batch)[torch.arange(batch_size),

actions_batch]
212

213 return [q_pred , q_star]
214

215 def predict(self , model , states_batch):
216

217 #get prediction and do not accumulate gradients
218 with torch.no_grad ():
219 return model(states_batch)
220

221 class Fit():
222 def __init__(self):
223

224 #intialization
225 self.nrm = 1
226 self.optimizer = optim.Adam(primary_model.parameters (), lr=1e-3)
227

228 def environment_step(self , y, primary_model , target_model):
229

230 for i in range(0, 1763, 64):

University of Twente | MDS 42

University of Twente F. Tuininga

231

232 #get states batch
233 states_batch = states[i:i+64]
234

235 #get next states batch
236 next_states_batch = next_states[i:i+64]
237

238 #get y batch
239 y_batch = y[i:i+64]
240

241 #get actions
242 actions_batch = agent.take_actions(states_batch)
243

244 #get rewards
245 rewards_batch = y_batch *(actions_batch -1)
246

247 #multiply rewards by Negative Rewards Multiplier (NRM)
248 rewards_batch[rewards_batch <0] = rewards_batch[rewards_batch <0]* self.nrm
249

250 #get predictions and targets
251 y_pred , target = agent.get_preds(states_batch , actions_batch ,

rewards_batch , next_states_batch)
252

253 #calculate loss
254 priorities = abs(target - y_pred) + (1-epsilon)
255

256 #add quintuple to replay buffer
257 replay.add([states_batch , actions_batch , rewards_batch , next_states_batch

, priorities])
258

259 def update_step(self , primary_model , target_model):
260

261 #initialization
262 error = []
263

264 #get probabilities
265 probs = replay.get_probs ()
266

267 for update in range(UPDATES):
268

269 #sample from replay buffer
270 states_batch , actions_batch , rewards_batch , next_states_batch = replay.

sample(probs)
271

272 #get primary model predictions for next states
273 primary_pred = agent.predict(primary_model , next_states_batch)
274

275 #identify best actions
276 primary_best_actions = primary_pred.argmax(dim=1)
277

278 #get target model predictions for next states
279 target_pred = target_model(next_states_batch)
280

281 #select Q-values based on previously calculated actions
282 target_best_qs = target_pred[torch.arange (64), primary_best_actions]
283

284 #calculate Q* (target)
285 q_star = rewards_batch + agent.gamma*target_best_qs
286

287 #get primary model predictions for current states
288 q_pred = primary_model(states_batch)

University of Twente | MDS 43

University of Twente F. Tuininga

289

290 #get Q* in the correct form
291 q_star_matrix = q_pred.clone ()
292 q_star_matrix[torch.arange (64), actions_batch] = q_star
293

294 #set gradient equal to zero to prevent unwanted accumulation of gradients
295 self.optimizer.zero_grad ()
296

297 #get loss
298 loss = loss_function(q_pred , q_star_matrix)
299

300 #append error
301 error.append(loss)
302

303 #calculate gradients for each layer in model (backwards fashion)
304 loss.backward ()
305

306 #update model with specified update method
307 self.optimizer.step()
308

309 #update target network
310 if update %99 == 0:
311

312 #copy primary model to target model
313 target_model = copy.deepcopy(primary_model)
314

315 #return average error as tensor and as a percentage
316 return torch.stack(error , dim=0).mean()*100
317

318 #PARAMETER SELECTION ---
319

320 RUNS = 1
321 EPOCHS = 1000
322 UPDATES = 1000
323

324 EPSEXP = 0.15
325

326 USE_CUDA = True
327

328 #PARAMETER SELECTION ---
329

330 #use either GPU or CPU
331 if USE_CUDA and torch.cuda.is_available ():
332 device = torch.device(’cuda’)
333 print("GPU is used!")
334 else:
335 device = torch.device(’cpu’)
336 print("CPU is used!")
337

338 #import X and y
339 X_train = load("C:\\ Users \\Frits\\ OneDrive \\ Desktop \\ University of Twente \\AM Thesis

\\ Zanders \\ Prediction Program \\Data\\ Train \\^ GSPC_X.joblib").float ().to(device)
340 y_train = torch.squeeze(load("C:\\ Users\\Frits \\ OneDrive \\ Desktop \\ University of

Twente \\AM Thesis \\ Zanders \\ Prediction Program \\Data\\ Train \\^ GSPC_y.joblib")).
float().to(device)*100

341 X_test = load("C:\\ Users \\Frits\\ OneDrive \\ Desktop \\ University of Twente \\AM Thesis \\
Zanders \\ Prediction Program \\Data\\Test \\^ GSPC_X.joblib").float().to(device)

342 y_test = torch.squeeze(load("C:\\ Users \\Frits \\ OneDrive \\ Desktop \\ University of
Twente \\AM Thesis \\ Zanders \\ Prediction Program \\Data\\Test \\^ GSPC_y.joblib")).
float().to(device)*100

343

University of Twente | MDS 44

University of Twente F. Tuininga

344 #initialize loss function
345 loss_function = nn.MSELoss ()
346

347 #calculate base used for exponential decay
348 eps_base = EPSEXP **(1/ math.floor(EPOCHS /2))
349

350 #truncate X- and y-train for calculation (the last state can never transition into a
new state)

351 states = X_train [:-1]
352 next_states = X_train [1:]
353 y = y_train [:-1]
354

355 #initialize dataframe to store rewards
356 df_rewards = pd.DataFrame(np.arange (127), index=np.arange (127), columns =["Index"])
357

358 #register start time for iteration
359 stime = time.time()
360

361 for run in range(RUNS):
362

363 #initialization
364 primary_model = CNN (84).to(device)
365 target_model = copy.deepcopy(primary_model)
366 replay = ExperienceReplay ()
367 agent = Agent ()
368 fit = Fit()
369 train_errors = []
370 test_rewards = []
371

372 for epoch in tqdm(range(EPOCHS)):
373

374 #get exponentially decaying epsilon with minimum exploration rate of 10%
375 epsilon = max(eps_base **epoch , 0.1)
376

377 #take environment step
378 fit.environment_step(y, primary_model , target_model)
379

380 #take update step and store train errors
381 train_errors.append(fit.update_step(primary_model , target_model).cpu().detach

().numpy ())
382

383 #initialization
384 rewards = []
385

386 #do not accumulate gradients
387 with torch.no_grad ():
388 for x_, y_ in zip(X_test , y_test):
389

390 #get action given X-test
391 action = primary_model(x_).argmax(dim =0) - 1
392

393 #get reward
394 reward = y_*action
395

396 #append rewards
397 rewards.append(reward.cpu().detach ().item())
398

399 #clear memory
400 torch.cuda.empty_cache ()
401

402 #store test rewards

University of Twente | MDS 45

University of Twente F. Tuininga

403 test_rewards.append(np.mean(rewards))
404

405 #store model
406 #dump(primary_model , f’PDN\\ model_{run}. joblib ’)
407

408 #store rewards
409 df_rewards[f"RUN_{run}"] = rewards
410

411 #plot results
412 plot(train_errors)
413 plot(test_rewards , title="Average Rewards", label="Average Reward", xlabel="Epochs",

ylabel="Average Rewards (%)")
414 plot(rewards , title="Rewards (01-01 -2020, 30 -06 -2020)", label="Reward", xlabel="Days"

, ylabel="Rewards (%)")
415

416 #write df to excel
417 df_rewards.to_excel(’df_PDN_Rewards.xlsx’)
418

419 print(f"Total computation time: {time.time()-stime}s")

University of Twente | MDS 46

University of Twente F. Tuininga

D Average Geometric Return with Error Bars

Type Experiment 1 (%) Experiment 2 (%) Experiment 3 (%) Experiment 4 (%)
DDQN* [-49.20, -0.99, 81.44] [-25.92, -1.66, 44.20] [-4.41, 6.55, 65.83] [19.30, 26.09, 35.49]
PRD-DDQN* [-14.02, -3.70, 11.72] [-23.04, -0.14, 30.09] [-3.45, -3.29, -3.27] [27.71, 28.00, 30.09]
DDQN [-45.11, -4.84, 54.12] [-26.53, -0.76, 31.24] [-25.53, 0.35, 54.12] [2.88, 22.64, 30.87]
PRD-DDQN [-44.04, 2.49, 103.67] [-27.39, -1.82, 33.87] [-44.04, 4.59, 75.85] [-17.93, 1.36, 27.70]
S&P500 -4.04 26.89 -4.04 26.89

Table 8: Geometric Returns per Model Type and Experiment: the triplet format denotes the lowest, average,
and highest realized returns across all models of the same type. DDQN* and PRD-DDQN* represent untrained
model types, while DDQN and PRD-DDQN represent trained model types. S&P500 refers to the daily long
position strategy on the S&P500.

University of Twente | MDS 47

	List of Figures
	List of Tables
	Introduction
	Theoretical Framework
	Applications of Deep Learning in Finance
	Double Deep Q-learning Network
	DDQN for Stock Trading
	Contribution to Literature

	Methodology
	Phase 1: Data Transformation
	Phase 2: Experiment Setup
	Convolutional Neural Network
	Double Deep Q-learning Network
	Prioritized Replay Dueling DDQN
	Research Approach

	Results
	Discussion
	Conclusion
	References
	Candlestick Chart Generation (Python Code)
	Standard Double Deep Q-learning Network
	Prioritized Replay Dueling Double Deep Q-learning Network
	Average Geometric Return with Error Bars

