
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Federated Learning for Indoor
Human Activity Recognition:

Adapting to Changing Realistic Environments

Martijn M. van der Linden
M.Sc. Thesis

May 2023

Examiners:
prof. dr. P. Havinga

J. Klein Brinke, MSc
dr. Y. Miao

Pervasive Systems Group
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

2

Acknowledgements

This thesis has been conducted at the Pervasive Systems group under guidance of my daily
supervisor Jeroen Klein Brinke. I want to thank him for his supervision in the past year,
which helped me explore my own interests and the direction of my research. I am grateful
for the many talks I have had with him during meetings, coffee breaks and everything in
between to solve my issues or brainstorm about areas of interest. I would also like to thank
the graduation committee consisting of prof. dr. Paul Havinga and dr. Yang Miao, who
have provided me useful feedback to finalise my work.

To all participants of my experiments: thank you for your cooperation and flexibility dur-
ing the data measurements, even though things did not always go as smoothly as planned.
My thesis would not have been complete without your help.

Thank you to my parents for supporting me throughout my thesis and giving me sug-
gestions to continue or improve my work. A special thanks goes to my close friends, whose
discussions, constructive feedback, and support was absolutely sublime.

4

Abstract

This work focuses on the optimisation of federated learning (FL) for indoor human activity
recognition (HAR) in dynamic environments using Wi-Fi-based channel state information
(CSI) signals and resource-constrained devices. This is achieved by analysing the impact of
various parameters to deal with unseen activity locations and dynamic client participation.
Promising advancements are found in the amount and type of communication and local
computation of clients, as well as the use of existing models to increase convergence speed
of models based on unseen data. Traditional HAR methods can be intrusive, are limited by
environmental constraints and invade ones privacy. FL, a distributed learning technique,
allows for collaboration between multiple clients with each their own unique data, which
maintains privacy while allowing for a powerful machine learning (ML) model. The main
limitation of FL for HAR found in previous work is the lack of realistic testing environ-
ments. By simulating scenarios with resource-constrained devices, this study explores the
impact of local computation, varying aggregation algorithms, limited data availability and
changing environments. The research highlights opportunities and challenges of realistic
environments based on extensive analysis and comparison of the varying parameters, pro-
viding recommendations to maximise the benefits from using FL to train a deep learning
model for indoor HAR. The thesis concludes with an outlook for the future direction of this
system and an overview of the remaining challenges to be addressed.

6

Contents

Acronyms 9

List of Figures 11

List of Tables 15

1 Introduction 17
1.1 Problem Statement . 18

2 Background 21
2.1 Neural Networks . 21
2.2 Federated Learning . 26
2.3 Wireless Human Activity Recognition . 30

3 State of the Art 33
3.1 Comparison of Federated Learning Methods 33
3.2 Developments for Human Activity Recognition 33

4 Pilot Study 41
4.1 Setup . 41
4.2 Data Structure . 43
4.3 Observations . 44

5 Data Gathering & Preprocessing 47
5.1 eHealth House Experiment . 47
5.2 Data Preprocessing . 50

6 Methodology 53
6.1 Neural Network Model . 53
6.2 Training Datasets . 54
6.3 Influence of Variables . 58

8

7 Results 63
7.1 Parameter Tuning . 63
7.2 Effect of Varying Federated Learning Settings 68
7.3 Effect of Adding New Locations . 72
7.4 Effect of Adding New Clients . 77

8 Discussion 87
8.1 Parameter Tuning . 87
8.2 Machine Learning and Federated Learning . 88
8.3 Federated Learning Settings . 89
8.4 Varying Activity Location . 90
8.5 Varying Client Participation . 91
8.6 Summary of Observations . 93
8.7 Limitations . 95
8.8 Ethical Consequences . 97

9 Conclusion and Future Work 99
9.1 Recommendations for Future Work . 99

Appendices 109
A Overview of FL methods . 109
B Expanded HAR literature overview . 110
C Algorithm overview of centralised federated learning 111
D Algorithm overview of decentralised federated learning 114
E Experiment schedule pilot study . 116
F Experiment schedule eHealth House . 117
G Neural network graphical representation . 119
H Summarised overview datasets . 120
I Grid search supplementary results . 121
J Scenario combinations with and without regularisation 122
K Batch size impact supplementary results . 123
L Classical learning comparison supplementary results 123
M Averaging algorithms supplementary results 124
N Training with new locations supplementary results 124
O Training with new clients supplementary results 125
P Limited data availability supplementary results 128

Acronyms

ADL activities of daily living
CSI channel state information
DNN dense neural network
FL federated learning
FMCW Frequency Modulated Carrier Wave
HAR human activity recognition
IID identically and independently distributed
IoT Internet of Things
MIMO multiple inputs multiple outputs
ML machine learning
MSE mean squared error
OFDM Orthogonal Frequency Division Multiplexing
RSSI Received Signal Strength Indicator
SGD stochastic gradient descent
TFF TensorFlow Federated
USRP Universal Software Radio Peripheral

10

List of Figures

2.1 Schematic overview of a neural networks’ architecture, each set of weights
and activation functions forming a layer [1]. 22

2.2 Two different topologies with (a) a star-topology for centralised FL with
nodes (green) having a communication link (black) to the central server, and
(b) a decentralised topology with nodes having communication links to other
nodes. Nodes in these topologies can be any Internet of Things (IoT) device,
microcontroller or smartphone capable of recording CSI data. 27

2.3 Visualisation of matrix H. 31

4.1 Setup experiment 1, with CSI channel (red line) in between node n0 and n1.
Activities are executed in area p, interference is performed in area q. 42

4.2 Data distributions for activities performed during the pilot experiment. . . . 44
4.3 F1-scores of different scenarios. Activities are executed by subject 0 or 1,

close to receiver (RX) or transmitter (TX), with interference (int) or without
interference (no int). Matching variables are marked by the same colour. . . 45

5.1 Setup experiment 2, with CSI channels (red lines) in between all nodes nTV ,
ntable, nkitchen and nAP. Activities are executed in area LTV , Lkitchen and Ltable. 48

5.2 Data structure of federated data (green), with data separated per node (or-
ange), with per node up to K entries (purple). Each entry includes input data
x with label y (grey) equal to the batch size (pink). All input data are a 2D ar-
ray with dimensions (Nt ∗Nr ∗m)× 100. K is defined as f loor(X/batch size),
with X the total amount of data samples of a node. 52

6.1 Abstract representation of used neural network, with three fully connected
dense layers and a softmax dense output layer. 54

6.2 Data flow for the client set. A model is pre-trained with three of the four
available clients for variable number of epochs per round and total rounds.
Then, model optimisation is performed with data from the newly added node
(ntv here). The result is a model specialised to classify activities based on the
new data. 58

7.1 Heat map of grid search for regularisation parameter with incorrect loss func-
tion, average F1-scores of all scenarios. 64

12

7.2 Heat map of grid search for regularisation parameter with correct loss func-
tion, average F1-scores of all scenarios. 65

7.3 Performance comparison optimised network, with and without regularisation. 65
7.4 Average training accuracy with the transparent band indicating the accuracy

range for different number of total epochs, for various batch sizes, with a)
categorical training accuracy over time, and b) categorical accuracy over total
epochs. 66

7.5 Boxplot F1-score comparison over varying local epochs, for different batch
sizes and all locations, with a) 500 and b) 1000 total epochs. 67

7.6 Difference in F1-score and convergence time for varying batch sizes compared
to a network with batch size 40. 67

7.7 Training accuracy for federated and classical learning, 500 training rounds
and 5 epochs per training round, with a) categorical training accuracy over
time, and b) categorical accuracy over total epochs. 68

7.8 Difference in F1-score and number of epochs until convergence for federated
learning compared to classical machine learning. 69

7.9 Training accuracy for various averaging algorithms, 500 training rounds and
5 epochs per training round, with a) categorical training accuracy over time,
and b) categorical accuracy over total epochs. 70

7.10 Difference in F1-score and convergence time for varying averaging algorithms
compared to FedAvg. 70

7.11 Average training accuracy with the transparent band indicating the accuracy
range for various local epochs and varying total number of training rounds,
with a) categorical training accuracy over time, and b) categorical accuracy
over total epochs. 71

7.12 Training accuracy for a total of 500 and 1000 epochs, and varying number of
local epochs, with a) categorical training accuracy over time, and b) categor-
ical accuracy over total epochs. 72

7.13 Training accuracy for continuing training a network on unseen location LTV
with varying number of epochs per round, pre-trained with 100 or 500 rounds
and 10 epochs per round. In a) categorical training accuracy over time, and
b) categorical accuracy over total epochs, both pre-trained with 100 training
rounds. In c) categorical training accuracy over time, and d) categorical
accuracy over total epochs, both pre-trained with 500 training rounds. 74

7.14 Training accuracy for continuing training a network on unseen location LTV
with varying number of epochs per round, pre-trained with 100 or 500 rounds
and 1 epoch per round. In a) categorical training accuracy over time, and
b) categorical accuracy over total epochs, both pre-trained with 100 training
rounds. In c) categorical training accuracy over time, and d) categorical
accuracy over total epochs, both pre-trained with 500 training rounds. 75

7.15 Impact of amount of pre-training done on model for new location with a curve
fit indicating the trend, with a) the impact on F1-score, b) the impact on the
amount of training time until convergence is reached. 76

13

7.16 Impact of amount of data available during optimisation on pre-existing mod-
els (location set), with a) the impact on F1-score, b) the impact on the amount
of total training epochs until convergence is reached. 77

7.17 Difference in F1-score and number of epochs until convergence for varying
data fractions compared to a network trained with all data (location set). . . 77

7.18 Training accuracy for continuing training a network locally on unseen nodes
(receiver only) with data from three pre-existing nodes, pre-trained with 100,
500 and 1000 rounds, and 1 epoch per round. 79

7.19 Comparison F1-scores for different receiver nodes added to the network. . . . 80
7.20 Training accuracy for continuing training a network in an FL setting on pre-

existing nodes with data from an unseen node (transmitter only), pre-trained
with 100, 500 and 1000 rounds, and 1 epoch per round. 82

7.21 Training accuracy for continuing training a network in an FL setting on pre-
existing nodes with data from an unseen node (complete network), pre-trained
with 100, 500 and 1000 rounds, and 1 epoch per round. 84

7.22 Impact of amount of data available during optimisation on pre-existing mod-
els (client set), with a) the impact on F1-score, b) the impact on the amount
of total training epochs until convergence is reached. 85

7.23 Difference in F1-score and number of epochs until convergence for varying
data fractions compared to a network trained with all data (client set). . . . 85

C.1 A centralised topology with in-network computation [2], where nodes (green)
from different rooms (grey borders) send model updates to a local access
point before being sent to the central server. 111

G.1 Graphical representation of used neural network with 3 fully connected dense
layers in the case of 4 output classes. 119

I.1 Heat maps of grid search for regularisation parameter. 121
P.1 Impact of amount of data available during optimisation on pre-existing mod-

els (location set) based on different amount of local computation, with a) the
impact on F1-score, b) the impact on the amount of total training epochs
until convergence is reached. 128

P.2 Impact of amount of data available during optimisation on pre-existing mod-
els (client set) based on different amount of local computation, with a) the
impact on F1-score, b) the impact on the amount of total training epochs
until convergence is reached. 128

14

List of Tables

2.1 Confusion matrix. 26

3.1 Comparison of FL algorithms. 35
3.2 Overview of related literature on human activity recognition using FL, CSI

or both. 36

4.1 List of activities for experiment 1 with corresponding description. 42
4.2 All executed scenarios during the pilot experiment. This is done for each

measured activity. 43

5.1 Node tags and their corresponding locations, with relevance of presence in
indoor environment. 48

5.2 List of activities for experiments in the eHealth House with corresponding
description. 49

6.1 All tested parameters with their corresponding range of values. Not all value
combinations are tested. 59

7.1 Performance comparison federated learning vs. classical machine learning. . . 69
7.2 Performance comparison different averaging algorithms. 70
7.3 Performance comparison for a varying amount of local computation. 72
7.4 Performance comparison with removed location. 73
7.5 Performance comparison with removed client. 78
7.6 Performance comparison for different transmitter nodes added to the network. 81
7.7 Performance comparison for different nodes added to the network, both acting

as receiver and transmitter. 83

A.1 Overview of summarised FL algorithms. 109
B.1 Expanded overview of related literature on human activity recognition. 110
E.1 Experiment schedule pilot study. 116
F.1 Schedule eHealth House experiments, set 0. 117
F.2 Schedule eHealth House experiments, set 1. 118
F.3 Schedule eHealth House experiments, set 2. 118
H.1 Summarised overview of different sets and their purpose. 120

16

J.1 Best training set combinations for each evaluation data set, indicated by
highest average F1-score over 7 folds, with variance of F1-scores over all
training sets. 122

K.1 Performance comparison batch sizes for Ltv (convergence time in seconds and
F1-score). 123

K.2 Performance comparison batch sizes for Ltable (convergence time in seconds
and F1-score). 123

K.3 Performance comparison batch sizes for Lkitch (convergence time in seconds
and F1-score). 123

L.1 Convergence speed comparison federated learning vs. classical machine learn-
ing. 123

M.1 Performance comparison averaging algorithms (convergence time in seconds). 124
N.1 Performance comparison unseen locations with different data fractions - LTV

(epochs until convergence and F1-score). 124
N.2 Performance comparison unseen locations with different data fractions - Ltable

(epochs until convergence and F1-score). 124
N.3 Performance comparison unseen locations with different data fractions - Lkitch

(epochs until convergence and F1-score). 124
O.1 Performance comparison new clients with different data fractions - receiver

only (epochs until convergence and F1-score). 125
O.2 Performance comparison new clients with different data fractions - transmit-

ter only (epochs until convergence and F1-score). 126
O.3 Performance comparison new clients with different data fractions - complete

network (epochs until convergence and F1-score). 127

Chapter 1

Introduction

The ability to automatically monitor activities carried out by people is of interest for appli-
cations such as smart homes, security surveillance, and elderly care [3]. With such human
activity recognition (HAR), activities of daily living (ADL) can be monitored and auto-
matically classified without the need for wearable sensors or video material, allowing for
non-intrusive and private activity recognition, respectively. The focus of this thesis is on
elderly care specifically, but the applied methods can be extended to other HAR applica-
tions. In elderly care, it is desirable to be able to monitor the activity of a person at all
times with confidence. A dangerous situation should be recognised immediately to ensure
the safety of the elderly. Various HAR techniques have been developed, including meth-
ods based on computer vision, wearable motion sensors, and acoustic-based methods [3, 4].
These methods are either intrusive (e.g. inconvenience of a wearable sensor), are limited
by their environmental constraints (e.g. lack of proper lighting conditions), or invade a
person’s privacy (e.g. cameras inside a home). Furthermore, these techniques require ad-
ditional hardware, and thus an adaption of the existing environment. A wireless method
operating in a non-intrusive manner is desired.

Performing wireless HAR in indoor environments is conveniently done using Wi-Fi sig-
nals [3], which allows for non-intrusive monitoring built on low-cost communication channels
[5]. The measured signals are channel state information (CSI) data, which are complex and
contain a large amount of data, especially when the number of performed actions increases
[5]. Machine learning (ML) can provide a solution by training a deep learning model which
is capable of recognising and classifying activities. The problem then is collecting suitable
data, as a model trained on data from a single location does not generalise well for new,
never observed environments. A naive, time-consuming approach would be to gather data
separately in different locations, which is especially cumbersome when new locations are
introduced and a new model needs to be trained to fit the new data. When devices at
different locations have access to differently distributed data corresponding to their unique
physical environment, a better solution would be to use federated learning (FL). In this dis-
tributed learning technique, an ML model is trained through the collaboration of multiple

18 1. INTRODUCTION

clients1, all of which train a model based only on locally available data. Each client calcu-
lates the update to the model and communicates only this update to either a central server
(centralised FL) or to peers in the network (decentralised FL), depending on the specific
setup. All individual updates are aggregated and form the update to the general model,
which is then communicated back to the clients. This way, clients keep their own distinctive
data from discrete locations and only the model itself is to be shared, while benefiting from
features of data from all nodes and allowing models to be trained in parallel. Data contain-
ing information on a person’s activity can be kept at clients, which maintains privacy and
reduces communication. This results in a potentially faster converging and more powerful
ML model compared to conventional ML [5]. Training a deep learning model for HAR is
especially interesting for FL due to the fact that HAR is a relatively simple problem and
therefore requires smaller datasets than, for example, image recognition applications [6].
These smaller datasets can be easily handled by small or Internet of Things (IoT) devices
that can also be used as nodes in FL. In an indoor setting, these devices are easily integrated
into the environment, e.g. as smart devices, Wi-Fi access points, or smartphones, making
FL suitable for training an HAR model for indoor classification. An additional advantage is
the variation in the data measured between devices, which adds to the ability of the machine
learning model to generalise.

Other developments in FL include the introduction of personalised models [7, 8], and the
efficient grouping of participating devices [7, 9]. With these developments, new applications
have been made possible and FL frameworks are designed specifically for HAR. An exam-
ple where FL currently finds its real-life use is in mobile keyboard development from e.g.
Google [10], where data from users’ keyboard interaction are used in a federated setting to
train a general model and improve prediction on user input. When selecting participating
clients, only phones that meet the participation requirements are selected: phones must
be idle, charged, and connected to Wi-Fi. This implementation shows a key feature of
FL: maintaining privacy while learning from locally generated data from various different
environments.

1.1 Problem Statement
The use of CSI-based data for HAR in FL is not a new concept. Previous studies have
demonstrated the feasibility of using CSI data to classify indoor activities and the added
benefits of FL in this context. However, several limitations still exist, as the conditions
in previous work are not representative of real-life scenarios: the relative location of the
performed activity to the measuring devices is controlled, and the communication channels
on which the activities are measured are fixed and predetermined.

Although efforts have been made to simulate realistic transmitter and receiver locations,
research on analysing the effect of a change in device participation and activity location
specifically aimed at HAR is lacking. Furthermore, extensive research has been conducted
to determine the effects of various parameters in the FL frameworks, such as the type

1The terms clients, nodes and devices mean the same in this context and are used interchangeable through-
out this work.

1. INTRODUCTION 19

of averaging algorithm, the trade-off between communication and computation, and the
design of the FL network together with its communication methods. However, determining
the direct influence of these parameters in a scenario where CSI-based HAR operates in a
real-life indoor environment remains an open challenge.

To address these limitations, this thesis aims to investigate the challenges associated with
CSI-based HAR in realistic indoor environments using FL. Specifically, the study examines
the effects of varying transmitter and receiver locations on the performance of the HAR
system, a varying location of human activity, a change in participating clients, limited data
availability, and other realistic scenarios as tested in a simulated indoor environment using
IoT devices with resource constraints. The goal of this study is to identify and empirically
test the influence of these parameters to create a robust, flexible, and efficient system that
can automatically classify human activities in a constantly changing environment, with
uncertainties about human behaviour and limitations on communication and computation
in participating devices.

To reach this goal, the following research question is stated:
How is CSI-based human activity recognition improved with the use of federated
learning approaches, aimed towards practical use in changing environments with
changing activity locations and client participation?

This research question is answered by means of the following sub-questions, of which hy-
potheses are given:

1. How does distributed computing using federated learning improve indoor
human activity recognition on IoT devices compared to centralised machine
learning approaches?
It is hypothesised that FL can increase HAR performance while allowing for a decrease
in device resources compared to non-distributed learning.

2. Which federated learning settings can be used to maximise the performance
of human activity recognition?
Finding the optimal combination of FL aggregation algorithms, local computation
strategies, and model hyperparameters maximises the classification potential for HAR.

3. How can a change in activity location be dealt with to create a location-
independent federated learning system for human activity recognition in
dynamic environments?
By incorporating model adaptation based on unseen data, the classification model for
human activity recognition is readjusted within reasonable time and limited resource
consumption to adequately classify activities in the new location.

4. How can dynamic client participation be dealt with in federated learning
for human activity recognition to ensure sufficient classification perfor-
mance in dynamic environments?
Model adaptation can be reliably implemented to adapt an already existing classi-
fication model to unseen data from new clients within reasonable time and limited
resource consumption.

20 1. INTRODUCTION

5. What trade-offs exist between model complexity, classification performance,
and resource constraints in human activity recognition for IoT devices and
how can these trade-offs be optimised?
Increasing the model complexity improves the classification performance but imposes
a greater amount of required device resources. To optimise performance within these
limitations, leveraging FL with suitable aggregation algorithms and fine-tuning the
amount of local computation can yield optimal results.

Sub-question 1 is answered through an extensive literature study and an empirical com-
parison between the performance of federated and centralised machine learning models.
Question 2 is answered by optimising and comparing different classification models through
varying parameters, using data labeled as the complete dataset. Questions 3 and 4 are an-
swered by simulating environmental changes to withhold and later introduce certain data
from network optimisation. This is done with the use of the location and client dataset,
respectively, allowing for convenient introduction of unseen data. Question 5 is answered by
varying the required amount of resources and comparing different performance outcomes of
the classification models. The combined results of all datasets is used to anwer this question.

The main contributions of this thesis are:

• A comparison between FL and centralised ML for CSI-based indoor HAR

• A comparison between different FL aggregation algorithms for CSI-based indoor HAR

• A comparison between various amount of local computation by clients participating
in an FL framework

• The effect of adding new activity locations to an existing FL network

• The effect of adding new participating clients to an existing FL network

In all of these contributions, resource-constrained devices are taken into account.
The research questions are answered throughout this work. The remainder of this thesis

is structured as follows: Chapter 2 describes the relevant theory regarding ML, FL, and
HAR. Subsequently, Chapter 3 investigates the current state of the art of FL for human
activity recognition. Chapter 4 presents the approach and results of a pilot study aimed
at gaining preliminary insights. Chapter 5 describes the data collection and preprocessing
methods for the data used in the rest of the work. Then, Chapter 6 describes in detail the
methodology applied during this research. Subsequently, Chapter 7 presents the results of
the experiments carried out as described in the methodology, which are then discussed in
Chapter 8. Finally, the work is concluded in Chapter 9 and recommendations for future
work are given.

Chapter 2

Background

This chapter provides an overview of the key concepts and theories relevant to the research.
It begins by describing the fundamentals of neural networks, followed by a description of FL.
Then, the concepts behind wireless human activity recognition are explored. Furthermore,
this chapter investigates the role of device constraints in the context of distributed machine
learning. Understanding these concepts is of importance to understanding the following
chapters and the contributions made in this thesis.

2.1 Neural Networks
This section highlights the theoretical foundation of neural networks. The fundamental
mechanics of neural networks are explained, as well as common factors that can cause a
reduction in model accuracy.

2.1.1 Concepts of neural networks
Neural networks are a type of machine learning models that are inspired by the neural
structure of the human brain. In neural networks the nodes, or neurons, are interconnected
and cooperate to learn relationships between input and output data. Between neurons, the
data goes through a function that modifies the data in such a manner that the final output
is closer to the expected output. This activation function Φ(·) is denoted as follows for
output ŷ [11]:

ŷ = Φ(w · x) (2.1)

with weight vector w and input data x. A neural network can consist of many of such
connections. The weights in w are variables influencing the predicted output. Therefore,
training or optimising a neural network is a process of finding the set of weights that result
in the desired output for a given input data. A schematic overview of a neural network
model is given in Figure 2.1.

The type of activation function influences the network’s output. Examples are the
sigmoid function, which maps outputs to a probability of observing that output, or the

22 2. BACKGROUND

ReLU function, which maps weights lower than 0 to 0, and weights higher than 0 are
unchanged. Combining activation functions across different layers in the neural network
allows for complex connections between input and output [12, 13].

Figure 2.1: Schematic overview of a neural networks’ architecture, each set of weights and activation
functions forming a layer [1].

To optimise the weights w in a network, a weight vector is to be found that minimises
the loss function E(w), which evaluates a network’s ability to correctly classify the data
by determining the error between the predicted and actual output. After optimisation, a
proper neural network model is then able to correctly classify or make predictions based on
the input data during inference, i.e. applying the trained model to a dataset. The specific
choice of loss function depends on the application and the type of data being considered.
The weights are updated through iterative optimisation steps in which the gradient of the
loss function with respect to the weights is computed. This is called backpropagation. Then,
in each step, based on the loss gradient the weights are adjusted in the direction which
reduces the loss and thus results in a more accurately performing neural network. This step
is called gradient descent and can be executed in many different ways. The weight update
is given by:

wnew = wold − α
∂L

∂wold
(2.2)

with loss function L and learning rate α. The above is continued until the whole dataset
has been iterated through. This is considered to be a single epoch of training. A neural
network model is trained with the same dataset multiple times if the number of epochs is
more than one. The pseudocode for training a neural network is given in Algorithm 1, with
dataset D, epochs E, and batch size B.

One of the methods to perform gradient descent with is stochastic gradient descent
(SGD), in which the weight vector is updated after each data point [12]. When part of
the data is considered before updating the weights, the term mini-batch SGD is used. An
update is then computed over a subset of the data called a batch. As opposed to SGD,
far less updates are necessary and thus less resources and computation time is needed. On
the other hand, a big batch size would lead to high memory requirements due to the fact
that computations are performed over a large portion of the data. Different applications

2. BACKGROUND 23

thus allow for different batch sizes [11]. Besides limited memory availability, the batch size
is also influenced by the desired model performance. Keskar et al. [14] note that a larger
batch size results in a lower model performance. A trade-off thus exists between memory
availability, computational resources, and model performance.

Algorithm 1 Neural network training.
1: procedure TrainNetwork(D, E, B)
2: Initialise network weights
3: for e← 1 to E do
4: Shuffle training dataset D
5: for b← 1 to length(D)

B do
6: Select batch Db from D of size B
7: Calculate network output on Db
8: Compute loss and gradients
9: Update model weights with backpropagation

10: end for
11: end for
12: return Trained model
13: end procedure

2.1.2 Overfitting

In machine learning, overfitting means that a model is fitted on a training dataset, while
the model does not perform well on classifying a separate test dataset. The model thus
does not generalise to unseen data. This can happen due to noise found in the training data
which the model adapts to. Additionally, while a high number of epochs can lead to a better
performing model, an excessive number of epochs could result in the model overfitting to
the training data. Increasing the amount of training data might present the model with
data in which the noise is absent or different, thus allowing for differently structured data.
Also, decreasing a model’s size can increase its ability to generalise. Lastly, the k-fold cross-
validation method can be used to help against overfitting. Training data are divided into k
equal parts, of which k− 1 parts are used for model optimisation, and the last k part is used
for validation. After each part has served as validation set once, the model performance is
averaged based on the validation performance of the cross-validated models. This approach
allows for different combinations of training data and for a more accurate estimation of the
model’s performance, enabling easier detection of overfitting [11, 15].

2.1.3 Regularisation

One of the techniques that can be used to help prevent a model from overfitting is the
use of regularisation, which decreases the complexity of a model. A regulariser is a term
that is added to the loss function and acts as a penalty. Goodfellow et al. [16] describe

24 2. BACKGROUND

regularisation as “any modification we make to a learning algorithm that is intended to
reduce its generalisation error but not its training error”, thus counteracting overfitting.

L1 and L2 regularisation

Common regularisation techniques are L1 and L2 regularisation, of which the latter is more
commonly used in machine learning. Both help reduce a model’s complexity by the addition
of a penalty to the loss function.

In L2 regularisation, also known as the squared norm penalty, weight values are forced
towards zero with the following regularisation term:

Ω(w) = λ||w||22 = λ
d

∑
i=0

w2
i (2.3)

with d inputs, weight w, and regularisation parameter λ. Changing λ influences the impact
of the penalty on the loss function. During the gradient descent step in the training phase
of the model, a parameter update is then represented by:

wnew = (1− αλ)wold − α
∂L

∂wold
(2.4)

with loss function L and learning rate α. The factor (1− αλ) reduces the old weight by αλ,
and therefore L2 regularisation is also commonly referred to as weight decay. Considering
the weight update, it can be intuitively reasoned how the regularisation acts under different
absolute values of the weight: a greater value of the old weight decreases the value of
the new weight more rapidly, while a smaller value has less impact on the new weight
value. The effect is that weight values are kept small. Smaller weight values are influenced
less by the regularisation factor and thus weights are unlikely to become exactly 0. This
form of regularisation acts as forgetting mechanism, in which only values that are repeated
throughout the training data are represented in the final model. Less commonly occurring
patterns caused by noise therefore have less impact on the model’s classification output.

L1 regularisation introduces a penalty to the loss function by determining the sum of
the absolute magnitudes of weight values:

Ω(w) = ||w||1 = λ
d

∑
i=0
|wi|1 (2.5)

The parameter update when applying this regularisation factor is:

wnew = wold − αλs− α
∂L

∂wold
(2.6)

with s being the partial derivative of |wold|, which is -1 or 1 when wold < 0 or wold > 0,
respectively. When wold is exactly 0, s can simply be set to 0. The main difference of L1
regularisation in comparison to L2 regularisation is that the former influences new weights
in a linear manner, thus allowing for weights to become 0 more easily than L2 regularisation
does. When applied to a layer in the neural network, L1 regularisation forces certain inputs
or connections to be dropped, which thus allows for feature selection or sparse networks
[11, 15, 16].

2. BACKGROUND 25

Layer regularisation

The regularisation methods mentioned above can be applied to different parts of a network’s
layer, subsequently acting as kernel regulariser, bias regulariser, or activity regulariser [17]:

• Kernel regulariser
Regulariser applied to the weights of fully connected layers of the neural network.
Bigger weights are penalised, while the bias remains unchanged.

• Bias regulariser
The bias regulariser forces biases between layers to be small.

• Activity regulariser
Regulariser operating on neuron activations, ultimately affecting the output of a layer.
As a result, excessive reliance on specific neurons is discouraged.

Additionally, dropout is often employed in neural networks to reduce their complexity.
Dropout allows for the removal of a subset of nodes from input layers as well as hidden
layers during a training instance, resulting in setting the corresponding input or hidden
units to 0. It is therefore similar to the addition of noise in the form of data masking.
By forcing the network to update weights with a varying combinations of neurons, more
features are considered during training. This introduces redundancy among input features,
thereby discouraging overfitting [11, 15]. A recent study by Liu et al. [18] has shown that
dropout not only helps against overfitting, but mitigates underfitting, as well. The authors
state that by implementing dropout in different stages in the training process, randomness
in data is reduced, causing hidden patterns to be captured with less effort.

2.1.4 Performance quantification

A large amount of different variables influence a neural network’s classification performance,
such as weight values, amount and type of input data, hyperparameters etc. A suitable
performance metric is necessary to train, evaluate and compare neural networks and their
classification results. A naive approach would be to rely on a model’s accuracy, which is
simply the proportion of correctly classified data points out of all data points. This metric
could result in an unrealistic performance for class-imbalanced datasets. Therefore, in this
work performance is quantified by the F1-score, which combines the metrics precision and
recall.

Precision represents the proportion of true positives out of the total classified positives.
It thus gives an insight in how many of all classified positives were actually positive. It is
defined as:

Precision =
TP

TP + FP
(2.7)

with TP = True Positive and FP = False Positive. It is an important measure when the
cost of a false positive is high.

26 2. BACKGROUND

Recall represents the proportion of true positives out of the total actual positives. It
provides information on how many of the actual positives were captured. It is defined as:

Recall =
TP

TP + FN
(2.8)

with FN = False Negative. This measure is important when the cost of a false negative is
high. These metrics are summarised in the confusion matrix in Table 2.1 below.

Table 2.1: Confusion matrix.
Actual
Positive

Actual
Negative

Classified
Positive True Positive False Positive Total classified

positives
Classified
Negative False Negative True Negative

Total actual
positives

For the classification of activities both precision and recall are favoured to be as high as
possible. A combination of the two is therefore used for quantifying the model’s performance
by means of the F1-score. This score ranges between 0 and 1, representing a balance between
precision and recall by computing the harmonic mean of the two, as defined as follows
[19, 20]:

F1 = 2 · Precision · Recall
Precision + Recall

(2.9)

The F1-score is used in this work to evaluate optimised models with, as it indicates properly
whether a model has classified activities correctly even in non-identically and independently
distributed (IID) data circumstances.

2.2 Federated Learning
This section explains the concepts involved in FL. First, the procedure of an FL framework
as well as the differences between centralised and decentralised FL are described. Then,
the relevant features of the FL methods are highlighted. Lastly, the use of CSI for HAR is
briefly elaborated upon.

2.2.1 Federated learning framework

The training process of a model using FL involves five steps, which are iteratively repeated
until convergence is achieved or for a predefined number of training rounds [21]. The pseu-
docode of the FL process is given in Algorithm 2, with FL training rounds R, local epochs
E, client set C, and batch size B

2. BACKGROUND 27

(a) (b)
Figure 2.2: Two different topologies with (a) a star-topology for centralised FL with nodes (green)
having a communication link (black) to the central server, and (b) a decentralised topology with
nodes having communication links to other nodes. Nodes in these topologies can be any IoT device,
microcontroller or smartphone capable of recording CSI data.

1. Client selection
A set of clients is selected based on specified requirements, such as data availability,
power level, scheduled tasks, etc.

2. Model sharing
The current model is sent from the server to all selected clients. The topology of the
central server FL method is a star topology, in which each client is connected to the
server via a communication channel (see Fig. 2.2).

3. Client update
Each client that received the updated model now computes updates to the model
weights using locally available data for a certain number of epochs. Alternatively,
only the gradient can be computed. In that case, the central server updates the global
model in a later step based on all gradient updates, instead of updating the global
model based on all updated weights. The latter has been shown to lead to a faster
convergence rate [22].

4. Aggregation
Local model updates are sent back to the central server, where model updates are
aggregated via one of many methods (see Table 3.1). Thus, the update represents all
clients participating in the current FL round.

5. Model update
The aggregated update is applied to the global model.

The Federated Averaging method (FedAvg) as proposed by [23] is one of the most com-
monly used aggregation algorithms for FL [21]. Clients perform multiple SGD steps on
the loss function locally, then transmitting the updated local model to the central server.
Weights are then aggregated by simply determining the weighted average of all weights,
proportional to the number of data samples of a client.

28 2. BACKGROUND

Algorithm 2 Federated learning algorithm.
1: procedure FederatedLearning(R, E, C, B)
2: Initialise global model parameters
3: for r ← 1 to R do
4: Select clients C
5: for c← 1 to C do
6: Share model to c
7: for e← 1 to E do
8: for b← 1 to length(LocalDatac)

B do
9: Select batch LocalDatac,b from client c of size B

10: Perform forward propagation on LocalDatac,b
11: Compute local loss and update weights
12: end for
13: end for
14: Send local weights to server
15: end for
16: Aggregate weights from all clients
17: Update global model parameters using the aggregated weights
18: end for
19: return Trained federated model
20: end procedure

In contrast to the centralised FL setting, methods exist that do not rely on a central
server for aggregation of the model updates. In a decentralised FL setup, no central server
is present. Instead, clients communicate among themselves to reach model consensus, and
thus communication to the server is replaced by peer-to-peer communication [21, 24]. A
central authority may still exist [24], e.g. to determine the model to be trained, algorithm
to use, setting hyperparameters, performing debugging, etc. A comparison of the topologies
of a centralised and decentralised setting is depicted in Fig. 2.2. Due to the absence of a
central server, clients do not have to communicate with the same entity. This results in
a topology where clients are represented as nodes and communication between two clients
is represented by an edge between nodes. Communication does not have to go through all
nodes, as is necessary in the star topology, resulting in reduced communication congestion
[25]. An additional advantage of the decentralised FL topology is not having a single point of
failure: nodes participating in the system can drop out without blocking the entire learning
process. In general, in a setting with low bandwidth or high latency, decentralised methods
outperform centralised ones [26].

A basic method for decentralised FL is decentralised SGD (D-SGD)[27]. Clients perform
a single local update step, after which a single communication step between clients follows.
Each client then aggregates its own updated parameters with those received. The local
update step follows again, etc. Through consensus, the network converges with an accuracy
higher than FedAvg, but at the cost of a longer wall-clock time. Methods from centralised FL

2. BACKGROUND 29

such as FedAvg could be implemented in a decentralised manner, starting with the decision
of a master node that performs the aggregation of model updates. However, single point of
failure issues then still remain, as well as having to deal with bottleneck problems in case
of increased communication to the chosen master node.

FL methods can be roughly categorised by four features and their relative implementa-
tion: non-IID data, personalisation, communication reduction, and data compression. The
features are briefly explained in the following.

Non-IID data

The data used for training are ideally IID, but in realistic settings the data are often non-
IID, which is caused when participating clients are only available in a specific time window,
have specific behavioural patterns, or are located in specific locations. This could result
in problems like client drift, which is characterised by a dissimilarity between the client
gradients and the converging global model. An important aspect of an FL framework is being
able to converge in a tolerable amount of time in the presence of non-IID data. However,
in general FedAvg works with non-IID data and thus convergence is not guaranteed [28].

Data can be non-IID in multiple ways, as summarised below. Distributions are compared
between different clients. The same naming convention as adopted by Kairouz et al. [21] is
used:

• Feature distribution skew:
Differently distributed features.

• Label distribution skew:
Differently distributed labels.

• Quantity skew:
Different amount of data.

• Same label, different features:
The same label results in different features for different clients due to environmental
conditions.

• Same features, different label:
The same features result in a different label for different clients due to personal pref-
erences.

Personalisation

Personalised models aim to recognise personal characteristics after updating a global model
using local data. Models are first trained globally using features of all devices, after which
each device updates the model with local data before using the model. The result is a
model adapted to the specific circumstances of each client, without the need for a client
to train the entire model independently. The number of local updates can vary between
different personalisation methods. The algorithm per-FedAvg as described in Appendix C
is specifically designed to be able to require only a few update steps [8].

30 2. BACKGROUND

Communication reduction & compression

In this work, communication reduction and compression features are considered to only
cover those methods that actively reduce communication or implement data compression
techniques, respectively. For communication reduction, this means that the method is
designed to consume less communication bandwidth and does not ignore this aspect. For
methods including compression techniques, this means that the method incorporates data
compression on data that is sent to other nodes. Incorporating data compression leads to
reduced communication within the network. In most cases, decentralised networks require
less communication than the centralised equivalent, since there is no central server that
needs to to communicate with each client. Therefore, the decentralised FL setups experience
reduced communication.

2.3 Wireless Human Activity Recognition

Both the Received Signal Strength Indicator (RSSI) and CSI are readily available metrics
suitable for wireless HAR in Wi-Fi interfaces that are commercially available. Therefore,
devices that are already present in certain environments could be used to perform HAR.
Other methods mentioned in literature [3, 4] are based on Universal Software Radio Periph-
eral (USRP) devices, e.g. using Frequency Modulated Carrier Wave (FMCW), by which
the frequency shift in a signal caused by human interruption can be measured. However,
such methods require customised hardware and thus are less suitable for use on larger scale
than commercially available off-the-shelf devices. Comparing RSSI and CSI, the latter is
able to achieve a higher activity recognition accuracy, since it contains more information
and has a higher information resolution. This is because CSI data are based on 30 to 265
subcarriers, thus containing the same amount of complex numbers which vary enough to
classify between different activities [3].

The definition of CSI is now formulated based on the description presented in Chen et
al. [29]. CSI data contain information on the amplitude and phase of a wireless signal. The
two main principles used to model CSI in Wi-Fi signals are multiple inputs multiple outputs
(MIMO) and Orthogonal Frequency Division Multiplexing (OFDM). Multiple subcarriers
are used to transmit data over different frequencies, as represented by received signal yi for
subcarrier i [30]:

yi = Hixi + ν for i = 1, 2, ..., m (2.10)

with the CSI channel state Hi, the transmitted signal xi, noise ν, and total number of
subcarriers m. A single CSI measurement is then expressed by a three-dimensional Nt ×
Nr × m matrix H (see Fig. 2.3), with Nt the number of transmitters and Nr the number
of receivers, which represents the signal received from all multi-paths [30, 31]. The entries
in H consist of real and imaginary components [5], and can be used after preprocessing as
input to a deep learning model to classify human activities [32].

A relevant constraint for HAR is the minimal update rate of the devices, which should
be high enough for performing HAR. Human movement usually lies between 0 and 20 Hz,
with daily activities between 0.3 and 3.5 Hz [33]. Additionally, voluntary human movement

2. BACKGROUND 31

generally does not exceed a frequency of 10 Hz. Applying the Nyquist rate would require the
devices used in HAR to be able to perform updates at a rate of 20 Hz to properly monitor
a subject’s activity [34].

Hm
1
1 Hm

1
2 Hm

1
3 · · · Hm

1
Nt

Hm
2
1 Hm

2
2 Hm

2
3 Hm

2
Nt

Hm
3
1 Hm

3
2 Hm

3
3 Hm

3
Nt

... . . .

Hm
Nr
1 Hm

Nr
2 Hm

Nr
3 Hm

Nr
Nt

Hi
1
1 Hi

1
2 Hi

1
3 · · · Hi

1
Nt

Hi
2
1 Hi

2
2 Hi

2
3 Hi

2
Nt

Hi
3
1 Hi

3
2 Hi

3
3 Hi

3
Nt

... . . .

Hi
Nr
1 Hi

Nr
2 Hi

Nr
3 Hi

Nr
Nt

H1
1
1 H1

1
2 H1

1
3 · · · H1

1
Nt

H1
2
1 H1

2
2 H1

2
3 H1

2
Nt

H1
3
1 H1

3
2 H1

3
3 H1

3
Nt

... . . .

H1
Nr
1 H1

Nr
2 H1

Nr
3 H1

Nr
Nt subcarriers

transmitters

re
ce

iv
er

s

Figure 2.3: Visualisation of matrix H.

32 2. BACKGROUND

Chapter 3

State of the Art

This chapter goes into detail about current developments of FL, focusing on the relevance of
it in HAR. An overview of methods for FL is presented for both centralised and decentralised
settings, each method having distinctive features. The chapter ends with an overview of
open challenges for HAR using FL.

3.1 Comparison of Federated Learning Methods
Various methods tackle problems caused by non-IID data, while also certain implemen-
tations focus on dealing with reduction of communication or adding data compression. A
selection of the most important averaging algorithms is presented in Table 3.1. The overview
in this table consists of 24 different algorithms, each categorised by FL features as mentioned
in Section 2.2. For every algorithm the table notes whether it operates in a centralised or
decentralised setting, whether it is robust against non-IID data, implements personalised
models, communication reduction and/or data compression. The last two columns present
the accuracy of test data in case the method operates properly under non-IID data and
the dataset on which this accuracy has been tested. The accuracy of methods dealing with
IID data is incomparable to the accuracy of methods dealing with non-IID data and is
therefore left out. A selection of the more exclusive methods is described in more detail in
Appendix C. Summaries of the methods with publication details of the study can be found
in Appendix A.

3.2 Developments for Human Activity Recognition

Prior work has shown the possibility of using FL for HAR. Sozinov et al. [6] implement
FL to train a model on sensor data from smartphones and smartwatches to perform HAR
with an accuracy that matches those in centralised learning settings. An FL approach on
HAR using CSI is described in Hernandez et al. [5]. The framework, named WiFederated,
aims to achieve high prediction accuracy while allowing nodes to train with as little data
as possible in an indoor environment, with the possibility of classifying activities in unseen

34 3. STATE OF THE ART

locations. It does so by letting the selected clients L̂ from total client set L perform multiple
local updates and combining the results using FedAvg at the central server. The server can
then perform an additional client selection from the set L̂ to only consider model updates
from the set L̂′ to avoid the global model from diverging. Of added benefit is that the model
can be trained without the need for a GPU, which is useful when edge devices are used,
which often do not contain much computational power. Nevertheless, the model should be
trained quickly to allow for new nodes and enable accurate performance within a short time
frame. Additionally, since edge devices can change locations, they need to adapt rapidly to
the new environment. WiFederated handles this by having newly joining nodes personalise
the global model with local updates to maximise accuracy for specific locations. Both this
work and the work done by Sozinov et al. mention the positive impact of personalising
a model with only few local updates. This highlights the importance of performing local
update steps in HAR with FL. An overview of these studies and other related work focusing
on HAR using CSI data and/or using FL methods is presented in Table 3.2. An expanded
overview can be found in Appendix B.

A drawback of WiFederated is the use of fixed transmitters and receivers. With such a
setting, CSI data are always determined in the same direction and between the same two
nodes. As a result, it is argued that an object close to the transmitter might be more difficult
to track when at the same time there is an object close to the receiver. This effect is caused
by the fact that a signal is affected by its surroundings and experiences fading before arriving
at the receiver. Therefore, when an object a is located close to the transmitter, fading causes
the signal modification caused by a to be less defined at the receiving node. When there is
also an object b close to the receiver, the signal change could be entirely dominated by the
spatial impact of object b. This effect grows with an increase in trackable objects due to the
increase in complexity of the resulting CSI. ML techniques might still be able to distinguish
between activities, but an increase in accuracy is expected when changing the transmitting
node in a rotating manner, thus allowing for CSI data to be measured between different sets
of nodes and in different directions. Then, also activities performed by objects that are not
conveniently situated between two nodes have a higher chance of being correctly classified.
Having a decentralised FL setup then is a straightforward choice, allowing for a stand-alone
topology that handles both the rotational system and the FL algorithm without the need
for a central server. This would also avoid having a bottleneck at the central server when
the system is extended with many clients.

3.2.1 Challenges
Over the years research has been conducted considering distributed and federated learning.
While many methods improve on existing ones, open challenges still remain: specific ap-
plications require fine-tuning existing method and in general the accuracy from methods is
relatively low (see Table 3.1). Moreover, indoor HAR relies on devices that are connected
to a wireless network. Possible devices include network routers, smartphones, laptops and
IoT devices. The use of edge devices in an FL setting introduces challenges regarding the
available resources [60, 61]. A selection of the challenges in FL is made, specifically focusing
on applying FL in HAR with the use of CSI data.

3. STATE OF THE ART 35

Table 3.1: Comparison of FL algorithms.
Method DFL/FL Non-IID Personalised

models
Communication
reduction

Compression Accuracy Dataseta

Adaptive FL [35] FL ✓ - ✓ - ca. 0,51 CIFAR-10

CHARLES [36] FL ✓ - ✓ - 0,86 MNIST

FedAvg [23] FL - - - - - -

FedCS [37] FL ✓ - ✓ - 0,54 CIFAR-10

FedDL [7] FL ✓ ✓ ✓ - 0,95 Self-collected LiDAR
data

FedProx [38] FL ✓ - - - 0,65a Synthetic, MNIST,
FEMNIST, Shake-
speare, Sent140

In-network computation [2] FL ?b - ✓ - - -

It STC [39] FL ✓ - ✓ ✓ 0,8 CIFAR-10

Per-FedAvg [8] FL ✓ ✓ - - 0,71 CIFAR-10

q-FedAvg [40] FL ✓ - - - 0,65-0.85c Synthetic, Vehicle,
Sent140, Shakespeare

SCAFFOLD [41] FL ✓ - - - 0,8 EMNIST

Mime(Lite) [42] FL ✓ - ✓ - 0,86 EMNIST

Structure and sketched updates [43] FL - - ✓ ✓ - -

BLADE-FL [44] DFL ✓ - ✓ - 0,6 CIFAR-10

Blockchained FL [45] DFL - - ✓ - - -

C-DFL [24] DFL ✓ - ✓ ✓ 0,8 CIFAR-10

Combo [25] DFL ?b - ✓ - - -

D-cliques [9] DFL ✓ - ✓ - 0,6-0,8d CIFAR-10

DeLi-CoCo [46] DFL - - ✓ ✓ - -

D-SGD [27] DFL - - ✓ - - -

LD-SGD [47] DFL ✓ - ✓ - 0,7 CIFAR-10

MATCHA [48] DFL - - ✓ - - -

PD-SGD [49] DFL - - ✓ - - -

TT-HF [50] Both ✓ - ✓ 0,7 Fashion-MNIST
a Accuracy tested with open-access datasets: CIFAR-10 [51], MNIST [52], EMNIST [53], Fashion-MNIST [54], Synthetic, Vehicle, Sent140 & Shakespeare [55].
b Not mentioned in study.
c Depending on the type of data.
d Depending on topology, momentum & averaging methods.

Accuracy and convergence rate

There are different sources that negatively affect the convergence rate of a model. Mao et
al. [36] list a number of such sources:

• Channel noise
Noisy communication channels can cause loss of information such as model updates.

36 3. STATE OF THE ART

Table 3.2: Overview of related literature on human activity recognition using FL, CSI or both.

Study Recognition type Classifier Data used

[56] Activity SVM Wi-Fi CSI

[57] Activity HMM Wi-Fi CSI

[58] Activity SVM Sensor data from
Google Glass, smart-
phones and vehicles

[6] Activity DNN & softmax regression Sensor data from
smartphones and
smartwatches

[5] Activity DNN Wi-Fi CSI

[59] Gesture CNN & RNN Wi-Fi CSI

• Non-IID data
Clients with different data distributions may force the global model to converge slowly,
or in the wrong direction.

• Imperfect CSI
The presence of imperfect CSI results in a channel estimation error, which accumulates
over time.

As shown in Table 3.1, there are many methods to deal with non-IID data. The presence
of noisy communication channels or imperfect CSI is often ignored. However, both have an
impact on the convergence rate, and more research into mitigating the impact is necessary
to improve the convergence rate under such conditions.

Non-IID data can induce bias due to repeating patterns in participating clients. When
clients meet eligibility requirements, it could occur that the model is only trained by clients
in similar circumstances. For example, a requirement for a client to participate in computing
a model update can be to be idle and being charged. However, it is likely that devices exist
that are always in use when being charged. If these devices have access to differently
structured data due to them being used in different environments, such data might never
be captured in the global model. Yet, the global model is eventually also deployed on such
devices. There thus exists bias towards certain devices which could keep the model from
generalising properly, causing unfairness in the model [21, 62]. This open challenge is to be
researched more before FL can be used on a greater scale. Research could be focused on
relaxing eligibility requirements, personalisation of the global model [7, 8], or introducing
algorithms that aim towards higher fairness [40, 63].

Another impact on the convergence rate is caused by momentum. Momentum is a
technique applied in ML that allows faster convergence by performing update steps to the
weights based on the gradient and the previous update to the weights. Equation 2.2 then
becomes:

3. STATE OF THE ART 37

wnew = wold −
(

α
∂L

∂wold
+ β∆w−1

)
(3.1)

with momentum parameter β determining the amount of influence of the previous update,
and ∆w−1 the weight change of the previous update step [64]. In an FL setting, clients
could compute the momentum based on locally available data. Although the idea is similar
to the conventional ML, in FL it is difficult to prove the added benefit of momentum to the
convergence rate [21]. Especially in non-IID settings or with a low number of clients using
small batches during training, momentum can slow down convergence or even keep a model
from converging [9, 39]. The use of the above mentioned D-cliques can mitigate the issue
and ensure momentum is of added benefit [9]. Additionally, MimeLite introduces the use
of momentum based on the updated server state, allowing for locally applied momentum
aiding in approaching the optimal solution faster than FedAvg [42].

In addition to the open challenges for training the model, the implementation of the
trained network also introduces challenges. When all clients run the same trained model
and have access to the same data, it is a straightforward task to classify newly seen data,
e.g. in a relatively small environment where multiple nodes are able to observe the same
activities. In contrast, when nodes run different personalised models and observe the same
activity, there exist a possibility the models’ decision differs among the clients in a network,
since the nodes may have had (slightly) different types or amounts of training data. In an
HAR setting where different nodes monitor the same room, it is an open challenge how
consensus over the observed activity can be reached.

Communication

Possible room for improvement lies in reducing the amount of communication between server
and client, or between different clients. This issue can be handled by either ensuring that
less communication is necessary on communication channels, compression of the data being
sent, or a combination of the two. It is especially important in decentralised settings to
reduce communication, since nodes are completely dependent on communication with other
nodes. Without a central authority managing this, it is important to be as efficient as pos-
sible without congesting the communication channels. This could become a larger problem
with a growing number of participating clients, as bandwidth shortages might arise [60].
Challenges therefore lie in reducing communication costs while maintaining proper conver-
gence rates.

While methods implement techniques to actively reduce communication, often straggler
issues still remain as frameworks regularly require all clients to participate. This may lead
to convergence problems, since straggler nodes are constantly either dropped or waited for.
It is a challenge to schedule nodes efficiently with stragglers among them, especially when
most nodes are straggling nodes [60]. The straggler problem is also a matter of concern in
decentralised settings: nodes that rely on straggling neighbouring nodes to average their
model must either wait a long time on a straggling node or find a new neighbour. To add
to this, clients using gossiping algorithms in a decentralised setting are often not able to

38 3. STATE OF THE ART

communicate on-demand and need fixed neighbours [27]. However, in a constantly chang-
ing environment it is desirable to be able to connect to different clients, e.g. when a node
has no battery left, experiences low bandwidth or moves away from the network. A flex-
ible network topology with changing communication channels should be investigated. For
example, the Combo system [25] implements an approach in a decentralised setting where
pull requests to a node are simply sent to other clients when said node is unreachable, thus
making advantage of the fact that a client does not have fixed neighbours which it has to
rely on. Other solutions to reduce communication include reducing the amount of data to
be sent to other nodes or scheduling nodes to only transmit when data can be received by
the receiving nodes.

Simply reducing communication is not always the right solution. For example, FL com-
pared to traditional deep learning requires less communication and computation, while
resulting in lower accuracy [6]. This shows that setting the right value for variable parame-
ters have to be chosen carefully to maximise the advantage of FL. For example, choices can
be made regarding averaging algorithms, communication methods, compression techniques
and network topologies. How such choices influence the network convergence and accuracy
is to be investigated.

Data compression is already widely implemented in several studies [24, 39, 43, 46, 65–
68]. These studies show that it is possible to reduce the bandwidth necessary to reach
a converged model while maintaining a high prediction accuracy. Other studies mention
that data compression could be of added benefit to their work, but have not tested this
empirically [6, 37, 48, 49, 69]. It is recommended to experiment with different setups and
determine how data compression helps reduce communication. As a starting point, top-k
sparsification can be investigated, as [39] mentions that it suffers less from non-IID data
than other compression methods.

With all methods that reduce the amount of communication or implement compression
techniques a trade-off can be observed with the computational capabilities of the frame-
work, as highlighted for certain methods in Appendix D. Using more clients in either a
centralised or decentralised setting increases the amount of communication, but total com-
putational power increases, resulting in a higher convergence rate. For better understanding
in whether an aggregation or communication framework is beneficial, it should be investi-
gated if the framework results in faster convergence time while communication costs stay
within acceptable limits. For example, Konstantinos et al. [70] study the effect of increasing
communication on convergence rate in a consensus-based decentralised setting. It concludes
that introducing less communication over time can lead to faster convergence. For specific
applications of FL such as HAR, it should be validated empirically whether setups with
less communication such as decentralised networks perform better than centralised ones,
preferably by comparing the two.

Limited resources

In an FL setting with clients that have limited access to power, computational resources,
communication bandwidth, and memory, it is a challenge to maintain a model which con-
verges fast enough, yet fits within these constraints. Communication reduction has been

3. STATE OF THE ART 39

discussed before, but dealing with limited power and computation is just as important.
One possible approach is to adapt the amount of work done by clients based on available
resources such as battery level or available memory [37]. It is necessary to verify whether
this method works in a decentralised setting. A different novel approach is to maximise the
number of participating clients based on the latency of a client and the available bandwidth
[71]. In general, more participating clients results in a faster convergence time, thus max-
imising the number of clients while respecting system constraints ensures the best possible
convergence time.

Dealing with memory constraints can be difficult with a complex model. Using model
compression techniques can then help towards a memory-efficient model. Existing software
libraries can be used to quickly realise compressed models, such as TensorFlow Lite, which
can be used to store a model in the memory of a microcontroller [5].

Privacy

One of the main reasons for the significance of FL is the isolation of data on local devices.
This prevents clients from having to share personal data with a server, which is relevant
in HAR due to the data containing information on someone’s private space. While FL
improves on privacy concerns compared to the classical ML setting (i.e. centralised, non-
distributed learning), it is worth noting that privacy issues still remain. Some existing
methods improve on convergence time, but require sharing a small amount of client-specific
data thus compromising on privacy. Other issues are noted below.

• Malicious Actors
Geiping et al. [72] note that in a setting where gradients are shared by clients, it is
possible to reconstruct the original data based on the information the gradients carry.
This work was carried out on image classification networks to reconstruct images. It
should be noted that the data of an image are closely related and that as a result
image classification networks are more vulnerable to such an attack. However, the
work concludes by stating that the successful attack indicates the rise of stronger
attacks to other applications in FL.

• Adversarial server
As noted earlier, a central server is a single point of failure. This also means that
clients have to trust the server, both its capabilities and its integrity. An adversarial
server can become a problem when compromising communication channels or when
actively sabotaging the system, e.g. through a Sybil attack.

• Possible solutions
Wahab et al. [62] note possible solutions that should be focused on in the future,
which include noise injection and the ability to adapt privacy preserving methods to
the specific needs of a clients. This could differ based on the type of data, model
settings, communication methods, and device specifications. An additional approach
is to encrypt data sent to the central server or within clients.

40 3. STATE OF THE ART

Chapter 4

Pilot Study

Before conducting the main experiment to gather realistic data on ADL, a pilot study is
performed using a single transceiver pair. This study helps answering questions about the
data and classification methods: Is the measured data suitable to perform ML on and are
the chosen activities different enough to accurately classify the type of activity? What
type of neural network should be used to correctly classify the data? What happens to the
classification performance when noise is introduced in the form of a second person performing
activities? A network learning to recognise indoor activities might be influenced by the
location of the executed activity relative to the location of both the transmitter and the
receiver, as hypothesised in Chapter 1. This study helps answering these questions and aims
to indicate important aspects in HAR to establish the focus for subsequent experimental
setups with more transceiver pairs. Additionally, the data gathered during this experiment
are used to tune the hyperparameters of the neural network.

This chapter describes the experimental setup of the pilot study, the data collection
process, the data structure, and an analysis of the impact of several environmental factors
on the classification accuracy of HAR.

4.1 Setup
The pilot experiment is performed in the break room of the research group. For the mea-
surement of CSI data, two identical devices are used as nodes with a communication channel
between them. The nodes n0 and n1 are placed at either end of the room on a table at the
same height. Any object obstructing the line-of-sight between the two nodes is removed. A
subject executes activities close to node n0 in area p during each CSI measurement, while
another subject introduces noise into the environment by means of random movement in
area q. A schematic overview of the experiment setup is presented in Figure 4.1.

4.1.1 CSI measurement

CSI data are measured between node n0 and n1 while executing one of the activities Ai,
with i ∈ [sit/stand, eat/drink, work, walk, nothing]. The activities are presented in Table

42 4. PILOT STUDY

Figure 4.1: Setup experiment 1, with CSI channel (red line) in between node n0 and n1. Activities
are executed in area p, interference is performed in area q.

4.1 with a brief description. All activities are of relevance in an indoor environment suitable
for living in, as they are either ADLs, or other activities one might perform inside their
home.

Table 4.1: List of activities for experiment 1 with corresponding description.
Activity Description
Sit/stand Sit in a chair and stand up. Repeat

at comfortable speed.
Eat/drink Eat and drink or pretend to do so.
Work Work behind own personal device.
Walk Walking around in activity area
Nothing No presence or activity in the room

The activities are performed by two test subjects, each subject executing all activities
both with and without the noise as generated by random movement by the second test
subject. Each activity-noise combination is repeated twice, in which both nodes once act as
transmitter and once as receiver. This allows for the execution of the activity both close to
the transmitter and close to the receiver. An overview of the performed CSI measurements
for each activity is presented in Table 4.2. A complete experiment schedule is presented in
Appendix E.

During each measurement, CSI data are sent with one antenna and received by two
antennas, using the Intel Wi-Fi 6E AX211 Module [73]. The PicoScenes platform is used to
perform CSI measurements [74]. The receiving node gathers data using the responder mode,
at a sampling rate of 100 Hz using two antennas for 60 seconds. As highlighted in Section
2.3, this sampling frequency should be high enough to be able to capture all relevant human
movement. The data are injected by the transmitting node with the initiator mode, with

4. PILOT STUDY 43

Table 4.2: All executed scenarios during the pilot experiment. This is done for each measured
activity.

Scenario number Subject Location Interference
1 0 RX ✓
2 0 RX ×
3 0 TX ✓
4 0 TX ×
5 1 RX ✓
6 1 RX ×
7 1 TX ✓
8 1 TX ×

random Wi-Fi packets being sent using one antenna, spread over 57 subcarriers with a center
frequency of 5.2 GHz. The use of this frequency allows for a greater number non-overlapping
Wi-Fi channels compared to the frequently used frequency of 2.4 GHz. Additionally, the
shorter wavelength allows for measuring smaller changes in CSI magnitude than a frequency
of 2.4 GHz. The H matrix resulting from the measurements has dimensions 1× 2× 57. After
each measurement, the data are saved to a .csi file with a filename indicating the performed
activity and all information that can be found in Table 4.2.

4.2 Data Structure
The data gathered in the pilot study consist of equal amounts of data on each activity,
except for the “nothing” class, which was measured over just two measurements (once for
each location). The CSI magnitude differs greatly per activity and per measurement. To
show this, the magnitude distributions of each class for randomly selected measurements and
subcarriers are presented in Figure 4.2. It can be observed that neither class follows a normal
distribution, which is relevant when deciding on a data normalisation or standardisation
technique. The data are identically distributed across devices, yet not independently, as
each activity class is measured by multiple devices simultaneously.

44 4. PILOT STUDY

(a) (b) (c)

(d) (e)

Figure 4.2: Data distributions for activities performed during the pilot experiment.

4.3 Observations

The data are classified using a small neural network consisting of 3 dense layers, inspired by
WiFederated [5], in order to verify if the network is also suitable to classify the data in this
work. The boxplot in Figure 4.3 presents a comparative overview of the model performances
under different environmental factors. Difference in interference is presented by scenarios
with and without interference. A difference in distance to the measuring node is indicated
by whether the activity is executed close to the receiver or the transmitter, and personal
differences are shown by a varying test subject.

As observed, the activities executed without interference are consistently more accurately
classified compared to those with interference. This can be intuitively explained by the fact
that interference introduces noise into the measured data, thus increasing its complexity.

Secondly, F1-scores are influenced by whether an activity is executed close to the receiver
or close to the transmitter. The first quarter of the graph is compared to the second, and the
third to the fourth. In these comparisons, all environmental aspects are the same except for
the location of the activity. It is observed that for each of the compared quarters, the same
scenario scores consistently higher when an activity is performed close the transmitting node,
in contrast to what was hypothesised in Section 3.2. It is argued that this occurs because
of multipath signals, which is caused by signals being reflected and scattered throughout
the environment [75]. When such a signal arrives at the receiver, the signal has lost a
portion of its amplitude due to downfading. An activity performed at that location only
influences the signal minorly compared to doing so close to the transmitter, where signals

4. PILOT STUDY 45

Figure 4.3: F1-scores of different scenarios. Activities are executed by subject 0 or 1, close to receiver
(RX) or transmitter (TX), with interference (int) or without interference (no int). Matching variables
are marked by the same colour.

still have their full strength. The difference in F1-score indicates the importance of varying
the transmitting direction in transceiver pairs when activities are performed throughout
multiple locations in a room.

Lastly, it is observed that the difference in F1-scores across different locations varies for
subject 0 and 1. This difference can be associated with differences in physical attributes, as
well as minor variations in the activity execution, resulting in dissimilar CSI data. More-
over, even execution of activities by the same individual may result in varying measurements.
These findings highlight the fact that CSI data differ for distinct individuals, presenting a
challenge for developing a universal classification model in dynamic environments. Consid-
ering this observation, a large number of subjects are invited to participate and perform
activities in the main experiment.

46 4. PILOT STUDY

Chapter 5

Data Gathering & Preprocessing

5.1 eHealth House Experiment
The pilot study was performed to fine-tune hyperparameters and to decide on specific set-
tings for further experimental setups. This experiment only involved two communicating
nodes and did not consider the numerous communication channels that would exist in a
realistic scenario where IoT devices are scattered across a real-life environment. To simu-
late a more realistic setting in which CSI-based human activity recognition might be used
in the future, data are gathered in the eHealth House. This experimental area similar to
an apartment of a two person household is located on the University of Twente and allows
for experimentation and observation of activities in a realistic and controlled indoor setting
[76].

This experiment aims to provide insights into how activity location, client participation
and location, the type of activity, and the presence of more interference affect the accuracy
of classification. The data collected from this experiment are also used to simulate different
types of communication settings and learning systems to determine the effect of various
methods.

5.1.1 Setup
In the eHealth House, participants perform activities in different locations, with nodes send-
ing and receiving CSI data in different locations inside the area. A total of 18 participants
are brought into the eHealth House with three participants at a time. Prior to the exper-
iment, all participants signed a consent form indicating their willingness to participate in
the study. Each participant is asked to perform an activity in one of three locations: LTV ,
Lkitchen and Ltable. The nodes used for measuring CSI data are placed in four locations which
represent realistic location of actual wireless devices. Figure 5.1 shows a schematic overview
of the eHealth House, with node identifiers indicating the location of devices. Table 5.1
lists the identifiers and locations of each node, together with its relevance in a realistic
environment.

48 5. DATA GATHERING & PREPROCESSING

Figure 5.1: Setup experiment 2, with CSI channels (red lines) in between all nodes nTV , ntable,
nkitchen and nAP. Activities are executed in area LTV , Lkitchen and Ltable.

Table 5.1: Node tags and their corresponding locations, with relevance of presence in indoor envi-
ronment.

Node
tag

Location Relevance

nTV In between the television and the
armchair.

Smart TV, home
assistant, casting
device

ntable On the table between the living
room and kitchen.

Laptop, mobile
phone

nkitch On the kitchen countertop, next to
the fridge.

Smart fridge or
other IoT kitchen
device

nAP In the middle of the eHealth House,
elevated (simulating being mounted
on the ceiling)

Access point,
router

5. DATA GATHERING & PREPROCESSING 49

5.1.2 CSI measurements
The experiment involves four activities, as presented in Table 5.2. Detailed experiment
schedules can be found in Appendix F. Participants are required to perform one of the four
activities, while CSI data are continuously being measured between a transmitter device and
three receiver devices for a duration of three minutes. After completing the activity, the
same participants execute the next activity at the same location, but with a different node
functioning as transmitter. For each group of three participants, one participant performs
the same activity four times consecutively. This activity is considered the “main” activity
and is the target of the classification. Two other participants perform randomly assigned
non-main activities, ensuring that each combination of activities occurs only once for each
set of three participants in order to avoid the learning algorithm from recognising activity
combinations instead of individual activities. The CSI data resulting from the randomly
assigned activities serve as noise introduced into the system. The measurements are repeated
until all four nodes located around the eHealth House have transmitted CSI data, and each
main activity has been performed four times by one participant. The experiment consists of
three sets, with each set involving a different location where the main activity is performed.
A total of eighteen different participants take part in the experiment. With three different
sets and three participants per set, this means that each set is repeated twice, thus each
location hosting the main activity twice.

As opposed to the first experiment setup in which the PicoScenes tool was used together
with the Intel Wi-Fi 6E AX211 Module to measure CSI data, for the second set of experi-
ments the Linux CSI Tool [77] was used in combination with the Intel Ultimate Wi-Fi Link
5300 NIC [78], due to a lack of availability of the other devices. For each measurement, CSI
data are sent with two antennas and received by three antennas with a sampling rate of 100
Hz. There are 30 subcarriers per measurement, thus the H matrix has dimensions 2× 3× 30.
As in the first experiment, data are saved to a .csi file with a filename corresponding to
the main activity, location at which the main activity is executed, which node functioned
as transmitter, and by which node the data are received. The locations and types of the
randomly assigned activities are recorded, as well.

Data are labeled by assigning one activity per person per measurement. The labels
indicate where the activity is executed and which activity is executed. The data collected
from the participants are anonymised and kept confidential, and the experiment is approved
by the university’s ethics committee.

Table 5.2: List of activities for experiments in the eHealth House with corresponding description.
Activity Description
Sit/stand Sit in a chair and stand up. Repeat

at comfortable speed.
Eat/drink Eat and drink or pretend to do so.
Work Work behind own personal device.
Rest Sitting idly, while being allowed to

look around or change position.

50 5. DATA GATHERING & PREPROCESSING

5.2 Data Preprocessing
Various preprocessing steps are applied to the data before being able to use as input for a
neural network. First, data are interpolated to ensure a high enough sampling rate, after
which data are either normalised or standardised. Then, a rolling average filter is applied
to reduce noise. Finally, the data are separated per 100 measurements to ensure each data
sample represents a second of CSI data. The different steps are described in more detail in
this section.

5.2.1 Interpolation
To achieve a CSI signal of sufficient sampling frequency, the transmitter rate is configured at
100 Hz. However, at the receiver side it might occur that the sampling rate of the received
CSI data is not uniform due to packet loss caused by e.g. obstructions in the environment.
This results in a sampling rate lower than the desired 100 Hz, from which the learning rate
of a neural network can suffer. To guarantee a balanced dataset with sufficient information
to allow a network to learn to perform accurate classification, it is necessary to interpolate
missing data points [79]. This is achieved by means of linear interpolation, which is defined
as follows [80]:

y = y1 + (x− x1)
(y2 − y1)

(x2 − x1)
(5.1)

with (x, y) the coordinates of the new data point, and (x1, y1) and (x2, y2) the coordinates
of data point 1 and 2, respectively. Signals with a lower sampling rate than desired can be
replicated appropriately by means of interpolation, as long as the sampling rate is equal to
the Nyquist rate or higher. For the activities performed in this research, the Nyquist rate
is around 5 Hz [81].

5.2.2 Normalisation/standardisation
The data are either normalised or standardised before feeding it to the machine learning
model. By doing so, noise is reduced and the stability of the learning process is increased,
as well as the convergence rate of the network. One can either apply normalisation or
standardisation to the data. The former normalises values between 0 and 1, while the latter
scales all values between -1 and 1. Both methods allow weights across a network to be of
similar magnitude. If this would not be the case, the loss function and weight updates based
on it can become particularly sensitive to features of relatively big magnitude, which affects
a network’s learning performance negatively.

With normalisation, the Min-Max scaler is applied to each data point, resulting in a
value between 0 and 1. This is formally defined as:

x′ =
x−min(x)

max(x)−min(x)
(5.2)

with x′ the updated data point, x the original value of the data point, and min(x) and
max(x) the minimum and maximum value of the whole dataset, respectively. An extremely

5. DATA GATHERING & PREPROCESSING 51

high maximum value can cause biased scaled values, making this method sensitive to outliers
[82].

The standardisation or Z-score normalisation method rescales a dataset such that it fol-
lows a Gaussian distribution with a mean value µ equal to 0, and a standard deviation σ
equal to 1. This method assumes that the data are normally distributed. If not, the distri-
bution of the input data is not preserved in the output. The equation for standardisation
is defined as follows:

z =
x− µ

σ
(5.3)

Since both the mean value and the standard deviation are influenced by relatively big
minima and maxima, this method is not resistant to outliers, either [11, 83].

For simplicity, normalisation methods were limited to the ones mentioned above. After
initial observations, data based on normalisation outperformed those based on standardi-
sation methods. Furthermore, Wi-Fi based HAR signals are not normally distributed as
apparent from Figure 4.2. Therefore, the Min-Max scaler is adopted in this research.

5.2.3 Rolling average filter
Signal interference and other environmental activity can lead to unwanted noise in the
amplitude of the CSI signal. This noise adds to the sudden changes in amplitude already
present in CSI data. To mitigate this issue without filtering out important data, a rolling
average filter is applied. This method highlights long-term trends while removing random
noise. By adjusting the size of the filter window, the amount of data loss can be controlled
[84]. This is similar to the filtering approach in WiFederated [5]. The rolling average for
subcarrier i at current time t can be computed by taking the average of the most recent
S− 1 samples for a window size S and is given by:

Āi
t =

1
S

S−1

∑
s=0

Ai
t−s (5.4)

Adjusting the window size S results in different levels of data filtering, with the optimal
value determined through hyperparameter tuning.

5.2.4 Federated datasets
A federated dataset consists of data collected by different clients. In this research, such
a dataset is implemented by creating an array with a sub-array for each client. The data
on each client undergo shuffling to prevent the model from learning correlations between
the order of the data and the target labels. By doing so, the model is forced to learn
general features that are applicable to any part of the data. The data at the client side
are subsequently split into batches of fixed size and each batch is processed separately
during training to increase the learning rate. The number of epochs in a client’s dataset
determines the number of times the model is iterated through by a client during a single
federated training round. In a federated dataset, this is achieved by simply repeating the
shuffled and batched data x amount of times for x number of epochs [85]. The structure

52 5. DATA GATHERING & PREPROCESSING

of the data gathered during the eHealth House experiment is presented in Figure 5.2. The
federated dataset is subsequently split into a train dataset consisting of 60% of the data,
and a separate test dataset of 40% of the data. The sets are used to relatively train and
evaluate a neural network with.

Figure 5.2: Data structure of federated data (green), with data separated per node (orange), with
per node up to K entries (purple). Each entry includes input data x with label y (grey) equal to the
batch size (pink). All input data are a 2D array with dimensions (Nt ∗ Nr ∗m)× 100. K is defined
as f loor(X/batch size), with X the total amount of data samples of a node.

Chapter 6

Methodology

This chapter describes the methods as applied in the implementation of learning algorithms,
the construction of different datasets, and how the influence of resource constraints is de-
termined.

6.1 Neural Network Model

6.1.1 Architecture

The neural network used in this research is based on WiFederated [5], since it has proven to
be effective in indoor HAR. The input for the model consists of CSI data with dimensions
equal to a flattened H matrix for each second of input data. When a sampling frequency
of 100 Hz is used for measuring data, the input is 2D with dimensions (Nt ∗ Nr ∗m)× 100.
The data are passed through a flatten layer which converts the input to a 1D array, which is
defined as the data for all m in Nr, for all Nr in Nt. Subsequently, the array is passed through
a dense neural network (DNN) architecture consisting of three fully connected dense layers,
each with 100 hidden units with ReLu activation functions. The last layer in the network
is another dense layer with a softmax activation function with the amount of outputs equal
to the amount of classes in the dataset.

An activity regulariser using L1 regularisation is implemented on each dense layer of
the network, reducing the output of each layer. Next to that, a kernel regulariser using L2
regularisation is applied, which forces weight values of the dense layers to remain small. The
regularisation parameter λ for both regularisers is determined by means of a grid search, in
which different λ values are tested and evaluated by recording the F1-score of the resulting
network. Additionally, a dropout layer is included between each two dense layers with a
rate of 0.5. This means that for each iteration, 50% of randomly selected units is set to 0.
During inference, all units are used for the classification. In order to keep the sum of all
units unchanged for both inference and training with dropout, all units that are not dropped
are scaled by 1

1−rate , i.e. the probability of a unit not being dropped. This is known as the
weight scaling inference rule [16, 86].

The simplicity of the neural network allows for a small model footprint, which is neces-

54 6. METHODOLOGY

sary for integration on IoT devices. A visualisation of the model is given in Figure 6.1. A
more detailed graph is given in Appendix G.

Figure 6.1: Abstract representation of used neural network, with three fully connected dense layers
and a softmax dense output layer.

6.1.2 Model implementation
The model described above is implemented using the Keras API in Python [87]. Model
optimisation is achieved through minimising the mean squared error (MSE) loss function
through SGD as suggested in WiFederated and presented below:

L(θ, x, y) =
1
N

N

∑
i=1

(Fθ (xi)− yi)
2 (6.1)

The learning rate is set to a value of 10−5, and the server learning rate to 1. The loss L for
weights θ, input data x and expected output label y is computed across all possible classes N,
in which for each possible output class i the squared difference between the predicted output
Fθ (xi) and the expected output yi is summed. The input array y is encoded as a one-hot
vector, thus each class being represented by either a 0 or a 1 for either not representing that
class or representing it, respectively. The loss is a value between 0 and 1 after averaging of
all batches, with 1 being the loss value if all predicted outputs are wrong.

The federated implementation of the model is achieved using the TensorFlow Federated
(TFF) open-source framework [88]. This framework allows for customisation in the used
aggregation method, the number of clients, training rounds, local computation etc. The TFF
framework does not allow for activity regularisation yet, thus only L2 kernel regularisation
is implemented for the federated setting.

For network optimisation, a split of 60% of the original data is used, whereas 40% is
preserved for testing the model. The categorical accuracy of each training instance is logged,
defined by the proportion of correct one-hot labels in a training iteration [89]. After training,
the test data are leveraged to determine the F1-score of the classification model.

6.2 Training Datasets
The data gathered during both experiments are separated per receiving node. After going
through preprocessing and labelling steps, which include the identification of the type and
location of the activity performed, as well as the index of the transmitting node, various
datasets can be constructed. The data from the pilot experiment are then simply stored
per scenario (i.e. each of the measurements as shown in Table 4.2), after which the data are

6. METHODOLOGY 55

used to tune hyperparameters and to investigate the influence of environmental differences
in the measurement area, as described in Section 6.3. Next to that, combinations of different
scenarios are made to optimise the network, after which the models are evaluated on a single
scenario. This can help analyse whether models benefit from data measured in varying
environments.

The data resulting from the eHealth House experiments are processed to create datasets
that each serve a different objective and can be used to determine the influence of various
parameters on the performance and convergence speed of a neural network. The datasets
are constructed based on either variations in location or differences in receiving nodes. The
four resulting datasets are denoted as the simple, complete, location and client set, which are
briefly described below. Next to that, it is specified how the datasets are used for training
models. A summarised overview of the different datasets is presented in Appendix H.

6.2.1 Simple set: single locations

The simple set represents a separation in location where the activity is carried out. This
means that the data are stored for each of the three locations represented in Figure 5.1, while
ensuring the separation of receiving nodes to simulate clients in the FL system with access
to only their own data. This set is used to perform parameter tuning of the neural network.
To do so, a model as described in Section 6.1 is trained for each location. To determine how
certain training settings influence performance, a model is trained for varying regularisation
parameters and varying batch size.

6.2.2 Complete set: all locations

The complete set is used to answer sub-questions 1 and 2 as stated in Chapter 1, as well as
a part of question 5. In the complete set, all the data collected in the eHealth House are
used, meaning that data collected from various locations during the execution of different
activities are all in the set, and data are labelled per main activity. Each client has access
to all performed activities, but only what that node has received itself (i.e. locally gathered
data). The difference to the simple set is that all locations are included in the complete set.
The performance of a model trained on this dataset serves as a benchmark for comparing
the performance of models trained in other scenarios. For example, when a new location is
introduced for executing an activity, models trained on this new location can be compared
with the benchmark performance of the existing model. The benchmark performance is
determined by training a model for varying number of locally performed epochs and number
of FL training rounds, using the complete set.

As the complete set contains all gathered data, it allows for the analysis of the impact
of the use of an FL system compared to a traditional machine learning approach, where a
single entity performs model optimisation. Next to that, various FL aggregation algorithms
are compared to each other using the complete set.

56 6. METHODOLOGY

6.2.3 Location set: introducing new locations

The location set is used to answer sub-question 3 and partly question 5. To simulate realistic
environments, individual locations can be excluded from the location set, which enables the
network to learn from a limited number of locations. Note that this does not mean that
nodes receiving the data are removed from the dataset, but only the location where the
activity is performed. After a model reaches a predefined budget, a new location can be
introduced. The budget is defined as the total number of epochs trained per node, i.e. the
number of local training epochs multiplied by the number of total FL rounds. Using the
model that has already trained on the two old (i.e. already present) locations as starting
point, a new model is trained on the new location. This approach aims to enable the
new model to reach convergence more quickly as compared to training on a new location
from scratch. This becomes particularly relevant when accurate classification of activities
in a new location is necessary or when the classification accuracy of activities in a specific
location is insufficient. The addition of new locations and re-training on them enables the
classification model to quickly adapt to new environments. When it is possible to use an
already trained model as starting point for new locations, such re-training could potentially
only take few training rounds. This is similar to what is presented in WiFederated [5],
where it was demonstrated that in FL existing models can be leveraged by performing only
a limited number of training repetitions on data from activities of unseen locations.

To achieve re-training on unseen locations, first distinct models are trained for a varying
number of locally performed epochs and number of FL training rounds, for each combination
of two out of three locations where activities are performed. Comparing the performance of
these models allows for an understanding of how different locations affect the classification
performance, which is important to decide on how to deal with a change in activity location.
Then, the remaining unseen location is fed to the model and training continues based on
only the data introduced by the new location, again for different training parameters. The
model is trained until a training accuracy of at least 80% is reached, or until a predefined
budget of 3000 epochs is exceeded.

6.2.4 Client set: introducing new clients

The client set is used to answer sub-question 4 and partly question 5. This set is similar to
the location set, with the difference being that data are aggregated in such a way that nodes
can be conveniently removed during training, instead of activity locations. For each node
ni, separate subsets are created with data transmitted and received by all nodes except node
ni, while other sets are created with only data transmitted and received by node ni. This
allows for simulating scenarios where a new device is introduced into the communication
network. A classification model then exists based on data from the nodes that were already
present in the system, and the model is to be updated with data sent and received by the
new device. This is done to determine whether existing networks can be leveraged to train
with data from new nodes, and if so, how fast convergence is achieved.

Similar to the location set, training with data from newly added clients is done by first
training models for a varying number of locally performed epochs and number of FL training

6. METHODOLOGY 57

rounds, for each combination of data from three out of four nodes. Removing a node from
the training phase is achieved by excluding all data transmitted by said node from the
remaining receivers. Additionally, also all data received by said node from the remaining
transmitters is removed, such that no data involving the removed node is present. The
models trained on the data with the absence of a node are compared to each other to
understand how different clients affect model performance. This helps understanding how
to deal with a change in client participation. Then, when the node is introduced into the
system again, one of the following three schemes is executed:

• The new model is trained locally on the new node, with data received by the new
node and transmitted by all other nodes. This represents a device only being able to
detect CSI data without being able to transmit any data.

• The new model is trained in a federated manner by the already present nodes, with
data received from the new node by all other nodes. This scenario represents a newly
added node that can only transmit CSI data and is not able to detect it.

• The new model is trained in a federated manner by all nodes, with data received
and transmitted by the newly added node. Here, the newly added node is able to
communicate in the same manner as the already present nodes, i.e. transmitting and
receiving CSI data.

Again, the new models are trained until a desired training accuracy of 80% has been achieved
or when the budget of 3000 epochs is exceeded. Figure 6.2 shows a schematic overview of
using the client set to train on data from new clients.

It should be noted that the data associated with the new node only consist of data from
the past, i.e. when the node was not included into the FL process. Therefore, the methods
described above only serve as a proof of concept and represent a real-life environment only
up to a certain point.

58 6. METHODOLOGY

Figure 6.2: Data flow for the client set. A model is pre-trained with three of the four available
clients for variable number of epochs per round and total rounds. Then, model optimisation is
performed with data from the newly added node (ntv here). The result is a model specialised to
classify activities based on the new data.

6.3 Influence of Variables
Different variables and parameters are recognised to be influencing classification results in
HAR, such as the regularisation parameter λ, available training data and batch size. For
the FL system, additional influences are present such as the amount of local computation,
the total number of training rounds and the location at which an activity is performed. The
different parameters are described briefly below. An overview of all tested parameters is
presented in Table 6.1, together with the range of tested values.

6. METHODOLOGY 59

Table 6.1: All tested parameters with their corresponding range of values. Not all value combinations
are tested.

Variable Values
Batch size [10, 20, 40]
Local epochs [1, 5, 10]
FL training rounds [5, 10, 20, 50, 100, 250, 500, 1000, 2000]
Activity location [LTV , Ltable, Lkitch]
Client [nTV , ntable, nkitchen, nAP
Data fraction [0.1, 0.2, 0.5, 0.75, 1]

6.3.1 Parameter tuning
To determine the influence of regularisation parameter λ and to find values that improve
classification results compared to having no regularisation entirely, a grid search is proposed
over multiple iterations using the network architecture described above, with a 7-fold cross
validation during network optimisation. For each next iteration, more ideal values are
selected based on the results of a previous iteration. The F1-score for each iteration is
recorded, with the aim to select a combination of λ values for both L1 and L2 regularisation
that achieve the highest F1-score among the compared values.

The batch size used in training the FL system is varied for a subset of the data (in the
simple set). Not having to train on the complete dataset allows for faster convergence and
thus more convenient comparative analysis. Results then might not represent reality to the
best extent, however comparisons between models trained on varying batch sizes can still
be done.

6.3.2 Machine learning and federated learning
A comparison between classical, non-distributed, centralised ML1 and FL is made by consid-
ering the characteristics and qualities of both implementations based on the theory provided
in Chapters 2 and 3. Next to that, the classification performance as well as convergence
speed of both methods are compared to each other.

6.3.3 Aggregation algorithm
As indicated in Chapter 3, not every aggregation algorithm is suitable for every FL imple-
mentation. Aggregation efficiency can be influenced by aspects such as data distributions or
cooperation of clients. In this work, the main influence is how the data are distributed. To
analyse how various aggregation algorithms act in FL systems for HAR, three different al-
gorithms are implemented and their performance is evaluated. The algorithms are available
through the TensorFlow library and are listed below:

• FedAvg

• FedProx, with hyperparameter µ ∈ [0.001, 0.01, 0.1, 1]

1Called “classical ML” throughout this work.

60 6. METHODOLOGY

• MimeLite, with momentum (β = 0.9, based on [42])

• MimeLite, without momentum
Each of the algorithms implement aggregation in a weighted manner, enabling a client with
access to more data to contribute more to the global model [88].

6.3.4 Computation and communication
Computation and communication are analysed by varying the amount of local computation
and the total training rounds. A training round includes distributing the model from the
central server to the connected clients, performing local model updates and subsequently
sending the updated model back to the central server. The amount of local computation
in FL can be varied by controlling the amount of iterations performed during local model
updates. Local training rounds are represented by the number of epochs a client goes
through their dataset. A single epoch translates to training on local data once before
sending the update to the central server, while n epochs force a client to perform n local
update steps. The selected amount of epochs are 1, 5 and 10. These values are based on the
desire to explore different amount of local computation, varying enough to clearly determine
the impact of doing so while constraining the needed computational resources. More local
updates can result in inconveniently high training duration for a single training round.

A higher number of training rounds results in more in-network communication, since
the model and its updates are sent back and forth each round. Together with the amount
of local computation, it is aimed to determine a trade-off between local computation and
in-network communication.

6.3.5 Location and client change
It is analysed how the location of an executed activity in the eHealth House influences
classification performance using the location set. Next to that, the client set allows for
convenient removal of a single client from the dataset, which is done so one client at a time.
Subsequently, the classification performance of a model trained on data from the remaining
three clients is compared for each excluded client. This allows for the analysis of the impact
of each individual node on the FL process. Additionally, the introduction of new data gives
insights in how to deal with new activity locations and new participating clients.

6.3.6 Limited data availability
The influence of the quantity of available data for training a network is especially relevant
when re-training an existing model on new, unseen data, of which the details are explained
in Section 6.2. Ideally, such re-training is done as quickly as possible without the need to
gather a large amount of data. It is therefore relevant to understand how a lower amount of
available data influences network performance. To simulate the situation in which less data
are available for a given setup, a varying amount of fractions of the total available data is
taken to train the network. For each fraction of data, network performance is determined
after training and reaching convergence for both the location set and the client set.

6. METHODOLOGY 61

6.3.7 Resource constraints
To determine the effect caused by limitations in available resources in IoT devices, the
following resources are considered, based on the resource constrains as presented by Imteaj
et al. [60]:

• Communication: The amount of communication between clients and the central
server is represented by the number of training rounds, as for each training round the
model weights are sent back and forth. An optimised neural network trained through
relatively less training rounds thus encountered less communication.

• Energy consumption: The energy consumption of a device performing live classi-
fication with the trained model is not determined in an empirical manner, yet it is
reasoned that a higher number of training rounds results in more energy consumption
due to the processing power required for each round.

• Memory: The memory consumed by a model is recorded by determining the size of
the trained model, as well as the amount of data that was necessary to train the model
until convergence. The latter is influenced by the number of training rounds and the
amount of local computation.

It is worth noting that each of the aforementioned resources are influenced by the number of
training rounds in the FL system. This relationship is intuitively explained by the fact that
a higher number of training rounds directly results in a longer device operation time, which
automatically means there is more time for communication, more energy consumption and
a higher memory usage.

62 6. METHODOLOGY

Chapter 7

Results

The previous chapter has described the methodology as applied in this research. The current
chapter presents results achieved through said methods. First, the results of parameter
tuning is elaborated upon. Then, the results achieved through the different sets are presented
per set, highlighting the impact of individual variables.

7.1 Parameter Tuning
Parameter tuning is performed through a grid search for regularisation parameters and an
analysis of the impact of the batch size, the outcomes of which are presented in this section.

7.1.1 Regularisation

The values for the regularisation parameter λ of both the L1 activity regulariser and the L2
kernel regulariser are fine-tuned through a grid search with four iterations. The values of all
analysed L1 values are [0, 5 ∗ 10−5, 0.001, 0.002, 0.0003, 0.0004, 0.0005, 0.0008, 0.001, 0.01, 0.1]
and those of L2 are [0, 0.0001, 0.0003, 0.0005, 0.0007, 0.0008, 0.0009, 0.001, 0.003, 0.01, 0.1]. The
results of the last iteration are presented in Figure 7.1 as F1-score of the corresponding pa-
rameter values, as the average of data from all scenarios as presented in Table 4.2. It should
be noted that an incorrect loss function was used to get these results, with N as noted in
Equation 6.1 fixed at 5 instead of being variable to the number of possible classes. Since
the performance results in Figure 7.1 are independent of the loss, the values do represent a
realistic F1-score. Based on these results, the L1 regularisation parameter is set to 5 ∗ 10−5

and the L2 parameter to 0.0008. In order to get an understanding of how the network
behaves with the correct loss function, a second grid search was performed, the results of
which are presented in Figure 7.2. Minimum and maximum values of all scenarios are shown
in Appendix I. It can be observed that the chosen parameter values are not optimal in this
setting. These results were however obtained only after the FL experiments were conducted,
and therefore parameter values were left unaltered.

A noteworthy observation based on Figure 7.2 is that the evaluation score is greatly
influenced by the value of λ for L1 for the activity regulariser: a value of 0.01 and above

64 7. RESULTS

Figure 7.1: Heat map of grid search for regularisation parameter with incorrect loss function, average
F1-scores of all scenarios.

results in a low average performance. In contrast, a value below 0.001 does not influence
network performance significantly. The regularisation parameter for L2 for the kernel regu-
lariser contributes less to the performance, as the values in each row of the heat map all lie
a maximum of 0.1 away from each other. Additionally, it can be observed that all values of
the parameter for L2 result in a descent score for the L1 parameter equal to 0, thus allowing
for a network without the L1 activity regulariser.

To evaluate the ability of a network to generalise across different environments, a sep-
arate network is optimised with each scenario combination, after which model evaluation
is performed on each individual scenario, both with and without network regularisation.
The scenario combinations resulting in the highest inference performance for each test set
are presented in Appendix J. Figure 7.3 presents a comparison of the F1-scores for models
trained with and without L1 and L2 regularisation. The number of data points above the
diagonal (974) is more or less equal to the total data points below the diagonal (1058).

7. RESULTS 65

Figure 7.2: Heat map of grid search for regularisation parameter with correct loss function, average
F1-scores of all scenarios.

Figure 7.3: Performance comparison optimised network, with and without regularisation.

66 7. RESULTS

7.1.2 Batch size
To indicate the impact of the batch size on the network’s performance and training con-
vergence, both training accuracy over FL rounds and inference F1-scores are presented for
network optimisation using the simple set. Figure 7.4 presents training metrics over time
and total epochs with a maximum of 1000 epochs. As seen, the wall time is significantly
decreased for a higher batch size. No upper bound of the batch size is observed, yet. The
total amount of epochs is determined by multiplying the training round number by the
number of locally performed epochs in each round. The slopes of the curves in Figure 7.4b
are consistent, suggesting that each epoch results in an equivalent amount of learning. In
contrast, the amount of learning per second differs between different batch sizes.

(a) (b)
Figure 7.4: Average training accuracy with the transparent band indicating the accuracy range for
different number of total epochs, for various batch sizes, with a) categorical training accuracy over
time, and b) categorical accuracy over total epochs.

The F1-scores for a total of 500 and 1000 epochs are presented in Figure 7.5. Details on
individual measurements can be found in Appendix K.

To indicate the direct impact of different batch sizes on both the F1-score and the conver-
gence time, the difference in F1-score compared to the percentage difference in convergence
time is indicated in Figure 7.6 for varying total epochs. The performances with a batch size
of 10 and 20 are compared to the performance with a batch size of 40.

7. RESULTS 67

(a) (b)
Figure 7.5: Boxplot F1-score comparison over varying local epochs, for different batch sizes and all
locations, with a) 500 and b) 1000 total epochs.

Figure 7.6: Difference in F1-score and convergence time for varying batch sizes compared to a network
with batch size 40.

68 7. RESULTS

7.2 Effect of Varying Federated Learning Settings
The complete set is used to compare the classical ML performance to that of FL, the use of
different aggregation algorithms, and the impact that the amount of local computation and
communication between clients has on model performances.

7.2.1 Machine learning and federated learning
The accuracy during network optimisation for both the classical ML and FL approach are
presented in Figure 7.7. The classical approach is achieved by assigning all available data
to a single client, thus being limited to local training only. The batch size for this and all
other following training settings is kept constant at a value of 20. It is observed that the
classical approach reaches convergence in significantly less time than the federated approach.
Table 7.1 shows the evaluation performances of both setups for a varying total number of
epochs. The performance of classical ML is consistently higher for different amounts of total
performed epochs. The biggest difference is with 250 total epochs and only 1 local epoch
per round in the federated setting. The F1-score of FL is more than twice as small as the
score achieved through the classical approach.

(a) (b)
Figure 7.7: Training accuracy for federated and classical learning, 500 training rounds and 5 epochs
per training round, with a) categorical training accuracy over time, and b) categorical accuracy over
total epochs.

Figure 7.8 shows the difference in F1-score and the relative difference in convergence
time of the FL system compared to the classical setup. The results of individual training
sessions are presented in Appendix L. It is observed that the performance score of FL is
always lower than the classical setting without any significant improvement in convergence
time.

7. RESULTS 69

Table 7.1: Performance comparison federated learning vs. classical machine learning.
Total
epochs

FL
rounds

Local
FL epochs

F1-score
(classical)

F1-score
(federated)

250 250 1 0.929 0.438
500 500 1 0.970 0.755
1250 250 5 0.985 0.934
2500 250 10 0.988 0.954

Figure 7.8: Difference in F1-score and number of epochs until convergence for federated learning
compared to classical machine learning.

7.2.2 Aggregation algorithm
The training accuracy over time and over the total number of epochs are shown in Figure 7.9.
The different curves indicate that the aggregation algorithms do not differ from each other
for the total number of training epochs, except for the MimeLite algorithm with momentum.
The wall time does differ for each algorithm, with FedProx with µ = 1 outperforming the rest
in convergence speed. Additionally, MimeLite without momentum converges in significantly
more time than other algorithms, except for MimeLite with momentum, which increases
rapidly for a small number of epochs, ultimately reaching an accuracy of 0.8 in about the
same number of epochs as the other algorithms.

The evaluation scores of the algorithms are presented in Table 7.2. It is interesting to
note that the F1-score differs only for a low number of total epochs and only for MimeLite
with momentum. This is coherent with the initial higher learning rate for a small number
of total epochs as previously described.

In Figure 7.10, the differences in F1-score and convergence time compared to the FedAvg
averaging algorithm are indicated for all other algorithms. Detailed results on convergence
time are presented in Appendix M. The FedProx algorithm with a sufficiently high µ value
performs within 0.1 difference in F1-score and converges up to 18.5% faster than the FedAvg
method. MimeLite with momentum performs better when the model is optimised with only
250 total epochs, even reaching an F1-score of 0.847 without reaching a training accuracy of
0.8. When considering a greater number of total epochs, the convergence rate of MimeLite
with momentum is observed to be 174.0% slower compared to FedAvg. However, MimeLite
achieves an F1-score that is 0.162 higher than that of FedAvg.

70 7. RESULTS

(a) (b)

Figure 7.9: Training accuracy for various averaging algorithms, 500 training rounds and 5 epochs
per training round, with a) categorical training accuracy over time, and b) categorical accuracy over
total epochs.

Table 7.2: Performance comparison different averaging algorithms.

Rounds Epochs F1
(FedProx 1)

F1
(FedProx 0.1)

F1
(FedProx 0.01)

F1
(FedProx 0.001)

F1
(MimeLite,
momentum)

F1
(MimeLite,
no momentum)

F1
(FedAvg)

250
1 0.417 0.45 0.437 0.474 0.847 0.441 0.438
250 0.912 0.91 0.897 0.906 0.911 0.901 0.934
250 0.885 0.889 0.89 0.887 0.867 0.891 0.954

500 1 0.766 0.75 0.742 0.736 0.917 0.76 0.755
500 0.911 0.9 0.909 0.905 0.896 0.9 0.967

Figure 7.10: Difference in F1-score and convergence time for varying averaging algorithms compared
to FedAvg.

7. RESULTS 71

7.2.3 Computation and communication

The impact of and the trade-off between computation an communication is depicted in
Figures 7.11 and 7.12. The graphs demonstrate the effect of varying the number of epochs
per training round, and the impact of maintaining an equal total amount of epochs while
varying the amount of local computation, respectively. The number of FL rounds represent
the amount of communication between client and server. The predefined maximum budget
is set to 3000 epochs. Minor differences in convergence time are perceived for different
amounts of locally performed epochs. In general, more local epochs cause a speed up in
convergence time, both in wall time and number of total epochs. This can be seen in more
detail in Figure 7.12b, in which it is shown that 10 local epochs per FL round allows for
faster convergence time than 1 local epoch per round for the same total number of epochs.
Note that the scale on the x-axis is different for Figures 7.11 and 7.12. This is done to
properly highlight the difference during the optimisation process for a varying amount of
local computation.

(a) (b)
Figure 7.11: Average training accuracy with the transparent band indicating the accuracy range
for various local epochs and varying total number of training rounds, with a) categorical training
accuracy over time, and b) categorical accuracy over total epochs.

Table 7.3 presents the evaluation performances of different amounts of local computation.
The improvement in F1-score stagnates for a higher amount of local computation. When
comparing scenarios with an equal number of total epochs, it is consistently observed that
one epoch per training round outperforms 10 epochs per round, at the expense of increased
convergence time.

72 7. RESULTS

(a) (b)
Figure 7.12: Training accuracy for a total of 500 and 1000 epochs, and varying number of local epochs,
with a) categorical training accuracy over time, and b) categorical accuracy over total epochs.

Table 7.3: Performance comparison for a varying amount of local computation.
Total epochs Epochs Rounds F1-score

500
1 500 0.755
5 100 0.760
10 50 0.733

1000 1 1000 0.935
10 100 0.888

2500 5 500 0.967
10 250 0.954

7.3 Effect of Adding New Locations

This section presents results of network optimisation in a changing environment, with a
newly introduced location at which activities are executed using the location set. The
optimised models are subsequently trained with unseen data under variable parameters,
allowing for analysis of a model’s capability to adapt to new environments. Training and
evaluation metrics are presented for each configuration.

7.3.1 Change in location

A change in location is simulated by introducing a retained location at which an activity was
performed. Below, first the training and evaluation metrics are presented of the optimisation
process on two locations. After, the impact of the unseen data is shown. The score of the
best performing model is made bold. This is consistently the benchmark score.

7. RESULTS 73

Optimisation with two locations

Using the location set, classification models are optimised based on two out of the three
available locations where activities were performed, for varying number of training rounds,
local epochs and batch size 20. The model performance for each model that is trained
without a certain location is shown in Table 7.4 for varying number of total epochs. The
benchmark scores are based on the complete set, without removal of locations.

Table 7.4: Performance comparison with removed location.

Total epochs Epochs Rounds F1-score
(without LTV)

F1-score
(without Ltable)

F1-score
(without Lkitch) Benchmark

500
1 500 0.563 0.589 0.594 0.755
5 100 0.539 0.593 0.599 0.760
10 50 0.550 0.595 0.602 0.733

1000 1 1000 0.715 0.714 0.718 0.935
10 100 0.718 0.718 0.718 0.888

2500 5 500 0.713 0.714 0.718 0.967
10 250 0.744 0.736 0.715 0.954

Unseen location

The training accuracy for network optimisation on an unseen location is presented in Figure
7.13 for location LTV . The network was previously trained on the other two locations for
either 100 or 500 training rounds and 10 local epochs per round. Similar behaviour was
observed for the other two unseen locations. Training on unseen data is terminated after
achieving a training accuracy of 0.8 or higher. The curve indicates that again, more local
computation results in less necessary epochs until network convergence. This is seen by
comparing Retrain epochs 10 to Retrain epochs 5 and Retrain epochs 1. However, the wall
time until convergence is higher for more local epochs when only a small amount of total
epochs is necessary. Figure 7.14 depicts training accuracy for the same training configura-
tions as Figure 7.13, with the only difference being the number of local epochs per training
rounds. This number has decreased from 10 to 1 epoch per round. More total epochs until
convergence are observed for each amount of locally performed epochs during re-training.
Interestingly, the total training time is similar for each Retrain epochs 10, Retrain epochs 5,
and Retrain epochs 1.

The amount of epochs for which the pre-trained model was optimised is recorded and
compared to both the F1-score of the model trained on the new location, and the optimi-
sation time until convergence is reached, i.e. an accuracy of 0.8. The relation between the
variables is depicted in Figure 7.15. F1-scores and convergence time of individual runs can
be found in Appendix N. From the figure, it is observed that when models are pre-trained
with relatively few training rounds, evaluation performance is lower up to a certain number
of pre-trained epochs, and it takes a longer amount of time until convergence is reached
when new data are added to the system.

74 7. RESULTS

Pre-trained 100 rounds, 10 epochs per round

(a) (b)

Pre-trained 500 rounds, 10 epochs per round

(c) (d)

Figure 7.13: Training accuracy for continuing training a network on unseen location LTV with varying
number of epochs per round, pre-trained with 100 or 500 rounds and 10 epochs per round. In a)
categorical training accuracy over time, and b) categorical accuracy over total epochs, both pre-
trained with 100 training rounds. In c) categorical training accuracy over time, and d) categorical
accuracy over total epochs, both pre-trained with 500 training rounds.

7. RESULTS 75

Pre-trained 100 rounds, 1 epoch per round

(a) (b)

Pre-trained 500 rounds, 1 epoch per round

(c) (d)

Figure 7.14: Training accuracy for continuing training a network on unseen location LTV with
varying number of epochs per round, pre-trained with 100 or 500 rounds and 1 epoch per round. In
a) categorical training accuracy over time, and b) categorical accuracy over total epochs, both pre-
trained with 100 training rounds. In c) categorical training accuracy over time, and d) categorical
accuracy over total epochs, both pre-trained with 500 training rounds.

76 7. RESULTS

(a) (b)
Figure 7.15: Impact of amount of pre-training done on model for new location with a curve fit
indicating the trend, with a) the impact on F1-score, b) the impact on the amount of training time
until convergence is reached.

7.3.2 Limited data availability
A fraction of the data is taken with which network optimisation is continued on a pre-existing
model until a training accuracy of 0.8 is reached. The data fractions are [0.1, 0.2, 0.5, 0.75, 1].
As in previous configurations, re-training is performed with different amount of local com-
putation. The impact of the available data on the F1-score and the total amount of epochs
necessary until convergence is reached is depicted in Figure 7.16. More details on the impact
on F1-score and convergence are presented in Appendix P. When only 10% of the data are
available, a lower F1-score is observed compared to considering 50% or more of the data.
Notably, using only 50% of the available data achieves equivalent performance to using all
available data. The same behaviour is not perceived in the number of epochs required to
reach convergence. Leveraging all available data results in a faster convergence compared to
using only a fraction of the data. Figure 7.17 illustrates the trade-off between performance,
convergence speed, and the quantity of data considered during optimisation, also indicat-
ing this behaviour. This figure shows the relation between the difference in F1-score and
convergence time for each data fraction compared to training with all available data. For
example, the entry “0.1 vs 1” shows, for each model re-trained with 10% of the available
data, the difference in F1-score between it and a model re-trained with 100% of the available
data, plotted against the percentage difference in convergence time between both models.

7. RESULTS 77

(a) (b)

Figure 7.16: Impact of amount of data available during optimisation on pre-existing models (location
set), with a) the impact on F1-score, b) the impact on the amount of total training epochs until
convergence is reached.

Figure 7.17: Difference in F1-score and number of epochs until convergence for varying data fractions
compared to a network trained with all data (location set).

7.4 Effect of Adding New Clients

This section presents network results with the absence as well as introduction of one of the
clients ni using the client set. F1-scores and convergence time of individual runs can be
found in Appendix O.

7.4.1 Change in client participation

A change in participating clients can occur when new devices enter a system. This situation
is simulated through the introduction of a new client, which transmits new signals to all pre-
existing clients. This also goes for the opposite direction: the new client starts receiving data
from pre-existing clients. This introduces a new communication channel into the system.
The following results present the metrics of training on three clients, thus excluding a fourth
client, after which the results of different configurations of the new client are shown. The
latter is done via the three different schemes as described in Chapter 6.

78 7. RESULTS

Optimisation with three clients

Based on the client set, network optimisation is performed with the use of three out of
four nodes at which CSI data are measured. The results are presented in Table 7.5 for
each excluded client. The score of the best performing model is made bold. Again, the
benchmark scores are based on the complete set. It is observed that the performance of
the models trained without client nAP is consistently higher than the benchmark score. It
should be noted that the test set used to determine the F1-score also did not contain data
from nAP. It can be stated that the data measured by this client are relatively noisy and
therefore increases data complexity.

Table 7.5: Performance comparison with removed client.

Total epochs Epochs Rounds F1-score
(no nAP)

F1-score
(no nTV)

F1-score
(no nkitch)

F1-score
(no ntable) Benchmark

500
1 500 0.863 0.787 0.808 0.788 0.755
5 100 0.863 0.824 0.828 0.798 0.760
10 50 0.888 0.838 0.784 0.793 0.733

1000 1 1000 0.968 0.954 0.948 0.940 0.935
10 100 0.976 0.966 0.947 0.948 0.888

2500 5 500 0.994 0.992 0.990 0.989 0.967
10 250 0.994 0.992 0.990 0.987 0.954

New client - receiver only

When a new client can act as receiver only, it gathers data from the transmitting nodes
around it. These data can be used to train a model locally, starting with a model that
is adapted to the environment the node enters. Figure 7.18 shows the local training time
and training rounds for each node for models pre-trained on respectively 100, 500 and 1000
training rounds. The training accuracies during the optimisation process in all figures in-
dicate that the newly added nTV is always slower to reach convergence than other nodes,
regardless of the amount of pre-training performed by the nodes that were already present.
Most notably is the negative learning rate of nTV with 1000 pre-trained rounds. Addi-
tionally, where the removal of nAP from pre-training improved the model performance, no
optimisation struggle is perceived for this node when added as receiver. In contrast, nTV
converges the slowest when added as receiver, without indicating model improvement during
the pre-training phase when this node is omitted.

Figure 7.19 shows the F1 evaluation score for different nodes and varying number of
pre-trained epochs. The figure indicates that the amount of pre-training affects model
performance, with more pre-training resulting in a higher F1-score. Up to 2000 pre-trained
epochs was applied, but the performance of various nodes is still improving.

7. RESULTS 79

Pre-trained 100 rounds

(a) (b)

Pre-trained 500 rounds

(c) (d)

Pre-trained 1000 rounds

(e) (f)
Figure 7.18: Training accuracy for continuing training a network locally on unseen nodes (receiver
only) with data from three pre-existing nodes, pre-trained with 100, 500 and 1000 rounds, and 1
epoch per round.

80 7. RESULTS

Figure 7.19: Comparison F1-scores for different receiver nodes added to the network.

7. RESULTS 81

New client - transmitter only

A node that is only able to transmit CSI data can not participate in an FL configuration,
as there is no locally available data the node can contribute with. Instead, in the following
results the new client solely introduces new data into the system by transmitting to pre-
existing clients. The graphs in Figure 7.20 below depict the training time and total number
of training rounds of the FL system for differently pre-trained models. The node as indicated
in the legend represents the excluded node. From Figure 7.20 it can be observed that the
addition of nAP as transmitter results in a longer converge time of the network compared
to adding the other nodes.

Training continuation was also performed with an increased amount of pre-training,
which shows similar results to those presented earlier for the location set in a varying amount
of local computation. Again, a higher number of pre-trained epochs results in less training
time necessary until convergence is reached. Furthermore, the performance of the model
increases, as indicated in Table 7.6. The F1-scores made bold are those scores that are the
highest among all nodes with the same pre-trained epochs and rounds.

Table 7.6: Performance comparison for different transmitter nodes added to the network.
Total pre-trained
epochs

Pre-trained
epochs

Pre-trained
rounds

F1-score
(added nAP)

F1-score
(added nTV)

F1-score
(added nkitch)

F1-score
(added ntable)

500
1 500 0.699 0.710 0.723 0.706
5 100 0.704 0.748 0.726 0.710
10 50 0.708 0.748 0.712 0.704

1000 1 1000 0.735 0.777 0.756 0.764
10 100 0.736 0.802 0.788 0.766

2500 5 500 0.770 0.812 0.793 0.793
10 250 0.790 0.825 0.806 0.835

82 7. RESULTS

Pre-trained 100 rounds

(a) (b)

Pre-trained 500 rounds

(c) (d)

Pre-trained 1000 rounds

(e) (f)

Figure 7.20: Training accuracy for continuing training a network in an FL setting on pre-existing
nodes with data from an unseen node (transmitter only), pre-trained with 100, 500 and 1000 rounds,
and 1 epoch per round.

7. RESULTS 83

New client - complete network

Lastly, the newly added node was allowed to both sent and receive data, enabling it to
contribute to the FL system. The data both sent and received by the new node are now
used to continue training on a pre-trained network. Figure 7.21 presents the optimisation
accuracy for both time and total number of performed training rounds for each newly added
node. Table 7.7 presents evaluation scores for a selection of pre-trained number of epochs.
Similar behaviour and differences between nodes are observed as described before. Again,
training continuation was also performed for a varying amount of local computation. These
results are not shown here, as the same behaviour was exhibited as previously presented
results for variation in local epochs. The best performing model for each row is made bold.
The node nTV performs best in most cases.

Table 7.7: Performance comparison for different nodes added to the network, both acting as receiver
and transmitter.

Total pre-trained
epochs

Pre-trained
epochs

Pre-trained
rounds

F1-score
(added nAP)

F1-score
(added nTV)

F1-score
(added nkitch)

F1-score
(added ntable)

500 1 500 0.702 0.719 0.720 0.716
500 5 100 0.728 0.736 0.723 0.724
500 10 50 0.715 0.737 0.727 0.726
1000 1 1000 0.734 0.754 0.758 0.759
1000 10 100 0.744 0.783 0.754 0.763
2500 5 500 0.753 0.790 0.783 0.781
2500 10 250 0.779 0.789 0.783 0.785

84 7. RESULTS

Pre-trained 100 rounds

(a) (b)

Pre-trained 500 rounds

(c) (d)

Pre-trained 1000 rounds

(e) (f)
Figure 7.21: Training accuracy for continuing training a network in an FL setting on pre-existing
nodes with data from an unseen node (complete network), pre-trained with 100, 500 and 1000 rounds,
and 1 epoch per round.

7. RESULTS 85

7.4.2 Limited data availability
A fraction of the data is taken with which network optimisation is continued on a pre-existing
model until a training accuracy of 0.8 is reached. The data fractions are [0.1, 0.2, 0.5, 0.75, 1].
As in previous configurations, re-training is performed with different amount of local com-
putation. The impact of the available data on the F1-score and the total amount of epochs
necessary until convergence is reached is depicted in Figure 7.22. More details on the impact
on F1-score and convergence are presented in Appendix P. The results indicate that again,
the limited availability of data negatively impacts the F1-score and the convergence speed.
Figure 7.23 indicates the relation between a difference in F1-score and difference in conver-
gence time for the data fractions, as compared to continuation of training a network with
all available data. The trade-off can be seen that was also mentioned earlier between perfor-
mance, convergence time, and data fraction for the three different setups with newly added
clients. Figure 7.23 indicates the relation between a difference in F1-score and difference in
convergence time for the data fractions, as compared to continuation of training a network
with all available data. A lower data fraction results in relatively longer convergence time
and lower F1-score for each scheme.

(a) (b)

Figure 7.22: Impact of amount of data available during optimisation on pre-existing models (client
set), with a) the impact on F1-score, b) the impact on the amount of total training epochs until
convergence is reached.

Receiver only

(a)

Transmitter only

(b)

Complete network

(c)
Figure 7.23: Difference in F1-score and number of epochs until convergence for varying data fractions
compared to a network trained with all data (client set).

86 7. RESULTS

Chapter 8

Discussion

In the previous chapter, experiment results have been presented for each data set. The
following chapter aims to discuss these results and provides a detailed explanation of the
observations. Next, limitations of the research as well as implementation flaws are high-
lighted.

8.1 Parameter Tuning

This section discusses the results of the regularisation parameter tuning and the effect of
varying the batch size.

8.1.1 Regularisation

Based on the regularisation results, it is implied that fine-tuning the activity regulariser in
the network is more important than doing so for the kernel regulariser. Additionally, a low
value for the regularisation parameter in the L1 activity regulariser is desired. As noted
earlier, the F1-scores for different regularisation values using the incorrect loss function
resulted in slightly different optimal regularisation values. This is possibly caused by data
randomness. It is argued that this has not impacted results greatly, as all performance
values for L1 parameter equal to or lower than 0.001 lie within 0.10 of each other, and
relative comparisons can still be made.

The comparison presented in Figure 7.3 indicates that including L1 and L2 regularisation
does not lead to obvious improvement compared to the absence of regularisation. It should
be noted that dropout was implemented in either case. These results are based on data
from the pilot experiment, and it is expected that because of the increase in complexity and
amount of the data gathered in the eHealth House, regularisation is more important.

As noted in Section 6.1, L1 activity regulariser could not be implemented in the FL
model. It is expected that the results were not affected significantly by this, as it is equivalent
to regularisation with parameter λ equal to 0, which always results in a descent F1-score
regardless of the value of the L2 parameter.

88 8. DISCUSSION

8.1.2 Batch size

The batch size in FL settings influences the total time needed to complete a certain amount
of training rounds. The decrease in wall time for smaller batch sizes is caused by a decrease
in necessary computations per epoch, as more data are processed per forward and backward
pass during model optimisation. Since in Figure 7.4a no upper bound in convergence time
is observed, yet, a higher batch size could be considered as long as the device’s available
local memory allows to do so.

Based on the difference between Figures 7.4a and 7.4b, the batch size only influences
the computing time per round, while the amount of learning per epoch remains equal. This
is possibly explained by the fact that the amount of data seen per round is the same for
different batch sizes, as clients iterate through the entire local dataset for each epoch before
communicating the updated model. The batch size only influences the number of samples
used per forward and backward pass. This observation contradicts what is observed in
literature, which states that smaller batch sizes lead to greater gradient variance due to
inconsistent updates across clients, and thus more total epochs are necessary until model
convergence is reached [90]. However, data across devices in an FL system are usually non-
IID. In this research, data are in fact identically distributed since each device measures the
same activities. Therefore, it is suspected that smaller batch sizes do not lead to gradient
variance in FL for devices in the same room. The same reasoning can be applied to the lack
of difference in F1-score for different batch sizes. Literature shows that higher batch sizes
generally lead to lower model performance, yet the performance in this research for different
batch sizes is equal, as indicated in Figures 7.5 and 7.6. It is argued that this is caused by
the fact that different clients hold similar data, thus counteracting the decrease in learning
performance due to a higher batch size, by combining multiple models from different clients.

8.2 Machine Learning and Federated Learning

8.2.1 Performance comparison

The results in Figure 7.7 show the difference between classical ML and FL during network
optimisation. It should be noted that the federated process did in fact not reach convergence
within 250 training rounds, explaining the relatively low performance.

The relatively high performance achieved with the classical approach is likely caused by
the fact that the data are quite similarly distributed across clients. Would the data be more
non-IID, FL would be more beneficial. Next to that, additional advantages come with the
use of FL, as discussed below.

8.2.2 Communication and privacy

From the performance comparison above it seems there is no good reason to make use of
FL in HAR settings. However, as highlighted in Chapter 2, FL enables clients to keep their
measured data locally stored, without having to share data to a central server in order to

8. DISCUSSION 89

perform activity classification. By sending and receiving updates from the server, knowl-
edge is still shared between clients. In contrast, a classical, non-distributed ML approach
would need clients to share all of the measured data. This not only floods communication
channels, but consumes resources for both clients and the central server. In addition, future
implementations of indoor CSI-based HAR might include inter-household model sharing
to improve classification ability to generalise. A classical approach raises privacy concerns
when sharing CSI data among unfamiliar entities, as those with malicious intentions can
exploit such data to continuously monitor people inside their homes without their consent.

8.3 Federated Learning Settings
In the previous section, differences between local machine learning and federated learning
have been highlighted. Now, specific FL settings regarding aggregation algorithms and the
amount of local device computation are elaborated upon, and differences are highlighted.

8.3.1 Aggregation algorithms

The similarities between different aggregation algorithms in Figure 7.9 are dedicated to the
fact that data are identically distributed across clients and thus there is not much benefit
from algorithms dealing with data heterogeneity. Would the data be non-IID across clients,
FedProx would likely outperform FedAvg [38]. It is hypothesised that the minor difference in
wall time for FedProx with µ = 1 is caused by the fact that penalising client updates results
in more time-efficient aggregation. Details are unknown and are likely caused by TensorFlow
optimisations. It should be noted that differences may have also been caused by the extent to
which the external server utilised for the computations was occupied. Similar behaviour has
not been observed in literature, partly because most studies only compare the total number
of epochs with each other. The fact that MimeLite without momentum converges slower
than most other algorithms is attributed to the fact that MimeLite without momentum
simply reduces to FedAvg with more overhead due to the optimiser state being shared with
the clients.

The addition of momentum allows for accelerated model updates when the loss is still far
from being minimised, but causes the network to slowly converge when the weights approach
their target value, possibly due to an insufficiently small learning rate or due to overshooting
the optimal solution. This would explain the slow increase in accuracy for MimeLite with
momentum after a quick start It is suggested to explore the effect of different momentum
parameters, as well as including an adaptive learning rate in order to speed up convergence
in later stages.

Besides the performance differences between MimeLite with momentum and other algo-
rithms, the model size differed, as well: the model size when optimising with momentum, is
twice as big compared to doing so without: 13.9 MB compared to 6.9 MB. Accumulating the
moving average of preceding model updates requires significantly more memory resources.
A trade-off thus exists between convergence time, performance, and required memory. All
of the aggregation algorithms eventually result in a properly performing model, and there-

90 8. DISCUSSION

fore the final choice is based on time constraints and performance requirements depending
on specific application demands.

8.3.2 Computation and communication

The differences in convergence time for different amount of local computation is reasoned
to be caused by the decrease in aggregation overhead resulting from a reduced number of
updates by the central server. Based on this, it is implied that in indoor HAR using FL,
an increase in local computation allows for faster convergence due to a decrease in commu-
nication. It is important to note that an increased amount of local computation requires
more local resources of the participating clients. Therefore, the possible amount of local
computation as well as communication between nodes and the central server are device
dependent and are influenced by the cost of computation and communication. Currently,
communication delay is not implemented in TensorFlow Federated, meaning that this re-
search has not recorded overhead in communication between client and server. In real life
implementations, communication costs would be present, increasing the importance of local
computation.

Based on the stagnating F1-scores after a certain amount of local computation, it is
implied that an excessive amount of local computation per training round is possible and
leads to the model overfitting to the data measured by individual clients.

8.4 Varying Activity Location
This section discusses the results achieved through the location set and how a varying activity
location is dealt with.

8.4.1 Performance with two locations

Before training an existing model on data from an unseen location, the models are trained on
data from the two other locations. The models perform similarly for each omitted location.
Additionally, all models perform worse than the benchmark mode, which is most probably
caused by the reduction in variety in training data.

8.4.2 New locations

For each omitted location, the network is again optimised with data from activities executed
in that location. Due to the fact that an increase in local computation also results in an
increase the training time per training round, less local computation can actually result in
faster convergence. This appears to only be true when only a small amount of training is
necessary, since from Figure 7.14 it is apparent that a higher amount of local computation
again leads to faster convergence. When less pre-training is performed and thus more
re-training is necessary, the amount of local computation matters less, implying that local
computation does not influence training continuation on existing models by a great amount.

8. DISCUSSION 91

In real-time applications it is desired to adapt quickly to new environments. Since
networks pre-trained with a higher amount of training rounds converge quicker for new data,
an FL framework in a changing environment benefits from pre-training a model sufficiently
when time and resources allow to do so. A trade-off exists between the convergence time and
the number of pre-trained epochs. Again, the specific requirements for different applications
influence how much pre- and re-training is possible and necessary.

8.4.3 Performance with limited data
Finally, the availability of training data for the continuation of the training process based on
pre-trained models significantly influences both performance and convergence time. When
devices have the capacity to store and utilise a relatively large amount of data during the
optimisation process, it is recommended to train on new locations with as much data as
possible. However, when memory and computational resources are limited, a decision needs
to be made on the required performance and convergence speed. It should be noted that
the performance reached through leveraging a fraction of 10% of the data might still be
acceptable in certain applications.

8.5 Varying Client Participation
This section discusses results achieved through the client set, which was used to add new
clients to existing networks.

8.5.1 Performance with three clients
Most notably from the results is the noise introduced by client nAP. The noise observed by
this client is most probably caused by the placement of the node, at a corner and elevated
from the ground. Data considered with this node might therefore by scattered in a greater
manner than it does so for other nodes, resulting in noisy CSI data. It is advised to perform
more detailed signal propagation analysis to confirm this hypothesis.

8.5.2 New client - receiver
A newly introduced client acting as receiver can perform local computation only on CSI data
transmitted by the other clients. The fact that adding nTV added as new node is slowest to
reach convergence implies that data measured by nTV on communication channels between
nTV and other nodes is more complex than on other communication channels, and holds
less distinctive features. Likely, this behaviour is caused by multipath signals due to the
spacious area the node was located in. Thus, the location of a newly added client relative
to other clients matters, which adds to the importance of distributed learning for HAR in
the form of FL.

As mentioned, the removal of nAP from the pre-training phase improved model perfor-
mance, which suggests the presence of noisy data on this node. However, a higher con-
vergence time than other nodes for the newly added nAP as receiver is not observed. The

92 8. DISCUSSION

opposite is true for nTV . This suggests that multipath signals occurring on the receiving
side of a communication link impact training performance less than when such signals occur
close to the transmitter. This is intuitively explained by the fact that noisy signals close to
a receiver are limited to being measured by that receiver only. On the other hand, noisy
signals being caused close to the transmitter are measured by all other nodes in the system,
contributing to considerably more noisy data.

The number of FL rounds executed during the pre-training phase affects the convergence
rate of newly added receiving nodes. The negative learning rate for nTV with 1000 pre-
trained rounds is highly interesting and may be caused by the relatively high number pre-
trained epochs and the noisy nature of the data from nTV . It is plausible that the pre-trained
model was overfitting to the non-noisy data, therefore requiring adjustments to the network
weights to allow further learning on the new noisy data.

Lastly, the performance of various receiver nodes is indicated in Figure 7.19. If device
resources allow, it is advised to perform a greater amount of pre-training to achieve better
performance.

8.5.3 New client - transmitter
The observation that the addition nAP results in longer convergence time further supports
the claim that multipath signals are generated on the transmitter side of the communication
link between nAP and the other nodes. Furthermore, since the addition of nTV as transmit-
ter results in the highest performance for most training configurations, it is implied that
signals originating from this node result in the most information-dense data. It can only
be speculated why this is the case, and further research is needed to conclude on optimal
device placement.

8.5.4 New client - complete network
In this last configuration, all the data that comes with the introduction of a fully operating
device are considered. The relatively high performance of nTV is in line with its relative
performance when added as transmitter. The results mainly indicate that it is feasible to
train existing models on unseen data and to adjust to new environments within less time
than training a new model from scratch. This has already been proven by Hernandez et al.
[5], and now this prove has been extended to activities in new locations and more dynamic
transceiver pairs, allowing for flexibility in realistic environments.

8.5.5 Performance with limited data
As with the location set, availability of training data influences the performance and con-
vergence time of the continuation of training based on pre-trained models. The trade-off
between performance, convergence time, and data fraction is the same for the receiver,
transmitter and complete setup, indicating the possibility of training with a little amount of
data for each type of device (i.e. receiver or transmitter) as long as it is able to communicate
in some manner.

8. DISCUSSION 93

8.6 Summary of Observations

A summarised overview of the most important observations is given in this section. The sec-
tion aims to explicitly answer the research questions as stated in Chapter 1, thus the subjects
considered are based on these questions: the benefits of FL, maximising the performance of
FL, the impact of unseen data, and the proposed methods to deal with resource constraints.
The summary for each subject begins by restating the relevant research question.

8.6.1 Benefits of federated learning

How does distributed computing using federated learning improve indoor human activity
recognition on IoT devices compared to centralised machine learning approaches?

The performance comparison between classical ML and FL indicates that the classical ap-
proach achieves convergence in less time compared to FL. The classical approach consistently
outperforms FL in terms of F1-score for different numbers of epochs and various amount
of locally performed epochs in the FL approach. It is expected that with more heteroge-
neously distributed data, FL outperforms classical ML, especially with a fitting aggregation
algorithm. With data that is IID among clients, FL does not offer significant improvement
in convergence time, but it does enable clients to retain their data locally and share updates
with the server. In contrast, the classical approach would require sharing all measured data,
leading to increased communication overhead and resource consumption. Moreover, FL can
be used in inter-household model sharing to enhance the ability of the classification to
generalise, addressing privacy concerns associated with sharing CSI data among unfamiliar
entities.

8.6.2 Maximising performance

Which federated learning settings can be used to maximise the performance of human activity
recognition?

As discussed, it is generally true that a higher amount of local computation by clients results
in a decrease in the convergence time. Model performance is increased as long as the amount
of local computation is limited. In training continuation based on pre-trained models, the
number of pre-trained epochs determines whether a higher amount of local computation is
advantageous. Different aggregation algorithms affect the convergence time and model size,
while the evaluation performance is similar for a relatively high amount of model training.
Applying global momentum locally at clients (MimeLite) can be beneficial with an adaptive
learning rate.

94 8. DISCUSSION

8.6.3 Unseen data

New location

How can a change in activity location be dealt with to create a location-independent federated
learning system for human activity recognition in dynamic environments?

A comparison has been made between the training of existing models on data from various
unseen locations. The performance of the models is found to be similar for each omitted
location, but worse than the benchmark model due to reduced training data variety. When
new locations are added, more local computation leads to faster convergence, but the wall
time until convergence may not necessarily be reduced. Pre-training the models adequately
improves the F1-score and reduces convergence time when new data are added. A change in
activity location can thus be dealt with in a reliable manner by using existing models and
allowing devices to use (part of) the new data to optimise for the new location, within the
available time and resources. The specific requirements of different applications determine
the extent of pre- and re-training possible and necessary.

New client

How can dynamic client participation be dealt with in federated learning for human activity
recognition to ensure sufficient classification performance in dynamic environments?

Training is also performed on data from unseen clients. The findings reveal observations
about different clients and their roles in the network. Models trained without client nAP
consistently outperform the benchmark score, indicating that the data measured by this
client are noisy due to its placement at a corner with multipath signals. The newly intro-
duced client nTV as a receiver takes longer to converge during training, suggesting that the
data it measures on communication channels with other nodes are more complex and less
distinctive. The location of the new client relative to others plays a crucial role, highlighting
the importance of distributed learning. When added as a transmitter, certain clients require
longer convergence times, whereas others provide the most information-dense data and thus
allow for a more rapid adaptation to the new data. Overall, the results demonstrate that
training existing models on unseen data and adapting to new environments is feasible and
efficient, allowing for dealing with dynamic client participation. The available time and re-
sources determine performance and convergence time of the new network. Further research
is needed to optimise device placement and draw more conclusive findings.

8.6.4 Resource constraints

What trade-offs exist between model complexity, classification performance, and resource
constraints in human activity recognition for IoT devices and how can these trade-offs be
optimised?

8. DISCUSSION 95

Memory limitations

In indoor HAR with the use of edge devices in an FL setting, the memory capacity of
devices is limited. Therefore, this work has considered a small neural network with only
three dense layers, which has proven to work in CSI-based HAR, as also indicated in the
work of Hernandez et al. [5]. Additionally, both the batch size and number of locally
performed epochs affect convergence time, while requiring an increase in available memory.
Deciding on which settings to adopt depends on the resource limitations and the application
requirements.

Convergence time

Convergence time becomes particularly crucial in network optimisation when resource con-
straints are present. Limited resources such as memory capacity and energy require optimis-
ing convergence time to ensure efficient utilisation of available resources. In such scenarios,
the balance between achieving the desired performance and minimising the convergence
time is key. It has been shown that convergence time can be limited through varying the
batch size, the amount of local computation, the type averaging algorithm, the amount of
data availability and the amount of pre-training in the case of unseen data.

Limited data

Limited data availability affects performance and convergence time, with the use of more
data resulting in faster convergence, but equivalent performance is achieved with 50% of
the available data. The trade-off between performance, convergence speed, and the amount
of data considered during optimisation should be considered based on memory and compu-
tational limitations.

8.7 Limitations
The work in this research has been conducted to the best extent possible regarding resources
and knowledge. However, shortcomings as a result of limitations of the work done during
this thesis are present. This section highlights known limitations and briefly elaborates on
their impact on the research.

8.7.1 Limited data gathering
The research was constrained in conducting more extensive data gathering due to the sig-
nificant time required for each person to do so. In the ideal case, each subject would have
conducted each activity in every location LTV , Ltable and Lkitch, with and without interfer-
ence in the room for each transmitting device. This would have resulted in data for all
possible variable combinations, allowing for narrowing down impacts on the data by indi-
vidual variables in more detail. The number of measurements rapidly grows by doing so,
which would have required a whole day of measurements for each individual.

96 8. DISCUSSION

In this study, the measurements were conducted with the aim of gathering a substantial
amount of independent data. However, due to predetermined combinations of the main
activity and randomly assigned interference activities, it was not feasible to determine the
optimal location between the performed activity and the transmitter and receiver for achiev-
ing the highest classification accuracy, as was done in the pilot study.

8.7.2 TensorFlow implementation

To allow for convenient implementation and modification of an FL system, the TFF frame-
work was used. This framework proved to be useful, but some limitations were encountered.

First, the implementation lacked an activity regulariser (L1) in the FL framework. While
it was shown that performance is acceptable without L1 regularisation, it can be fruitful to
include it in more complex data.

Second, the use of the framework solely allowed for FL simulation without considering
communication overhead and device constraints. With a higher amount of communication,
the cost that comes with it becomes increasingly important. The lack of it during this
research might limit the real-world applicability and how generally applicable the findings
are.

Third, the averaging algorithms that have been compared to each other in this work
are only a subset of the algorithms that have been created in the current literature, as
indicated in Chapter 3. The TFF framework only provides convenient implementation for
the algorithms considered in this work. While it is possible to develop custom aggregation
algorithms, resource limitations have prevented their inclusion in this study, leaving them
as potential areas for future work. Next to that, decentralised approaches without a central
server have been explored in Chapter 3, yet have not been implemented in this work due to
TFF limitations.

Fourth, an implementation error led to the absence of deterministic random shuffling
of the data. As a result, the analysis of different variables was conducted using randomly
ordered data, possibly leading to inconsistent model performance of the models. To mitigate
the negative impact, multiple runs of model optimisation were executed under different
configurations.

Finally, the current TFF framework can only be used for research purposes and is not
ready for implementation in the real world, as deployment to devices is nonexistent [88].
This limits the possibility of verifying the findings of this study.

8.7.3 Limited parameter exploration

The research focused on isolating specific variables to measure their individual influence,
rather than analysing various combinations of parameters. Consequently, the exploration
of parameter combinations was not included in the study, such as batch size with different
averaging algorithms, or different algorithms with unseen data. This was done to limit the
amount of time and resources necessary to come to the findings presented in this thesis.

8. DISCUSSION 97

8.7.4 Unseen data
The introduction of unseen data was simulated by removing part of the data from the
training dataset after measurement and processing. This means that data was collected
simultaneously with all other data, but intentionally withheld during the pre-training phase.
Consequently, the supposedly “new” data are actually data from the past which the system
was not allowed to access until training continuation on these data began. It is important
to acknowledge that this approach may introduce biases, as it contains data from activities
measured by other devices, as well.

8.7.5 Device presence
The research presented in this thesis assumes that indoor environments contain a sufficient
number of IoT devices to establish an FL framework in which data are measured between
them. However, IoT devices might not be readily available in large quantities, especially in
elderly homes. In such cases, the advantage of not being required to install new hardware
for CSI-based sensing disappears, thus smart homes are to be the norm in order for achieve
the functionality of this system.

8.8 Ethical Consequences
With the realisation of CSI-based HAR, ethical concerns are introduced. These concerns
and their consequences are highlighted in this section.

While data are stored locally without being shared, possibilities in exploiting model
updates still remain. Private data could be reconstructed based on changes in the global
model, introducing the need to randomise part of the global model [21].

The CSI data measured and gathered to perform HAR are on itself privacy sensitive,
as it includes data on what a person is doing, as well as their heart rates and other vital
signs [91]. When Wi-Fi signals from neighbouring environments are measured, privacy can
be easily violated. Efforts should be made to ensure such data are not available to wrongful
parties.

Lastly, as opposed to wearable devices or other observation methods, CSI data can
be measured without the need to introduce new hardware to an environment. Therefore, a
person’s activity can be monitored without their knowledge and consent, which is concerning
in most situations. Actions are to be taken to ensure a person being tracked is always aware
of it.

98 8. DISCUSSION

Chapter 9

Conclusion and Future Work

First, the research question is restated again and the conclusion of this work is drawn. Then,
recommendations for future work are stated.

The research question as stated in Chapter 1 is as follows:

How is CSI-based human activity recognition improved with the use of federated
learning approaches, aimed towards practical use in changing environments with
changing activity locations and client participation?

FL improves indoor HAR compared to classical ML regarding privacy increase and commu-
nication reduction, but performance results indicate the preference of classical ML for indoor
HAR. When FL is used, the classification performance is optimised through careful parame-
ter tuning, deciding on batch size, the optimal amount of local computation, and finetuning
the used aggregation algorithm. Training continuation has shown to provide proper classifi-
cation models when personalising on unseen data, allowing for dynamic environments with
changing activity location and device participation. Using edge or IoT devices introduces
resource constraints, which necessitates the need for simple classification models. This work
has shown that adequate performance can be achieved within reasonable time and limited
data availability, resulting in communication-, energy- and memory-saving implementa-
tions. Specific settings affecting device resources are application-dependent and need to be
adjusted according to each device’s capabilities. Overall, the use of FL improves indoor
HAR by allowing computational efforts from distributed devices and effectively adapting to
new environments while respecting limitations resulting from individual device constraints.

9.1 Recommendations for Future Work
A physical implementation of FL for indoor HAR based on CSI data to monitor individuals
inside their home seems feasible, but future work is necessary to achieve that. This section
highlights possible interesting areas of focus.

First, applying the FL framework into a real-life environment with live classification
using on-board computation is highly recommended. Doing so could highlight drawbacks
and limitations of this research which have not occurred during simulations. In order for

100 9. CONCLUSION AND FUTURE WORK

it to function properly, it is recommended to focus on communication protocols between
clients and the server, since this and other works in FL for HAR have mostly simulated all
forms of communication. Since different types of devices could contribute to the federated
system, batch sizes might vary per device for optimal learning rate, as performed by Ma et
al. [90].

A greater number of participating clients that measure CSI data in more than one
indoor environment is recommended. This could result in more non-IID data, thus revealing
how different aggregation algorithms compare to each other under such circumstances. By
using a framework with more clients and environments, also more elaborate results on
dynamic environments can be achieved, which could result in more explicit conclusions on
the influence of activity location and device participation. Additionally, as done in the
WiFederated framework, it might be useful to explore the effect of a varying number of
participating clients for a dynamic environment in order to establish the required device
presence.

It is advised to perform a detailed signal propagation analysis of indoor environments to
conclude how multipath interference occurs due to device placement. In the results discussed
in this work, only speculations could be made as of why certain activity or client locations
resulted in better or worse performance results. By performing the signal analysis, more
detailed conclusions can be drawn, resulting in more optimal device placement.

The implementation of more aggregation algorithms is encouraged, especially in imple-
mentations with more clients and potentially non-IID data among them. As mentioned, an
FL implementation for HAR using MimeLite with momentum and adaptive learning rate
could be investigated. Additionally, while decentralised FL algorithms exist, they have not
been applied in this work or other HAR frameworks. It is advised to pursue a comparison
between centralised and decentralised implementations, highlighting the differences in com-
putational and communication costs. This is important in order to avoid the limitations
caused by having a network with a single point of failure. Furthermore, a decentralised FL
system would allow for a framework in which CSI data are transmitted interchangeably by
different clients for a short period of time. By doing so, the influence of the activity location
relative to the transmitter is mitigated, as observations can be made from different angles.

Besides changing the network topology, it is recommended to analyse the effect of quan-
tisation methods on model size and performance. For this work, no such methods were
implemented, but it has been shown that quantisation can a provide model reduction in FL
while compromising only by a small amount on the classification performance [92].

Lastly, it is recommended to perform a study regarding the ethical consequences as
mentioned in Section 8.8. It should be analysed how the CSI data or model updates com-
municated by a client can be exploited. Privacy concerns must be examined and addressed
before HAR using FL can be employed in real-world settings.

Bibliography

[1] P. V. Zahorodko, S. O. Semerikov, V. N. Soloviev, A. M. Striuk, M. I. Striuk,
and H. M. Shalatska, “Comparisons of performance between quantum-enhanced and
classical machine learning algorithms on the ibm quantum experience,” Journal of
Physics: Conference Series, vol. 1840, no. 1, p. 012021, mar 2021. [Online]. Available:
https://dx.doi.org/10.1088/1742-6596/1840/1/012021

[2] T. Q. Dinh, D. N. Nguyen, D. T. Hoang, T. V. Pham, and E. Dutkiewicz, “In-network
Computation for Large-scale Federated Learning over Wireless Edge Networks,” IEEE
Transactions on Mobile Computing, pp. 1–15, 2022.

[3] J. Liu, H. Liu, Y. Chen, Y. Wang, and C. Wang, “Wireless Sensing for Human Activity:
A Survey,” IEEE Communications Surveys and Tutorials, vol. 22, no. 3, pp. 1629–1645,
2020.

[4] S. K. Yadav, S. Sai, A. Gundewar, H. Rathore, K. Tiwari, H. M. Pandey, and
M. Mathur, “CSITime: Privacy-preserving human activity recognition using WiFi
channel state information,” Neural Networks, vol. 146, pp. 11–21, 2022.

[5] S. M. Hernandez and E. Bulut, “WiFederated: Scalable WiFi Sensing using Edge Based
Federated Learning,” IEEE Internet of Things Journal, vol. 9, no. 14, pp. 12 628–12 640,
2021.

[6] K. Sozinov, V. Vlassov, and S. Girdzijauskas, “Human activity recognition using fed-
erated learning,” Proceedings - 16th IEEE International Symposium on Parallel and
Distributed Processing with Applications, 17th IEEE International Conference on Ubiq-
uitous Computing and Communications, 8th IEEE International Conference on Big
Data and Cloud Computing, 11t, no. 2, pp. 1103–1111, 2019.

[7] L. Tu, X. Ouyang, J. Zhou, Y. He, and G. Xing, “FedDL: Federated Learning via
Dynamic Layer Sharing for Human Activity Recognition,” SenSys 2021 - Proceedings
of the 2021 19th ACM Conference on Embedded Networked Sensor Systems, pp. 15–28,
2021.

[8] A. Fallah, A. Mokhtari, and A. E. Ozdaglar, “Personalized federated learning:
A meta-learning approach,” CoRR, vol. abs/2002.07948, 2020. [Online]. Available:
https://arxiv.org/abs/2002.07948

https://dx.doi.org/10.1088/1742-6596/1840/1/012021
https://arxiv.org/abs/2002.07948

102 9. BIBLIOGRAPHY

[9] A. Bellet, A. Kermarrec, and E. Lavoie, “D-cliques: Compensating noniidness in
decentralized federated learning with topology,” CoRR, vol. abs/2104.07365, 2021.
[Online]. Available: https://arxiv.org/abs/2104.07365

[10] “Federated learning: Collaborative machine learning without centralized training
data,” https://ai.googleblog.com/2017/04/federated-learning-collaborative.html, Apr
2017, accessed on 30-09-2022.

[11] C. Aggarwal, Neural Networks and Deep Learning: A Textbook. Springer International
Publishing, 2018.

[12] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[13] J. Brownlee, “A gentle introduction to the rectified lin-
ear unit (relu),” https://machinelearningmastery.com/
rectified-linear-activation-function-for-deep-learning-neural-networks/, accessed
on 15-05-2023.

[14] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On large-
batch training for deep learning: Generalization gap and sharp minima,” 2017.

[15] A. Oppermann, “Regularization in deep learning — l1, l2, and
dropout | towards data science,” https://towardsdatascience.com/
regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036, 2 2020.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[17] Keras, “Layer weight regularizers,” https://keras.io/api/layers/regularizers/, accessed
on 19-12-2022.

[18] Z. Liu, Z. Xu, J. Jin, Z. Shen, and T. Darrell, “Dropout reduces underfitting,” arXiv
preprint arXiv:2303.01500, 2023.

[19] K. P. Shung, “Accuracy, precision, recall or f1?” https://towardsdatascience.com/
accuracy-precision-recall-or-f1-331fb37c5cb9, accessed on 28-02-2023.

[20] Google Developers, “Classification: Precision and recall, machine learning crash
course,” https://developers.google.com/machine-learning/crash-course/classification/
precision-and-recall, accessed on 28-02-2023.

[21] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings, R. G. D’Oliveira, H. Eichner,
S. El Rouayheb, D. Evans, J. Gardner, Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons,
M. Gruteser, Z. Harchaoui, C. He, L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi,
T. Javidi, G. Joshi, M. Khodak, J. Konecní, A. Korolova, F. Koushanfar, S. Koyejo,
T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R. Nock, A. Özgür, R. Pagh, H. Qi, D. Ra-
mage, R. Raskar, M. Raykova, D. Song, W. Song, S. U. Stich, Z. Sun, A. T. Suresh,
F. Tramèr, P. Vepakomma, J. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu, and

https://arxiv.org/abs/2104.07365
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://towardsdatascience.com/regularization-in-deep-learning-l1-l2-and-dropout-377e75acc036
https://keras.io/api/layers/regularizers/
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall

9. BIBLIOGRAPHY 103

S. Zhao, “Advances and open problems in federated learning,” Foundations and Trends
in Machine Learning, vol. 14, no. 1-2, pp. 1–210, 2021.

[22] S. W. Remedios, J. A. Butman, B. A. Landman, and D. L. Pham, “Federated Gradient
Averaging for Multi-Site Training with Momentum-Based Optimizers,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 12444 LNCS, pp. 170–180, 2020.

[23] H. Brendan McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y Arcas,
“Communication-efficient learning of deep networks from decentralized data,” Pro-
ceedings of the 20th International Conference on Artificial Intelligence and Statistics,
AISTATS 2017, vol. 54, 2017.

[24] W. Liu, L. Chen, and W. Zhang, “Decentralized Federated Learning: Balancing Com-
munication and Computing Costs,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 8, pp. 131–143, 2022.

[25] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A segmented
gossip approach,” CoRR, vol. abs/1908.07782, 2019. [Online]. Available: http:
//arxiv.org/abs/1908.07782

[26] X. Lian, C. Zhang, H. Zhang, C. J. Hsieh, W. Zhang, and J. Liu, “Can decentralized
algorithms outperform centralized algorithms? A case study for decentralized parallel
stochastic gradient descent,” in Advances in Neural Information Processing Systems,
vol. 2017-Decem, 2017, pp. 5331–5341.

[27] Z. Jiang, A. Balu, C. Hegde, and S. Sarkar, “Collaborative deep learning in fixed
topology networks,” in Advances in Neural Information Processing Systems, vol. 2017-
Decem, 2017, pp. 5905–5915.

[28] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the Convergence of
FedAvg on Non-IID Data,” arXiv preprint arXiv:1907.02189, no. 2019, pp. 1–26, 2019.
[Online]. Available: http://arxiv.org/abs/1907.02189

[29] Z. Chen, L. Zhang, C. Jiang, Z. Cao, and W. Cui, “Wifi csi based passive human activity
recognition using attention based blstm,” IEEE Transactions on Mobile Computing,
vol. 18, no. 11, pp. 2714–2724, 2019.

[30] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “SpotFi: Decimeter Level Localization
Using WiFi,” Computer Communication Review, vol. 45, no. 4, pp. 269–282, 2015.

[31] P. F. Moshiri, H. Navidan, R. Shahbazian, S. A. Ghorashi, and D. Windridge, “Using
gan to enhance the accuracy of indoor human activity recognition,” 2020. [Online].
Available: https://arxiv.org/abs/2004.11228

[32] A. Zhuravchak, O. Kapshii, and E. Pournaras, “Human Activity Recognition
based on Wi-Fi CSI Data -A Deep Neural Network Approach,” Procedia

http://arxiv.org/abs/1908.07782
http://arxiv.org/abs/1908.07782
http://arxiv.org/abs/1907.02189
https://arxiv.org/abs/2004.11228

104 9. BIBLIOGRAPHY

Computer Science, vol. 198, no. 2021, pp. 59–66, 2021. [Online]. Available:
https://doi.org/10.1016/j.procs.2021.12.211

[33] R. Khusainov, D. Azzi, I. E. Achumba, and S. D. Bersch, “Real-time human
ambulation, activity, and physiological monitoring: Taxonomy of issues, techniques,
applications, challenges and limitations,” Sensors, vol. 13, no. 10, pp. 12 852–12 902,
2013. [Online]. Available: https://www.mdpi.com/1424-8220/13/10/12852

[34] A. Khan, N. Hammerla, S. Mellor, and T. Plötz, “Optimising sampling rates for
accelerometer-based human activity recognition,” Pattern Recognition Letters, vol. 73,
pp. 33–40, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.patrec.2016.01.001

[35] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan, “Adap-
tive Federated Learning in Resource Constrained Edge Computing Systems,” IEEE
Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1205–1221, 2019.

[36] J. Mao, H. Yang, P. Qiu, J. Liu, and A. Yener, “Charles: Channel-quality-adaptive
over-the-air federated learning over wireless networks,” 2022. [Online]. Available:
https://arxiv.org/abs/2205.09330

[37] T. Nishio and R. Yonetani, “Client Selection for Federated Learning with Heterogeneous
Resources in Mobile Edge,” IEEE International Conference on Communications, vol.
2019-May, 2019.

[38] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith, “Federated
optimization in heterogeneous metworks,” CoRR, vol. abs/1812.06127, 2018. [Online].
Available: http://arxiv.org/abs/1812.06127

[39] F. Sattler, S. Wiedemann, K. R. Muller, and W. Samek, “Robust and Communication-
Efficient Federated Learning from Non-i.i.d. Data,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 31, no. 9, pp. 3400–3413, 2020.

[40] T. Li, M. Sanjabi, and V. Smith, “Fair resource allocation in federated learning,”
CoRR, vol. abs/1905.10497, 2019. [Online]. Available: http://arxiv.org/abs/1905.10497

[41] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T. Suresh,
“SCAFFOLD: Stochastic Controlled Averaging for Federated Learning,” 37th Interna-
tional Conference on Machine Learning, ICML 2020, vol. PartF16814, pp. 5088–5099,
2020.

[42] S. P. Karimireddy, M. Jaggi, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich, and A. T.
Suresh, “Mime: Mimicking centralized stochastic algorithms in federated learning,”
arXiv: Learning, 2021.

[43] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency,” CoRR, vol.
abs/1610.05492, 2016. [Online]. Available: http://arxiv.org/abs/1610.05492

https://doi.org/10.1016/j.procs.2021.12.211
https://www.mdpi.com/1424-8220/13/10/12852
http://dx.doi.org/10.1016/j.patrec.2016.01.001
https://arxiv.org/abs/2205.09330
http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1905.10497
http://arxiv.org/abs/1610.05492

9. BIBLIOGRAPHY 105

[44] J. Li, Y. Shao, K. Wei, M. Ding, C. Ma, L. Shi, Z. Han, and H. V. Poor, “Blockchain
Assisted Decentralized Federated Learning (BLADE-FL): Performance Analysis and
Resource Allocation,” IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 10, pp. 2401–2415, 2022.

[45] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-device federated learn-
ing,” IEEE Communications Letters, vol. 24, no. 6, pp. 1279–1283, 2020.

[46] A. Hashemi, A. Acharya, R. Das, H. Vikalo, S. Sanghavi, and I. Dhillon, “On the Ben-
efits of Multiple Gossip Steps in Communication-Constrained Decentralized Federated
Learning,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 11, pp.
2727–2739, 2022.

[47] X. Li, W. Yang, S. Wang, and Z. Zhang, “Communication-Efficient Local Decentralized
SGD Methods,” arXiv preprint arXiv:1910.09126, vol. 14, no. 8, pp. 1–20, 2019.
[Online]. Available: http://arxiv.org/abs/1910.09126

[48] J. Wang, A. K. Sahu, Z. Yang, G. Joshi, and S. Kar, “MATCHA: Speeding Up De-
centralized SGD via Matching Decomposition Sampling,” in 2019 6th Indian Control
Conference, ICC 2019 - Proceedings, 2019, pp. 299–300.

[49] J. Wang and G. Joshi, “Cooperative SGD: A unified Framework for the Design and
Analysis of Communication-Efficient SGD Algorithms,” CoRR, vol. abs/1808.0, 2018.
[Online]. Available: http://arxiv.org/abs/1808.07576

[50] F. P. C. Lin, S. Hosseinalipour, S. S. Azam, C. G. Brinton, and N. Michelusi, “Semi-
Decentralized Federated Learning with Cooperative D2D Local Model Aggregations,”
IEEE Journal on Selected Areas in Communications, vol. 39, no. 12, pp. 3851–3869,
2021.

[51] “The cifar-10 dataset,” https://www.cs.toronto.edu/~kriz/cifar.html.

[52] “The mnist database,” http://yann.lecun.com/exdb/mnist/.

[53] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: an extension of mnist to
handwritten letters,” 2017.

[54] Z. Research, “Fashion mnist,” https://www.kaggle.com/datasets/zalando-research/
fashionmnist, Dec 2017.

[55] S. Caldas, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith, and A. Talwalkar,
“Leaf: A benchmark for federated settings,” arXiv preprint arXiv:1812.01097, 2018.
[Online]. Available: https://arxiv.org/abs/1812.01097

[56] Y. Wang, X. Jiang, R. Cao, and X. Wang, “Robust indoor human activity recognition
using wireless signals,” Sensors (Switzerland), vol. 15, no. 7, pp. 17 195–17 208, 2015.

http://arxiv.org/abs/1910.09126
http://arxiv.org/abs/1808.07576
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://arxiv.org/abs/1812.01097

106 9. BIBLIOGRAPHY

[57] W. Wang, A. X. Liu, M. Shahzad, K. Ling, and S. Lu, “Device-Free Human Activity
Recognition Using Commercial WiFi Devices,” IEEE Journal on Selected Areas in
Communications, vol. 35, no. 5, pp. 1118–1131, 2017.

[58] V. Smith, C. K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-task learning,”
Advances in Neural Information Processing Systems, vol. 2017-Decem, no. Nips, pp.
4425–4435, 2017.

[59] W. Zhang, Z. Wang, and X. Wu, “WiFi Signal-Based Gesture Recognition Using Fed-
erated Parameter-Matched Aggregation,” Sensors, vol. 22, no. 6, pp. 1–14, 2022.

[60] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A Survey on Federated
Learning for Resource-Constrained IoT Devices,” IEEE Internet of Things Journal,
vol. 9, no. 1, pp. 1–24, 2022.

[61] T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, and S. Avestimehr, “Federated
learning for internet of things: Applications, challenges, and opportunities,” 2022.

[62] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated Machine Learning:
Survey, Multi-Level Classification, Desirable Criteria and Future Directions in Com-
munication and Networking Systems,” IEEE Communications Surveys and Tutorials,
vol. 23, no. 2, pp. 1342–1397, 2021.

[63] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” 36th International
Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 8114–8124, 2019.

[64] J. Brownlee, “Gradient descent with momentum from scratch,” https:
//machinelearningmastery.com/gradient-descent-with-momentum-from-scratch/,
accessed on 19-05-2023.

[65] N. D. Fabbro, S. Dey, M. Rossi, and L. Schenato, “A Newton-type algorithm for
federated learning based on incremental Hessian eigenvector sharing,” arXiv preprint
arXiv:2202.05800, pp. 1–46, 2022. [Online]. Available: http://arxiv.org/abs/2202.
05800

[66] H. Xing, O. Simeone, and S. Bi, “Decentralized Federated Learning via SGD over
Wireless D2D Networks,” IEEE Workshop on Signal Processing Advances in Wireless
Communications, SPAWC, vol. 2020-May, 2020.

[67] Y. Liu, S. Garg, J. Nie, Y. Zhang, Z. Xiong, J. Kang, and M. S. Hossain, “Deep
Anomaly Detection for Time-Series Data in Industrial IoT: A Communication-Efficient
On-Device Federated Learning Approach,” IEEE Internet of Things Journal, vol. 8,
no. 8, pp. 6348–6358, 2021.

[68] J. Xu, W. Du, Y. Jin, W. He, and R. Cheng, “Ternary Compression for Communication-
Efficient Federated Learning,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 33, no. 3, pp. 1162–1176, 2022.

https://machinelearningmastery.com/gradient-descent-with-momentum-from-scratch/
https://machinelearningmastery.com/gradient-descent-with-momentum-from-scratch/
http://arxiv.org/abs/2202.05800
http://arxiv.org/abs/2202.05800

9. BIBLIOGRAPHY 107

[69] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. U. Stich, “A Unified Theory of
Decentralized SGD with Changing Topology and Local Updates,” in 37th International
Conference on Machine Learning, ICML 2020, vol. PartF16814, 2020, pp. 5337–5349.

[70] K. I. Tsianos, S. F. Lawlor, and M. G. Rabbat, “Communication/computation
tradeoffs in consensus-based distributed optimization,” CoRR, vol. abs/1209.1076,
2012. [Online]. Available: http://arxiv.org/abs/1209.1076

[71] Z. Zhao, J. Xia, L. Fan, X. Lei, G. K. Karagiannidis, and A. Nallanathan, “System
Optimization of Federated Learning Networks With a Constrained Latency,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 1, pp. 1095–1100, 2022.

[72] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients - How
easy is it to break privacy in federated learning?” in Advances in Neural Information
Processing Systems, vol. 2020-Decem, no. 1, 2020, pp. 1–23.

[73] “Intel® Wi-Fi 6E AX211 (Gig+) Module,” https://www.intel.com/content/www/us/
en/products/docs/wireless/wi-fi-6e-ax211-module-brief.html.

[74] “PicoScenes: Supercharging Your Next Wi-Fi Sensing Research!” https://ps.zpj.io/
{#}, accessed on 17-11-2022.

[75] “Propagation revisited: Wireless multipath,” https://www.controleng.com/articles/
propagation-revisited-wireless-multipath/, accessed on 13-04-2023.

[76] University of Twente, Techmed Centre, “Living lab ehealth house,” https://www.
utwente.nl/en/techmed/facilities/htwb-labs/ehealth-house/, accessed on 6-12-2022.

[77] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool release: Gathering 802.11n
traces with channel state information,” ACM SIGCOMM CCR, vol. 41, no. 1, p. 53,
Jan. 2011.

[78] “Intel Ultimate N WiFi Link 5300,” https://www.intel.com/content/dam/www/
public/us/en/documents/product-briefs/ultimate-n-wifi-link-5300-brief.pdf, accessed
on 30-03-2023.

[79] S. Raubitzek and T. Neubauer, “A fractal interpolation approach to improve neural
network predictions for difficult time series data,” Expert Systems with Applications,
vol. 169, 5 2021.

[80] “Linear Interpolation Formula,” https://www.cuemath.com/
linear-interpolation-formula/, accessed on 06-04-2023.

[81] J. Klein Brinke, A. Chiumento, and P. Havinga, “Channel state information for human
activity recognition with low sampling rates,” UMUM 2023: Second Workshop on
Ubiquitous and Multi-domain User Modeling, pp. 614–620, 2023.

http://arxiv.org/abs/1209.1076
https://www.intel.com/content/www/us/en/products/docs/wireless/wi-fi-6e-ax211-module-brief.html
https://www.intel.com/content/www/us/en/products/docs/wireless/wi-fi-6e-ax211-module-brief.html
https://ps.zpj.io/{#}
https://ps.zpj.io/{#}
https://www.controleng.com/articles/propagation-revisited-wireless-multipath/
https://www.controleng.com/articles/propagation-revisited-wireless-multipath/
https://www.utwente.nl/en/techmed/facilities/htwb-labs/ehealth-house/
https://www.utwente.nl/en/techmed/facilities/htwb-labs/ehealth-house/
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ultimate-n-wifi-link-5300-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ultimate-n-wifi-link-5300-brief.pdf
https://www.cuemath.com/linear-interpolation-formula/
https://www.cuemath.com/linear-interpolation-formula/

108 9. BIBLIOGRAPHY

[82] “Everything you need to know about Min-Max normaliza-
tion: A Python tutorial,” https://towardsdatascience.com/
everything-you-need-to-know-about-min-max-normalization-in-python-b79592732b79,
accessed on 03-04-2023.

[83] “Standardization VS Normalization,” https://dataakkadian.medium.com/
standardization-vs-normalization-da7a3a308c64, accessed on 03-04-2023.

[84] “Rolling Averages: What They Are and How To Calculate Them,” https:
//www.indeed.com/career-advice/career-development/what-is-rolling-average#:~:
text=Rolling%20averages%20are%20useful%20for,might%20become%20difficult%
20to%20track., accessed on 03-04-2023.

[85] “TFF for Federated Learning Research: Model and Update Compression,”
https://www.tensorflow.org/federated/tutorials/tff_for_federated_learning_
research_compression, accessed on 31-01-2023.

[86] “Keras API reference, Layers API, Regularization layers, Dropout layer,” https://keras.
io/api/layers/regularization_layers/dropout/, accessed on 05-12-2022.

[87] F. Chollet et al., “Keras,” https://keras.io, 2015.

[88] “TensorFlow Federated: Machine Learning on Decentralized Data,” https://www.
tensorflow.org/federated, accessed on 31-01-2023.

[89] “tf.keras.metrics.CategoricalAccuracy,” https://www.tensorflow.org/api_docs/
python/tf/keras/metrics/CategoricalAccuracy, accessed on 06-02-2023.

[90] Z. Ma, Y. Xu, H. Xu, Z. Meng, L. Huang, and Y. Xue, “Adaptive batch size for
federated learning in resource-constrained edge computing,” IEEE Transactions on
Mobile Computing, vol. 22, pp. 37–53, 1 2023.

[91] X. Wang, C. Yang, and S. Mao, “On csi-based vital sign monitoring using commodity
wifi,” ACM Trans. Comput. Healthcare, vol. 1, no. 3, may 2020. [Online]. Available:
https://doi.org/10.1145/3377165

[92] K. Gupta, M. Fournarakis, M. Reisser, C. Louizos, and M. Nagel, “Quantization robust
federated learning for efficient inference on heterogeneous devices,” 2022.

https://towardsdatascience.com/everything-you-need-to-know-about-min-max-normalization-in-python-b79592732b79
https://towardsdatascience.com/everything-you-need-to-know-about-min-max-normalization-in-python-b79592732b79
https://dataakkadian.medium.com/standardization-vs-normalization-da7a3a308c64
https://dataakkadian.medium.com/standardization-vs-normalization-da7a3a308c64
https://www.indeed.com/career-advice/career-development/what-is-rolling-average#:~:text=Rolling%20averages%20are%20useful%20for,might%20become%20difficult%20to%20track.
https://www.indeed.com/career-advice/career-development/what-is-rolling-average#:~:text=Rolling%20averages%20are%20useful%20for,might%20become%20difficult%20to%20track.
https://www.indeed.com/career-advice/career-development/what-is-rolling-average#:~:text=Rolling%20averages%20are%20useful%20for,might%20become%20difficult%20to%20track.
https://www.indeed.com/career-advice/career-development/what-is-rolling-average#:~:text=Rolling%20averages%20are%20useful%20for,might%20become%20difficult%20to%20track.
https://www.tensorflow.org/federated/tutorials/tff_for_federated_learning_research_compression
https://www.tensorflow.org/federated/tutorials/tff_for_federated_learning_research_compression
https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io
https://www.tensorflow.org/federated
https://www.tensorflow.org/federated
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalAccuracy
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/CategoricalAccuracy
https://doi.org/10.1145/3377165

Appendices

A Overview of FL methods

Table A.1: Overview of summarised FL algorithms.
Study Year # citations Summary

[35] 2019 995 Determine frequency of global aggregation to maximise efficiency of available resources.

[36] 2022 1 Adjust the power level and number of updates for clients based on the estimated CSI.

[23] 2016 6293 Basis of FL, taking the average of client updates for aggregation.

[37] 2019 705 Client selection to maximise aggregation, based on resource information like wireless channel states, computational capacities,
and size of data resources.

[7] 2021 9 Group users with similar data distributions to share network layers.

[38] 2018 1278 Adds term to FedAvg penalising models that deviate from global model.

[2] 2022 2 Edge nodes between users and server aggregating model updates from users before sending update to central server.

[39] 2020 672 Framework implementing compression for communication from server to clients. Efficient with small number of clients.

[8] 2020 239 Train model such that users can personalise it with few updates.

[40] 2019 382 Penalising worse performing clients to bias towards clients with big local losses.

[41] 2020 578 Correct local update based on the difference between the global and local model.

[43] 2016 2773 Reduction of communication cost to server by learning an update using less variables & compression of model update.

[44] 2022 23 Method for decentralised FL using blockchain. Clients compete to determine who adds to the blockchain, avoiding separate
miners and instead letting clients perform this task.

[45] 2020 346 Implements a distributed ledger in which local model updates are exchanged and verified, biased towards clients with more
data available. Mining is done by dedicated miners.

[24] 2022 5 Multiple local update steps and multiple communication steps, with data compression.

[25] 2019 84 Segmented gossip approach where the model is communicated in segments. Clients receive segmented models which subse-
quently form an aggregated model.

[9] 2021 5 Cliques are formed in which the data distribution resembles the global data distribution.

[46] 2022 2 Implements compressed communication through gossiping.

[27] 2017 136 Decentralised SGD, with a single update and single communication step for each client.

[47] 2019 18 Allows varying amount of local update and SGD steps.

[48] 2019 96 Randomly selected clients perform computation and communication based on sparse subgraphs.

[49] 2018 276 Allows multiple local update steps.

[50] 2021 16 Combination of communication between clients and server, and between individual clients. A gradient descent step is performed
at each client, communication then occurs within clusters.

a Accuracy tested with various open-access datasets: CIFAR-10 [51], MNIST [52], Fashion-MNIST [54], Synthetic, Vehicle, Sent140 & Shakespeare [55].
b Not mentioned in study.
c Depending on the type of data.
d Depending on topology, momentum & averaging methods.

110 APPENDICES

B Expanded HAR literature overview

Table B.1: Expanded overview of related literature on human activity recognition.
Study Year #

cita-
tions

Summary Recognition type Classifier Data used

Robust Indoor Human
Activity Recognition
Using Wireless Signals
[56]

2015 81 Performing HAR based in a
non-FL setting.

Activity SVM Wi-Fi CSI

Device-Free Human Ac-
tivity Recognition Us-
ing Commercial Wi-Fi
Devices [57]

2017 317 HAR based in a non-FL
setting, using commercially
available devices.

Activity HMM Wi-Fi CSI

Federated Multi-Task
Learning [58]

2018 1088 Multi-task FL to train person-
alised models. It allows clients
to approximate the model up-
date to avoid stragglers.

Activity SVM Sensor data from
Google Glass, smart-
phones and vehicles

Human Activity Recog-
nition Using Federated
Learning [6]

2019 79 FL setting for HAR using sen-
sors data.

Activity DNN & softmax regression Sensor data from
smartphones and
smartwatches

WiFederated: Scalable
WiFi Sensing Using
Edge-Based Federated
Learning [5]

2022 6 FL setting for HAR. Aggrega-
tion is done with FedAvg.

Activity DNN Wi-Fi CSI

WiFi Signal-Based Ges-
ture Recognition Using
Federated Parameter-
Matched Aggregation
[59]

2022 0 FL setting for gesture
recognition based on the
body-coordinate velocity
profile from CSI.

Gesture CNN & RNN Wi-Fi CSI

APPENDICES 111

C Algorithm overview of centralised federated learning
Typical centralised FL frameworks operate by having clients send model updates to a central
server. The server subsequently aggregates all the model updates via one of many different
averaging methods before sending the newly updated model out to the clients. The manner
of processing the individual model updates influences the accuracy and convergence perfor-
mance of the overall model. Therefore, much research considering the improvement of FL
has covered the influence of the averaging algorithm and how to improve it.

Figure C.1: A centralised topology with in-network computation [2], where nodes (green) from
different rooms (grey borders) send model updates to a local access point before being sent to the
central server.

• FedProx
FedProx is based on FedAvg and introduces a proximal term to better deal with
heterogeneous data. The method allows for a varying amount of epochs for each node
before sending updates to the server. An update is influenced by the proximal term
µ

2
||w−wt||2, with w the updated weights and wt the weights received from the server.

With this term, nodes are penalised when their weights deviate from the global model
weights, with the hyperparameter µ to tune the influence of the penalty. This method
enables different nodes to do different amounts of work, which could be useful when
the amount of available data are different for each node [38, 60].

• q-FedAvg
In q-FedAvg, the following loss-function fq(w) is being minimised:

fq(w) =
m

∑
i=1

pi

q + 1
f q+1
i (w), (9.1)

with m the total number of devices, pi the probability of choosing device i for partic-
ipating in the current round, and fi the local cost function. Worse performing clients
are penalised by a power of q + 1, q being a tunable hyperparameter. This way, in-
stead of biasing towards clients with more data points as in FedAvg, the model biases

112 APPENDICES

towards clients with bigger local losses. The end result is a model that performs more
uniformly across clients and should thus be more fair [40].

• Per-FedAvg
In Per-FedAvg, the loss function being minimised is based on the weights after a
gradient descent step of the local function:

f (w) =
m

∑
i=1

pi fi(w− α∇ fi(w)), (9.2)

with α ≥ 0 the stepsize. The idea is to slightly update an initialised model based on a
client’s own data, which should result in a model specifically designed for each client
[8].

• SCAFFOLD
FedAvg used in non-IID data conditions results in client drift. As an alternative,
SCAFFOLD (Stochastic Controlled Averaging algorithm) is introduced. This method
works well when non-IID data are involved, since the difference in the update direction
of the server and that of a client (so-called control variates) are used to correct the
local update. Furthermore, SCAFFOLD takes similarity of data between clients into
account, thus requiring less communication rounds when data across clients is similar.
The algorithm does rely on clients being stateful, meaning that a client’s model state
is preserved across training rounds and thus the same clients are present in different
rounds [41].

• MimeLite
MimeLite also deals with client drift by applying global momentum locally at clients,
reducing convergence time. As opposed to SCAFFOLD, the algorithm does not rely on
stateful clients, since the momentum used in MimeLite depends on the aggregated
client updates. Therefore, the algorithm allows for new clients every training round.
The momentum parameter β influences the degree to which the previous update in-
fluences the current update [42].

• In-network Computation
This method aims to reduce the amount of communication towards and computation
at the central server, by having edge nodes collect model updates from users and
aggregating these to form an aggregated model for the user partition under that edge
node. This method can also be applied to form groups of nodes that operate in
the same room as illustrated in Fig. C.1. Subsequently, the edge node sends the
aggregated model to the central server where all models are aggregated to form the
global model. The method allows for proper convergence while outperforming other
methods. Moreover, the method mitigates straggler issues by letting nodes send their
results whenever they are available [2]. Stragglers are nodes that take much longer to
report an output (i.e. model update) than other nodes. As a consequence, the central
server has to wait longer before performing the aggregation step.

APPENDICES 113

• FedDL
FedDL makes use of similarity of data between nodes to perform HAR. A deep learning
network consisting of multiple layers is trained, where the lower layer of the network
is shared by most users and captures general features. The top layers of the network
represent features more specific to users. The model is thus created iteratively in
a layer-wise manner. The end result is a personalised model for each client, clients
that have access to data from similar data distributions share more network layers.
Similarity between data distributions is learned by testing the local models against
a reference distribution, which might cause insight in user activities for the central
server. On the other hand, this method does reduce communication in the network
[7].

114 APPENDICES

D Algorithm overview of decentralised federated learning
Presented below is a selection of methods used in a decentralised FL setup. These and other
methods focusing on decentralised FL are noted in Table 3.1.

• PD-SGD
Periodic Decentralised SGD (PD-SGD) improves on D-SGD by allowing for multiple local
update steps. Through such periodic averaging and only communicating to direct
neighbours in the topology, communication is reduced [49]. However, the method is
lacking a proper trade-off between communication and computation [47]. Moreover,
the method is not adapted to non-IID data cases [21].

• LD-SGD
Improves in PD-SGD by expanding the method to be suitable for non-IID data cases
by allowing for a varying amount of local update steps and D-SGD’s (with an update
step, communication step and aggregation step) [47].

• MATCHA
As improvement on PD-SGD, MATCHA introduces an additional step where clients are
randomly selected to perform computation and communication steps. Disjoint match-
ing is executed on the starting topology, after which sparse subgraphs are created
by activating part of the matchings. Only this subtopology is used during update
steps, thus reducing communication. A subgraph that is more closely connected is
favoured, thus being activated more often. The combination of these methods result
in a faster convergence than PD-SGD [48]. Comparing MATCHA to LD-SGD gives rise to
an important observation: LD-SGD generally has a higher training loss than MATCHA,
yet LD-SGD reaches a test accuracy similar to MATCHA in less wall-clock time. It could
be concluded from this that in the decentralised FL setting, increasing local compu-
tation is favoured over decreasing communication between clients. Again, a trade-off
between communication and computation can be observed.

• C-DFL
According to [24], improving communication efficiency in a decentralised FL setup
while also considering a reasonably convergence time of a model consensus is not
widely addressed. This work proposes a decentralised FL framework in which nodes
alternately perform multiple local model updates, after which multiple communica-
tions between nodes occur. An additional method was also introduced which improves
communication efficiency by means of data compression: C-DFL. Sparsification is used
to decrease the amount of data to be sent to other nodes. This results in a convergence
increase of up to 74.6%.

• Combo
The Combo method is based on a segmented gossip approach. Clients first perform one
or multiple local update steps and split the model into multiple segments. Segments
are sent to randomly selected clients who aggregate the model based on all received

APPENDICES 115

segments. This method make efficient use of the network in a decentralised setting.
By sending out only segments of the model the entire bandwidth of communication
channels between clients is used. This is particularly useful when clients are located
far from each other, and thus when there exist links that do not allow clients to use
the full bandwidth. The model converges in less time than the standard gossiping
approach and reaches similar accuracy levels.
An additional benefit of Combo is that pulling requests for new model segments can be
cancelled when the target client can not be reached. This allows for dynamic addition
and removal of clients [25].

• D-cliques
In D-cliques, groups of nodes are made to ensure every node-group (clique) contains
data with a similar label distribution. Because of this, a sparse inter-clique topology
can be used and nodes can keep communication to within a clique, thus reducing
communication within the whole network. The method maintains similar accuracy
under non-IID data settings to topologies in which nodes are all connected to each
other, without slowing down the convergence. D-cliques is relatively scalable as it
reaches acceptable accuracy with up to 1000 nodes under certain network topologies.
A drawback of D-cliques is nodes being required to share the label distribution
of their data with other nodes. This is in contrast to a typical FL system where
information on the data of a node is held private [9].

• DeLi-CoCo
Communication compression and gossip steps. After a local update step through gra-
dient descent, 1 or more compressed communication steps via gossiping are performed.
The work shows that more communication steps allow for faster convergence with cer-
tain compression rates. In a non-IID data setting, client drift occurs and the model
does not reach a desirable test accuracy for complex datasets such as CIFAR-10 [46].

116 APPENDICES

E Experiment schedule pilot study

Table E.1: Experiment schedule pilot study.
Time (min.) # Activity Who? Node configuration Interference
15:00 1 Stand up & sit down 1 TV node transmitter No
17:30 2 Stand up & sit down 0 TV node transmitter No
20:00 3 Working 1 TV node transmitter No
22:30 4 Working 0 TV node transmitter No
25:00:00 5 Eat & drink 1 TV node transmitter No
27:30:00 6 Eat & drink 0 TV node transmitter No
30:00:00 7 Walk around 1 TV node transmitter No
32:30:00 8 Walk around 0 TV node transmitter No
35:00:00 9 Stand up & sit down 1 TV node transmitter Yes
37:30:00 10 Stand up & sit down 0 TV node transmitter Yes
40:00:00 11 Working 1 TV node transmitter Yes
42:30:00 12 Working 0 TV node transmitter Yes
45:00:00 13 Eat & drink 1 TV node transmitter Yes
47:30:00 14 Eat & drink 0 TV node transmitter Yes
50:00:00 15 Walk around 1 TV node transmitter Yes
52:30:00 16 Walk around 0 TV node transmitter Yes
55:00:00 17 Stand up & sit down 1 TV node receiver No
57:30:00 18 Stand up & sit down 0 TV node receiver No
60:00:00 19 Working 1 TV node receiver No
62:30:00 20 Working 0 TV node receiver No
65:00:00 21 Eat & drink 1 TV node receiver No
67:30:00 22 Eat & drink 0 TV node receiver No
70:00:00 23 Walk around 1 TV node receiver No
72:30:00 24 Walk around 0 TV node receiver No
75:00:00 25 Stand up & sit down 1 TV node receiver Yes
77:30:00 26 Stand up & sit down 0 TV node receiver Yes
80:00:00 27 Working 1 TV node receiver Yes
82:30:00 28 Working 0 TV node receiver Yes
85:00:00 29 Eat & drink 1 TV node receiver Yes
87:30:00 30 Eat & drink 0 TV node receiver Yes
90:00:00 31 Walk around 1 TV node receiver Yes
92:30:00 32 Walk around 0 TV node receiver Yes

APPENDICES 117

F Experiment schedule eHealth House
The following tables present the experiment schedule for the eHealth House experiments for
three different sets, in which the main activity (i.e. activity to be classified) is different for
each set (P_0 for set 0 located at Ltv, P_1 for set 1 located at Ltable, and P_2 for set 2
located at Lkitch).

In the tables, the following node numbering is used:

• Node 0: nkitch

• Node 2: ntable

• Node 3: nap

• Node 4: ntv

The activities are labeled as follows:

• A_0: Sit/stand

• A_1: Eat/drink

• A_2: Work

• A_3: Rest

Table F.1: Schedule eHealth House experiments, set 0.
Time Transmitter node Activity P_0 Activity P_1 Activity P_2 File name
00:10:00 0 A_0 A_3 A_1 tv_A0_T0
00:13:20 2 A_0 A_3 A_3 tv_A0_T2
00:16:40 3 A_0 A_3 A_0 tv_A0_T3
00:20:00 4 A_0 A_1 A_0 tv_A0_T4
00:23:20 0 A_1 A_1 A_3 tv_A1_T0
00:26:40 2 A_1 A_0 A_2 tv_A1_T2
00:30:00 3 A_1 A_0 A_1 tv_A1_T3
00:33:20 4 A_1 A_1 A_1 tv_A1_T4
00:36:40 0 A_2 A_2 A_1 tv_A2_T0
00:40:00 2 A_2 A_1 A_3 tv_A2_T2
00:43:20 3 A_2 A_2 A_2 tv_A2_T3
00:46:40 4 A_2 A_3 A_3 tv_A2_T4
00:50:00 0 A_3 A_2 A_1 tv_A3_T0
00:53:20 2 A_3 A_2 A_2 tv_A3_T2
00:56:40 3 A_3 A_1 A_2 tv_A3_T3
01:00:00 4 A_3 A_0 A_2 tv_A3_T4

118 APPENDICES

Table F.2: Schedule eHealth House experiments, set 1.
Time Transmitter node Activity P_0 Activity P_1 Activity P_2 File name
00:10:00 0 A_2 A_0 A_0 table_A0_T0
00:13:20 2 A_3 A_0 A_2 table_A0_T2
00:16:40 3 A_0 A_0 A_0 table_A0_T3
00:20:00 4 A_1 A_0 A_3 table_A0_T4
00:23:20 0 A_2 A_1 A_2 table_A1_T0
00:26:40 2 A_2 A_1 A_0 table_A1_T2
00:30:00 3 A_1 A_1 A_3 table_A1_T3
00:33:20 4 A_3 A_1 A_3 table_A1_T4
00:36:40 0 A_1 A_2 A_3 table_A2_T0
00:40:00 2 A_3 A_2 A_0 table_A2_T2
00:43:20 3 A_0 A_2 A_2 table_A2_T3
00:46:40 4 A_0 A_2 A_3 table_A2_T4
00:50:00 0 A_0 A_3 A_0 table_A3_T0
00:53:20 2 A_2 A_3 A_2 table_A3_T2
00:56:40 3 A_2 A_3 A_1 table_A3_T3
01:00:00 4 A_2 A_3 A_3 table_A3_T4

Table F.3: Schedule eHealth House experiments, set 2.
Time Transmitter node Activity P_0 Activity P_1 Activity P_2 File name
00:10:00 0 A_1 A_1 A_0 kitch_A0_T0
00:13:20 2 A_3 A_0 A_0 kitch_A0_T2
00:16:40 3 A_1 A_0 A_0 kitch_A0_T3
00:20:00 4 A_0 A_3 A_0 kitch_A0_T4
00:23:20 0 A_0 A_1 A_1 kitch_A1_T0
00:26:40 2 A_2 A_3 A_1 kitch_A1_T2
00:30:00 3 A_1 A_1 A_1 kitch_A1_T3
00:33:20 4 A_1 A_3 A_1 kitch_A1_T4
00:36:40 0 A_3 A_3 A_2 kitch_A2_T0
00:40:00 2 A_3 A_1 A_2 kitch_A2_T2
00:43:20 3 A_1 A_3 A_2 kitch_A2_T3
00:46:40 4 A_2 A_1 A_2 kitch_A2_T4
00:50:00 0 A_3 A_1 A_3 kitch_A3_T0
00:53:20 2 A_0 A_2 A_3 kitch_A3_T2
00:56:40 3 A_0 A_0 A_3 kitch_A3_T3
01:00:00 4 A_3 A_0 A_3 kitch_A3_T4

APPENDICES 119

G Neural network graphical representation

Figure G.1: Graphical representation of used neural network with 3 fully connected dense layers in
the case of 4 output classes.

120 APPENDICES

H Summarised overview datasets

Table H.1: Summarised overview of different sets and their purpose.
Dataset Data Purpose
Simple set Separated per location for each receiving node Perform initial activity

recognition, confirming
feasibility

Complete set All activities and locations, separated for each
receiving node

Benchmark performance,
comparison to centralised
ML, and comparison of
aggregation algorithms

Location set All activities and locations, in subsets for each
activity location in which activity location Li is
either left out or the only node in the dataset

New locations

Client set All activities and locations, in subsets for each
client in which client ni is either left out or the
only node in the dataset

New clients

APPENDICES 121

I Grid search supplementary results

(a)

(b)

(c)
Figure I.1: Heat maps of grid search for regularisation parameter.

122 APPENDICES

J Scenario combinations with and without regularisation
An extensive comparison is performed between all possible scenario combinations from the
pilot study as training set. Certain training set combinations hold more valuable training
information than others. Furthermore, to review generalisability to never seen data, each
combination is evaluated on test data from each individual scenario. The training combi-
nations that achieves the highest average F1-score over 7 folds are presented in Table J.1
for each evaluation data set. The scenarios are labeled as described in Table 4.2.

Table J.1: Best training set combinations for each evaluation data set, indicated by highest average
F1-score over 7 folds, with variance of F1-scores over all training sets.

Setting Validation scenario Best training scenarios
(combinations possible) Average F1-score

No regularisation

1 [3, 4, 5] 0.4515 ± 0.0032
2 2 0.7744 ± 0.0089
3 [1, 3, 4] 0.5843 ± 0.0071
4 4 0.8644 ± 0.0068
5 5 0.6816 ± 0.0115
6 6 0.8528 ± 0.0223
7 7 0.6002 ± 0.0043
8 8 0.7890 ± 0.0221

Regularisation

1 [2, 3, 6] 0.4825 ± 0.0040
2 2 0.6797 ± 0.0078
3 3 0.5938 ± 0.0079
4 4 0.8035 ± 0.0074
5 [2, 3, 5, 6] 0.6604 ± 0.0127
6 6 0.8664 ± 0.0213
7 7 0.6060 ± 0.0042
8 8 0.8727 ± 0.0236

APPENDICES 123

K Batch size impact supplementary results

Table K.1: Performance comparison batch sizes for Ltv (convergence time in seconds and F1-score).
Total epochs Rounds Epochs Conv (Batch 10) Conv (Batch 20) Conv (Batch 40) F1 (Batch 10) F1 (Batch 20) F1 (Batch 40)

500
50 10 3144.493 1812.182 628.393 0.734 0.731 0.764
100 5 3309.9 2226.451 1039.169 0.758 0.75 0.773
500 1 4068.903 2745.056 996.686 0.749 0.714 0.767

1000 100 10 2540.646 1867.306 567.427 0.926 0.925 0.931
1000 1 3965.719 2852.682 1930.352 0.934 0.93 0.935

1250 250 5 3216.27 2233.854 1275.186 0.94 0.933 0.939

2500 250 10 2878.284 1444.766 908.44 0.921 0.922 0.931
500 5 2932.404 1935.965 1182.25 0.939 0.942 0.936

5000 500 10 2924.742 1606.485 1029.816 0.922 0.927 0.93
1000 5 3175.609 1870.491 1348.997 0.933 0.939 0.942

10000 1000 10 2701.522 1555.701 963.568 0.926 0.927 0.936

Table K.2: Performance comparison batch sizes for Ltable (convergence time in seconds and F1-score).
Total epochs Rounds Epochs Conv (Batch 10) Conv (Batch 20) Conv (Batch 40) F1 (Batch 10) F1 (Batch 20) F1 (Batch 40)

500 50 10 3217.774 1715.242 1149.515 0.717 0.72 0.705
100 5 3829.375 2114.815 1394.755 0.706 0.718 0.711

1000 100 10 3388.605 1798.383 1128.723 0.909 0.916 0.911
1000 1 2624.954 2848.161 2375.351 0.932 0.935 0.929

1250 250 5 3380.855 2086.377 1446.371 0.926 0.926 0.924
2500 250 10 3295.268 1734.668 1085.054 0.907 0.908 0.912

5000 500 10 3811.313 1741.857 1147.939 0.906 0.913 0.907
1000 5 4202.124 2251.675 1039.341 0.913 0.923 0.924

10000 1000 10 3004.064 2016.202 833.476 0.911 0.894 0.918

Table K.3: Performance comparison batch sizes for Lkitch (convergence time in seconds and F1-score).
Total epochs Rounds Epochs Conv (Batch 10) Conv (Batch 20) Conv (Batch 40) F1 (Batch 10) F1 (Batch 20) F1 (Batch 40)

500 50 10 3288.667 1712.633 998.971 0.702 0.694 0.665
100 5 3628.862 2159.247 1206.22 0.712 0.716 0.665

1000 100 10 2990.846 1724.027 1027.069 0.89 0.914 0.934
1000 1 2827.038 2677.56 1264.249 0.93 0.94 0.929

1250 250 5 3876.109 2104.037 879.184 0.914 0.931 0.927

2500 250 10 3177.511 1894.093 909.664 0.908 0.916 0.934
500 5 2312.386 2128.365 895.885 0.919 0.924 0.922

5000 500 10 2038.572 1897.631 979.849 0.91 0.91 0.923
1000 5 2658.381 2287.282 807.332 0.923 0.922 0.927

10000 1000 10 2795.752 1930.654 943.759 0.933 0.908 0.926

L Classical learning comparison supplementary results
The amount of epochs until convergence has been reached are indicated in Table L.1 for
individual training settings. It is noteworthy to mention that the setting with 250 training
rounds and a single epoch per round did not reach an accuracy of 0.8 in the federated
learning setting.

Table L.1: Convergence speed comparison federated learning vs. classical machine learning.
Total
epochs

FL
rounds

Local
FL epochs

Epochs until
0.8 acc. (classical)

Epochs until
0.8 acc. (federated) % ∆

250 250 1 128 - -
500 500 1 128 440 243.6
1250 250 5 130 350 169.2
2500 250 10 130 340 161.5

124 APPENDICES

M Averaging algorithms supplementary results

Table M.1: Performance comparison averaging algorithms (convergence time in seconds).

Rounds Epochs Conv
(FedProx 1)

Conv
(FedProx 0.1)

Conv
(FedProx 0.01)

Conv
(FedProx 0.001)

Conv
(MimeLite,
momentum)

Conv
(MimeLite,
no momentum)

Conv
(FedAvg)

250
1 - - - - - - -
5 4393.694 4957.703 3490.36 7037.207 12834.88 12214.93 4024.418
10 2972.59 4660.692 3119.44 7388.958 10495.74 10495.74 3027.094

500 1 4080.144 3773.323 4812.823 9571.518 13709.33 13709.33 5004.078
5 4730.285 5349.892 7049.043 7418.643 12007.68 12007.68 1719.873

N Training with new locations supplementary results

Table N.1: Performance comparison unseen locations with different data fractions - LTV (epochs
until convergence and F1-score).

Total pre-trained
epochs

Pre-trained
epochs

Pre-trained
rounds Conv (0.1) Conv (0.2) Conv (0.5) Conv (0.75) Conv (1) F1 (0.1) F1 (0.2) F1 (0.5) F1 (0.75) F1 (1)

500
5 100 585 345 170 105 85 0.638 0.668 0.703 0.697 0.709
1 500 556 341 160 97 78 0.632 0.669 0.704 0.699 0.712
10 50 610 320 170 110 80 0.649 0.662 0.710 0.707 0.714

1000 1 1000 267 167 70 48 34 0.695 0.743 0.762 0.765 0.763
10 100 260 160 70 50 30 0.706 0.754 0.776 0.788 0.760

1250 5 250 250 160 70 45 35 0.711 0.758 0.775 0.774 0.772

2500 10 250 180 120 50 30 30 0.752 0.797 0.814 0.796 0.828
5 500 225 180 65 45 35 0.698 0.754 0.761 0.767 0.770

5000 5 1000 300 175 80 55 40 0.705 0.750 0.771 0.775 0.772
10 500 290 160 60 40 40 0.709 0.756 0.763 0.768 0.803

Table N.2: Performance comparison unseen locations with different data fractions - Ltable (epochs
until convergence and F1-score).

Total pre-trained
epochs

Pre-trained
epochs

Pre-trained
rounds Conv (0.1) Conv (0.2) Conv (0.5) Conv (0.75) Conv (1) F1 (0.1) F1 (0.2) F1 (0.5) F1 (0.75) F1 (1)

500
5 100 680 475 210 135 100 0.642 0.693 0.727 0.725 0.719
1 500 595 428 216 129 95 0.630 0.677 0.711 0.703 0.705
10 50 680 440 200 140 100 0.649 0.693 0.716 0.726 0.726

1000 1 1000 302 196 101 64 42 0.694 0.743 0.756 0.761 0.759
10 100 340 220 100 80 50 0.696 0.744 0.772 0.781 0.787

1250 5 250 300 190 80 60 40 0.693 0.734 0.753 0.765 0.757

2500 10 250 270 160 70 50 30 0.714 0.771 0.800 0.807 0.779
5 500 375 225 110 75 50 0.712 0.744 0.773 0.782 0.774

5000 5 1000 350 240 105 70 55 0.698 0.739 0.772 0.759 0.775
10 500 220 120 60 40 30 0.754 0.768 0.811 0.818 0.825

Table N.3: Performance comparison unseen locations with different data fractions - Lkitch (epochs
until convergence and F1-score).

Total pre-trained
epochs

Pre-trained
epochs

Pre-trained
rounds Conv (0.1) Conv (0.2) Conv (0.5) Conv (0.75) Conv (1) F1 (0.1) F1 (0.2) F1 (0.5) F1 (0.75) F1 (1)

500
5 100 630 345 170 115 95 0.629 0.672 0.708 0.716 0.723
1 500 671 456 200 133 99 0.616 0.676 0.699 0.704 0.708
10 50 720 400 210 140 100 0.634 0.670 0.721 0.722 0.720

1000 1 1000 268 176 80 54 37 0.668 0.710 0.754 0.753 0.748
10 100 290 230 90 60 50 0.675 0.750 0.757 0.767 0.773

1250 5 250 295 210 95 65 45 0.686 0.745 0.758 0.766 0.766

2500 10 250 290 180 90 60 40 0.688 0.726 0.771 0.763 0.785
5 500 260 195 80 60 40 0.677 0.732 0.751 0.763 0.756

5000 5 1000 325 215 105 65 45 0.683 0.733 0.768 0.761 0.760
10 500 370 200 100 60 50 0.689 0.725 0.775 0.761 0.770

APPENDICES 125

O Training with new clients supplementary results

O.1 New client - receiver only

Table O.1: Performance comparison new clients with different data fractions - receiver only (epochs
until convergence and F1-score).

Added node Totel pre-trained
epochs Conv (0.1) Conv (0.2) Conv (0.5) Conv (0.75) Conv (1) F1 (0.1) F1 (0.2) F1 (0.5) F1 (0.75) F1 (1)

nkitch

10 1160 662 295 199 154 0.587 0.635 0.685 0.692 0.705
20 1118 606 267 181 139 0.568 0.635 0.677 0.683 0.693
50 1224 646 289 194 145 0.594 0.640 0.687 0.685 0.687
100 1048 571 241 163 124 0.612 0.651 0.675 0.686 0.691
250 532 312 145 95 74 0.585 0.646 0.679 0.683 0.691
500 147 100 47 33 26 0.625 0.667 0.710 0.720 0.720
1000 114 59 31 22 17 0.702 0.733 0.768 0.783 0.784
2000 98 54 25 18 14 0.719 0.767 0.807 0.806 0.814

ntable

10 1221 637 301 200 157 0.623 0.654 0.704 0.702 0.717
20 1146 644 284 198 148 0.612 0.653 0.690 0.707 0.708
50 1127 642 286 188 148 0.616 0.661 0.703 0.704 0.717
100 1034 592 261 175 134 0.612 0.662 0.700 0.708 0.715
250 493 286 145 101 75 0.614 0.658 0.707 0.714 0.713
500 179 115 57 39 31 0.654 0.695 0.738 0.736 0.744
1000 89 54 25 18 14 0.721 0.752 0.793 0.804 0.805
2000 70 45 22 14 12 0.724 0.798 0.822 0.833 0.840

nap

10 1279 691 293 203 156 0.612 0.649 0.669 0.687 0.697
20 1181 620 269 179 135 0.607 0.639 0.668 0.679 0.684
50 1068 623 267 175 134 0.588 0.649 0.677 0.681 0.680
100 1033 553 233 159 120 0.593 0.645 0.666 0.682 0.684
250 419 227 106 66 53 0.607 0.647 0.674 0.669 0.684
500 156 98 47 32 27 0.622 0.668 0.703 0.711 0.735
1000 94 62 28 20 16 0.695 0.712 0.752 0.762 0.771
2000 87 48 25 16 13 0.708 0.747 0.779 0.788 0.781

tv

10 1365 769 330 219 172 0.589 0.646 0.682 0.688 0.700
20 1312 762 344 237 188 0.585 0.648 0.683 0.699 0.720
50 1353 748 336 219 173 0.596 0.653 0.691 0.699 0.709
100 1264 644 294 205 151 0.605 0.633 0.676 0.690 0.694
250 605 361 178 119 89 0.575 0.637 0.694 0.687 0.693
500 220 129 92 46 42 0.607 0.651 0.717 0.696 0.716
1000 124 92 49 31 37 0.681 0.731 0.765 0.764 0.772
2000 103 62 32 23 17 0.693 0.757 0.780 0.799 0.800

126 APPENDICES

O.2 New client - transmitter only

Table O.2: Performance comparison new clients with different data fractions - transmitter only
(epochs until convergence and F1-score).

Added
node

Pre-trained
epochs

Pre-trained
rounds

Conv
(0.1)

Conv
(0.2)

Conv
(0.5)

Conv
(0.75)

Conv
(1)

F1
(0.1)

F1
(0.2)

F1
(0.5)

F1
(0.75)

F1
(1)

nkitch

1

10 - 1845 807 531 399 0.396 0.640 0.680 0.683 0.681
20 - 1670 757 503 383 0.407 0.625 0.663 0.675 0.682
50 - 1828 796 542 409 0.406 0.616 0.668 0.685 0.685
100 - 1465 670 445 331 0.453 0.612 0.662 0.668 0.669
250 1399 819 371 253 192 0.572 0.614 0.655 0.666 0.668
500 626 355 168 109 86 0.631 0.668 0.708 0.712 0.723
1000 383 240 105 70 49 0.685 0.744 0.763 0.769 0.756
2000 373 204 107 67 49 0.722 0.767 0.803 0.803 0.806

5

5 - 1925 845 530 415 0.384 0.639 0.682 0.665 0.679
10 - 1710 760 500 385 0.433 0.619 0.658 0.663 0.675
20 - 1775 745 530 385 0.440 0.647 0.670 0.706 0.690
50 1405 895 405 280 205 0.569 0.624 0.662 0.681 0.675
100 600 400 175 120 90 0.632 0.687 0.712 0.722 0.726
250 340 260 110 70 60 0.693 0.755 0.772 0.774 0.787
500 295 195 90 65 40 0.734 0.747 0.786 0.803 0.793
1000 225 180 75 55 40 0.711 0.789 0.813 0.822 0.816
2000 240 180 80 50 45 0.747 0.784 0.806 0.802 0.818

10

5 - 1900 790 530 410 0.397 0.645 0.677 0.691 0.696
10 - 1620 700 470 350 0.440 0.637 0.679 0.681 0.685
20 1730 1070 450 300 240 0.584 0.647 0.671 0.678 0.700
50 640 440 190 140 100 0.616 0.666 0.698 0.720 0.712
100 430 240 110 70 60 0.711 0.756 0.768 0.773 0.788
250 350 190 80 60 40 0.749 0.787 0.800 0.818 0.806
500 280 140 80 50 40 0.751 0.755 0.813 0.805 0.815

ntable

1

5 - 1808 741 484 361 0.403 0.636 0.659 0.669 0.665
10 - 1891 774 514 389 0.407 0.635 0.663 0.670 0.671
20 - 1918 817 541 399 0.395 0.627 0.663 0.667 0.655
50 - 1779 774 523 393 0.422 0.633 0.667 0.681 0.677
100 - 1618 641 422 313 0.471 0.634 0.652 0.653 0.650
250 1180 720 297 208 158 0.570 0.627 0.652 0.664 0.668
500 453 275 125 82 61 0.644 0.675 0.706 0.697 0.706
1000 243 139 65 46 34 0.695 0.733 0.760 0.765 0.764
2000 229 133 47 32 25 0.719 0.772 0.789 0.796 0.784

5

5 - 1910 770 515 390 0.396 0.632 0.651 0.669 0.674
10 - 1795 780 515 380 0.403 0.631 0.665 0.668 0.665
20 - 1565 640 435 310 0.477 0.638 0.654 0.680 0.660
50 1310 710 315 205 155 0.593 0.619 0.654 0.653 0.658
100 515 290 115 75 60 0.666 0.682 0.703 0.698 0.710
250 180 120 65 40 30 0.705 0.747 0.780 0.787 0.784
500 200 135 60 35 30 0.684 0.784 0.801 0.790 0.793
1000 185 110 55 30 25 0.735 0.760 0.806 0.792 0.795
2000 195 125 55 35 25 0.721 0.794 0.797 0.805 0.790

10

5 - 1920 780 510 380 0.396 0.652 0.658 0.671 0.667
10 - 1500 620 410 300 0.486 0.642 0.662 0.667 0.656
20 1830 950 390 260 210 0.591 0.632 0.650 0.656 0.680
50 460 310 110 80 60 0.630 0.699 0.688 0.705 0.704
100 310 160 70 40 30 0.705 0.758 0.775 0.767 0.766
250 210 120 50 40 30 0.745 0.790 0.811 0.837 0.835
500 230 140 60 40 30 0.729 0.779 0.808 0.811 0.792

nap

1

5 - - 1221 798 624 0.348 0.486 0.674 0.681 0.694
10 - - 1282 867 669 0.343 0.491 0.663 0.676 0.692
20 - - 1102 743 568 0.371 0.549 0.672 0.673 0.686
50 - - 1064 728 550 0.378 0.556 0.659 0.680 0.685
100 - - 996 663 520 0.384 0.594 0.661 0.668 0.679
250 1575 963 467 323 245 0.568 0.623 0.666 0.678 0.677
500 655 481 260 186 134 0.588 0.651 0.689 0.706 0.699
1000 411 262 120 86 71 0.637 0.696 0.716 0.730 0.735
2000 330 247 108 85 67 0.657 0.714 0.751 0.753 0.763

5

5 - - 1215 845 630 0.343 0.501 0.676 0.697 0.691
10 - - 1100 745 575 0.365 0.535 0.671 0.681 0.693
20 - - 970 640 515 0.402 0.592 0.677 0.669 0.697
50 - - 605 410 310 0.570 0.645 0.677 0.689 0.688
100 985 565 305 200 155 0.620 0.646 0.696 0.703 0.704
250 505 305 130 95 75 0.658 0.716 0.733 0.744 0.751
500 360 250 115 75 65 0.671 0.728 0.761 0.764 0.770
1000 255 195 105 70 55 0.668 0.729 0.767 0.773 0.779
2000 250 170 100 65 55 0.691 0.730 0.777 0.765 0.780

10

5 - - 1100 740 550 0.400 0.570 0.688 0.690 0.693
10 - - 1020 680 530 0.407 0.579 0.669 0.673 0.683
20 - - 690 450 330 0.544 0.635 0.688 0.692 0.684
50 910 470 240 180 130 0.617 0.648 0.694 0.712 0.708
100 420 250 150 100 70 0.644 0.683 0.737 0.747 0.736
250 310 220 100 70 60 0.668 0.742 0.774 0.777 0.790
500 270 200 130 70 60 0.674 0.730 0.773 0.768 0.783

ntv

1

5 - - 694 470 357 0.468 0.628 0.661 0.678 0.680
10 - - 704 464 341 0.464 0.625 0.653 0.662 0.657
20 - - 737 486 374 0.461 0.658 0.681 0.685 0.692
50 - - 712 482 366 0.477 0.637 0.669 0.681 0.687
100 - - 596 407 311 0.528 0.634 0.656 0.670 0.674
250 1211 725 341 241 178 0.580 0.613 0.662 0.680 0.677
500 458 302 140 91 68 0.628 0.673 0.707 0.711 0.710
1000 279 166 80 52 41 0.715 0.745 0.775 0.775 0.777
2000 216 130 60 39 32 0.734 0.784 0.800 0.797 0.806

5

5 - - 690 460 355 0.461 0.623 0.658 0.674 0.682
10 - - 700 455 345 0.480 0.656 0.685 0.679 0.683
20 - - 600 400 305 0.540 0.636 0.672 0.677 0.687
50 1375 715 330 220 165 0.619 0.634 0.671 0.678 0.677
100 380 235 125 85 65 0.665 0.692 0.738 0.739 0.748
250 285 150 65 45 35 0.752 0.761 0.799 0.799 0.804
500 250 110 65 45 30 0.760 0.776 0.819 0.824 0.812
1000 185 110 60 40 30 0.760 0.781 0.818 0.812 0.810
2000 155 95 45 30 25 0.733 0.759 0.817 0.812 0.826

10

5 - - 690 470 340 0.476 0.647 0.690 0.703 0.688
10 - - 720 450 350 0.483 0.641 0.683 0.667 0.677
20 1790 1050 460 310 250 0.586 0.634 0.657 0.667 0.692
50 500 330 140 100 70 0.676 0.722 0.736 0.755 0.748
100 240 140 70 50 40 0.711 0.754 0.791 0.798 0.802
250 190 130 50 40 30 0.764 0.785 0.807 0.831 0.825
500 180 130 60 40 30 0.764 0.805 0.836 0.844 0.826

APPENDICES 127

O.3 New client - complete network

Table O.3: Performance comparison new clients with different data fractions - complete network
(epochs until convergence and F1-score).

Added
node

Pre-trained
epochs

Pre-trained
rounds

Conv
(0.1)

Conv
(0.2)

Conv
(0.5)

Conv
(0.75)

Conv
(1)

F1
(0.1)

F1
(0.2)

F1
(0.5)

F1
(0.75)

F1
(1)

nkitch

1

10 - - 1281 849 645 0.339 0.511 0.700 0.702 0.706
20 - - 1132 754 578 0.349 0.538 0.677 0.683 0.689
50 - - 1235 813 611 0.329 0.494 0.683 0.691 0.696
100 - - 1049 699 544 0.363 0.561 0.691 0.695 0.708
250 - 1339 669 431 337 0.533 0.620 0.685 0.686 0.697
500 1021 590 314 210 152 0.605 0.658 0.714 0.722 0.720
1000 635 353 187 118 92 0.667 0.695 0.749 0.749 0.758
2000 658 355 169 125 92 0.689 0.745 0.782 0.791 0.785

5

5 - - 1240 830 635 0.322 0.501 0.689 0.695 0.710
10 - - 1195 800 610 0.349 0.523 0.683 0.699 0.698
20 - - 1205 805 625 0.348 0.506 0.698 0.706 0.722
50 - 1630 705 465 365 0.513 0.664 0.685 0.691 0.709
100 1265 725 345 230 170 0.633 0.682 0.718 0.723 0.723
250 590 435 180 125 85 0.675 0.739 0.761 0.762 0.755
500 425 335 145 95 75 0.702 0.737 0.770 0.774 0.783
1000 560 290 130 85 70 0.744 0.767 0.776 0.788 0.795
2000 475 310 150 95 70 0.712 0.752 0.789 0.791 0.785

10

5 - - 1220 800 620 0.328 0.505 0.698 0.694 0.708
10 - - 1150 780 580 0.374 0.558 0.706 0.712 0.715
20 - 1750 830 530 410 0.490 0.656 0.711 0.706 0.718
50 1460 730 370 270 200 0.631 0.660 0.707 0.730 0.727
100 640 480 190 120 90 0.674 0.746 0.761 0.751 0.754
250 590 260 150 100 70 0.726 0.744 0.790 0.794 0.783
500 450 330 150 100 70 0.704 0.769 0.800 0.803 0.789

ntable

1

5 - - 1148 767 585 0.353 0.543 0.684 0.692 0.699
10 - - 1192 824 620 0.350 0.524 0.675 0.691 0.695
20 - - 1216 844 637 0.330 0.486 0.673 0.693 0.690
50 - - 1215 816 621 0.357 0.518 0.682 0.695 0.699
100 - - 1078 681 524 0.369 0.558 0.684 0.679 0.691
250 - 1409 630 406 311 0.558 0.653 0.685 0.686 0.694
500 890 581 294 200 150 0.629 0.668 0.712 0.716 0.716
1000 456 328 166 99 76 0.666 0.729 0.756 0.761 0.759
2000 353 221 118 62 61 0.707 0.757 0.778 0.780 0.788

5

5 - - 1245 835 635 0.327 0.498 0.684 0.699 0.700
10 - - 1210 815 605 0.336 0.488 0.680 0.693 0.692
20 - - 1085 720 540 0.380 0.566 0.690 0.696 0.697
50 - 1485 615 405 310 0.569 0.674 0.683 0.682 0.690
100 1015 480 280 180 140 0.653 0.665 0.713 0.718 0.724
250 425 300 135 80 65 0.706 0.753 0.775 0.768 0.777
500 365 240 100 70 50 0.698 0.760 0.780 0.796 0.781
1000 410 245 110 65 50 0.754 0.767 0.806 0.797 0.795
2000 385 210 120 85 55 0.735 0.761 0.797 0.788 0.797

10

5 - - 1180 810 630 0.346 0.515 0.680 0.693 0.712
10 - - 1090 710 530 0.384 0.587 0.699 0.704 0.704
20 - 1790 770 490 370 0.516 0.675 0.700 0.694 0.694
50 1020 570 270 200 150 0.637 0.678 0.701 0.726 0.726
100 620 310 140 100 70 0.713 0.736 0.765 0.770 0.763
250 390 200 100 70 50 0.739 0.767 0.788 0.798 0.785
500 470 290 120 80 60 0.738 0.771 0.791 0.802 0.799

nap

1

5 - - 1786 1198 897 0.307 0.399 0.689 0.701 0.698
10 - - 1832 1244 946 0.305 0.408 0.684 0.695 0.698
20 - - 1520 1085 818 0.321 0.433 0.660 0.688 0.698
50 - - 1595 1096 836 0.341 0.439 0.682 0.693 0.705
100 - - 1484 1027 773 0.344 0.468 0.668 0.689 0.690
250 - 1758 796 540 422 0.517 0.638 0.677 0.687 0.697
500 1378 871 448 322 245 0.580 0.632 0.686 0.700 0.702
1000 763 549 265 193 153 0.633 0.674 0.719 0.738 0.734
2000 677 395 221 156 131 0.650 0.698 0.732 0.748 0.752

5

5 - - 1780 1190 910 0.303 0.407 0.694 0.702 0.710
10 - - 1650 1110 855 0.322 0.445 0.689 0.696 0.710
20 - - 1440 980 750 0.341 0.476 0.685 0.692 0.702
50 - - 965 645 510 0.460 0.630 0.689 0.696 0.708
100 1620 1085 515 380 305 0.604 0.660 0.693 0.709 0.728
250 660 550 275 200 150 0.629 0.686 0.733 0.745 0.749
500 665 505 235 165 120 0.672 0.720 0.747 0.752 0.753
1000 530 445 205 135 110 0.666 0.733 0.750 0.754 0.753
2000 525 415 205 135 110 0.671 0.728 0.754 0.769 0.764

10

5 - - 1510 1070 790 0.347 0.445 0.678 0.703 0.700
10 - - 1500 1020 780 0.349 0.461 0.679 0.690 0.701
20 - - 1020 720 540 0.455 0.607 0.690 0.702 0.695
50 1660 980 490 350 240 0.630 0.667 0.712 0.726 0.715
100 830 710 310 230 160 0.642 0.715 0.733 0.756 0.744
250 550 390 210 150 120 0.667 0.728 0.760 0.776 0.779
500 610 370 230 160 130 0.679 0.724 0.763 0.779 0.777

ntv

1

5 - - 1124 755 577 0.374 0.545 0.683 0.695 0.702
10 - - 1194 804 586 0.364 0.548 0.682 0.701 0.695
20 - - 1234 852 645 0.373 0.537 0.695 0.703 0.706
50 - - 1207 787 628 0.375 0.534 0.686 0.693 0.704
100 - - 1102 727 554 0.397 0.575 0.690 0.696 0.703
250 - 1475 686 481 369 0.544 0.639 0.683 0.699 0.709
500 976 627 327 240 176 0.610 0.654 0.702 0.715 0.719
1000 610 374 204 140 104 0.680 0.725 0.743 0.764 0.754
2000 423 277 127 93 72 0.690 0.738 0.761 0.772 0.774

5

5 - - 1235 825 625 0.355 0.524 0.697 0.700 0.705
10 - - 1170 820 610 0.388 0.560 0.699 0.716 0.717
20 - - 1105 750 550 0.422 0.592 0.702 0.716 0.712
50 - 1585 670 455 340 0.576 0.682 0.697 0.713 0.709
100 880 680 290 225 160 0.643 0.708 0.719 0.739 0.736
250 525 395 185 125 90 0.688 0.744 0.769 0.778 0.775
500 415 365 135 100 85 0.727 0.766 0.773 0.784 0.790
1000 420 305 140 95 80 0.734 0.773 0.781 0.787 0.798
2000 385 270 120 85 60 0.712 0.771 0.793 0.797 0.795

10

5 - - 1140 770 600 0.385 0.577 0.700 0.707 0.726
10 - - 1220 830 610 0.383 0.539 0.702 0.709 0.706
20 - 1820 910 610 460 0.491 0.640 0.700 0.712 0.710
50 980 790 370 220 160 0.644 0.711 0.741 0.739 0.737
100 640 380 180 130 100 0.706 0.743 0.770 0.782 0.783
250 440 280 130 100 70 0.726 0.753 0.778 0.794 0.789
500 520 250 140 80 60 0.727 0.761 0.803 0.802 0.799

128 APPENDICES

P Limited data availability supplementary results
The effect of different amounts of local computation (1, 5 or 10 epochs per round) is depicted
below, for both the client and location set.

(a) (b)
Figure P.1: Impact of amount of data available during optimisation on pre-existing models (location
set) based on different amount of local computation, with a) the impact on F1-score, b) the impact
on the amount of total training epochs until convergence is reached.

(a) (b)
Figure P.2: Impact of amount of data available during optimisation on pre-existing models (client
set) based on different amount of local computation, with a) the impact on F1-score, b) the impact
on the amount of total training epochs until convergence is reached.

	Acronyms
	List of Figures
	List of Tables
	Introduction
	Problem Statement

	Background
	Neural Networks
	Federated Learning
	Wireless Human Activity Recognition

	State of the Art
	Comparison of Federated Learning Methods
	Developments for Human Activity Recognition

	Pilot Study
	Setup
	Data Structure
	Observations

	Data Gathering & Preprocessing
	eHealth House Experiment
	Data Preprocessing

	Methodology
	Neural Network Model
	Training Datasets
	Influence of Variables

	Results
	Parameter Tuning
	Effect of Varying Federated Learning Settings
	Effect of Adding New Locations
	Effect of Adding New Clients

	Discussion
	Parameter Tuning
	Machine Learning and Federated Learning
	Federated Learning Settings
	Varying Activity Location
	Varying Client Participation
	Summary of Observations
	Limitations
	Ethical Consequences

	Conclusion and Future Work
	Recommendations for Future Work

	Appendices
	Overview of FL methods
	Expanded HAR literature overview
	Algorithm overview of centralised federated learning
	Algorithm overview of decentralised federated learning
	Experiment schedule pilot study
	Experiment schedule eHealth House
	Neural network graphical representation
	Summarised overview datasets
	Grid search supplementary results
	Scenario combinations with and without regularisation
	Batch size impact supplementary results
	Classical learning comparison supplementary results
	Averaging algorithms supplementary results
	Training with new locations supplementary results
	Training with new clients supplementary results
	Limited data availability supplementary results

