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ABSTRACT

An Early Warning System (EWS) is a tool that enables the monitoring of the credit portfolio to

identify clients in financial distress. ARIA is the EWS used by ING to monitor their Wholesale

Banking (WB) clients using a variety of early warning triggers based on internal data, news arti-

cles, and market data. However, the current triggers are limited in their predictive capabilities

as they are backwards-looking and are only derived from a single variable. A new Watchlist

(WL) trigger aims to incorporate the information of all the current triggers into a single model

that can predict whether a client should be on a watchlist based on their credit risk. The aim of

this research focuses on exploring how such a WL trigger could be designed by answering the

following main research question:

How could a WL trigger be designed that is able to effectively classify WB clients at ING on a

watchlist based on their prospective credit risk?

This study introduces three metrics that measure the relationship between the triggers and the

status of a client. A good WL trigger would have the following properties: it should be able to

detect as many clients in distress as possible, raised triggers should indicate if there is a high

probability that the client will be in financial distress, and the trigger should be able to detect

financial distress as early as possible. These metrics can be measured by migration sensitivity,

trigger precision, and time lag, respectively.

Using ML techniques, a financial distress prediction model is developed that determines when

a WL trigger should be raised. This financial distress prediction uses internal triggers, exter-

nal triggers, and internal client data as input to predict if a client will be in financial distress.

The literature has different definitions for financial distress, and in this research, we define a

financially distressed client as a client with a watchlist or default status. The financial distress

prediction model tries to predict when a client will migrate from a regular status to a watchlist

or default status, referred to as a negative migration.

The proposed model incorporates the historical data six months prior (the time window) to a

negative migration to forecast if a negative migration occurs in the next month (the time gap).

Furthermore, the model incorporates a target window of six months which adds flexibility to

the model. This target window allows the model to make predictions before a negative migra-

tion. We are only interested in the early detection of financial distress, so we do not necessarily

want to predict the exact moment of negative migration, which is made possible by the intro-

duced target window.

Several supervised learning algorithms, including Linear Discriminant Analysis (LDA), Logis-

i



ABSTRACT ii

tic Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF),

Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), and Artificial Neu-

ral Network (ANN) are tested. Experimentation shows that the Random Forest model has the

highest performance, with an F1 score of 0.197, a trigger precision of 0.127, and a migration

sensitivity of 0.676. This means that if this model raises a trigger, there is a 12.7% probability

that the client will have a negative migration, and among all negative migrations, the trigger

occurred 67.6% of the time before the migration. Furthermore, the experiments show that ex-

tending the time and target window improves model performance. In addition, the timeliness

of the model can be altered by configuring the model’s target window and time gap.

More research is needed to investigate the optimal values for the time window, target win-

dow, and time gap. For this, more historical data needs to be collected, and the tradeoff be-

tween trigger precision, migration sensitivity and time lag needs to be investigated for future

research. Furthermore, the financial distress prediction model could be improved by more ex-

tensive model tuning, considering other modelling approaches and collecting data from other

sources.

Keywords: machine learning, early warning system, EWS, early warning trigger, credit risk,

watchlist, default, financial distress prediction
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1
INTRODUCTION

1.1. DATA-DRIVEN EARLY WARNING SYSTEMS

The early detection of increased credit risk is key for identifying clients in financial distress

so that timely actions can be taken to avoid potential losses. An Early Warning System (EWS)

enables the effective monitoring of the credit portfolio by providing Early Warning Indicators

(EWI) and triggers to alert stakeholders such as risk and account managers when there are early

signs of default. Successful implementations of EWS can substantially reduce the exposure of

both retail and Wholesale Banking (WB) clients [1]. Another advantage is that EWS improves

customer relationships since it enables proactively alerting and advising distressed clients to

help them avoid possible bankruptcy. Finally, EWS is essential from a compliance perspective.

The European Central Bank (ECB) provides guidance on the monitoring and management of

loans that are unlikely to be paid back using an EWS. The guidance is non-binding, but banks

should be able to explain themselves when they deviate from the guide [2].

The rapid increase of data calls for the use of data-driven EWS to incorporate big data in iden-

tifying credit risk for banks to stay competitive. Traditional early warning models were limited

to the rudimentary analyses of accounting variables. Due to technological developments re-

garding the internet and computer processing power, opportunities arise to improve EWS by

incorporating new data sources. For example, real-time financial data and relevant news arti-

cles posted online could enhance early warning capabilities [3].

Furthermore, Machine Learning (ML) has become a widely used tool to deal with these tremen-

dous flows of data in EWS [4–6]. Currently, many banks rely on EWS consisting of ad hoc trig-

gers derived from a single financial metric resulting in imprecise models with a high number

of false positives [7]. The application of ML techniques can improve early warning signalling

by providing automated decision-making and incorporating multiple variables to increase the

performance of the early warning models. This research aims to investigate the applications of

1
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ML models for the early detection of WB clients in distress at ING, a Dutch commercial bank

[8].

1.2. PROBLEM BACKGROUND

ING is an international commercial bank established in the Netherlands with more than 51,000

employees offering retail and WB services in over 40 countries worldwide [8]. One of the WB

services includes issuing loans to large clients such as big corporations, governments, and other

financial institutions. These loans need to be continually monitored so that precautionary ac-

tions can be taken when the client’s risk profile significantly changes.

The Advanced Risk Integrated Application (ARIA) is an EWS developed by ING that provides

early warning triggers to monitor the credit risk of INGs WB clients. For this, ARIA utilizes

internal and external data sources. The internal data consists of data from the internal sys-

tems and models of ING, such as the Probability of Default (PD) and the Risk-Weighted Assets

(RWA). Furthermore, external data consists of data from sources outside the company, includ-

ing stock prices, prices of derivatives, and online news articles. ARIA uses this data to calculate

early warning triggers to signal potential increases in risk. For example, a trigger could be acti-

vated when the stock price of a company decreases by more than 10%. Additionally, ING devel-

oped ML models to identify risks by creating triggers that analyse news articles. ARIA extracts

over 300.000 news articles daily from Google News and the Financial Times. These are then

processed through the use of Natural Language Processing (NLP), specifically, topic models to

identify if a company is involved with fraud, an acquisition, bankruptcy, or any other relevant

activity.

If an early warning trigger is raised, a risk manager could decide if a client requires closer moni-

toring, or they can take predefined actions to mitigate the risks [9]. These actions could include

changing the status client, implementing a forbearance strategy, writing off the exposures or

taking legal actions.

1.3. PROBLEM STATEMENT

ING has policies that put WB clients with significant credit risk on a watchlist. The goal of

the watchlist is to identify clients in distress at an early stage so that timely mitigation and

forbearance actions can be taken before a default can happen. This way, potential losses and

the probability that a client will default can be reduced. ING makes a distinction between a

regular watchlist and a portfolio watchlist.

The regular watchlist is based on a manual assessment of a client with the support of moni-

toring tools. The regular watchlist procedure uses EWIs that support the decision-making of

risk and account managers. These EWIs are predefined qualitative and quantitative indicators

such as macro-economic variables, financial indicators and the client’s behaviour. To give an

illustration, a client can be watchlisted when affected by a negative Gross Domestic Product

(GDP) growth or if its operations violate laws and regulations. When an account manager iden-
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tifies a client with a significant risk increase, they need to fill out a form in order to give a client

a watchlist status substantiated by reasons for the new classification. The reasons provided

should be grounded based on the EWI defined in the watchlist policy. In contrast to the regular

watchlist, a portfolio watchlist is a data-driven approach that automatically monitors and clas-

sifies clients on a watchlist. Currently, ING does not have a process for a watchlist portfolio to

automatically monitor their WB clients.

The ARIA tool supports the watchlist classification by giving risk managers insight into their

portfolio using early warning triggers. However, when it comes to decision-making for watch-

lists, the currently employed early warning triggers have certain limitations. Firstly, there is

no clear relationship between the early warning triggers and the watchlist status of clients.

Currently, it is not possible to monitor the effectiveness of early warning triggers for detect-

ing clients with increased risks. Consequently, risk managers need to rely on their own experi-

ence and intuition to assess the impact of specific triggers on the status of a client. Secondly,

the triggers are univariate, which means that they are only based on a single attribute. A dis-

advantage of univariate triggers is that they have a low hit ratio (precision) which limits their

predictive power [7]. Thus, these triggers cannot accurately distinguish well-performing clients

from clients in financial distress. Finally, the current triggers are primarily backwards-looking.

This means that triggers reflect past changes, limiting the earliness of their insights. Instead, a

trigger should aim to be forward-looking by utilizing patterns from the past to make predictions

about the future so that signals can be raised as early as possible.

1.4. RESEARCH OBJECTIVES AND CONTRIBUTIONS

The primary goal of this study is to create a connection between early warning triggers and the

impact on the credit status of clients. This study investigates what properties an early warning

trigger should have and how these could be quantified using different metrics. Additionally, this

research focuses on the development of a new trigger for the watchlist classification of clients

in financial distress, referred to as the Watchlist (WL) trigger. For this, a case study has been

conducted at ING, where the implementation of a financial distress prediction model using ML

techniques has been investigated. Such a model combines the predictive power of multiple

univariate early warning triggers to make credit risk forecasts in the future. Furthermore, the

scope of this research is restricted to WB clients and credit risk. The data-driven WL trigger

would have the following practical contributions compared to the current manual procedure:

• Automation: an ML model could automate the watchlist classification procedure, which

saves the manual labour currently done.

• Timeliness: clients in distress could be detected earlier because the data can be analysed

much quicker, and the analysis could be performed anytime when the model is run.

• Consistency: an algorithm ensures that the decisions it makes are consistent so that

clients are always assessed in the same way.
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• Predictive performance: an ML model can incorporate all the data available in its decision-

making and identify new patterns that could improve the performance of the watchlist

procedure.

Based on the aforementioned research goals, the following main research question has been

defined:

How could a WL trigger be designed that is able to effectively classify WB clients at ING on a

watchlist based on their prospective credit risk?

The main research question has been subdivided into the following subquestions:

1. How do the early warning triggers relate to the watchlist status of clients?

(a) What properties does an effective early warning trigger have?

(b) How can we measure these properties?

2. How can a financial distress prediction model be created for the watchlist classification

of clients?

(a) Which requirements does such a model have?

(b) Which ML techniques can be used?

(c) How can we evaluate the predictive power of this model?

(d) How can the decision-making of the model be explained?

3. How can we implement a new WL trigger?

(a) How does the proposed WL trigger compare to the existing ARIA triggers?

(b) How can the WL trigger be implemented in the current processes of ARIA?

The thesis is structured as follows. Firstly, the literature related to ML in credit risk, financial

distress prediction models, and EWSs are reviewed in Chapter 2. Secondly, the data collection

process and data exploration analysis are discussed in Chapter 3, where the relationship be-

tween early warning triggers and the watchlist classifications is researched. Afterwards, differ-

ent ML techniques that could be used for predicting financial distress are discussed in chapter

4. Subsequently, Chapter 5 introduces the experimental set-up of our financial distress predici-

ton model, and Chapter 6 discusses the results of the experiments. Finally, Chapter 7 discusses

the conclusions, recommendations, and future research topics.



2
LITERATURE REVIEW

2.1. ML IN CREDIT RISK

Credit risk is the risk associated with a borrower not being able to meet their financial obliga-

tions to the bank resulting in a possible loss [10]. The assessment of credit risk is a key activity

for banks to ensure profitability, compliance with banking regulations, and competitiveness

[11]. ML is a suitable approach for forecasting credit risk because these models can deal with

complex non-linear relationships [12], they can incorporate big data into the decision-making

[4], and they can automate lending processes [13].

Applications of ML in credit risk could be roughly divided into the following three topics: fraud

detection, credit scoring, and financial distress prediction [14]. Firstly, fraud detection models

try to identify fraudulent behaviour patterns using anomaly detection methods and historical

transaction data [15]. Secondly, banks use credit scoring models to assess the creditworthiness

of their clients to determine if a client can be on board or should be written off. Supervised

ML methods for credit scoring have been widely studied in the literature [11, 16, 17]. Finally,

ML models are used to predict if a client will be in financial distress so that timely actions can

be taken. Credit scoring and financial distress prediction allow for similar implementations of

binary classification models, but they serve different purposes. The main difference is the costs

associated with false positives in the model: false positives in credit rating models can result

in lenders declining loans due to mispricing, while false positives in EWSs may only result in

additional workload for staff but may not result in immediate action [18]. The latter application

is the focus of this research, and related literature is described in more detail in the next section.

2.2. EARLY WARNING MONITORING OF FINANCIAL DISTRESS

An EWS is a system used to detect potential risk at an early stage so that preventive or miti-

gation actions can be taken before any problematic events can occur [19]. Such a system can

5
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display EWIs or triggers to alert stakeholders when early signs of risks are identified [1]. EWSs

have been adopted in many financial use cases, such as the prediction of financial crises by

central banks [20], the identification of likely-to-fail banks [21], and the credit risk monitoring

of sovereign debts [22]. Next to these applications, EWSs are widely used to monitor the credit

risk of borrowers, particularly by lenders and other stakeholders exposed to that credit risk [7].

A financial distress prediction model can be used as an EWI to predict the likelihood that a

particular borrower will experience financial distress.

A literature review is conducted to analyse the application of financial distress prediction mod-

els for early warning monitoring. The scope is restricted to the monitoring of the credit risk of

companies since this research only focuses on WB clients. The papers are compared by the fi-

nancial distress prediction modelling approach, the independent variables, and the definition

of financial distress used. Furthermore, we look at how the model is applied in an EWS and

what type of clients are included. A summary of the literature review can be found in Appendix

A.

In the literature, there is no general consensus on the definition of financial distress. As a result,

the literature uses different dependent variables for training their models. For example, many

distress prediction models use bankruptcy data to determine which clients are in distress [23].

However, in the case of early warning monitoring, most papers use a broader definition for

financial distress as a financial distress model should be able to predict both the early and ad-

vanced stages of financial distress so that early actions can be taken to prevent high costs [24].

Likewise, Wang [25] argues that financial distress should have a more general definition that

includes the states between economic failure, insolvency, and bankruptcy.

As a result, the literature related to early warning signals extends the definition of financial dis-

tress by formulating different criteria. Most of the literature developed a financial distress pre-

diction model based on data from the China Securities Regulatory Commission (CSRC). CSRC

defines so-called Special Treatment (ST) companies that made financial losses for two con-

secutive years [26]. Additionally, Tong and Tong [27] labelled distressed companies based on

whether a company’s cash flows decreased below a certain threshold, which would mean that

borrowers would not be able to obtain new loans. Balasubramanian et al. [28] determined a

company to be in financial distress when the accumulated losses over a year exceeded the en-

tire net worth of a company. Ashraf et al. [24] based financial distress on multiple criteria related

to book value, dividend declaration, failing to hold an annual general meeting, and bankruptcy.

Various financial distress prediction models are researched in the context of early warning

monitoring. The majority of these models are based on supervised ML models including Deci-

sion Tree (DT), Logistic Regression (LR), Multiple Discriminant Analysis (MDA), Artificial Neu-

ral Network (ANN), Support Vector Machine (SVM), and ensemble methods like Random Forest

(RF), Extreme Gradient Boosting (XGBoost) and CatBoost [4, 19, 25, 27–38]. Furthermore, there

are a couple of implementations of traditional formulas like the Altman Z-score that use bal-

ance sheet-based financial ratios as input [24, 25]. In addition, Chen et al. [26] implements a
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KMV model which measures credit risk based on an option pricing approach. Finally, some

approaches involve domain experts to identify financial distress by using Multiple-Criteria De-

cision Analysis (MCDA) [39] or Fuzzy Logic [18] techniques.

Most financial distress prediction models focus on listed companies and use publicly available

balance sheet data to create financial ratios as independent variables. In addition, studies have

tried to improve the financial distress prediction models by adding more data, such as mar-

ket data, non-financial indicators, and textual data. Market data includes stock returns, stock

volatility, credit ratings, and indicators that compare the company’s performance with the mar-

ket [4, 24, 29]. Besides, several studies have come up with other non-financial indicators re-

lated to, for example, the age of the company, governance characteristics, and the ownership

of shares [28, 37]. In addition, multiple studies apply NLP techniques to incorporate textual

analysis into their models. Wang [25] used sentiment analysis scores based on public opinion

combined with financial indicators to predict financial distress and Huang et al. [29] extracted

data from annual reports in combination with sentiment analysis to improve their ML models.

2.3. EARLY WARNING SYSTEMS

Although financial distress prediction models have been widely researched, discussion about

the use of these models in the context of a EWS is limited. Most of the studies found do not

mention EWS, and when they do, they mainly focus on establishing an EWS by only introduc-

ing a financial distress prediction model. However, some studies address other aspects of EWS.

Firstly, Wen et al. [4] introduces a data architecture regarding the extraction and prepossessing

of big data for an EWS. In addition, Koyuncugil and Ozgulbas [19] provides a data flow frame-

work that considers roadmaps for clients that can help them improve their risk profile. Finally,

the research from Kaluðer and Klepac [18] was the only study found that conducted research on

an EWS implemented in an individual financial institution. They proposed a univariate anal-

ysis approach for early warning triggers and included early warning trigger data in a financial

distress prediction model based on Fuzzy Logic.

In conclusion, the literature lacks research on implementing financial distress prediction mod-

els based on ML techniques applied to a financial institution’s individual level. This study ad-

dresses the gap in the literature by conducting a case study at ING. Firstly, we build on the

univariate analysis of early warning triggers introduced by Kaluðer and Klepac [18] by analysing

the relationship between early warning triggers and the watchlist classification status of clients.

Furthermore, this study introduces a new financial distress prediction model with a different

dependent variable to predict financial distress. It also explores the use of other data sources

for the independent variables. The current ML models focus mainly on the data of publicly

listed companies, but there are no case studies that implement these models at an individual

institution level utilising internal data.



3
DATA

3.1. DATA COLLECTION

3.1.1. INDEPENDENT VARIABLES

The data used in this research was provided by ING, which means that not all the data can be

disclosed due to confidentiality. Therefore, only general descriptions of variables are given, and

no specific data of clients will be shared. ING has three data pipelines that extract and process

the internal and external data used for ARIA. The first pipeline extracts internal data from the

risk and financial systems within ING, which include, for example, the Probability of Default

(PD). This data is uploaded monthly into ARIA to calculate the internal early warning triggers.

The other two pipelines are used to extract the external data. One pipeline is used to extract and

process news articles from the Financial Times [40] and Google News [41]. The other pipeline

extracts data from Refinitiv [42] that provides market data of related financial products, such as

the pricing of credit default swaps. These pipelines make it possible to calculate the external

triggers in real-time.

Three tables from the ING databases have been extracted that consist of the historical data

from May 2021 to September 2022. The first table has the clients’ monthly data, including their

status and related internal data like the PD. The second and third tables have the records for

every time an internal or external trigger was flagged. These three tables were merged to create

the final data set. The majority of the features are binary variables based on whether a trigger

has been flagged (1) or not (0). Next to these features, the actual values of the underlying data

of these triggers are used as independent variables to experiment with, which data results in

higher model performance. Table 3.1 provides an overview of all the features and a general

description of when the triggers are flagged. For instance, the PD is calculated by the internal

financial models of ING. When the PD significantly changes compared to the previous month,

then a trigger is raised by the ARIA system. Another example is Bankruptcy (BNK) trigger which

8
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Table 3.1: Independent variables overview

Source Symbol Description Type

Internal triggers CVNT Trigger related to the Convenant schedule Binary
LE Flagged when the Limit Excess exceeds a certain threshold Binary
DPD Flagged when the Days Past Due exceed a certain threshold Binary
RWA Flagged when the Risk-Weighted Asset changes with a certain threshold Binary
EAD Flagged when the Exposure at Default changes with a certain threshold Binary
IFRSS Flagged when the International Financial Reporting (IFRS) status changes Binary
RUD Flagged when Reviews Upcoming date is smaller than the Reporting Date Binary
ROD Flagged when Reviews Upcoming date is larger than the Reporting Date Binary
ESRT Trigger related to the ESR Transaction Outcome Binary
SS Flagged when the sanction status changes Binary
LGD Flagged when the Loss Given Default changes with a certain threshold Binary
RCF Flagged when the change in the total Outstanding Amount of Revolving Credit Facilities Binary
IR Flagged when the Internal Rating changes Binary
FBS Flagged when the Forbearance Status changes Binary
PD Flagged when the Probability of Default changes with a certain threshold Binary

External triggers BNK Flagged when there are relevant news articles related to Bankruptcy Binary
MA Flagged when there are relevant news articles related to Merger and Acquisition Binary
FRD Flagged when there are relevant news articles related to Fraud Binary
ECC Flagged when there are relevant news articles related to Environment and Climate Change Binary
SNC Flagged when there are relevant news articles related to Sanctions Binary
HR Flagged when there are relevant news articles related to Human Rights Binary
EQU Flagged when Equity prices change with a certain threshold Binary

Internal data AVG PD Average Probability of Default value of a client Numeric
TOTAL RWA Total Risk-Weighted-Asset value of a client Numeric
AVG LGD The average Loss Given Default of a client Numeric
AVG EAD The average Exposure at Default of a client Numeric
TOTAL DPD The accumulated Days Past Due Value Numeric
MAX DPD The maximum Days Past Due value Numeric
TOTAL ALLOC LIMIT The Total Allocated Limit to a client Numeric
MAX IFRS The credit risk stage defined by the IFRS9 accounting standards Categorical
SEC The sector of the client Categorical

is raised when the NLP model detects news articles related to bankruptcy for a particular client.

3.1.2. DEPENDENT VARIABLES

As mentioned in section 2.2, many financial distress prediction models exist, but there is no

general consensus on what defines a financially distressed client. In this research, we define

financial distress as a situation where a client’s risk profile significantly deteriorates so that the

bank should take some action to ensure that a client can meet its financial obligation in the

future. This definition includes clients that have defaulted and clients who, for example, might

require extra monitoring or forbearance measures to avoid financial disruptions. If the model

predicts that the client is in financial distress, the advice is given that this customer should be

put on the watchlist.

For the watchlist classification, three different client credit statuses are considered. Firstly,

there are clients with a regular status that paid their loans on time and have not been iden-

tified as carrying any significant risks. If the client’s risk profile considerably deteriorates, then

a risk manager could assign the client a watchlist status. Finally, if a client can no longer make

his payment obligation to ING, then the client receives a default status. Legally, this is the case

when the client did not make payments for ninety subsequent days.

A change in client status is referred to as a migration from one status to another. A negative mi-

gration is a change from a regular status to a watchlist or default status, and a positive migration

is the other way around. Ideally, a client has always been watchlisted before it migrates to de-
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Figure 3.1: Client status migrations

Table 3.2: Migration frequency

From/To R W D
R 813786 3788 2761
W 2435 24531 155
D 1662 24 20980

fault status, but in reality, there are still clients that default without ever receiving the watchlist

label. In that case, we have a so-called direct transfer (Figure 3.1). Furthermore, being watch-

listed does not necessarily lead to a migration to a default status because if the correct measures

are taken, the loan status can be changed back to a regular one. In a few exceptional cases, it is

also possible for a loan to be transferred from a default status to a watchlist status.

Two sources of data are considered for the data labelling. Firstly, there is the historical data of

the clients that are watchlisted by the current manual procedures. Secondly, there is data on

clients that have defaulted in the past, including instances that might have never been watch-

listed beforehand. This research uses negative migrations as the independent variable for the

financial distress prediction model.

3.2. EXPLORATORY ANALYSIS

3.2.1. WATCHLIST AND DEFAULT STATUS AND MIGRATION ANALYSIS

The first analysis looks at the number of migrations between June 2021 and November 2022.

Table 3.2 presents the frequency for each migration combination between a regular, watchlist,

and default status. Naturally, positive and negative migrations make up a small part of the to-

tal migrations as the client status remains unchanged most of the time. As a result, there is a

significant class imbalance when considering negative migration as the independent variable.

Moreover, the number of direct transfers is relatively high since only 5% of the negative de-

fault migrations came from a watchlist status. So, the watchlist procedure could be improved

considerably by detecting these clients.

Besides, Figure 3.2 depicts a line graph with the total number of clients with a watchlist or

default status. Generally, there are more watchlisted clients than clients in default, but interest-

ingly, this gap has faded over time. This is mainly because the number of clients with a watchlist

status has gradually decreased since June 2021. In addition, when looking at Figure 3.3, we see
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Figure 3.2: Watchlist and default time series

Figure 3.3: Negative migrations

that there has been a spike in watchlist migrations in February 2022. This was primarily due to

the invasion of Ukraine, resulting in more than two hundred watchlist classifications of Russian

clients.

Moreover, there was a sharp increase in defaults in January 2022. Presumably, this is due to

missing default data, as there is a slight dip in default when looking at Figure 3.2. Also, when

looking at the specific migration instances, many clients migrate from a default status for one

month, and then the next month, they migrate back again. Therefore, for these clients, the

status is changed to default resulting in a similar number of default migrations as in the other

months (See Appendix B).

Finally, the reasons for classification are analysed to gain more insight into the current watchlist

classification procedure. As mentioned in section 1.2, account managers must provide prede-

fined reasons for the classification. These reasons are counted and plotted in Figure 3.4. This

figure shows that most watchlisted classifications were due to bad news, poor industry outlook,

or a material decline in profitability. This suggests that specific features may hold greater sig-

nificance in identifying watchlisted clients. For instance, considering that many clients end up

on the watchlist due to negative news, we would expect that external triggers based on online

news articles would prove effective in detecting such clients.
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Figure 3.4: Frequency of watchlist reasons
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3.2.2. EARLY WARNING TRIGGERS

The statistical relationships between the ARIA triggers and the negative migrations are mea-

sured to analyse to what extent the triggers individually would be able to predict financial dis-

tress. As a result, the performance of the newly proposed WL trigger can be compared with the

already-used ARIA triggers. In addition, Babel et al. [1], and Kaluðer and Klepac [18] proposed

several metrics to assess the quality of early warning triggers for detecting nonperforming loans

(See Appendix C.1). Inspired by these metrics, the following statistics were used to evaluate the

relationship between the ARIA triggers and negative migrations.

• Migration sensitivity: the fraction of negative migrations which had a certain trigger

raised within six months before.

• Trigger precision: the fraction of raised triggers for which there were negative migrations

within the next six months.

• Time lag: the number of months between a trigger event and a negative migration.

While many metrics could be used to evaluate the performance of early warning triggers, we

primarily focus on these three metrics because they describe the properties the WL trigger

should have related to its predictive performance and earliness. Appendix C.2 describes how

the early warning triggers are calculated and other metrics that could be used to evaluate the

triggers. The coming sections describe the results and interpretation of the metrics calculated

for the period between January 2021 and September 2022. In addition, time windows of six

months are used to determine if a trigger or negative migrations occurred. A six-month time

window is used to ensure that there are enough time windows within the selected period to

calculate the metrics. When more historical data is available, more research could be done to

see how the metrics change for different time window sizes.

MIGRATION SENSITIVITY

The migration sensitivity indicates how prevalent a trigger is among the watchlisted clients. For

example, if a trigger has a sensitivity of 50%, then half of the watchlisted clients had that trigger

raised within a range of six months in advance. Figure 3.5, displays a graph of the sensitivity for

each trigger with their corresponding 99% confidence intervals. This graph shows that RWA oc-

curs the most often among financially distressed clients, while the external triggers (EQU, BNK,

FRD, SNC, HR, ECC) occur infrequently. The WL trigger should aim for a high sensitivity be-

cause it should be able to detect as many negative migrations as possible. However, increased

sensitivity could be achieved by always raising the trigger, which would make the trigger re-

dundant. Therefore, trigger precision should be taken into account to make sure that a raised

trigger is actually meaningful.

TRIGGER PRECISION

Trigger precision indicates how well a trigger can separate financially distressed clients from

regular clients. A high precision would mean that if a client has a given trigger raised, there is

a high probability that the client will end up with a watchlist or default status. Ideally, a trigger
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Figure 3.5: Migration sensitivity with 99% confidence interval

would have a high sensitivity and precision to have a high predictive performance on detecting

distressed clients. Figure 3.6 provides a bar graph of the precision with the corresponding 99%

confidence intervals. The PD has a relatively high precision of 20%, which means that when

observing this trigger, there is a 20% probability that a client will migrate to a watchlist or default

status in the next six months.

Figure 3.6: Trigger precision with 99% confidence interval

TIME LAG

The sensitivity and precision give insight into the predictive performance, but it does not shed

light on the timeliness of the triggers. Therefore, the distribution of the number of triggers

raised before a watchlist classification is analysed to see how early a trigger can detect a client

in distress. Appendix C.4 provides an overview of the time lag distributions for each trigger.

Figure 3.7 shows a box plot and the average time lag with a 99% confidence interval of the dis-

tributions. However, these graphs do not paint the complete picture as it does not consider the

dispersion and skewness of the time lag data. From the charts, we can conclude that most trig-

gers are early, except for the FRD, BNK, SNC, CVNT, EQU, HR, and ECC. However, these triggers

have large confidence intervals due to a small sample size. More significant conclusions could

be made about their earliness when more data is available.

Conclusively, we aim to design a WL trigger which has high predictive performance at detecting

negative migrations while at the same time being able to make these predictions as early as pos-

sible. The migration sensitivity and trigger precision measure the predictive performance, and

the average time lag measures the earliness. Moreover, when designing a WL trigger, the im-

portance of these metrics compared to each other need to be considered. For example, aiming

for a higher precision might come at the cost of lower sensitivity and time lag and vice versa.
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(a) Average time lag with 99% confidence interval (b) Time lag box plot

Figure 3.7: Time lag analysis



4
METHODOLOGY

4.1. SUPERVISED LEARNING

Chapter 2 shows that the majority of the found literature uses a supervised learning approach

for their financial distress prediction model. Supervised learning is a ML paradigm where the

labels we try to predict are assumed to be known [43]. This research focuses on the classification

models commonly used for the early detection of financial distress, which includes LDA, LR,

SVM, DT, ensemble learning methods, and ANN.

4.1.1. LINEAR DISCRIMINANT ANALYSIS

LDA is a ML technique used for classification. The method works by identifying a linear com-

bination of the independent variables that are able to separate the different classes. The goal is

to project the data onto this linear combination in such a way that the separability between the

classes is maximized while, at the same time, the variation within the classes is minimized [44].

Altman’s Z-score function (See Equation 4.1) is a popular implementation for financial distress

prediction using LDA where he predicts bankruptcy using five financial ratios: working capital

/ total assets (A), retained earnings / total assets (B), earnings before interest and taxes (EBIT) /

total assets (C), market value of equity / total liabilities (D), and sales / total assets (E) [45].

Z-score = 1.2A+1.4B +3.3C +0.6D +1.0E (4.1)

4.1.2. LOGISTIC REGRESSION

LR is a statistical method used for binary classification [46]. The logistic function (Equation 4.2)

maps a linear combination of the independent variables and weight parameters into a value

between zero and one, representing the probability of the binary outcome. These weights are

obtained through Maximum Likelihood Estimation, which can be solved by optimization algo-

16
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rithms such as Gradient Descent or Newton’s method. Numerous studies have researched the

use of logistic regression models for financial distress prediction [28–31, 34].

Pr(y = 1|X;β) = 1

1+exp(−Xβ)
(4.2)

4.1.3. SUPPORT VECTOR MACHINE

SVM is a ML model developed by Boser et al. [47] which can be used for both classification and

regression problems. SVM tries to find a hyperplane that is able the maximize the margin be-

tween the closest data points, which are also known as the support vectors. Equation 4.3 shows

the optimization problem that needs to be solved where the optimization function ensures that

the margin is maximized, and the constraint ensures that the data points are correctly classi-

fied. In addition, this optimization can be improved by allowing a soft margin which permits

misclassifications close to the margin in order to reduce overfitting when training the model.

Furthermore, kernel functions make it possible to map the data points into higher dimensions

so that it is possible to find margins that can capture non-linear relationships between the in-

dependent and dependent variables.

min
w,b

1

2
||w||2 (4.3)

subject to yi (wT xi +b) ≥ 1, i = 1,2, . . . ,n (4.4)

4.1.4. DECISION TREE

The DT is a ML algorithm for classification that recursively splits the data to separate the data

into different classes. The data is divided by conditions based on the feature that best separates

the data. This property can be measured using different purity measures such as entropy, Gini

impurity or chi-square tests [48]. Pruning techniques or setting a maximum depth can be used

to avoid overfitting the model [49]. Decision trees have been widely used for financial distress

prediction due to their high interpretability [19, 27, 34, 50].

4.1.5. ENSEMBLE LEARNING

Ensemble learning is a ML technique that combines multiple models to improve the predic-

tive performance. Studies have shown that ensemble learning models can perform better than

individual models by combining the strengths of multiple models and by reducing overfitting

[51]. Bagging and boosting are two standard methods for constructing ensemble models.

Bagging involves training multiple models on random sample subsets of the training data [52].

Then, the models’ predictions are combined into a single prediction by, for example, taking

the average or a majority vote. RF is a ML model that combines several DTs using the bagging

method [53]. RF constructs multiple trees based on a random subset of the features to reduce
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Table 4.1: Confusion matrix

Predicted
1 0

A
ct

u
al 1 True Positive (TP) False Positive (FP)

0 False Negative (FN) True Negative (TN)

the correlation between the trees, resulting in less overfitting. After the training, the predic-

tion of the different trees is aggregated by taking a majority vote in the case of a classification

problem.

In contrast to bagging, boosting involves training a sequence of weak models where the train-

ing samples are weighted. A weak learner is a model that performs a little better than random

guessing. By combining many weak learners, a strong learner can be constructed with a better

predictive performance [54]. After each time a weak learner is constructed, new weights are as-

signed to the training samples so that previously misclassified instances are emphasized when

training the new weak learner. When all the weak learners are constructed, the predictions

are aggregated by giving more weight to more accurate learners. There exist many ML models

based on the boosting technique, such as AdaBoost, CatBoost, GBM, LightGBM, and XGBoost.

4.1.6. ARTIFICAL NEURAL NETWORKS

ANN is ML model that consists of a network of neurons separated by multiple layers [55].

Each neuron takes the neurons in the previous layer as a linear input which is then trans-

formed using an activation function. The weights of the linear functions are obtained through

a process called backpropagation, where the weights and biases are iteratively adjusted back-

wards through each layer. During this process, the model minimizes the difference between

the model output and the actual output using a loss function. This optimization problem can

be solved using the Gradient Descent algorithm.

4.2. EVALUATION METRICS

Several evaluation metrics are considered to measure the predictive performance of the finan-

cial distress prediction models. Table 4.1 provides an overview of the confusion matrix, which

is used to compare the predicted values of a model with the actual values. Based on this table,

the evaluation metrics are calculated.

Accuracy is a standard performance metric which shows the fraction of correct classifications

compared to the total number of classifications made (Equation 4.5). Accuracy is one of the

most commonly used metrics to evaluate financial distress prediction models [24, 28, 31, 35].

While accuracy is quite an intuitive metric, it can be misleading when there is a class imbalance.

In our case, only 0.8% of the target data are negative migrations, which means that if the model

would always guess that there are no negative migrations, the model would still have a high

accuracy of 99.2%.
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Accur ac y = T P +T N

T P +F P +T N +F N
(4.5)

AUC is another popular metric for evaluating binary classification models for detecting finan-

cial distress [29, 56, 57]. The AUC is determined by plotting the Receiver Operating Charac-

teristic (ROC) curve and then calculating the area beneath the curve [58]. The ROC curve is

constructed by plotting the True Positive Rate (TPR) (Equation 4.6), also known as the sensitiv-

ity or recall, against the False Positive Rate (FPR) (Equation 4.7) for different threshold values.

Although AUC is less sensitive to the class imbalance problem than accuracy, it can still be too

optimistic when the majority class is much bigger than the minority class.

T PR = T P

T P +F P
(4.6)

F PR = F P

F P +F N
(4.7)

A couple of studies use the F1 score [29, 59, 60] or the Matthews Correlation Coefficient (MCC)

[61, 62] to evaluate their models to deal with the class imbalance issue. The F1 score deals

with class imbalance by taking the harmonic mean of the precision and recall (Equation 4.8).

The MCC metric can be interpreted as the correlation between the predicted and observed

classifications (See Equation 4.9)[63].

F 1 scor e = 2T P

2T P +F P +F N
(4.8)

MCC = T P ×F N −F P ×F Np
(T P +F P )(T P +F N )(T N +F P )(T N +F N )

(4.9)

Finally, the sensitivity or TPR (Equation 4.6), and precision (Equation 4.10) are commonly used

to supplement the aforementioned metrics as they provide more insight into the performance

of the model in regard to the positive class [29, 32, 36].

Pr eci si on = T P

T P +F P
(4.10)

4.3. MODEL EXPLAINABILITY

Explainable AI (XAI) refers to the practice of making the decision-making processes of ML mod-

els transparent and understandable to human beings [64]. XAI is a crucial part of financial

distress prediction modelling. Firstly, risk managers should be able to communicate to their

clients the reasons why they have been put on the watchlist, as this will have consequences on

their creditworthiness and future relationship with the bank. Secondly, model explainability

helps identify the causes for watchlist classification so that according actions can be taken. Fi-

nally, it can be used to validate the predictions of the models, which helps establish trust in the
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decision-making of the models.

SHAP values were introduced by Shapley [65], who studied the contribution of players to the

outcome of a cooperative game using game theory. In the case of ML, the features represent

the players and the outcome of the output of the model. The SHAP values are determined by

calculating the contribution of each feature [66]. This is done by creating all possible subsets

of the features and calculating the difference in output between the subset that includes the

feature and the combination that does not include the feature. The difference in output is then

weighted by the number of possible combinations that include the feature. Finally, the con-

tributions of each feature are summed across all possible combinations to calculate the SHAP

value for that feature which represents the change in the model’s output when that feature is

included in the model.



5
EXPERIMENTAL SET-UP

5.1. MODEL APPROACH

This research aims to develop a watchlist classification model based on a financial distress

prediction modelling approach that incorporates the historical data of early warning triggers.

Based on the analysis of the problem background and the exploratory data analysis, require-

ments have been formulated that define the design of our financial distress prediction model.

These requirements can be summarized as follows:

• Negative migrations: In this research, we define a client in financial distress as a client

with a watchlist or default status. Since we focus on watchlist classification, we are mainly

interested in predicting negative migrations. Positive migrations are left out of the scope,

but extending the model by including these types of migrations could be interesting for

future research.

• Sequentiality: we try to predict future events (migrations) based on historical data. This

means that features must be designed accordingly, and the evaluation process must con-

sider the sequential order of events.

• Earliness: the aim of the financial distress prediction model is not necessarily to identify

the exact moment of a migration. If the model can detect financial distress earlier than

the negative migration would happen, the prediction is even more valuable because ac-

tions can be taken further in advance.

• Error costs: a tradeoff between the costs associated with false positives and false nega-

tives needs to be considered. The cost of a false positive is much lower than that of a false

negative since a false positive only leads to redundant monitoring of clients, whereas a

false negative leads to defaults that could be prevented.

Figure 5.1 provides an example of a fictional client that migrated to a watchlist status. In this

21
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example, the client obtained four triggers (BNK, DPD, and DPD) in a time window of twelve

months before the watchlist classification. Based on this historical data, we try to predict

whether a client will migrate to a watchlist or default status in the next month. In this case,

the time gap is one month, which means we only try to predict the migrations one month in

the future. Moreover, we add some flexibility to the model by considering a target window. We

do not necessarily want to predict the exact moment of the migrations because if the model

detects financial distress earlier than when a migration occurred, the prediction should still be

considered correct. Therefore, the five months before migration are also encoded as financial

distress. In summary, we define the following parameters for the financial distress prediction

model:

• Time window: the historical period used as input for the financial distress prediction

model.

• Time gap: The period between the time window and migration that determines how far

we want to predict in the future

• Target window: the period before a migration where we try to detect financial distress.

The following sections discuss the preprocessing of the data, the model development, and

the model evaluation process of the financial distress prediction model. Figure 5.2 provides

a flowchart which summarises the steps taken for each of these three phases.

Figure 5.1: Example of early warning trigger history of a client in financial distress



Figure 5.2: Flow chart of the financial distress prediction model
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5.2. DATA PREPROCESSING

Data preprocessing is the process related to collecting, cleaning, and manipulating raw data so

that it can be processed by the ML models. Our financial distress predictions model involves

several preprocessing steps, such as merging data from multiple sources, imputing missing

values, creating new features through feature engineering, labelling data for classification tasks,

and filtering data to remove irrelevant or redundant information.

5.2.1. MERGE DATA

Three data sets were used, including the internal client data and the recordings of the internal

and external triggers. The internal client data consists of details about outstanding loans of

WB clients and the associated risk measurements such as the PD and risk ratings. In addition,

this table includes the status of a client, such as a default or a watchlist status. However, many

values were missing in certain months from the data extract obtained from the pipeline, so the

status of the clients was eventually extracted manually from a different source. The trigger data

includes information about the types of triggers raised at a given moment. A binary table was

created from this data to determine if a trigger was raised in a particular month, with 1 denoting

a raised trigger and 0 denoting no trigger. After that, the transformed table is merged with the

internal data table using the customer id and reporting date as a unique key.

5.2.2. DATA IMPUTATION

Next, data imputation was used to fill in the missing values for the dependent variables. In the

case of missing data for features based on triggers, it is assumed that no trigger was raised, so

for these instances, all the values are imputed as 0. For the features based on the internal data,

missing values were filled using the last recorded value. If there were no recorded values for

a client, then the overall mean or mode was used for the numerical or categorical variables,

respectively.

5.2.3. FEATURE ENGINEERING

The categorical features related to the IFRS stage and sector of a client were transformed using

one-hot encoding. One-hot encoding converts categorical data into a binary representation

where each category is represented by a binary column with a value of 1 indicating the presence

of that category and 0 indicating its absence.

Afterwards, lagged features are created for each feature that can change over time. Lagged fea-

tures are a set of variables derived from previous values of sequential data that can be used

as predictors to model the behaviour of the data in the future. The construction of the lagged

features depends on the time lag and time window. For the base model, a time window of

six months and a time lag of one month is used. In the literature, multiple studies use lagged

features for default or financial distress prediction models. These studies use different time

windows varying from multiple months [67] to a couple of years [68, 69]. Since we have limited

data, we need to consider a tradeoff between the time window size and the number of training
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samples. The number of samples decreases when increasing the time window because more

historical data is needed to construct the lagged features. A time window of six months was

chosen to include a reasonable amount of historical data for each prediction while keeping

enough data to train the models. Also, the effect of different window sizes is investigated in the

experimentation part of this research. The time gap was set to one month because the trigger

data is always available one month in advance.

Lastly, the original features are dropped when the lagged variables are created since they in-

clude foreknowledge about the month we try to predict. Table 5.1 provides an example of how

the lagged features are created for the scenario described previously in Figure 5.1. One-hot

encoding, in combination with creating lagged features considerably, explodes the number of

features. Initially, there were thirty features, and after feature engineering, this number in-

creased to 198 features in total. For this reason, feature selection is used to reduce the number

of features (See Section 5.3.3).

5.2.4. DATA LABELLING

Subsequently, the binary dependent variable for predicting distress is created based on the sta-

tus of a client. Firstly, the migrations between each month are derived from the client’s status.

We defined financial distress as a negative migration from a regular to a default (R,D) or watch-

list (R,W). As a result, the negative migrations are encoded as 1, while all other migrations are

denoted by 0.

Next, the target window needs to be considered because predicting financial distress before a

migration is also considered a correct prediction. Therefore, the months prior to a negative

migration, dependent on the size of the target window, are encoded as 1. Table 5.2 provides an

example of how the data is labelled based on a target window of three.

5.2.5. DATA FILTERING

Finally, data points were filtered out of the data set. Firstly, all migrations that do not trans-

fer from a regular status are left out because we are only interested in predicting if a negative

migration will occur if a client does not have a watchlist or default status yet.

Moreover, only the data between January 2021 and September 2022 was included because only

during this period was there enough trigger data available for the prediction model (See Ap-

pendix D). Throughout the life of the ARIA application, triggers are redesigned, and new ones

Table 5.1: Example of lagged variables

Trigger/lag Lag 12 Lag 11 Lag 10 Lag 9 Lag 8 Lag 7 Lag 6 Lag 5 Lag 4 Lag 3 Lag 2 Lag 1
PD 0 0 0 0 1 0 1 0 0 0 0 0

BNK 0 0 1 0 0 0 0 0 0 0 0 0
DPD 0 0 0 0 0 0 0 0 0 1 0 0
LGD 0 0 0 0 0 0 0 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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are introduced. As a result, some triggers do not have much historical information. For that

reason, the triggers that do not have a track record of at least a year are also excluded from

the data set. Finally, considerations were made to exclude the watchlist migrations of Russian

clients due to being an outlier (See Section 3.2.1). Still, it was decided to keep these instances in

the data set as they did not significantly change the performance of the models. Consequently,

the data set consists of 548.210 monthly data points that make up 38.316 different clients in

total.

5.3. MODEL DEVELOPMENT

The model development phase focuses on creating the model with the highest performance in

predicting financial distress. This involves dealing with the class imbalance, normalising the

values to a similar scale, selecting the most relevant features, choosing the most suitable ML

algorithms, and finding the best-performing hyperparameters for these models.

5.3.1. CLASS IMBALANCE: RANDOM UNDER-SAMPLING

There is a class imbalance in the data set because, the majority of the time, the status of a

client remains unchanged. As a result, there are only a few negative migrations, which com-

prise about 0.8% of the data, compared to the overall number of migrations from a regular

status. Therefore, Random Under-Sampling (RUS) was used to balance the class distribution

by randomly selecting a subset of instances from the majority class. A disadvantage of RUS is

that valuable information might get lost when only using a subset of the data, which is not the

case for other sampling techniques such as Random Over-Sampling (ROS) and SMOTE [32]. A

significant advantage, however, is that RUS significantly decreases the size of the data set, re-

sulting in reduced computational time for the training of the models. When applying RUS, the

ratio between the minority and majority classes must be set. In this research, this ratio is one

of the hyperparameters validated for different values to find the optimal ratio resulting in the

best performance.

5.3.2. SCALING: MIN-MAX NORMALISATION

Data scaling is the process of rescaling numerical data to a standard range to improve its com-

parability and reduce the impact of different units or scales. Three different data normalisation

techniques were considered:

• Min-Max Normalisation: scales the data to a fixed range of zero to one by subtracting the

minimum value and dividing by the range.

Table 5.2: Example label encoding (R: regular status, W: watchlist status, D: default status)

2021/12 2022/01 2022/02 2022/03 2022/04 2022/05 2022/06 2022/07 2022/08 2022/09
Client status R R R R R W W W D D

Migration (from, to) n.a. (R, R) (R, R) (R, R) (R, R) (R, W) (W, W) (W, W) (W, D) (D, D)
Label encoding n.a. 0 0 1 1 1 0 0 0 0
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x −xmi n

xmax −xmi n
(5.1)

• Standardisation: scales the data to have zero mean and unit variance, resulting in a stan-

dardised distribution with values centred around zero.

z = x −µ

σ
(5.2)

• Robust Scaler: scales data by removing the median and scaling it according to the in-

terquartile range, making it robust to the presence of outliers.

x −q50(x)

q75(x)−q25(x)
(5.3)

These techniques were evaluated using the validation set to see which approach resulted in the

best performance. Overall, Min-Max Normalisation and Standardisation outperformed the Ro-

bust Scaler, but the two methods had no significant performance difference. Min-Max Normal-

isation was used for the remainder of the research because the values are more interpretable as

all the features based on the triggers are already a value between zero and one.

5.3.3. FEATURE SELECTION: MUTUAL INFORMATION

Feature selection is the process of selecting a subset of relevant dependent variables from a

more extensive set of available features. This can enhance predictive performance by reducing

overfitting and decreasing the computational time for model training. However, the number of

features explodes when creating the lagged features because the total number of features is the

length of the time window multiplied by the number of original features; so, a time window size

of 6 results in a total of 240 independent variables.

The feature selection procedure used in our model is based on mutual information. Mutual

information is a measure of the amount of information shared between two random variables

[70]. It measures the reduction in uncertainty of one variable when the other variable by calcu-

lating the difference in Shannon Entropy (See Equation 5.4 and 5.5).

I (X ;Y ) = H(X )−H(X |Y ) (5.4)

H(X ) =−
n∑

i=1
pi log2 pi (5.5)
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Feature selection based on mutual information was chosen because of the following reasons

[71]:

• It can handle both continuous and discrete data. This makes it very suitable for our data

set, consisting of categorical and numerical data types.

• It can capture any statistical dependency between features and the target variable, in-

cluding nonlinear relationships. Other techniques, such as the F-test and correlation, are

limited to measuring linear dependencies.

• It is computationally efficient and can be easily calculated for large datasets.

The top percentage of features with the highest mutual information is included in the financial

distress prediction model. This optimal percentage of features is one of the parameters found

for each model based on hyperparameter optimization.

5.3.4. MODEL SELECTION: SUPERVISED LEARNING

Due to time constraints, only a selection of supervised learning models used in the literature

is tested in this research. These include LDA, LR, DT, SVM, RF, GBM, XGBoost, and ANN. In

addition, a dummy model is tested that serves as a baseline comparison with the models above.

This model is based on a random guess strategy, and it is used as a benchmark to determine if

the more advanced models are better at predicting financial distress than random guessing.

Regarding the ANN models, two novel architectures with two and three layers were considered.

These models use the rectified linear unit (ReLu) as activation functions, and the final activa-

tion function is a Sigmoid function which turns the prediction into a binary output. Besides,

the dropout technique is used to reduce overfitting by ignoring some of the neurons during the

training of the model. Finally, the number of neurons for each layer, the dropout rate, and the

learning rate are determined using hyperparameter optimization. The ANN can be extensively

fine-tuned, but due to limited time, only two ANN architectures were considered. For future

research, it could be interesting to also explore including other techniques like weight regular-

ization and early stopping to improve model performance. Also, more complex architecture

like recurrent ANN or transformers could be considered.

5.3.5. HYPERPARAMETER OPTIMIZATION: RANDOM SEARCH

Hyperparameter optimization is the process of systematically searching for the best combina-

tion of hyperparameters to maximize the performance of a machine learning model. For this,

ransom search was used because it is more computationally efficient than grid search [72]. Grid

search exhaustively searches over all possible parameter combinations, while random search

only explores a fixed number of random combinations. For each model, we explore 60 param-

eter combinations because, with 60 combinations, there is approximately 95% confidence that

the found parameters are in the top 5% of best-performing combinations [73]. The optimal pa-

rameter combinations are selected based on their F1 score. The F1 score was used because it is
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a reliable metric for evaluating models with a class imbalance (See Section 5.4). The parameter

spaces explored for each ML model can be found in Appendix F.1.

5.3.6. MODEL VALIDATION: EXPANDING-WINDOW FORWARD CROSS-VALIDATION

The approach for validating and evaluating the model needs to be considered to ensure that

there is no overfitting. First, the data is split into a validation and test set. The validation set

is used during the model development phase to select the best model configuration, while the

test set provides an unbiased estimate of the model’s performance on unseen data.

Secondly, since we are dealing with sequential events, the chronology of the data needs to be

maintained to ensure temporal dependence between the data points when measuring model

[74]. Therefore, an expanding-window forward cross-validation approach is used for model

validation and evaluation [75]. Cross-validation is a technique that evaluates a model multiple

times by separating the data into several folds where each fold is used once for testing, and the

remaining data is used for training.

Cross-validation is used because it provides a more accurate estimation of the model perfor-

mance than the hold-out approach, where you only use a single training and test set [76]. To en-

sure temporal dependence, a time series approach for cross-validation is used where the data

instances are grouped in folds which represent the different months. These folds are then sep-

arated sequentially into a training and validation/test set. The negative migrations are roughly

equally distributed over different months, so we do not need to address the class imbalance

when creating the folds.

Finally, the training set is expanded for each cross-validation split by including the previous

validation/test set. Both for the model validation and evaluation, four iterations with a test size

of one fold are used to calculate the performance of the models. As a result, the metrics are

calculated four times which are then averaged. Table 5.3 provides an overview of how the data

sets are divided.

Table 5.3: Expanding-window forward cross-validation overview

2021/06 . . . 2021/10 2021/11 2021/12 2022/01 2022/02 2022/03 2022/04 2022/05 2022/06
Training Validation

Training Validation
Training Validation

Training Validation
Training Test

Training Test
Training Test

Training Test

5.4. PERFORMANCE EVALUATION

The model’s performance is evaluated based on two perspectives: as a ML model and as an

early warning trigger. The performance of the model can be measured by metrics commonly

used to evaluate ML models (See Section 4.2). These include:
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• Accuracy

• Area Under the Curve (AUC)

• F1 score

• Matthews Correlation Coefficient (MCC)

• Sensitivity

• Precision

Besides, the performance can be compared with the other ARIA early warning triggers. For

this, we use the metrics introduced in section 3.2.2 to see if the WL trigger could identify more

distressed clients at an early stage. These include:

• Migration Sensitivity

• Trigger Precision

• Time Lag

5.4.1. MODEL EXPLAINABILITY: SHAP VALUES

This research focuses on the use of SHapley Additive exPlanations (SHAP) values to explain

the watchlist classification. SHAP values make it possible to analyse the importance of features

comprehensively by showing the contribution of each future on the performance of a model. In

addition, SHAP is a model-agnostic approach which means that it can be used in combination

with any ML model. Moreover, the use of SHAP values has already been extensively studied in

the credit risk domain [77–80].



6
RESULTS AND DISCUSSION

6.1. EXPERIMENTS

The experimentation part focuses on testing the performance of the financial distress predic-

tion models. This includes a comparison of the performance of each classification model and

the influence of different configurations. The following research questions are defined for the

following experiments:

• Experiment 1 (E1): which supervised learning model best predicts negative migrations?

• Experiment 2 (E2): how well can the model predict negative migrations compared to

default and watchlist migrations alone?

• Experiment 3 (E3): what influence does the time window size have on the model perfor-

mance?

• Experiment 4 (E4): what influence does the target window size have on the model per-

formance?

• Experiment 5 (E5): what influence does the time gap have on the model performance?

Firstly, the supervised learning models commonly used for financial distress prediction models

are evaluated. These models include LDA, LR, DT, SVM, RF, GBM, XGBoost, and ANN. The

models are compared using a consistent configuration, with a time window of six months, a

time gap of one month, and a target window of six months. This configuration was chosen to

ensure that enough data was available for training the models and that the models could be

trained within a reasonable time.

Additionally, different target variables are considered. The base financial distress prediction

model predicts negative migrations that consist of both watchlist and default migrations. To

31
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gain additional insight into the model’s performance, the model is configured to predict watch-

list and default migrations separately to determine which migrations are more easily predicted.

Furthermore, the relationship between the performance of the models and the time window is

analysed. By increasing the time window, more historical information is used to predict the mi-

grations, which could improve the prediction performance. However, this research is limited to

the historical data available, which means that increasing the time window reduces the num-

ber of training samples. Consequently, we expect to find a tipping point in model performance

due to a tradeoff between the time window and the size of the training set.

Besides, the relationship between the target window and the average time lag of models is in-

vestigated. The target window adds flexibility to the financial distress prediction model by con-

sidering the model’s timeliness. Therefore, we expect the models to perform better when the

target window increases. Also, a larger time window size could result in a higher average time

lag because the model has the incentive to make predictions earlier.

Finally, the influence of the size of the time gap on the model performance is analysed. We

expect the model performance to decrease for a larger time lag because it is harder to predict

further into the future. Therefore, a tradeoff needs to be made between a model’s earliness and

prediction performance.

6.2. EXPERIMENTAL RESULTS

6.3. RESULTS: MODEL PERFORMANCE (E1)
For each experiment configuration, model tuning is used to find the optimal hyperparame-

ters. Appendix F provides an overview of the optimal hyperparameters found for each model

configuration. Figure 6.1 illustrates the highest F1 score found for each ML model based on

their optimal hyperparameters. These F1 scores do not provide the actual performance of the

models since this needs to be measured with unseen data. But due to time constraints, the ex-

periments are only conducted with the best-performing model using the validation set to avoid

bias when evaluating the performance. In this case, RF has the best performance. Therefore,

the RF model is used to compare the performance of the different migration approaches, time

windows and target windows.

Figure 6.1: Model validation F1 score
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In addition, mutual information was used to select the most relevant features for the model.

Appendix E shows the calculated mutual information values for each lag feature with the target

variable. The mutual information indicates that the features based on the internal customer

data have the strongest relationship with negative migrations, while the early warning triggers

have a relatively weak relationship. Consequently, the models will consist mainly of features

based on the internal data after feature selection. From this, we can conclude that it is better to

include the data on which the triggers are based instead of the triggers themselves. However,

a limitation of mutual information is that it does not consider the interaction effects between

features on the predictive performance. Therefore, the SHAP values are also considered in the

next section to determine the overall impact of features on model performance.

Ten different classifiers were evaluated using six evaluation metrics, shown in Table 6.1. Among

the models considered, the RF model performed the best with an F1 score of 0.197, an AUC

of 0.893, and precision and sensitivity of 0.119 and 0.582, respectively. These results indicate

that the RF model can distinguish between positive and negative instances and can correctly

identify a large proportion of true positives while minimizing false positives. Other ensemble

models that performed reasonably well include Gradient Boosting Machine (GBM) and XG-

Boost, which had F1 scores of 0.096 and 0.161, respectively. However, these models had lower

precision and sensitivity than the RF model resulting in lower overall performance.

The Decision Tree (DT), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM),

and Logistic Regression (LG) models had lower F1 scores, accuracies, and AUC values compared

to the top models. Artificial Neural Networks (ANNs) with two and three hidden layers had low

F1 scores of 0.050 and 0.055, respectively, indicating poor performance. This is probably due

to overfitting, as they performed relatively well on the validation set. Overall, every classifier

performed better than the dummy model, meaning they did better than random.

6.4. RESULTS: MIGRATION APPROACH (E2)
The approach focused on predicting negative migrations had the highest F1 score of 0.197 com-

pared to the default migration and watchlist migration models with an F1 score of 0.151 and

Table 6.1: Evaluation metrics for each classifier

Model F1 score Accuracy AUC Precision Recall Correlation
DT 0.073 0.911 0.688 0.044 0.231 0.069

LDA 0.069 0.866 0.646 0.040 0.295 0.068
LG 0.098 0.936 0.646 0.063 0.228 0.093

SVM 0.077 0.927 0.648 0.049 0.203 0.070
GBM 0.096 0.935 0.737 0.063 0.230 0.092

RF 0.197 0.930 0.893 0.119 0.582 0.240
XGB 0.161 0.914 0.879 0.095 0.561 0.203

ANN2 0.050 0.963 0.673 0.042 0.064 0.033
ANN3 0.055 0.961 0.667 0.043 0.082 0.040

DUMMY 0.029 0.499 0.500 0.015 0.488 -0.003
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0.120, respectively (See Table 6.2). Interestingly, default migration as the target variable resulted

in a higher sensitivity than the negative migration approach, which means the model has fewer

FNs. Moreover, the default migrations seem easier to predict than watchlist migrations because

they score higher for every evaluation metric. This may be because the watchlist classifications

are subject to expert opinion, which could lead to inconsistencies in the data.

6.5. RESULTS: TIME WINDOW (E3)
Table 6.3 provides the evaluation metrics against the different time windows. As expected, the

model performance increases for larger time windows. However, the increase in performance

diminishes, which is most likely caused by the reduced number of samples available for training

the model. By extrapolating the results, we suspect the model could perform much better with

even more historical data. Therefore, it would be interesting to investigate the optimal time

window size when more data is available.

6.6. RESULTS: TARGET WINDOW (E4)
A target window of one month would mean that the model tries to predict the exact month that

a negative migration would occur. Table 6.4 shows that such a model would perform poorly

at predicting financial distress. Because of that, the target window was introduced because it

adds flexibility to the model by also allowing earlier predictions. This is in accordance with

our goal because we aim to detect financial distress as early as possible. The results show that

Table 6.2: RF model performance for different target variables

Prediction approach F1-score Accuracy AUC Precision Sensitivity Correlation
Negative migration 0.197 0.930 0.893 0.119 0.582 0.240
Default migration 0.151 0.949 0.955 0.083 0.827 0.251

Watchlist migration 0.120 0.911 0.897 0.067 0.646 0.187

Table 6.3: RF model performance for different time window sizes

Time
window

F1 score Accuracy AUC Precision Sensitivity Correlation

2 0.184 0.927 0.882 0.112 0.555 0.224
4 0.179 0.929 0.882 0.109 0.523 0.214
6 0.197 0.930 0.893 0.119 0.582 0.240
8 0.220 0.934 0.906 0.135 0.628 0.268

10 0.234 0.935 0.919 0.142 0.671 0.288

Table 6.4: RF model performance for different target window sizes

Target window F1 score Accuracy AUC Precision Sensitivity Correlation
1 0.037 0.959 0.694 0.020 0.197 0.051
2 0.074 0.934 0.769 0.041 0.342 0.100
4 0.156 0.927 0.857 0.092 0.514 0.194
6 0.197 0.930 0.893 0.119 0.582 0.240
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the model performance significantly increases by extending the target window. Due to data

limitations, only a target window until six months was investigated, but when more migration

data is available, it would be interesting to research the optimal target window.

Besides, these model performance metrics can underestimate the functional performance of

the models as a trigger. This is because these metrics reflect how well the model can predict

all the negative migrations within the target window. However, in our case, the predictions

already suffice when it can detect a negative migration once as early as possible. Consequently,

the actual sensitivity could be much higher, which is discussed in Section 6.8.

6.7. RESULTS: TIME GAP (E5)
We hypothesised that the time gap would have a negative impact on the model performance,

but this does not seem to be the case when looking at the results in Table 6.5. Although there

is only a slight difference in F1 scores, there is a small upward trend in performance when the

time gap is increased. This could mean that variables with a larger time lag are better at pre-

dicting financial distress. We believe this is due to the fact that the six-month time window

is not optimal yet. Commonly, the PD, EAD, LGD, and RWA are only reevaluated once a year.

Therefore, at least a time window of one year would be needed to incorporate patterns related

to these variables into the model. Unfortunately, due to limited data, it is not possible to test

this relationship. Therefore, for future research, it could be interesting to test the relationship

between the time gap and model performance with a time window of at least twelve months.

6.8. WATCHLIST TRIGGER METRICS

The financial distress prediction model aims to create a new WL trigger that should raise a red

flag when a client should be on the watchlist. The performance of this new proposed WL trigger

can be measured using the trigger precision, migration sensitivity, and time lag metrics intro-

duced in Section 3.2.2. Figure 6.2 plots the trigger precision against the migration sensitivity.

For this, the test set of four months between June 2022 and September 2022 was used.

Most of the supervised learning models tested are not able to detect negative migrations more

accurately than the ARIA triggers except for the XGBoost and RF models. These models consid-

erably outperform the other triggers based on both trigger precision and migration sensitivity.

RF has a trigger precision of 12.7% which means that of the 9474 times the trigger was raised,

1202 times a negative migration occurred within the next six months. The migration sensitivity

Table 6.5: RF model performance for different time gap sizes

Time gap F1-score Accuracy AUC Precision Sensitivity Correlation
1 0.197 0.930 0.893 0.119 0.582 0.240
2 0.201 0.931 0.894 0.122 0.586 0.244
3 0.212 0.937 0.900 0.131 0.572 0.251
4 0.214 0.930 0.905 0.132 0.628 0.262
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was 67.6% which means that of the 581 negative migrations that occurred, 393 of these migra-

tions had the RF trigger raised within the six months prior.

Figure 6.2: Trigger precision against migration sensitivity for the ARIA triggers (blue) and the WL triggers (red)

The trigger precision is similar to the precision calculated for evaluating ML models in the pre-

vious section (slight variation due to the randomness caused by RUS). This is due to the fact

that the outcome window used for calculating the trigger precision is the same as the target

window used for the financial distress prediction model. The migration sensitivity, however,

is much higher than the sensitivity calculated for the ML models. When evaluating the trig-

gers, it does not matter whether the trigger was raised for each individual six months prior to

a negative migration because only one raised trigger is sufficient to detect the migration. For

that reason, the sensitivity used for the ML models underestimates the detection of negative

migrations compared to the migration sensitivity.

Additionally, a threshold could be set to influence migration sensitivity and trigger precision.

The threshold is a decision boundary between the positive and negative classes by determin-

ing if the predicted probabilities are below or above the threshold. The model becomes more

conservative when the threshold increases, meaning fewer positive instances will be predicted.

Generally, this results in a higher precision but lower sensitivity.

Figure 6.3 depicts the trigger precision and migration sensitivity for different thresholds. This

graph clearly shows the tradeoff between the metrics, except for a threshold higher than 0.7

because then both the trigger precision and migration sensitivity decrease. The threshold can
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Figure 6.3: Trigger precision and migration sensitivity for different threshold values

be configured depending on the costs associated with FP and FN. A FP would lead to a redun-

dant workload for risk managers while FN would lead to clients in financial distress that are

undetected.

The time lag is the final property of the WL trigger that needs to be considered. Unfortunately,

due to limited historical data, the test set only consists of four months, which is insufficient

data to measure the average time lag of the proposed triggers reliably. In section 3.2.2, at least a

period of twelve months was used to see how early or late the triggers were at detecting negative

migrations. Therefore, when more historical data is available, more research could be done on

the earliness of the triggers. The time lag of the triggers can be altered by changing the time gap

and target window of the models. The desired balance between time lag and model accuracy

could be set by tuning these parameters.

6.9. SHAP VALUES

Figure 6.4 provides the SHAP values of a sample with and without a predicted negative migra-

tion in a waterfall chart. These graphs give insight into how the individual predictions came

about by showing which features had a negative or positive contribution to the final prediction.

The first example shows that most features had a negative contribution on the watchlist classi-

fication of which the total allocated limit and the IFRS stage had the biggest overall impact. As

a result, the model predicted that this client would not migrate to the watchlist. In contrast, the

second example demonstrates distinct features that positively contribute to a watchlist classifi-

cation including the average PD and the total RWA. Consequently, the model predicts that this

client will receive a watchlist status.

Next to analysing the individual predictions, the aggregated impact of the features can be anal-

ysed by looking at the average absolute SHAP value shown in Figure 6.5. This value provides

insight into the overall impact or importance of each feature in influencing the model’s pre-

dictions. The graph shows that the lag features related to PD, DPD, and LGD have the highest

impact on the output of the model. Such insights provide valuable insights into the relative im-

portance of these lag features in the model’s decision-making process while taking into account

the different interaction effects between the independent variables.
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(a) Example instance with no negative migration

(b) Example instance with negative migration

Figure 6.4: SHAP waterfall plots
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(a) SHAP beeswarm plot (b) Average SHAP bar plot

Figure 6.5: SHAP value analysis



7
CONCLUSION

7.1. CONCLUSIONS

In conclusion, this research investigates how a WL trigger can be designed to effectively classify

WB clients on a watchlist based on their prospective credit risk. The main research question is

answered based on the following subquestions:

How do the early warning triggers relate to the watchlist status of clients?

Firstly, the relationship between the ARIA triggers was researched by defining their desired

properties and how these could be measured. The desired properties include the following:

a WL trigger should be able to detect as many clients in distress as possible, a raised WL trigger

should indicate that there is a high probability that a client will have a negative migration, and

the trigger should be able to detect financial distress as early as possible. These properties can

be measured by migration sensitivity, trigger precision, and time lag, respectively.

How can a financial distress prediction model create for the watchlist classification of clients?

Secondly, a financial distress prediction model incorporating historical triggers and internal

customer data has been developed to predict if a negative migration occurs in the next month.

For this, the following supervised learning models were tested: LDA, LR, DT, SVM, RF, GBM,

XGBoost, and ANN. According to the experiments, the RF performed best with an F1 score of

0.197. Besides, experimentation showed that increasing the time window and target window

significantly improves the model’s predictive performance. Also, the timeliness of the models

can be extended by increasing the time lag, which interestingly did not significantly decrease

the performance of the models. Furthermore, the SHAP values have proven to be an insightful

way of explaining the decision-making of the models by showing how each feature contributes

to making the predictions. Also, the mutual information and SHAP values show that the in-

ternal customer data has the highest impact on the performance while the impact of the ARIA

40
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triggers is relatively small. Conclusively, the predictive performance is better when using the

underlying data rather than the ARIA triggers alone as input for the models.

How can we implement a new WL trigger?

The new WL trigger can be derived from the predictions of the introduced financial distress

prediction model, and the effectiveness of the WL trigger can be compared with the ARIA trig-

gers using the aforementioned trigger metrics. Both RF and XGBoost were able to significantly

outperform the ARIA triggers at detecting financial distress. Unfortunately, due to limited his-

torical data, we can not make any conclusions about the timeliness of the triggers.

This study contributes to the current body of research by bridging the gap between theory and

practice. The literature lacks research on how EWS and financial distress prediction models are

implemented at financial institutions. This study provides a comprehensive case study at ING

on the use of early warning triggers and their relationship with the watchlist and default status

of clients. As a result, several statistical analyses are introduced that could be used to measure

the effectiveness of individual triggers in detecting clients in financial distress. Besides, the pro-

posed financial distress prediction model differs from the models presented in the literature as

it incorporates different features, such as early warning triggers and internal customer data,

while other studies mainly focus on publicly available data. In addition, we extend the defini-

tion of financial distress, which focuses both on clients with a default or a watchlist status. The

literature does not provide a financial distress prediction model that tries to predict watchlist

classifications. Also, the concept of a target window to take into account the earliness property

of the distress prediction model has not been used in the found literature related to the finan-

cial distress prediction model for early warning detection. Finally, the research provides new

insights into how a financial distress prediction model could be implemented as a WL trigger

and what properties such a trigger should have.

Moreover, the practical contribution relates to increasing the predictive performance of clients

in financial distress. This research shows that many clients in default did not transfer to the

watchlist first. By introducing a new WL trigger, the information collected by ARIA can be ag-

gregated to improve the earliness and predictive performance of the whole system. As a result,

the introduced WL trigger makes it possible to make inferences about the future, which risk

managers can use to monitor their credit portfolios and support their decision-making. More-

over, this research provides insight into the effectiveness of early warning triggers by introduc-

ing three metrics. These insights could be used to design new triggers in the future, and they

can help communicate the effectiveness of triggers to stakeholders.

7.2. FUTURE RESEARCH AND RECOMMENDATIONS

Finally, limitations and possible topics for future research are discussed. Firstly, this thesis ex-

amines three metrics to measure the effectiveness of early warning triggers. However, due to

limited time, it was not possible to research how vital migration sensitivity, trigger precision,

and time lag are compared to each other. It would be interesting for future research to estimate
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the costs linked with these properties or seek expert advice to attain the best balance between

these metrics.

In addition, the analysis of the model performance is only limited to calculating the estimates

of the metrics but it does not consider the uncertainty of these measurements. For future re-

search, it could be interesting to construct confidence intervals using the bootstrap sampling

technique to measure this uncertainty so that statistically significant conclusions can be made.

Besides, the proposed model is limited to only predicting negative migrations. For future re-

search, it could be interesting to extend the model to detect other types of migrations, such as

positive migrations or migrations between watchlist and default.

Furthermore, more research could be done to improve the financial distress prediction models.

The experimentation part shows that extending the time window significantly increases the

predictive performance of the models. Therefore, when more historical data is available, more

research could be done on finding the optimal time window. Also, more data sources could

be added as input for the models. For instance, external data like macroeconomic and market

variables or internal data related to financial accounting data of clients could be incorporated.

Finally, the proposed model could be improved by trying other ML techniques and doing more

extensive model tuning. For example, different techniques to deal with class imbalance and

feature selection could be tested. Additionally, the predictive performance of other ML models

such as LightGBM, CatBoost, K-Nearest Neighbour, Naive Bayes, Graphical Models, or Hidden

Markov Models (HMM) could be researched. Also, early time series classification could be an

attractive model to explore as it can incorporate the tradeoff between predictive performance

and timeliness into the cost function.

Appendix H and Appendix I provide more detailed recommendations for future research and

deploying the WL trigger.
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Table A.1: Literature review: early warning monitoring of financial distress

Study Model Independent variables Dependent variable Application in EWS Client type

[27] DT Financial ratios Cash flow below a criti-

cal value

Establishes a EWS by implementing a fi-

nancial distress prediction model

Listed com-

panies

[25] SVM Financial ratios, and online public

opinion text

ST company Does not mention EWS but discusses

the use of big data for early warn-

ing monitoring and develops a financial

distress prediction model that puts for-

ward early warning signals

Listed com-

panies in

China

[19] DT Financial ratios Financial performance Provides literature review on financial

EWS and develops a data flow frame-

work of an EWS that includes a financial

distress prediction model to determine

risk profiles.

SMEs listed

in Turkey

[29] LR, ANN, SVM,

RF, and XGBoost

Financial ratios, textual sentiment

of annual reports, market vari-

ables (firm’s equity compared to

total market value, excess re-

turn, stock volatility)

ST company Mentions the role of financial distress

prediction models in EWS and estab-

lished an EWS based on a financial dis-

tress prediction model.

Listed com-

panies in

China
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[30] SVM, LR, MDA,

and ANN

Financial ratios ST company Does not mention EWS but develops a

financial distress prediction model for

early warning signalling

Listed SMEs

in China

[31] Partial least-

squares LR

Financial ratios ST company Establishes a EWS by implementing a fi-

nancial distress prediction model

Listed com-

panies in

China

[32] Weighted XG-

Boost

Financial ratios ST company Does not mention EWS but develops a

financial distress prediction model for

early warning signalling

Listed com-

panies in

China

[26] KMV model Financial ratios ST company Does not mention EWS but develops a

financial distress prediction model for

early warning signalling

Listed SMEs

in China

[33] Hybrid Z-score

and ANN model

Financial ratios ST company Does not mention EWS but develops a

financial distress prediction model for

early warning signalling

Listed com-

panies

[34] LR, DT, ANN, RF,

SVM, XGBoost,

and CatBoost

Financial ratios ST company Establishes a EWS by implementing a fi-

nancial distress prediction model

Listed com-

panies
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[35] ANN Financial ratios ST company Does not mention EWS but develops a

financial distress prediction model for

early warning signalling

Listed com-

panies in

China
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[24] Z-score, O-score,

Hazard model,

LR, and D-score

Financial ratios and market vari-

ables related to volatility and re-

turns

Multiple criteria:

• Less than 50%

quotation of

book value for

consecutive 3

years

• Failure of div-

idend/bonus

declaration from

continuous 5

years

• Failed to conduct

AGM for consec-

utive 3 years

• Failed to pay the

yearly listing fee

for 2 years.

• Delisted/ Sus-

pended/ Liqui-

dation/ Winding

up/ Bankruptcy

Does not mention EWS but tests several

traditional financial distress prediction

models for early warning signalling by

extending the definition of financial dis-

tress by including companies that show

early signs of distress

Listed com-

panies in

Pakistan
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[4] RF Financial ratios and other indica-

tors like credit ratings and rela-

tionship strength and duration

Financial credit risk

based on expert judge-

ment

Designs a data architecture for an early

warning model in credit risk to extract

and pre-process big data. Analyse credit

risk based on a qualitative and quantita-

tive approach

Listed SMEs

in the Inter-

net of Things

financial

sector

[81] Z-score Financial ratios ST company Does not mention EWS but but tests the

suitability of the Z-score model for fi-

nancial early warning

Listed real

estate com-

panies in

China

[36] XGBoost Financial ratios ST company Establishes a EWS by implementing a fi-

nancial distress prediction model

Listed com-

panies in

China
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[82] MDA, and LR Financial ratios, governance in-

dicators regarding characteristics

of shareholders and board mem-

bers, and non-financial indicators

related to the age of the company

Failed SMEs based on

the following criteria:

• Annual sales

turnover which

did not exceed RM25

million following the

National SME De-

velopment Council’s

definition of SMEs

and

• The companies were

classified under the

winding up by Court

Order or by creditors’

request

Does not mention EWS but develops a

financial distress prediction model for

early warning signalling

Listed SMEs

in Malaysia

[28] LR Financial ratios, and non-

financial indicators (age, pro-

moters holdings pledged, and

institutional holdings)

Companies that, at the

end of any financial

year, have accumulated

losses equal to or ex-

ceeding their entire net

worth.

Does not mention EWS but develops a

financial distress prediction model for

early warning signalling

Listed com-

panies in In-

dia
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[39] Group decision-

making frame-

work (MCDA)

Qualitative attributes:

• Investment risk

• Market information

• Management and control

• Consciousness of debt risk

• Corporate governance

• Financial ability

ST company Establishes a EWS by implementing a fi-

nancial distress prediction model based

on a group-decision making approach

Case study

of a sin-

gle listed

Chinese

company

[38] Combination

model

Financial ratios ST company Does not mention EWS but develops a

financial distress prediction model for

early warning signalling

Listed com-

panies in

China
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[18] Fuzzy Logic Early warning triggers data

sources:

• Internal data

• Group data

• Financial statements

• Macroeconomic and industry

analysis

• Credit Bureau

• Capital markets

• Government databases

• Media

• Payment transactions

Domain expert knowl-

edge

Establishes an EWS by developing a

methodology that uses domain expert

knowledge to provide early warning sig-

nals. It also mentions early triggers

and introduces performance indicators

to measure their effectiveness.

Clients of a

financial in-

stitution

This

re-

search

LDA, LR, SVM, RF,

GBM, XGBoost,

and ANN

Early warning triggers and inter-

nal client data (See Section 3.1.1)

Client status migrations

(See Section 3.1.2)

Provides a case study of EWS at ING

by analysing the relationship between

early warning triggers and financial dis-

tress, and develops a financial distress

prediction model based on ML models

and early warning triggers for watchlist

classification of WB clients

WB clients at

ING
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CLIENT STATUS TIME SERIES

As discussed in Section 3.2.1, when assuming the default status of clients in December 2022 to

be the same as the month before, then the time series of the defaults becomes smooth (Figure

B.1).

Figure B.1: Watchlist and default time series without 2021-12 outlier
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EARLY WARNING TRIGGER METRICS

C.1. LITERATURE

Table C.1 provides an overview of the early warning trigger metrics found in the literature.

Table C.1: Early Warning Triggers in the Literature

Study Early Warning Trigger Metrics
[1] Hit ratio: proportion of flagged customers that are transferred to the watchlist

Direct transfers: number of nonperforming clients that were not on the watchlist before
Selectivity: ratio of flagged nonperforming clients compared to flagged performing clients
Regression: statistical significance in a univariate or multivariate context
Time: average time before default when a trigger identifies a nonperforming customer for the first time

[18] Weight of evidence: measures the statistical relationship between binary target and independent variables
Information value: predictive power of a set of independent variables on a binary target variable
Time to default: average time between trigger and default
Workload: number of clients for which a trigger has been raised

This research Migration sensitivity: the fraction of negative migrations which had a certain trigger raised six months before.
Trigger pecision: the fraction of raised triggers for which there were negative migrations in the next six months.
Time lag: the number of months between a trigger event and a negative migration
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C.2. CALCULATION METHOD

In this appendix, two approaches are discussed for which we could calculate the sensitivity

and precision of the early warning triggers. Firstly, studies in the literature calculate their early

warning metrics by defining an outcome window in which it is determined if a client went into

default. Then, the period (trigger window) before the outcome window is used to determine

if a given trigger occurred. Figure C.1a gives an example where both the trigger and outcome

window is six months. A confusion matrix can be constructed by determining the frequency of

clients who had a negative migration and whether they had a specific trigger raised (See Table

C.2).

Table C.2: Early warning trigger confusion matrix

Negative migration No negative migration

Trigger raised True Positive (TP) False Negative (FN)

Trigger not raised False Positive (FP) True Negative (TN)

Based on this confusion matrix, regular evaluation metrics can be calculated to measure the

performance of ML models. In our case, the sensitivity and precision are calculated as follows,

and the results of these calculations can be found in the next section:

• Sensitivity: p̂s = T P

T P +F N

• Precision: p̂1 = T P

T P +F P

The second approach calculates the metrics by using the moment a trigger or a migration oc-

curs as a reference point. In case of sensitivity, we can select all the instances where a migration

occurred. Then, we look six months in advance to see whether a trigger occurred before the

migration (Figure C.1b). By dividing the number of times a trigger occurred before a migration

by the total number of migrations, we can determine how many migrations a particular trigger

could identify. In the case of precision, we select all the raised triggers and then determine if

migration occurred within the six months after the trigger (Figure C.1c). Then, we divide the

number of times a migration occurred by the total number of times the trigger was raised. As

a result, we can determine how likely migration is to happen in the next six months when we

observe a trigger. The metrics calculated by this approach are found in Section 3.2.2.

The second approach is used to compare the performance between the ARIA triggers and the

proposed WL trigger because it can be interpreted more easily, and it requires a smaller period

to calculate the metrics.
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(a) Trigger and outcome window

(b) Trigger window before a negative migration (c) Outcome window after a raised trigger

Figure C.1: Calculation methods
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C.3. RESULTS: TRIGGER AND TARGET WINDOW APPROACH

C.3.1. SENSITIVITY

Figure C.2 shows the sensitivity of the triggers based on the first approach using the trigger and

outcome window. A few triggers have a higher sensitivity compared with the second approach

(See Figure 3.5). In this case, the RWA, EAD, and IFRSS triggers occur frequently among the

watchlisted clients. This is probably due to the outcome window, which makes it more likely

that a combination of a specific trigger with a negative migration occurs. But overall, there are

no significant differences in the ranking when considering the confidence intervals.

Figure C.2: Sensitivity with 99% confidence interval

C.3.2. PRECISION

Figure C.3 shows the precision for each trigger based on the first approach. The precision differs

significantly from the precision calculated in Figure 3.6. In this case, the FBS has the highest

precision instead of the PD. This has probably to do with the timeliness of the triggers and the

different time horizons used for the approaches. PD has a relatively small average time lag

while the average time lag of FBS is rather large (See Figure C.1. Consequently, PD might be

more likely to occur a few months before a negative migration, while FBS is better at detecting

a negative migration in the next half year. Therefore, the first approach could be used to mea-

sure short-term predictability, while the second approach is better at measuring the long-term

predictability of the triggers.

Figure C.3: Precision with 99% confidence interval

C.3.3. STATISTICAL SIGNIFICANCE

Besides, the precision can be analysed based on its difference with the fraction of clients that

did not have the particular trigger raised but still ended up on the watchlist. A fraction of clients
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get on the watchlist no matter what trigger has been raised before. Therefore by looking at the

difference, we can determine to what extent the trigger is able to separate both classes. Figure

C.4 shows this difference with the corresponding 99% confidence intervals. If the confidence

interval does not overlap with the zero line, we can conclude that the trigger can significantly

separate financially distressed clients from regular clients. This is the case for most triggers

except for the EQU, FBS, CVNT, LGD, RCF, SNC and HR.

Figure C.4: Two sample proportion difference with 99% confidence interval

C.3.4. CORRELATION

The Pearson correlation measures the linear dependence between two variables. If the two

variables are binary, then the correlation equals the Matthews Correlation Coefficient (MCC),

which is a metric that could be used to evaluate the performance of a binary classification [63].

Therefore, MCC indicates how well an individual trigger would perform on the watchlist clas-

sification problem. Figure C.5, shows the results of the MCC calculations. According to Figure

C.5, LE, PD, IFRSS, and IR would have the highest predictive performance. In addition, the

RUD, ROD, and MA triggers exhibit a modest but inverse correlation with the watchlist classifi-

cations. This is the case for the RUD, ROD, ESRT, SS, RCF, FBS, LE, EAD, RWA, and DPD triggers.

Figure C.5: Correlation per trigger
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C.4. TIME LAG DISTRIBUTION

Figure C.6 provides the distribution of when triggers were raised compared to the month a mi-

gration occurred. Preferably, the distributions are skewed to the left meaning that triggers are

able to detect financial distress at an early stage.

Figure C.6: Time lag distributions
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D.1. TRIGGER FREQUENCY

Figure D.1 provides a heatmap of the number of triggers raised in a given month. In September

2022, a couple of triggers, which only showed red (severe) alerts, were redesigned to new trig-

gers that provide both red and amber (less severe) warnings. As a result, many of these triggers

are not raised after September, while others start occurring in that month.

Figure D.1: Trigger frequency distribution
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E.1. MUTUAL INFORMATION HEATMAP

Figure E.2 provides a heatmap of the mutual information calculated for each feature. From

this figure, we can conclude that the internal client data has the strongest relationship with the

target variable, whereas the relationship with the early warning triggers is quite modest.

Figure E.1: Mutual information between independent and dependent variables
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E.2. MUTUAL INFORMATION LINE GRAPHS

Figure E.2 plots the mutual information against the time lag for each variable. This indicates

for which time lag the relationship between the independent and dependent variables is the

strongest.

Figure E.2: Mutual information of each independent variable against the time lag
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OPTIMAL HYPERPARAMETERS

This appendix provides an overview of the hyperparameter space used and the optimal hyper-

parameters found for each model configuration.

F.1. HYPERPARAMETER SPACE

Table F.1: Hyperparameter space

Model Parameter space

DT percentile : [5, 10, 15, 20, 30]

sampling_strategy : [0.5, 0.6, 0.7, 0.9, 1]

max_features: [“auto”, “sqrt”, “log2”]

ccp_alpha: [0.1, .01, .001]

max_depth : [5, 6, 7, 8, 9]

criterion : [“gini”, “entropy”]

LDA percentile : [5, 10, 15, 20, 30]

sampling_strategy : [0.5, 0.6, 0.7, 0.9, 1]

solver : [“svd”, “lsqr”, “eigen”]

GMB percentile : [5, 10, 15, 20, 30]

sampling_strategy : [0.5, 0.6, 0.7, 0.9, 1]

criterion: [friedman_mse]

loss: [“log_loss”,exponential]

max_features: [log2,sqrt]

learning_rate: [0.01,0.05,0.1,1,0.5]

max_depth: [3,4,5]

min_samples_leaf: [4,5,6]

subsample: [0.6,0.7,0.8]
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n_estimators: [5,10,15,20]

LG percentile : [5, 10, 15, 20, 30]

sampling_strategy : [0.5, 0.6, 0.7, 0.9, 1]

solver : [“lbfgs”, “liblinear”]

penalty : [“none”, “l1”, “l2”, “elasticnet”]

C : list(np.logspace(-4, 4, 50))

SVM percentile : [5, 10, 15, 20, 30]

sampling_strategy : [0.5, 0.6, 0.7, 0.9, 1]

C: [0.1,1, 10, 50]

gamma: [1,0.1,0.01,0.001]

kernel: [“rbf”, “poly”, “sigmoid”]

RF percentile : [5, 10, 15, 20, 30]

sampling_strategy : [0.5, 0.6, 0.7, 0.9, 1]

max_depth: [3,5,10, None]

n_estimators: [10,50,100,150]

max_features: [1,3,5,7,’sqrt’,’log2’]

min_samples_leaf: [1,2,3]

min_samples_split: [1,2,3]
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XGB percentile : [5, 10, 15, 20, 30]

sampling_strategy : [0.5, 0.6, 0.7, 0.9, 1]

subsample: [0.5, 0.75, 1]

colsample_bytree: [0.3, 0.5, 0.8]

max_depth: [2, 6, 12]

min_child_weight: [1,5,15]

learning_rate: [0.1, 0.2, 0.5]

scale_pos_weight: [1, 3, 5]

ANN2 percentile : [5, 10, 15, 20, 30]

sampling_strategy : [0.5, 0.6, 0.7, 0.9, 1]

learn_rate : [0.001, 0.01, 0.1]

dropout_rate : [0.2, 0.5, 0.8]

neurons1 : [32, 64, 128]

neurons2 : [16, 32, 64]

batch_size : [16, 32, 64]

epochs : [50, 100, 150, 300]

ANN3 percentile : [5, 10, 15, 20, 30]

sampling_strategy : [0.5, 0.6, 0.7, 0.9, 1]

learn_rate : [0.001, 0.01, 0.1]

dropout_rate : [0.2, 0.5, 0.8]

neurons1: [32, 64, 128]

neurons2: [16, 32, 64]

neurons3: [8, 16, 32]

batch_size : [16, 32, 64]

epochs : [50, 100, 150, 300]
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F.2. OPTIMAL PARAMETERS MODEL PERFORMANCE

Table F.2: Optimal hyperparameters for each ML model

Model Optimal hyperparameters F1 score

DT sampling_strategy: 0.6 0.168

max_features: sqrt

max_depth: 8

criterion: gini

ccp_alpha: 0.001

percentile: 5

LDA sampling_strategy: 0.9 0.154

solver: lsqr

percentile: 30

GBM sampling_strategy: 0.7 0.177

subsample: 0.6

n_estimators: 15

min_samples_leaf: 5

max_features: log2

max_depth: 5

loss: log_loss

learning_rate: 0.1

criterion: friedman_mse

percentile: 30

LG sampling_strategy: 0.7 0.168

solver: liblinear

penalty: l1

C: 24.420530945486497

percentile: 30

SVM sampling_strategy: 0.7 0.137

kernel: rbf

gamma: 1

C: 10

percentile: 20

RF sampling_strategy: 0.5 0.321

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30
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XGB sampling_strategy: 0.5 0.269

subsample: 0.75

scale_pos_weight: 1

min_child_weight: 5

max_depth: 12

learning_rate: 0.2

colsample_bytree: 0.3

percentile: 30
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ANN2 sampling_strategy: 0.5 0.229

neurons2: 32

neurons1: 32

learn_rate: 0.01

epochs: 100

dropout_rate: 0.5

batch_size: 16

percentile: 20

ANN3 sampling_strategy: 0.6 0.216

neurons3: 32

neurons2: 32

neurons1: 64

learn_rate: 0.01

epochs: 150

dropout_rate: 0.5

batch_size: 16

percentile: 20
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F.3. OPTIMAL PARAMETERS PREDICTION APPROACH

Table F.3: Optimal RF hyperparamters for each prediction approach

Prediction approach Optimal hyperparameters F1 score

Negative Migration sampling_strategy: 0.5 0.321

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: 5

percentile: 30

Default Migration sampling_strategy: 0.5 0.307

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30

Watchlist Migration sampling_strategy: 0.5 0.173

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30
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F.4. OPTIMAL PARAMETERS TIME WINDOW

Table F.4: Optimal RF hyperparameters for different time window sizes

Time window Optimal hyperparameters F1 score

2 sampling_strategy: 0.5 0.258

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30

4 sampling_strategy: 0.5 0.281

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30

6 sampling_strategy: 0.5 0.321

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30

8 sampling_strategy: 0.5 0.343

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30

10 sampling_strategy: 0.5 0.343

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30
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F.5. OPTIMAL PARAMETERS TARGET WINDOW

Table F.5: Optimal RF hyperparameters for different target window sizes

Target window Optimal hyperparameters F1 score

1 sampling_strategy: 0.6 0.093

n_estimators: 10

min_samples_split: 3

min_samples_leaf: 1

max_features: 1

max_depth: 3

percentile: 30

2 sampling_strategy: 0.5 0.135

n_estimators: 100

min_samples_split: 4

min_samples_leaf: 2

max_features: 7

max_depth: None

percentile: 15

4 sampling_strategy: 0.5 0.244

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30

6 sampling_strategy: 0.5 0.321

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30
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F.6. OPTIMAL PARAMETERS TIME GAP

Table F.6: Optimal RF hyperparamters for different time gap sizes

Time gap Optimal hyperparameters F1 score

1 sampling_strategy: 0.5 0.321

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30

2 sampling_strategy: 0.5 0.329

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30

3 sampling_strategy: 0.5 0.336

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30

4 sampling_strategy: 0.5 0.356

n_estimators: 50

min_samples_split: 2

min_samples_leaf: 1

max_features: 5

max_depth: None

percentile: 30



G
WL TRIGGER METRICS

G.1. TABLE WITH EARLY WARNING TRIGGER METRICS

Table G.1 provides an overview of the data used to calculate the trigger precision and migration

sensitivity for the ARIA triggers and WL triggers based on the ML models. Trigger frequency

(Trigger Freq.) is the number of times a trigger was raised, and trigger hit is the number of

times a negative migration occurred after the next six months the trigger was raised. Migration

frequency (Mig. Freq.) is the number of times a migration occurred, and migration hit (Mig.

Hit) is the number of times a migration received a trigger six months in advance.
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Table G.1: Early warning trigger metrics for ARIA and WL triggers

Feature
Trigger

Hit

Trigger

Freq.

Trigger

Precision

Trigger

Precision

SE

Mig. Hit
Mig.

Freq.

Migration

Sensitivity

Migration

Sensitivity

SE

RF 1202 9474 0.127 0.009 393 581 0.676 0.05

XGB 1151 12247 0.094 0.007 404 581 0.695 0.049

LG 475 7438 0.064 0.007 214 581 0.368 0.052

GBM 542 9053 0.06 0.006 221 581 0.38 0.052

FBS 6 112 0.054 0.054 6 581 0.01 0.011

PD 20 412 0.049 0.027 60 581 0.103 0.033

LE 448 9523 0.047 0.006 225 581 0.387 0.052

DT 447 10362 0.043 0.005 192 581 0.33 0.05

SVM 488 11514 0.042 0.005 182 581 0.313 0.05

IR 169 4228 0.04 0.008 207 581 0.356 0.051

LDA 567 15883 0.036 0.004 229 581 0.394 0.052

IFRSS 89 2790 0.032 0.009 203 581 0.349 0.051

ANN2 90 3012 0.03 0.008 68 581 0.117 0.034

ANN3 73 2626 0.028 0.008 56 581 0.096 0.032

ESRT 50 2294 0.022 0.008 25 581 0.043 0.022

DPD 144 7560 0.019 0.004 158 581 0.272 0.048

HR 1 60 0.017 0.03 0 581 0 0

RWA 239 18123 0.013 0.002 249 581 0.429 0.053

ROD 80 6809 0.012 0.003 66 581 0.114 0.034

EQU 2 173 0.012 0.016 5 581 0.009 0.009

LGD 14 1257 0.011 0.008 28 581 0.048 0.023

EAD 164 15433 0.011 0.002 215 581 0.37 0.052

RCF 25 2390 0.01 0.005 24 581 0.041 0.021

RUD 108 10397 0.01 0.003 83 581 0.143 0.037

CVNT 11 1134 0.01 0.007 7 581 0.012 0.012

SNC 1 156 0.006 0.011 1 581 0.002 0.003

BNK 4 709 0.006 0.006 1 581 0.002 0.003

SS 4 827 0.005 0.006 2 581 0.003 0.005

MA 5 1196 0.004 0.004 6 581 0.01 0.011

FRD 2 593 0.003 0.005 1 581 0.002 0.003

ECC 0 53 0 0 0 581 0 0
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G.2. MIGRATION SENSITIVITY

Figure G.1 shows the migration sensitivity for the ARIA and WL triggers with the 99% confidence

intervals. This graph indicates that the proposed WL triggers based on the XGB and RF models

significantly outperform the other triggers when it comes to migration sensitivity.

Figure G.1: Migration sensitivity for the ARIA (light blue) and WL triggers (dark blue)

G.3. TRIGGER PRECISION

Figure G.2 shows the trigger precision for the ARIA and WL triggers with the 99% confidence

intervals. Also, in this case, the WL triggers based on the XGB and RF models outperform the

other triggers when looking at the trigger precision

Figure G.2: Trigger precision for the ARIA (light blue) and WL triggers (dark blue)



H
RECOMMENDATIONS

This Appendix provides more detailed recommendations based on the future research and lim-

itations described in Section 7.2.

H.1. PREDICTIVE PERFORMANCE AND EARLINESS TRADEOFF

This research defines and analyses three metrics related to the effectiveness of the WL trigger.

However, due to time constraints, how these dimensions relate to each other has not been in-

vestigated. For future research, risk managers and account managers could be consulted to dis-

cuss how important these dimensions are compared to each other. Based on their judgement,

the model could be fine-tuned and configured accordingly to the desires of the stakeholders.

For instance, the target window and the gap need to be set based on a tradeoff between the

timeliness of the models and their predictive performance.

Furthermore, the threshold could be configured to create the ideal balance between the migra-

tion sensitivity and trigger precision of the WL trigger. Instead of the F1 score, the more general

F-beta score could be used to incorporate the difference in importance of the trigger precision

and migration sensitivity [83]. The F-beta score has a parameter beta that controls the impor-

tance of precision and sensitivity (See Equation H.1). This metric could then be used for model

tuning and evaluation.

Fβ =
(1+β2) · (precision · sensitivity)

(β2 ·precision)+ sensitivity
(H.1)

In addition, due to limited historical data, measuring the time lag for the proposed WL trig-

gers was not possible. Therefore, when more data is available, more extensive experimentation

could be done to measure how the increasing time lag influences the predictive performance
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of the models. Also, this was the reason that only time windows of six months were considered

to measure the time lag, migration sensitivity, and trigger precision. For future research, these

time windows could also be extended to measure the possible long-term predictability of the

triggers.

H.2. MODEL PERFORMANCE ESTIMATION

In this research, the analysis of the model performance is only limited to calculating the esti-

mates of the metrics but it overlooks the uncertainty of these measurements. Noise introduces

random fluctuations that contribute to uncertainty when trying to measure the performance

of a model. As a result, it is difficult to precisely measure the true value of the performance

metrics. For that reason, measuring the uncertainty of an estimate is essential to gain a more

comprehensive understanding of the reliability and robustness of the results.

This uncertainty can be measured with confidence intervals providing a range of values within

which the true measurement is likely to fall [84]. Confidence intervals can be constructed using

the cross-validation or the bootstrap sampling method.

The expanding-window forward cross-validation technique has been used to calculate the av-

erage performance metrics over four consecutive folds (See Section ??). Unfortunately, in our

case, the cross-validation method is not an appropriate method for calculating the confidence

intervals since we cannot assume independence between the different folds due to their tem-

poral dependency [85].

Bootstrap sampling is a resampling technique that involves iteratively drawing samples with

replacement from the data [86]. This way different data sets can be constructed so that the

models can be tested several times resulting in multiple measurements of the performance.

Consequently, the confidence interval can be derived from the distribution of the measure-

ments by taking the according percentile ranges. A disadvantage of bootstrap sampling is that

it is computationally very expensive. For each constructed sample the models need to be fine-

tuned and trained again. For that reason, calculating the confidence intervals was left out of

the scope of this research. For future research when more time and computational resources

are available, it would be interesting to calculate the confidence interval so that conclusions

can be made based on statistical significance.

H.3. PREDICTION APPROACH

The proposed financial distress prediction model only focuses on predicting negative migra-

tions. For future research, it could be interesting to investigate the possibility of establishing

a model that can detect other types of migrations. For example, the model could be extended

to incorporate positive migrations where a watchlisted client receives a regular status again

because of improvements in their credit risk.

One suggestion is to research a different prediction approach that focuses on predicting the sta-
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tus of a client instead of migrations. This model could try to predict if a client will have a regular,

default or watchlist status in the next month. As a result, this model would be able to determine

if a client will keep its status or whether the client will migrate to another status. The difficult

part of such a model is that most of the time, the status of a client remains the same. This could

lead to misleading results when evaluating the model performance, so considerations need to

be made to tackle this problem.

Another suggestion is that other target variables that relate to possible actions could be re-

searched in the future. The proposed model only identifies which clients are in financial dis-

tress, but it does not consider what possible actions are the most suitable to take based on the

data. For instance, some clients might only require additional monitoring, while others require

more critical forbearance measures. For that reason, it could be interesting to investigate how

the proposed model would work on a multi-class problem consisting of multiple actions for

different severity levels.

H.4. MODEL IMPROVEMENTS

The proposed model could be improved by trying out other techniques and doing more exten-

sive model tuning. RUS was selected to deal with the class imbalance because it significantly

reduces the computational time required to train the models. If more computational resources

are available, other techniques, such as ROS and SMOTE could be used. These methods might

improve performance because these methods allow for all the data to be used. Furthermore,

only mutual information was tested for feature selection due to time constraints. In the fu-

ture, trying out different feature selection techniques to determine which method performs

best could be interesting. Also, more extensive feature engineering could be performed. For

instance, the difference in values between the current month and the previous month could be

designed as a feature to reflect changes over time. Also, features based on (weighted) moving

averages could be considered. Besides, more extensive hyperparameter optimization could be

done by increasing the number of iterations or defining a larger parameter space.

Moreover, other ML models could be considered. In this research, only a selection of supervised

learning models was tested, but in the future other classification models, including LightGBM,

CatBoost, K-Nearest Neighbour, Naive Bayes, or Graphical Models, could be incorporated into

the proposed financial distress prediction model. Two other classification approaches that

could be interesting to investigate further are Hidden Markov Models (HMM) and early time

series classification.

HMM could be a suitable approach for modelling the client status. HMM can be used to model

sequential data where the underlying process generating the data is assumed to be a Markov

process [87]. The states of the Markov process cannot be directly observed, but they can be

inferred from observed data related to these hidden states. In our case, the transitions between

a regular, watchlist, and client status could be modelled according to a Markov process. Then,
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the trigger data could be used as observed data to infer the state of the Markov process by cal-

culating the probability that a particular sequence of statuses could occur for a client. Several

HMM models have been implemented in a financial context, including default prediction, but

more research would be needed to determine their applicability to financial distress prediction

modelling [88–90].

The earliness of the proposed model can be altered by configuring the time gap and target

window. However, a disadvantage of this approach is that there is no incentive for the model

to make predictions as early as possible. Ideally, some logic or function should be in place

that favours early predictions and penalizes late ones when training the models. Early time

series classification is a supervised learning approach that aims to classify time series using

as few observations as possible [91]. These models try to balance timeliness and accuracy by

incorporating these objectives into the cost function of the classification model. These models

have been adopted in different domains, such as medical diagnostics, process monitoring, and

electricity usage [92, 93]. However, to our knowledge, no studies implement these kinds of

models for the early detection of financial distress. Therefore, for future research, it would be

interesting to investigate the applicability of these models for EWSs.

The approaches mentioned above are based on the supervised learning paradigm. This as-

sumes that the labels are known and that these labels can be predicted using classification

algorithms. However, other approaches based on different assumptions might improve the

earliness and preciseness of detecting financial distress. In contrast to supervised learning,

unsupervised learning is a type of machine learning where the algorithm learns patterns and

relationships in data without being explicitly trained or labelled. Unsupervised learning could

be used to cluster clients based on their credit risk. These clusters might be able to identify

clients in financial distress (watchlist or default status) or with similar characteristics. In ad-

dition, these clusters could be included as a new feature in the supervised learning models to

increase model performance.

Besides, semi-supervised learning could offer a middle way for both approaches. Semi-supervised

learning assumes that only a few labels are known while the rest of the instances are unlabeled.

In our case, we only have the labels of clients in default or on the watchlist. But these labels

might be incomplete as there might still be undetected clients with neither a default nor watch-

list status but might still be in financial distress. This is similar to a positive unlabelled learning

problem, where there is only positively labelled data, and the remaining data is unlabeled [94].

H.5. DATA IMPROVEMENTS

The experimental results in Chapter 6 show that more historical data significantly increases the

performance of the models by extending the time and target window. More research is needed

to find the optimal window sizes that perform best. Also, more historical data would make

it possible to incorporate seasonality into the model by, for instance, adding the months as a
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feature. In addition, more historical data would mean that there are more samples for training

the models resulting in a better performance.

In addition, other external data sources could be added to improve the model’s predictive per-

formance. For instance, macroeconomic variables related to interest rates, Gross Domestic

Product (GDP), inflation, and unemployment rates could be incorporated. Also, next to the eq-

uity trigger, market variables like market volatility, commodity prices, and market indices could

be used to improve predictability. Depending on the sector and country of incorporation, these

variables might impact clients’ credit risk. For example, interest rates could influence the credit

risk of other financial institutions, while oil prices have a more significant impact on companies

in the energy sector.

In addition, more detailed internal data could be added as well. When looking at the Informa-

tion Gain and SHAP values, we observe that the internal data on which the triggers are based

contain the most information about negative migrations. Therefore, we think that adding more

detailed data instead of only using the triggers would improve performance. For instance, the

actual equity prices could be used instead of only using the EQU trigger, and the actual senti-

ment scores from the topic models could be used instead of the news-based triggers (BNK, MA

FRD, ECC, SNC, HR). Another reason for using the underlying data instead of the triggers is that

the logic of the triggers can change over time which would require recalculating or collecting

the trigger data to get enough training data.

Finally, the data quality could be improved considerably. The internal client data set contained

many missing values, which decreased the performance of the models. Also, outliers in the

number of negative migrations discussed in Section 3.2.1 imply issues with data quality. So, by

ensuring the quality of the input data used for the models, the performance could be increased.
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MODEL DEPLOYMENT

Some thoughts and recommendations are dedicated to the future deployment of the proposed

WL trigger. Machine Learning Operations (MLOps) is a set of practices and technologies de-

signed to help manage the lifecycle of machine learning models [95]. This research establishes

a foundation for a future WL trigger by exploring and experimenting with the feasibility of such

a trigger based on a financial distress prediction model. However, for the final implementation,

many steps still need to be considered before the new trigger can be deployed into the ARIA

application. Some recommendations are given on the following MLOps components:

• Data management

• ML pipeline

• Automated retraining

• Performance monitoring

Firstly, access to data sources needs to be ensured through reliable data pipelines. Currently,

the model has been tested on extracted files, but connections need to be established with the

according data sources for future implementation. The proposed model requires access to the

records of the ARIA triggers and the internal customer data. Furthermore, more data sources

could be utilized in the future. The research showed that the underlying data on which the

triggers have the biggest impact on the predictions. Therefore, other data pipelines could be

created that give access to internal customer data (e.g. data used to calculate the PD or RWA),

sentiment scores from the topic models, and market data from Refinitiv.

Secondly, ML models are implemented in a Jupyter Notebook, but for the deployment, the ML

pipeline needs to be built. A ML pipeline is a series of interconnected steps that automate the
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flow of data and tasks for the financial distress prediction models. During the research, several

ML models were tested. However, only the best-performing model will be deployed when the

model is implemented. Therefore, we suggest that the ML pipeline would train several classi-

fiers and then selects and deploys the model with the highest F-beta score where beta depends

on the tradeoff between sensitivity and precision. Furthermore, the time window and target

window were manually configured during the experiments, but in the future, these models

could also be treated as hyperparameters that could be optimized using the random search.

Besides, the time lag, threshold, and target variable of the model could be configured based on

the desires of the users.

Moreover, the retraining of the pipeline needs to be considered to ensure that the newly avail-

able data can be incorporated into the models. For this, we propose setting a trigger that is ac-

tivated at the beginning of each month because the predictions are made on a monthly basis.

This would start the retraining of the ML pipeline so that the last month’s data can be incor-

porated into the predictions for the coming months. Such a system could be orchestrated by

a platform like Airflow, which is also used to retrain the topic models for the external triggers

at ING. Airflow can be used to orchestrate the workflow as a Directed Acyclic Graph (DAG). An

example of such a DAG for our financial distress prediction model is depicted in Figure I.1.

Figure I.1: Proposed DAG architecture

Finally, the performance of the ML models needs to be continuously monitored. Currently, the

model has been evaluated based on historical data sets. A limitation of this approach is that it

does not consider model drift and interaction effects with the users. Model drift occurs when

there are changes in the distribution of the underlying data, which can result in the deteriora-

tion of the model over time. This input drift could be detected using univariate statistical tests

like the Kolmogorov-Smirnov and Chi-square tests for continuous and categorical features, re-

spectively [95]. In addition, mutual information and SHAP values could also be used to analyse

how the impact of each feature changes over time. Moreover, when the model has been imple-

mented, the behaviour of the users might change, resulting in different watchlist labels in the

future. For future experimentation, applying A/B testing for the online monitoring of several

candidate models could be interesting. In this case, several candidate models are tested on dif-

ferent groups of users. Then, based on the evaluation metrics and early warning triggers, the

models could be compared to determine which model performs best. Appendix I.2 provides a

flow chart of how the overall pipeline could be designed inspired by Google [96].
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I.1. AUTOMATED PIPELINE

Figure I.2: Flow chart of the automated pipeline architecture
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