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Abstract 

  Motivation is known to play an important role in moderating goal-directed behaviour, but 

the precise interaction between motivation and cognitive control remains unclear. The present 

study aimed to investigate how much increased motivation through reward incentives can shift 

cognitive control from a reactive to a more proactive mode. Using EEG in an incentive-based 

cued task-switching paradigm, we recorded 26 participants’ brain activity while they completed 

high and low reward sequences. Our results revealed that the high reward sequences elicited 

shorter response times and larger EEG amplitudes for the cue-induced CNV and the task-induced 

P3b and N2 components, indicating a shift towards more proactive control. However, the cue-

induced LPP, P3b and N2 did not respond to reward conditions, which might be due to how 

motivation was manipulated in sequences instead of on a trial-by-trial basis. Future studies 

should investigate the influence of different incentive manipulation strategies on these ERP 

components.   
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Introduction 

  Imagine you are presented with a plate of your favourite food. However, summer is 

coming up and you want to lose a few pounds in order to impress your friends at the beach. 

Instead of eating the whole plate, you consider your goal and resist the temptation, restraining 

yourself to just eat a small portion of the dish instead. Now, imagine that it’s winter. You still 

want to lose a few pounds, but you will not be going to the beach to show off your body anytime 

soon. This time, it is harder to resist the temptation to eat the whole plate, it is your favourite 

food after all. And would anyone really notice the difference? Before you realised it, you ended 

up eating the whole plate. As depicted in this example, humans do not always work towards their 

goals as well as they could. Goal-directed behaviour is motivated and depends on the personal 

wants, needs or desires of an individual (Satpute et al., 2012). It is the aim of the present study to 

investigate the influence of different motivation levels on goal-directed behaviour. 

  Research on the influence of motivation on performance shows that effects of reward are 

more prominent in tasks requiring cognitive control (Boehler et al., 2014; Kleinsorge & 

Rinkenauer, 2012; Padmala & Pessoa, 2011). Cognitive control refers to a set of top-down 

mental processes, that are needed for when an automatic processing mode does not suffice 

(Diamond, 2013). The functions of cognitive control include mental set shifting, information 

updating and monitoring, and inhibition of prepotent responses (Miyake et al. 2000; Diamond, 

2013). These cognitive functions allow us to intentionally select thoughts, emotions and 

behaviour based on our current task demands and social contexts, while filtering and suppressing 

inappropriate habitual actions (Miller & Cohen, 2001, as cited in Dixon, 2015). 

  Although cognitive control has been studied extensively over the last decades, the 

interaction between cognitive control and motivation is not yet understood quite so well 

(Botvinick and Braver, 2015). In the Expected Value of Control framework, Shenhav et al. 

(2013) proposed how human decision-making is done. Their framework posits that the dorsal 

anterior cingulate cortex (dACC) integrates information pertaining to the anticipated payoff from 

a controlled process, the level of control investment needed to achieve that payoff, and the 

cognitive effort cost associated with it. This integrated information is then used to decide 

whether, where, and how much control is allocated to a task. A higher expected value of control 

for a task is associated with increased motivation for the individual to take action and strive 
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towards achieving the desired outcome. Incentives have often been utilised in order to motivate 

individuals to perform to the best of their abilities in experimental settings (e.g., Knutson et al., 

2000). The findings from these experiments indicate that when motivated, human and animal 

performance can show improved speed and accuracy (Mir et al., 2011; Bijleveld et al., 2010), 

improved visual cognition (Small et al., 2005; Engelmann et al., 2009), better cognitive control 

(Locke & Braver, 2008), improved memory (Wittmann et al., 2005), improved task switching 

(Aarts et al., 2010, Umemoto & Holroyd, 2015) and even better performance in intelligence tests 

(Duckworth et al. 2011). In a classic Stroop task study conducted by Krebs et al. (2010) it was 

also found that larger rewards as opposed to smaller rewards led to better performance. 

  Cognitive control is not thought to be a single mechanism that can be used to a larger or 

lesser extent. Instead, Braver (2012) proposed the dual mechanisms of cognitive control (DMC) 

framework, in which cognitive control is described as having two distinct mechanisms: proactive 

and reactive control. Proactive control mechanisms are only engaged when a task is deemed 

important enough to actively anticipate future task demand, as the anticipatory activation 

requires more of the limited cognitive attentional resources than reactive control (Cowan, 2001). 

During proactive control, individuals will mentally prepare for an upcoming event so that they 

can quickly respond when the event presents itself. Imagine being in a street-race, waiting for the 

red traffic light to turn green. You anticipate for this moment, focusing intently on the exact 

moment the light changes so you can immediately accelerate without losing precious time. 

Reactive control on the other hand is engaged in other situations where a task is not deemed 

important enough to anticipate an upcoming event, or when it is not possible to prepare. Instead, 

the task is only engaged when it presents itself. Imagine waiting for the red traffic light to turn 

green again, but this time instead of racing, you’re simply going grocery shopping and there is no 

need to hurry, concerning yourself only with the traffic light when the time comes. Compared to 

proactive control, which is thought to mostly involve the lateral prefrontal cortex (PFC), reactive 

control additionally originates from the ACC (Braver et al. 2009), the inferior frontal gyrus (IFG) 

and the anterior insula (AI; Kurzban et al., 2013). An increase in cognitive control to high reward 

conditions could be an indication of a shift in processing from a reactive to proactive control 

mode (Chiew & Braver, 2013, 2014; Fröber & Dreisbach, 2016). In the present study, the 

potential shift in processing strategy in relation to motivation will be investigated with EEG in 

order to study how far a potential shift from reactive to a proactive control mode is observable in 
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a high compared to a low reward condition.  

  Regarding the investigation of cognitive control processes, the EEG has specific 

advantages. The high temporal resolution of the EEG enables the distinct separation of 

preparatory processes from the task-processing itself. This is essential to distinguish proactive 

and reactive control modes as preparatory processes are associated with proactive cognitive 

control. An experimental paradigm that allows to do this is the cued task switching paradigm, as 

cue and target processing can be investigated separately. Cued task-switching paradigms differ 

from ordinary task-switching paradigms in that the upcoming task is indicated beforehand with a 

cue. Task-switching paradigms are generally used to investigate cognitive flexibility. Participants 

are usually slower and more error prone after switching to another task (Monsell, 2003; 

Vandierendonck et al., 2010). These decrements in behaviour are referred to as “switch cost”. 

These switch costs are observable even if the participant has been warned of the upcoming task 

switch (Swainson et al., 2021; Hirch et al., 2021) as is the case with cued task-switching, where 

the participant is warned of an upcoming task-switch beforehand by providing them with a cue 

of what is expected of them. For example, Capa et al. (2013) conducted a study where 

participants had to perform either of three tasks for a varying monetary reward. Their cued task-

switching paradigm contained three tasks that participants had to perform: judging whether a 

shown number was odd or even, whether the number was smaller or greater than 5, or whether 

the number was inside or outside the continuum of 1-9, with a task-switch likelihood of 50%. A 

task-cue was shown 1750 ms before stimulus onset to provide a warning for the upcoming task, 

displaying a variety of cues that inform about which task to perform in the subsequent stimulus. 

Combined with EEG, this cue allowed them to investigate whether incentives of varying 

monetary values impacted preparatory processes starting from task-cue onset in addition to 

investigating performance and accompanying task-related activity during task switches. They 

found shorter response times, associated with a larger contingent negative variation (CNV) at 

task-cue onset, and larger parietal P3 component under conditions of high conscious reward, 

which suggested a larger amount of working memory being invested during task performance 

(Capa et al., 2013). Although the switch cost can be reduced by such warning cues, a residual 

switch cost remains (Altmann, 2004; Mayr & Kliegl, 2000) The switch cost has been explained 

within Task set reconfiguration accounts (Mayr & Kliegl, 2000; Rogers & Monsell, 1995) and 

interference accounts (Goschke, 2000) as the result of needing to adapt to a new task set that is 
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needed to determine behaviour in a given (changed) context (Ye & Damian, 2022). Task 

switching performance has been shown to be affected by reward expectancy in particular (e.g. 

Kleinsorge & Rinkenauer, 2012), rendering this paradigm suited to investigate control mode 

shifts in different reward conditions. 

  In the present EEG study, an adaptation of the study conducted by Hubbard et al. (2019) 

was used. In their study, Hubbard et al. (2019) used a cued task-switching paradigm in which a 

stimulus array of eight circular gratings in a larger circular grating was shown. The circles 

contained gabor patches, two of which differed from the other patches by showing another 

colour (yellow/red) or tilt orientation (left/right) and an auditory cue indicating which aspect 

should be paid attention to. Our adaptation implemented monetary incentives in order to 

investigate the influence of high versus low reward conditions on cognitive control, and more 

specifically the influence on the engagement of proactive and reactive control modes, by 

observing the changes in after cue and target onset. With the EEG, the intention was to 

investigate event-related potentials (ERPs) in response to the cue and to the target stimulus. The 

ERP-components of interest that were studied were the frontal N2 in response to the cue and also 

the target, the frontal CNV during the cue-target interval, the posterior LPP during the cue-target 

interval and the posterior P3b-component, again in response to the cue and the target. 

  The frontal N2 is a negative deflection of the ERP that occurs around 200-350 ms after 

stimulus presentation and is associated with inhibition of incorrect response tendencies caused by 

the processing of irrelevant stimuli or by the choice process when given competing alternatives 

(Nieuwenhuis et al., 2003; Folstein & van Petten, 2004; Deng et al., 2015). Larger amplitudes 

can be observed in tasks where a stronger conflict detection is present, such as when switching 

tasks where behavioural rules need to be updated to the new requirements (Cudo et al., 2018). It 

is likely to originate from the ACC (Folstein & van Petten, 2007), which in terms of the DMC 

framework is related to reactive control (Cudo et al., 2018). The frontal N2 is also found to be 

larger whenever an individual is motivated to perform a task as opposed to when the task is of 

low importance (Jiang & Xu, 2014) which indicates that more attentional resources are allocated 

to the task. 

  The frontal CNV is a slow, surface-negative component that occurs in the interval 

between a warning stimulus and a probe stimulus to which a motor action is required, in a time 

window ranging from several hundred milliseconds to several seconds to the presentation of the 
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probe stimulus (Tecce, 1972; Kononowicz & Penney, 2016). It reflects the anticipation of the 

upcoming stimulus and has been related to response readiness, preparatory attention, motivation, 

and motor preparation (Schevernels et al., 2014). The CNV has been shown to be responsive to 

reward, with larger CNV amplitudes being measured in trials where rewards could be obtained 

(Capa et al., 2013), implicating a larger amount of cognitive resources spent on trials that are 

deemed more important. In terms of the DMC framework, a more negative amplitude in the 

CNV is associated with proactive control, as more anticipation and preparation is thought to 

occur (Li et al., 2018). A network of brain areas is thought to generate the CNV, among which 

the frontal sources in the supplementary motor area, the ACC, and the motor cortex (Gómez et 

al., 2003). 

  The posterior P3, or more specifically the P3b, is a positive-going component that occurs 

around 250-500 ms after a stimulus is presented and is associated with the allocation of 

attentional resources to task-relevant information and the updating of working memory (Donchin 

& Coles, 1988). The P3 amplitude is sensitive to the extent to which attentional resources are 

allocated during dual-task performance (Polich, 2007). Like the other components, it is larger for 

tasks that are deemed more important, or for which an individual is motivated to perform (Van 

den Berg et al., 2012). Larger parietal P3 amplitudes are being associated with better response 

times on tasks with a high reward, suggesting higher working memory investment (Capa et al., 

2013). The P3 is thought to originate from the parietal lobes, which are involved in attentional 

processes, spatial processing and working memory (Polich, 2007). A more recent review by 

Verleger (2020) found it to be mostly associated with S-R link reactivation and memory storage. 

In terms of the DMC, a larger amplitude is associated with more proactive control (van Wouwe 

et al., 2011). 

  The late posterior positivity (LPP) is a positive-going component that emerges around 

300-500 ms post stimulus, continuing for a sustained period and is associated with cue-based 

task selection, reflecting changes in mental effort, and sustaining attention to a stimulus (Kranz, 

2015; Chevalier et al., 2015). The LPP shows larger amplitudes in task-switching trials than 

repetition trials (Chevalier et al., 2015; Manzi et al., 2011). The component is sensitive to 

arousal, showing larger amplitudes to more arousing emotional stimuli or monetary reward 

(Broyd et al., 2012; Kranz, 2015), the larger amplitudes being associated with more proactive 

control (Chevalier et al., 2015). 
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  In this study, we expected to find that high reward trials should benefit behavioural 

performance compared to low reward trials: we expected higher accuracy and shorter response 

times, as these are common measures of behavioural effort investment that have been found in 

previous studies and might be associated with more cognitive resources being used for trials that 

are deemed more important. We also anticipated that for task switching trials response time 

would be longer, and accuracy would be lower than in repetition trials, as these trials are 

anticipated to be harder due to the need to adapt to new task sets. In addition, we expected to find 

an interaction of high reward trials on task switching interference, with high reward trials 

showing a decreased switch cost in switch vs repetition trials, as this has been observed in 

previous studies (Chiew & Braver, 2016; Kleinsorge & Rinkenauer, 2012). In regards to the 

electrophysiological data, we expected to find larger amplitudes for rewarded trials and switch 

trials, as these aspects are deemed to elicit more proactive behaviour than low reward or 

repetition trials. More specifically, during the cue-target interval we expected to find an 

enhanced CNV for high reward compared to low reward, and for switch trials compared to 

repetition trials, as the CNV is associated with proactive control, with larger amplitudes 

indicating an increase in motor preparation for the upcoming task. We anticipated that the P3b, 

which has been associated with resource engagement, context updating, working memory, and 

proactive control, would show larger positive amplitudes in both task-cue and target onset for 

switch and reward trials as reward induced motivation is anticipated to increase effort put into 

the task and task switching requires context updating. We anticipated that the LPP would be 

responsive to task switching, showing larger amplitudes than when repeating tasks. We also 

expected it to show larger amplitudes during high reward conditions. Regarding the N2, which is 

associated with conflict monitoring and incorrect response inhibition, we anticipated more 

negative amplitudes for high reward and for switch trials, in particular in response to the target 

stimuli. 

Method 

Participants 

  Participants were recruited via an announcement in a Facebook group of the Leibniz 

Research Centre for Working Environment and Human Factors Dortmund. Participants had to 

meet several criteria: an age between 18 and 30 years old, not to be diagnosed with any 



10 
 

psychiatric or neurological disorders, a normal or corrected-to-normal vision, and not being 

colourblind as tested with the Ishihara test (Ishihara, 1972). All participants were right-handed 

according to the Edinburgh Handedness Inventory. Furthermore, it was ensured that participants 

met the criteria for the acquisition of the structural MRI scan, which is not related to the present 

report. In total, the data of 27 participants were acquired for this study. Due to missing triggers in 

the EEG data, the data of one participant had to be excluded from the analysis. The resulting 

sample contains data of a total of 26 volunteers (3 men, 23 women) with a mean age of 21.7 (SD 

= 2.2). Participants received a monetary reward in exchange for their participation. The study 

received approval by the ethical committee of the Leibniz Research Centre for Working 

Environment and Human Factors Dortmund (Ifado) and was in accordance with the Declaration 

of Helsinki. Participants signed informed consent prior to the experiment. Data collection was 

done at the Leibniz Research Centre for Working Environment and Human Factors Dortmund. 

Materials and Apparatus 

EEG data was recorded using 128 passive Ag/AGCl electrodes (Easycap GmbH, 

Herrsching, Germany) arranged according to the international 10-10 electrode placement system, 

connected to a NeurOne Tesla AC-amplifier (Bittium Biosignals Ltd, Kuopio, Finland) and using 

the BrainVision Recorder software. During recording, a 250 Hz low-pass filter was applied. The 

AFz electrode was used as the ground electrode, and the FCz electrode was used as the online 

reference. A sampling rate of 1000 Hz was used for data recording and electrode impedances 

were kept below 10 kΩ to ensure the signal was of acceptable quality for further analysis.  

  The experiment took place in an electrically shielded chamber, optimised for EEG 

experiments. The room contained a chair for the participant to sit on with each armrest 

containing one button for responding to the trial at hand. The experiment was shown on a 20” 

colour monitor (100 Hz, 1024 x 768px). To communicate with the participant, a microphone 

from outside could connect with speakers in the room for correcting instructions or answering 

questions. The participant could be observed from outside of the room with a camera. 

Design and task 

  The focus of the study was to measure brain activity during varying states or levels of 

motivation and its influence on performance. For this, participants participated in an incentive 

based cued-task-switching paradigm, which was adopted from Hubbard and colleagues (2019). 
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Motivation was manipulated by implementing sequences where more points could be earned the 

better the performance, resulting in a higher financial reward. Participants were instructed to 

perform the task as quickly and accurately as possible in order to obtain these points, with a 

response threshold being determined based on the 60th percentile performance during the 

training blocks. A schematic presentation of the experiment is presented in Figure 1. 

 

Figure 1. Schematic overview of the sequence of events during each trial. An indication was 

given on whether the upcoming sequence of eight trials would be high reward ($$$) or low 

reward (---) at the beginning of each sequence, with an additional coloured border functioning 

as a reminder during the sequence. After an ITI of 800-1000 ms, the task-cue (A, Y) indicating 

the to-be performed task was presented for 200ms, indicating whether the participant should pay 

attention to the colour (green/red) or tilt orientation (left/right). The probe display containing a 

target and distractor variable at random positions in the tray was then presented for a maximum 

of 1200 ms, after an ISI of 600 ms. After a sequence had concluded a feedback screen was shown 

indicating the earned amount of points (X). 

 

  The colours used in the experiment are reported in CIE 1931 XYZ colour-space values. 

Unless stated otherwise, all stimuli were presented in black (0.287 0.312 0.0) against a light grey 
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background (0.287 0.312 12.5). The presentation of the switching task occurred in alternating 

sequences of eight trials of low and high reward. On trials that were accurate and performed fast 

enough, 1 point could be earned for low reward trials, whereas on high reward trials 10 points 

could be earned with each correct fast response. Low reward trials were introduced with an 800 

ms lasting “---” at the beginning of each sequence of 8 trials, high reward trial sequences were 

introduced with “$$$”. Furthermore, the current reward condition was at any time framed at the 

edge of the screen with colour blue (0.222 0.282 50.0) or yellow (0.36 0.43 50.0) colours and 

corresponding sequences were counterbalanced across participants. At the end of each sequence, 

a feedback screen was shown at the centre of the screen for 800 ms, indicating the amount of 

earned points in comparison to the total amount that could be earned for the sequence, X out of 8 

for low reward sequences or X out of 80 for high reward sequences. 

  Each trial within the sequences started with displaying the task cue consisting of the letter 

A, B, X or Y, with A/B indicating one task, and X/Y indicating the other task (1° viewing angle 

height). The cues indicating which task was to be performed were counterbalanced across 

participants and lasted for 200 ms, followed by a cue-target interval where a fixation mark was 

shown for 800 ms. Then, the probe-display was displayed, showing eight circles with a diameter 

of 1.5 degrees each, placed in a larger circle with a diameter of 6 degrees relative to the center of 

the main circle. These lasted until the participant had responded with a button on the modified 

chair or until a set amount of 1200 ms had passed. The probe-display circles were Gabor-

patches, of which six were equal, the other two differing in colour, red (0.5 0.38 25.0) or green 

(0.264 0.456 25.0 at peak saturation) or orientation, with a patch being tilted by 20 degrees to the 

left or to the right. Depending on the task cue, participants had to pay attention to one of these 

aspects to perform the task: answering whether the deviating patch was either red or green in the 

colour task, or tilting to the left or to the right in the orientation task, whilst ignoring the 

distractor variable. Which colour belonged to which button was also counterbalanced across 

participants for the colour task, but not for the orientation task, with the purpose of preventing a 

S-R compatibility effect (Kornblum et al., 1990). 

  Before gathering data, participants were introduced to the tasks by performing four 

practice blocks. Participants learned the response mapping to the colour task in the first 16 trials, 

and then the mapping to the orientation task in the next 16 trials. The next block of 32 trials 

introduced the dual-task practice and the switching between them. The fourth block of 64 trials 
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introduced the low reward vs high reward trial practice and the 8-sequence structure of the low 

reward vs high reward trials. Here, it was also decided what the threshold for a successful trial 

was for a participant, with the 60th percentile of the response times observed in this block being 

an indication for a fast enough trial worth points. After these blocks, the experiment followed 

with eight experimental blocks of 256 trials each, leading up to 2048 trials per participant. 

  In total, there were eight different versions of the task to compensate for artefacts which 

might occur during each version, as versions differed in which button to press for the colour task 

(2), Cue indicators (AB/XY) and low vs high reward colour indicators (2). After completion of 

the tasks, participants were asked in a Likert scale questionnaire about the extent to which they 

put in effort amongst the different reward conditions, their level of motivation for an adequate 

performance on the experiment and the amount of experienced mind wandering.  

Procedure 

The experiment took place in one of the EEG experiment chambers of the Leibniz 

Research Centre for Working Environment and Human Factors. To control for circadian 

differences, all participants arrived at the institute at 8:30 am. After arrival, they conducted a 

COVID 19 rapid test. Participants were then led to the experiment chamber where they were 

seated on a chair to apply the EEG cap. Then, they performed the Ishihara test, the Edinburgh 

Handedness inventory, and a demographics questionnaire. Participants received a pre-

experimental briefing regarding the monetary compensation consisting of a fixed amount of 35 

Euro and a variable amount of up to 20 Euro, in addition, the fastest 50% of participants with the 

highest number of points would enter a lottery where one could win a voucher of 50 euro. They 

were instructed to respond as quickly and as accurately as possible to maximise the obtained 

score and the variable amount of the compensation. Participants signed informed consent. Then 

they were brought into the EEG room and sat in the modified chair. Participants had to perform 

one of the eight versions of the experiment. Task instructions were given on the screen in front of 

them. After going through the introduction blocks and the participant was certain they 

understood, the experiment began, which took roughly 2 hours to complete.  

EEG Preprocessing and data analysis 

  EEG data was preprocessed and analysed in Matlab version R2022B (The Math Works 

Inc., Natick, Massachusetts), using the EEGLAB toolbox version v2022.1 (Delorme & Makeig, 
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2004) (see Appendix A). The first step was to re-reference the data to the CPz electrode to obtain 

the signal for the FCz electrode which had been used as the online reference during recording. 

The data was then downsampled to 250 Hz and larger noise artifacts were removed by cutting 

out one-second-long segments after boundary events and rejecting continuous portions of the 

data based on spectral thresholding in the frequency range from 20 to 40 Hz to address muscular 

artifacts. A band pass filter was applied from 0.1 Hz to 30 Hz and bad channels were detected 

and rejected based on kurtosis criteria. On average, M=8.23 (SD = 4.1) channels were rejected 

per participant. The remaining data was re-referenced to the average reference. 

 The continuous data was then segmented into epochs of 3600 milliseconds, from -1000  

to 2600 from task-cue onset, after which noisy epochs with artefacts were rejected with an 

automated trial rejection function that removed trials above the fluctuation threshold of 1000 µV, 

a probability threshold of 5 SD,  and a maximum percentage of rejected trials per iteration of 5%, 

removing on average 226.69 (SD = 85.5) epochs. After compressing the data to the 

dimensionality matching its rank using PCA, an independent component analysis (ICA) was 

performed with ICLabel (Pion-Tonachini et al., 2019) to identify and separate signals not 

originating from cortical activity. ICs with a probability of less than 0.3 likeliness to reflect brain 

activity, or a probability of more than 0.3 for the eyes category were rejected. This led to an 

average rejection rate of 70.04 ICs (SD = 10.97 ICs). 

   For the calculation of the ERPs a baseline was set from -200 ms to 0 ms relative to the 

task-cue onset. Only the EEG data of correctly answered trials were used and ERPs were 

calculated by averaging across trials within each condition combination (low reward-high reward 

and repeat-switch). Data were also averaged across electrodes, for a frontal electrode position 

cluster and a posterior electrode position cluster. The frontal electrode cluster contained the 

electrodes F1, Fz, F2, FFC1h, FFC2h, FC1, FCz, FC2, FCC1h, FCC2h, C1, Cz, C2, and the 

posterior electrode cluster contained the electrodes P1, Pz, P2, PPO1h, PPO2h, PO3, POz, PO4, 

POO1, and POO2. An overview of the electrode patches can be seen in Figure 2. 
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Figure 2. Overview of the frontal and posterior electrode clusters 

Statistical analysis 

  The experiment involved a 2 x 2 factorial repeated measures design, as the focus of the 

study was to analyse the effects of the independent variables task switch conditions and reward 

conditions. The behavioural data which consisted of the dependent variables accuracy and 

response times of correct trials, and the EEG data of the frontal and posterior electrode patches, 

were both analysed using a within-subjects analysis of variance (ANOVA) with α ≤ 0.05 for all 

aspects (low/high reward, repeat/switch). For the EEG data, the dependent variables of interest 

were the frontal CNV and N2 components and the posterior P3b components, the time windows 

of these components being specified using a collapsed localizer approach. 

Results 

Behavioural data 

  The first hypothesis predicted that high reward trials would exhibit increased accuracy 

and reduced response times. The second hypothesis proposed that switch trials would show 

lower accuracy and increased response times. Visual inspection revealed that response times and 

accuracy were both influenced by reward and task switch conditions. With response times being 

shorter in high reward and repetition trials and longer in low reward and switch trials, and 

accuracy being most precise in high reward and repetition trials and least precise in low reward 

and switch trials (Figures 3 and 4).  

 

 



16 
 

 

Figure 3. Mean response times in ms across all conditions. Error bars show standard error of 

the mean. 
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Figure 4. Mean score for accuracy in percentage across all conditions. Error bars show 

standard error of the mean. 

 

Response time 

 The mean response times across all conditions are presented in Figure 3. The within-

subjects ANOVA was conducted to analyse the effects of reward conditions and task switch 

conditions on response times. The results revealed significant main effects for reward conditions 

F(1, 25) = 21.509, p < .001, ηp
2 = .462, and task switch conditions F(1, 25) = 51.498, p < .001, 

ηp
2 = .674. Specifically, response times were shorter for high reward trials compared to low 

reward trials in both task switch conditions, and switch trials took longer to respond compared to 

repetition trials in both reward conditions. However, no significant interaction was found 

between reward conditions and task switch conditions F(1, 25) = 1.625, p = 0.214, ηp
2 = .061. 
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Accuracy 

 The accuracy rates across all conditions are displayed in Figure 4. The within-subjects 

ANOVA showed a significant main effect for task switch conditions F(1, 25) = 6.578,p < .001, 

ηp
2 = .208, with switch trials showing lower accuracy compared to repetition trials in both reward 

conditions. However, there were no significant differences in accuracy between high reward and 

low reward trials F(1, 25) = 3.783,  p = 0.063, ηp
2 = .131. Additionally, no interaction for 

accuracy was found between reward conditions and task switch conditions, F(1, 25) = 0.008, p = 

0.930, ηp
2 = .001.  

ERP analysis 

 The remaining hypotheses all focus on ERP components. ERPs were calculated for 

frontal and posterior electrode clusters from -200 to 1600 from task-cue onset (Figures 5 and 6). 

 

 

Figure 5. ERPs of the frontal electrode cluster containing electrodes F1, Fz, F2, FFC1h, 

FFC2h, FC1, FCz, FC2, FCC1h, FCC2h, C1, Cz, and C2   

Note. The components of interest and their time windows have been specified with a collapsed 

localizer approach. For the CNV, the frontal electrodes within 440 to 800 ms of task-cue onset 
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were analysed (yellow). For N2, frontal electrodes within 325-375 ms from task-cue onset (red), 

and 1025-1075 ms from task-cue onset were analysed for the target-related N2 (purple). 

 

 

Figure 6. ERPs of the posterior electrode cluster containing electrodes P1, Pz, P2, PPO1h, 

PPO2h, PO3, POz, PO4, POO1, and POO2. 

Note. The time windows for analysing the P3b components were also determined using a 

collapsed localizer approach. For the task-cue onset P3b, the time window of 300-400 ms from 

task-cue onset (green), for the LPP, the time window of 400-800 ms from cue-onset (light blue) 

and for the target-related P3, the time window of 1100-1200 ms from cue-onset was analysed 

(dark blue). 

Frontal N2 component 

 Our expectations were that the frontal N2 component would be larger for tasks where 

conflict detection is deemed more important. A topography was made for the frontal N2 with the 

time frame of 325 – 375 ms from task-cue onset to visualise brain activity (see Figure 7). 
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Figure 7. Topography of the expected task-cue onset N2 time window of 325-375 ms 

 The within-subjects ANOVA revealed a significant main effect of task switch conditions 

F(1, 25) = 22.7, p < .001, ηp
2 = .475, indicating that switch trials elicit a larger negative 

amplitude than repetition trials. No significant differences were found in the reward conditions 

F(1, 25) = 0.058, p = 0.812, ηp
2 = .002 for the task-cue onset N2. Additionally, no interaction 

was found between reward conditions and task switch conditions F(1, 25) = 0.054, p = 0.818, ηp
2 

= .002. 

 For the target onset N2 the ERP of the frontal electrodes observed the component in the 

time window of 1025-1075 ms. A topography was created to visualise brain activity during this 

time window, as presented in Figure 8. 

 

 

Figure 8. Topography of the expected target onset N2 time window of 1025-1075 ms 

  The within-subjects ANOVA showed that there were significant differences for both 

reward conditions F(1, 25) = 11.189, p < .05, ηp
2 = .308 and task switch conditions F(1, 25) = 

5.478, p  < .05, ηp
2 = .180 in the target onset N2, with high reward trials and switch trials both 

showing a larger negative amplitude in both conditions. Additionally, no interaction was found 

between reward conditions and task switch conditions F(1, 25) = 0.150, p = 0.702, ηp
2 = .006. 
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Frontal CNV component 

 We hypothesised that the CNV component should show more negative amplitudes in 

tasks that are perceived more intense and important, as more effort is put into preparing for the 

task. In the ERP for frontal electrodes, the CNV can be observed from 440-800 ms. A 

topography has been created to visualise the brain activity in this time window (see Figure 9). 

 

Figure 9. Topography of the CNV component time window of 440-800 ms 

 The results of the within-subjects ANOVA showed that there were significant main 

effects for both reward conditions,  F(1, 25) = 30.652, p < .001, ηp
2 = .551, and task switch 

conditions F(1, 25) = 8.266, p < 0.05, ηp
2 = .249 in the CNV amplitude, with high reward trials 

and switch trials showing larger negative amplitudes in both conditions. No interaction was 

found between reward conditions and task switch conditions F(1, 25) = 0.007, p = 0.935, ηp
2 = 

.001. 

Posterior P3b component 

 We anticipated that there would be a significant difference in cue and target onset for the 

P3b component in the posterior electrode cluster. For the task-cue onset P3b, a timeframe of 300-

400 ms had been selected. A topography was made to visualise brain activity in this time 

window (see Figure 10). 
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Figure 10. Topography of the expected task-cue onset P3 time window of 300-400 ms 

  The within-subjects ANOVA showed that there were only significant differences in task 

switch conditions F(1, 25) = 24.274, p < .001, ηp
2 = .493, with switch trials showing a larger 

positive amplitude than repetition trials in the task-cue onset P3b. No significant differences 

were found in the reward conditions F(1, 25) = 3.061, p = 0.092, ηp
2 = .110. Furthermore, no 

interaction was found between reward conditions and task switch conditions F(1, 25) = 0.378, p 

= 0.544, ηp
2 = .015. 

 For the target onset P3b, a topography has been created at the same 300-400 time interval 

after target onset, resulting in a topography of 1100-1200 ms from task-cue onset (see Figure 

11).  

 

 

Figure 11. Topography of the expected target onset P3 time window of 1100-1200 ms 

 The within-subjects ANOVA revealed significant main effects for both reward conditions 

F(1, 25) = 5.8135, p < 0.05, ηp
2 = .189, and task switch conditions F(1, 25) = 6.285, p < 0.05, 

ηp
2 = .202 in the target onset P3b, with switch trials and low reward trials showing larger positive 
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amplitudes in both conditions than repetition and high reward trials. No interaction was found 

between reward conditions and task switch conditions F(1, 25) = 0.487, p = 0.492, ηp
2 = .019. 

Posterior LPP component 

We anticipated that the LPP component should show more positive amplitudes in tasks that are 

deemed more important as more attention is drawn to the stimulus. In the ERP for posterior 

electrodes, the LPP can be observed from 400-800 ms. A topography has been created to 

visualise the brain activity in this time window (see Figure 12).

 

Figure 12. Topography of the LPP component time window of 400-800 ms 

 The results of the within-subjects ANOVA showed that there was a significant main 

effect for task switch conditions F(1, 25) = 89.093, p < 0.05, ηp
2 = .782 in the LPP amplitude, 

with switch trials showing a larger positive amplitude than repetition trials. No significant 

differences were found in the reward conditions F(1, 25) = 2.215, p = 0.149, ηp
2 = .082, and no 

interaction was found between reward conditions and task switch conditions F(1, 25) = 0.284, p 

= 0.599, ηp
2 = .011. 

Discussion 

The aim of the current study was to investigate the influence of different motivation 

levels on goal-directed behaviour. More specifically, we investigated whether monetary 

incentives could provoke a shift from reactive to more proactive cognitive control as described 

by the DMC (Braver, 2012). For this purpose, we used a cued task-switching paradigm where 

participants were rewarded based on their performance in switch and repetition trials in low and 

high reward conditions. To assess whether the experimental manipulations affected the invested 

cognitive effort during the experiment, we looked at the behavioural measures response time and 

accuracy. Additionally, we recorded the brain activity with the EEG and analysed ERP 
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components occurring during task preparation and execution, the frontal N2 and CNV, and the 

posterior LPP and P3b. In line with our hypothesis, the data suggest that proactive control can 

indeed be provoked with monetary incentives. However, not all predictions were met, as the 

reward component did not affect the behavioural accuracy or the task-cue N2, LPP and task-cue 

P3b ERPs. First, the behavioural expectations and findings will be discussed, then, we will 

describe the EEG findings. 

  The behavioural data showed that response times and accuracy were both affected by 

reward and switch conditions. Response times were shown to be shorter for rewarded trials and 

longer for switch trials, which was in line with the literature and our expectations (Bijleveld et 

al., 2010; Botvinick & Braver, 2015; Capa et al., 2013; Mir et al.; 2011). Accuracy was lower in 

switch trials, which can be attributed to task-switching leading to higher cognitive demand due to 

the need to update behavioural rules and adjusting to different control mappings (Cudo et al., 

2018). However, a higher reward did not result in a better accuracy, which has been observed in 

recent studies too (Krebs et al., 2011; Padmala & Pessoa, 2011; Umemoto & Holroyd, 2014). 

One explanation for this observation is the presence of a speed-accuracy trade-off, which can 

occur in paradigms where participants know a reward can be earned (Wickelgren, 1977; 

Bijleveld et al., 2010). We instructed participants to respond as fast and accurately as possible, 

but perhaps participants prioritised responding faster rather than more accurate. Regardless, there 

is no clear evidence of a speed-accuracy trade off in our results either, as although it was not a 

significant result in either direction, the mean accuracy score for high reward trials was still 

higher than low reward trials. Although the behavioural measurements indicated that our 

paradigm succeeded in eliciting changes in performance depending on task-demand, there was 

no interaction between reward trials and task switching, indicating that reward did not decrease 

interference cost in incentivized switch trials, which had been observed in earlier studies (Chiew 

& Braver, 2016; Kleinsorge & Rinkenauer, 2012). 

  The high temporal resolution of the EEG allowed us to observe changes in brain activity 

in ERP components that are associated with goal-driven behaviour and cognitive control, 

specifically, the CNV, N2 and P3b. As we were interested in the dynamics of proactive control, 

we investigated task preparation during the cue-target interval in addition to the target response 

interval. This allows us to disentangle task-preparation, and task-processing and -execution. The 

CNV in particular has been associated with task-preparation and proactive control and is 
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observed leading up to an event (Tecce, 1972; Schevernels et al., 2014; Li et al., 2018). The 

literature associates the negative amplitude of the CNV with changes in activity of the ACC, the 

supplementary motor area, and the motor cortex (Gómez et al., 2003). Larger amplitudes have 

been observed during preparation of more important or demanding trials (Schevernels et al., 

2014). The N2 component is of interest as it is a correlate of conflict processing in cognitive 

control, also originating from the ACC (Folstein & van Petten, 2004). Here, we investigated the 

modulation of the N2 after the cue as well as during the target-response interval amplitude 

related to the factors task switch and reward and the interaction. Last, we investigated the P3b 

originating from the parietal lobes (Polich, 2007) which is associated with the expenditure of 

cognitive resources during task processing. 

 During the cue-target interval, we observed an increase in CNV activity for both switch 

trials and rewarded trials, which was in line with our expectations and the literature, where 

increased CNV amplitudes during task-preparation are often found for trials that are regarded as 

more important or demanding (Capa et al., 2013; Falkenstein et al., 2003; Li et al., 2018). This 

suggests that both experimental factors, reward conditions and switch conditions, modulated the 

need for proactive cognitive control in order to perform well on the upcoming task, as larger 

CNV amplitudes have been associated with shorter RTs (van den Berg et al., 2014). Regarding 

the N2 during the cue-target interval, we observed larger amplitudes for the switch condition 

compared to repetition trials. This probably reflects a conflict detection related to the need to 

update the task rule after cue onset. Our finding was in line with our expectation that larger N2 

amplitudes would be observed in trials introducing a cognitive conflict (Cudo et al., 2018). 

However, we did not observe systematic modulations of the frontal N2 amplitudes in response to 

the task-cue related to the reward condition. This is in contrast to Van den Berg et al. (2014), 

whose research did find an enhanced cue-N2 for reward conditions, attributing it to the salience 

of their reward prospect. In contrast to our design, however, they manipulated reward on a trial-

by-trial basis, whereas in the design of the present study reward contingencies were manipulated 

in alternating sequences of eight trials. Our results therefore suggest that the previously observed 

reward-related modulation of the N2 in response to the task-cue is not related to high versus low 

reward per se, but possibly reflected reward cue processing. For the cue-target LPP we observed 

an increase in amplitude for switch tasks after cue onset, which was in line with the literature and 

our expectations (Chevalier et al., 2015; Manzi et al., 2011). However, we did not observe an 
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increase in amplitude for reward conditions, which contrasts the literature where the component 

had been found to be responsive to reward stimuli, however in these reports reward was 

manipulated on a trial by trial basis (Broyd et al., 2012; Zhan et al., 2016). For the cue-target 

interval P3b, we observed the same result pattern as for the N2 and LPP: The P3b responded to 

the switch-condition but not to manipulations of reward. As the P3b is associated with the 

updating of task-relevant stimulus information and investment of attentional resources we 

expected it to increase for both conditions. This finding is in contrast to Schmitt et al. (2015), 

who did observe larger P3b amplitudes for motivationally salient cues. Like in the study of Van 

den Berg and colleagues (2014), reward conditions were manipulated on a trial-by-trial basis. 

Again, these results suggest that previous findings regarding cue-related ERP components from 

studies using trial-to-trial modulations of reward conditions possibly reflect reward cue 

processing. Summarising our findings, the N2, LPP and P3 results indicate that task-cue 

processing was affected by the task-switching, but not by reward. Previous studies with different 

results used a trial-by-trial manipulation of reward. The CNV, however, is sensitive to both 

manipulations. 

 During the target-response interval, the N2-amplitudes were modulated by both 

experimental factors, that is by switching tasks and reward conditions. This was in line with our 

expectations as the N2 is associated with inhibition of incorrect response tendencies 

(Nieuwenhuis et al., 2003; Folstein & van Petten, 2004; Deng et al., 2015) and would need the 

participant to pick the correct variable in the presence of competing alternatives. Our result 

suggests that when the target was presented, additional resources were invested into the conflict 

processing within the task whenever it was deemed more important and demanding, which 

corresponds with the literature (Gajewski et al., 2010; Capa et al., 2013;). For the target-related 

P3b, we observed significant differences for both experimental factors, reward condition and 

task-switching. The observation of increased P3b amplitudes for switch trials is in line with the 

literature (Nicholson et al., 2005) and is generally associated with updating processes, 

organization, and implementation of the new task-set (Capa et al., 2013). The finding that high 

reward trials showed a smaller P3b amplitude compared to low reward trials is interesting, as we 

would have expected more cognitive resources to be invested in trials of larger importance. It 

might be the case that the increased reliance on proactive control in high reward trials, an 

increase of preparatory processes that are possibly reflected by the increased CNV amplitudes, 
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allowed for less resources to be invested after target presentation. The larger P3b amplitudes in 

low compared to high reward trials in response to the target could therefore be a correlate of re-

active control. It should be noted that for the EEG results no interaction of reward on switch was 

observed. This is in accordance with Capa et al (2013) who found that both unconscious and 

conscious reward did not affect the switch cost either. 

Conclusion 

 Our findings confirmed that incentive based manipulation of motivation influences goal-

directed behaviour in the sense that more proactive control is induced when participants perceive 

that more reward can be earned, as evidenced by the improved response times and increased 

EEG amplitudes of the preparatory CNV, associated with task preparation, and task-related 

posterior P3b and frontal N2, respectively associated with expenditure of cognitive resources 

during task processing and conflict processing. The lack of responsiveness of the preparatory 

posterior LPP and P3b and frontal N2 or interaction between reward condition and task switch 

might be due to how motivation was manipulated in sequences rather than trial-by-trial, as it can 

be theorised that this resulted in a more general state of proactive readiness instead of being 

primed as a result from the cue as is the case with other studies that manipulated motivation this 

way. 

Limitations and future studies 

 This study has some potential limitations that might have an influence on the results. 

First, due to the baseline preceding the cue-target interval, all interpretations of the ERP results 

in the target-response time window have to be taken with caution due to the presence of the slow 

wave effect of the CNV. As the CNV does not abruptly cease upon target onset, placing a 

baseline directly before target onset could have overlooked the ongoing influence of the CNV, 

which cannot be ruled out. Second, the sample size could be larger, adding more power to the 

analysis. Another aspect is the way reward was manipulated in this study. We made it clear that 

more points could be earned on reward sequences, with more points resulting in a larger 

monetary reward, but we did not translate these points to monetary value within the experiment 

itself. Perhaps that being more clear by using stronger reward associations, such as explicitly 

stating a sequence could either reward 1 cent per trial vs 10 cents per trial would create a 
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stronger reward effect. That being said, our paradigm did show responsiveness to the way reward 

has been handled and can be used for this purpose.    

 For future research it would be interesting to directly compare sequence-based 

manipulation of reward versus trial-by-trial manipulation of reward and its influence on these 

behavioural and EEG measurements, which to our knowledge has not been extensively 

researched before. This could increase understanding of how different temporal handling of 

motivational cues affect the dynamics of performance over time. Investigating whether or not 

this influences the occurrence of an interaction would provide insights in regards to how various 

levels of proactive control interacts with the cost of task-switching. 
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Appendix A 
Matlab preprocessing script 

% PATH VARS 

PATH_EEGLAB        = '/home/plkn/eeglab2021.1/'; 

PATH_LOGFILES      = '/mnt/data_dump/bocotilt/0_logfiles/'; 

PATH_RAW           = '/mnt/data_dump/bocotilt/0_eeg_raw/'; 

PATH_ICSET         = '/mnt/data_dump/bocotilt/1_icset/'; 

PATH_AUTOCLEANED   = '/mnt/data_dump/bocotilt/2_autocleaned/'; 

% Subjects 

subject_list = {'VP08', 'VP09', 'VP17', 'VP25'}; 

% Test switch                  

if false 

   subject_list = {'VP25'}; 

end 

% Init eeglab 

addpath(PATH_EEGLAB); 

eeglab; 

channel_location_file = which('dipplot.m'); 

channel_location_file = channel_location_file(1 : end - length('dipplot.m')); 

channel_location_file = [channel_location_file, 'standard_BESA/standard-10-5-cap385.elp']; 

% Iterate subjects 

for s = 1 : length(subject_list) 

   % participant identifiers 
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   subject = subject_list{s}; 

   id = str2num(subject(3 : 4)); 

   % Load 

   EEG = pop_loadbv(PATH_RAW, [subject, '.vhdr'], [], []); 

   % Fork response button channels 

   RESPS = pop_select(EEG, 'channel', [65, 66]); 

   EEG = pop_select(EEG, 'nochannel', [65, 66]); 

   % Open log file 

   fid = fopen([PATH_LOGFILES, subject, '_degreeLog.txt'], 'r'); 

   % Extract lines as strings 

   logcell = {}; 

   tline = fgetl(fid); 

   while ischar(tline) 

       logcell{end + 1} = tline; 

       tline = fgetl(fid); 

   end 

   % Delete header 

   logcell(1 : 3) = []; 

   % Get colour and tilt positions in probe display (numbers 1-8) 

   positions = []; 

   for l = 1 : length(logcell) 

       line_values = split(logcell{l}, ' '); 

       positions(l, 1) = str2num(line_values{8}); 
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       positions(l, 2) = str2num(line_values{10}); 

   end 

   % Open trial log file 

   fid = fopen([PATH_LOGFILES, subject, '_trials.txt'], 'r'); 

   % Extract lines as strings 

   logcell = {}; 

   tline = fgetl(fid); 

   while ischar(tline) 

       logcell{end + 1} = tline; 

       tline = fgetl(fid); 

   end 

   % Delete header 

   logcell(1 : 3) = []; 

   % Get response side, accuracy and rt from log file 

   trial_log = []; 

   for l = 1 : length(logcell) 

       line_values = split(logcell{l}, '|'); 

       trial_log(l, 1) = str2num(line_values{5}); 

       trial_log(l, 2) = str2num(line_values{6}); 

       trial_log(l, 3) = str2num(line_values{7}); 

   end 

   % Get version of task 

   if id < 8 
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       error("Preprocessing invalid for id < 8."); 

   elseif id == 8 

       EEG.task_version = 1; 

   else 

       EEG.task_version = mod(id, 8); 

       if EEG.task_version == 0 

           EEG.task_version = 8; 

       end 

   end 

   % Event coding 

   EEG = bocotilt_event_coding(EEG, RESPS, positions, trial_log); 

   % Add FCz as empty channel 

   EEG.data(end + 1, :) = 0; 

   EEG.nbchan = size(EEG.data, 1); 

   EEG.chanlocs(end + 1).labels = 'FCz'; 

   % Add channel locations 

   EEG = pop_chanedit(EEG, 'lookup', channel_location_file); 

   % Save original channel locations (for later interpolation) 

   EEG.chanlocs_original = EEG.chanlocs; 

   % Remove FCz again 

   EEG = pop_select(EEG, 'nochannel', [127]); 

   % Remove data at boundaries 

   EEG = pop_rmdat(EEG, {'boundary'}, [0, 1], 1); 
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   % Resample data 

   ERP = pop_resample(EEG, 250); 

   EEG = pop_resample(EEG, 200); 

   % Filter 

   ERP = pop_basicfilter(ERP, [1 : ERP.nbchan], 'Cutoff', [0.01, 30], 'Design', 'butter', 'Filter', 

'bandpass', 'Order', 4, 'RemoveDC', 'on', 'Boundary', 'boundary'); 

   EEG = pop_basicfilter(EEG, [1 : EEG.nbchan], 'Cutoff', [1, 30], 'Design', 'butter', 'Filter', 

'bandpass', 'Order', 4, 'RemoveDC', 'on', 'Boundary', 'boundary'); 

       

   % Bad channel detection 

   [ERP, i1] = pop_rejchan(ERP, 'elec', [1 : ERP.nbchan], 'threshold', 10, 'norm', 'on', 'measure', 

'kurt'); 

   [ERP, i2] = pop_rejchan(ERP, 'elec', [1 : ERP.nbchan], 'threshold', 5, 'norm', 'on', 'measure', 

'prob'); 

   ERP.chans_rejected = [i1, i2]; 

   [EEG, i1] = pop_rejchan(EEG, 'elec', [1 : EEG.nbchan], 'threshold', 10, 'norm', 'on', 'measure', 

'kurt'); 

   [EEG, i2] = pop_rejchan(EEG, 'elec', [1 : EEG.nbchan], 'threshold', 5, 'norm', 'on', 'measure', 

'prob'); 

   EEG.chans_rejected = [i1, i2]; 

   % Reref common average 

   ERP = pop_reref(ERP, []); 

   EEG = pop_reref(EEG, []); 

   % Determine rank of data 



42 
 

   dataRank = sum(eig(cov(double(EEG.data'))) > 1e-6); 

   % Interpolate channels 

   ERP = pop_interp(ERP, ERP.chanlocs_original, 'spherical'); 

   EEG = pop_interp(EEG, EEG.chanlocs_original, 'spherical'); 

   % Epoch data 

   ERP = pop_epoch(ERP, {'trial'}, [-0.8, 2.6], 'newname', [subject '_epoched'], 'epochinfo', 'yes'); 

   ERP = pop_rmbase(ERP, [-200, 0]); 

   EEG = pop_epoch(EEG, {'trial'}, [-0.8, 2.6], 'newname', [subject '_epoched'], 'epochinfo', 

'yes'); 

   EEG = pop_rmbase(EEG, [-200, 0]); 

   % Autoreject trials 

   [ERP, rejsegs] = pop_autorej(ERP, 'nogui', 'on', 'threshold', 1000, 'startprob', 5, 'maxrej', 5); 

   ERP.n_segs_rejected = length(rejsegs); 

   [EEG, rejsegs] = pop_autorej(EEG, 'nogui', 'on', 'threshold', 1000, 'startprob', 5, 'maxrej', 5); 

   EEG.n_segs_rejected = length(rejsegs); 

   % Find standard latency of event in epoch 

   lats = []; 

   for e = 1 : length(ERP.event) 

       lats(end+1) = mod(ERP.event(e).latency, ERP.pnts); 

   end 

   lat_mode = mode(lats); 

   

   % Compile a trialinfo matrix 
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   trialinfo = []; 

   counter = 0; 

   for e = 1 : length(ERP.event) 

       if strcmpi(ERP.event(e).type, 'trial') & (mod(ERP.event(e).latency, ERP.pnts) == lat_mode) 

           counter = counter + 1; 

           % Compile table 

           trialinfo(counter, :) = [id,... 

                                       ERP.event(e).block_nr,... 

                                       ERP.event(e).trial_nr,... 

                                       ERP.event(e).bonustrial,... 

                                       ERP.event(e).tilt_task,... 

                                       ERP.event(e).cue_ax,... 

                                       ERP.event(e).target_red_left,... 

                                       ERP.event(e).distractor_red_left,... 

                                       ERP.event(e).response_interference,... 

                                       ERP.event(e).task_switch,... 

                                       ERP.event(e).correct_response,... 

                                       ERP.event(e).response_side,... 

                                       ERP.event(e).rt,... 

                                       ERP.event(e).accuracy,... 

                                       ERP.event(e).log_response_side,... 

                                       ERP.event(e).log_rt,... 

                                       ERP.event(e).log_accuracy,... 
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                                       ERP.event(e).position_color,... 

                                       ERP.event(e).position_tilt,... 

                                       ERP.event(e).position_target,... 

                                       ERP.event(e).position_distractor,...    

                                       ERP.event(e).sequence_position,... 

                                       ERP.event(e).sequence_length,... 

                                       ]; 

       end 

   end 

   % Save trialinfo 

   ERP.trialinfo = trialinfo; 

   writematrix(trialinfo, [PATH_AUTOCLEANED, subject, '_trialinfo_erp.csv']); 

   % Find standard latency of event in epoch 

   lats = []; 

   for e = 1 : length(EEG.event) 

       lats(end+1) = mod(EEG.event(e).latency, EEG.pnts); 

   end 

   lat_mode = mode(lats); 

   

   

   % Compile a trialinfo matrix 

   trialinfo = []; 

   counter = 0; 
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   for e = 1 : length(EEG.event) 

       if strcmpi(EEG.event(e).type, 'trial') & (mod(EEG.event(e).latency, EEG.pnts) == lat_mode) 

           counter = counter + 1; 

           % Compile table 

           trialinfo(counter, :) = [id,... 

                                       EEG.event(e).block_nr,... 

                                       EEG.event(e).trial_nr,... 

                                       EEG.event(e).bonustrial,... 

                                       EEG.event(e).tilt_task,... 

                                       EEG.event(e).cue_ax,... 

                                       EEG.event(e).target_red_left,... 

                                       EEG.event(e).distractor_red_left,... 

                                       EEG.event(e).response_interference,... 

                                       EEG.event(e).task_switch,... 

                                       EEG.event(e).correct_response,... 

                                       EEG.event(e).response_side,... 

                                       EEG.event(e).rt,... 

                                       EEG.event(e).accuracy,... 

                                       EEG.event(e).log_response_side,... 

                                       EEG.event(e).log_rt,... 

                                       EEG.event(e).log_accuracy,... 

                                       EEG.event(e).position_color,... 

                                       EEG.event(e).position_tilt,... 



46 
 

                                       EEG.event(e).position_target,... 

                                       EEG.event(e).position_distractor,...    

                                       EEG.event(e).sequence_position,... 

                                       EEG.event(e).sequence_length,... 

                                       ]; 

       end 

   end 

   % Save trialinfo 

   EEG.trialinfo = trialinfo; 

   writematrix(trialinfo, [PATH_AUTOCLEANED, subject, '_trialinfo.csv']); 

   % Runica & ICLabel 

   EEG = pop_runica(EEG, 'extended', 1, 'interrupt', 'on', 'PCA', dataRank); 

   EEG = iclabel(EEG); 

   % Find nobrainer 

   EEG.nobrainer = find(EEG.etc.ic_classification.ICLabel.classifications(:, 1) < 0.3 | 

EEG.etc.ic_classification.ICLabel.classifications(:, 3) > 0.3); 

   % Copy ICs to erpset 

   ERP = pop_editset(ERP, 'icachansind', 'EEG.icachansind', 'icaweights', 'EEG.icaweights', 

'icasphere', 'EEG.icasphere'); 

   ERP.etc = EEG.etc; 

   ERP.nobrainer = EEG.nobrainer; 

   % Save IC set 

   pop_saveset(ERP, 'filename', [subject, '_icset_erp.set'], 'filepath', PATH_ICSET, 'check', 'on'); 
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   pop_saveset(EEG, 'filename', [subject, '_icset.set'], 'filepath', PATH_ICSET, 'check', 'on'); 

   % Remove components 

   ERP = pop_subcomp(ERP, ERP.nobrainer, 0); 

   EEG = pop_subcomp(EEG, EEG.nobrainer, 0); 

   % Save clean data 

   pop_saveset(ERP, 'filename', [subject, '_cleaned_erp.set'], 'filepath', PATH_AUTOCLEANED, 

'check', 'on'); 

   pop_saveset(EEG, 'filename', [subject, '_cleaned.set'], 'filepath', PATH_AUTOCLEANED, 

'check', 'on'); 

   

end 

Matlab ERP processing 

% Path variables 

PATH_EEGLAB      = '/home/plkn/eeglab2021.1/'; 

PATH_AUTOCLEANED = '/mnt/data_dump/bocotilt/2_autocleaned/'; 

% Subject list 

subject_list = {'VP08', 'VP09', 'VP17', 'VP25'}; 

% Init eeglab 

addpath(PATH_EEGLAB); 

eeglab; 

% This is where we collect the ERPs as a subject x condition x times matrix 

erp_matrix = []; 

% Loop subjects 
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for s = 1 : length(subject_list) 

   % Load data 

   EEG = pop_loadset('filename', [subject_list{s} '_cleaned_erp.set'], 'filepath', 

PATH_AUTOCLEANED, 'loadmode', 'all'); 

   % Trial data 

   % Columns: 

   %  1: id 

   %  2: block_nr 

   %  3: trial_nr 

   %  4: bonustrial 

   %  5: tilt_task 

   %  6: cue_ax 

   %  7: target_red_left 

   %  8: distractor_red_left 

   %  9: response_interference 

   % 10: task_switch 

   % 11: correct_response 

   % 12: response_side 

   % 13: rt 

   % 14: accuracy 

   % 15: log_response_side 

   % 16: log_rt 

   % 17: log_accuracy 
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   % 18: position_color 

   % 19: position_tilt 

   % 20: position_target 

   % 21: position_distractor 

   % 22: sequence_position 

   % 23: sequence_length 

   trialinfo = EEG.trialinfo; 

   % Time vector 

   erp_times = EEG.times; 

   

   % The data matrix: channels x times x trials 

   eeg_data = EEG.data; 

   % Get index of channel 

   channel_idx = []; 

   %channels = {'Fz', 'F1', 'F2', 'FC1', 'FC2', 'FFC1h', 'FFC2h'}; 

   %channels = {'Pz', 'POz', 'PPO1h', 'PPO2h'}; 

   channels = {'POz'}; 

   for ch = 1 : length(channels) 

       channel_idx(end + 1) = find(strcmp({EEG.chanlocs.labels}, channels{ch})); 

   end 

   % Average data across selected channels (result is 2d matrix, times x trials) 

   chan_data = squeeze(mean(eeg_data(channel_idx, :, :), 1)); 

   % Define baseline 
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   bl_win = [-200, 0]; 

   bl_idx = erp_times >= bl_win(1) & erp_times <= bl_win(2); 

   chan_data = chan_data - mean(chan_data(bl_idx, :)); 

   % Get indices of correct standard and bonus trials for repetition and switch trials 

   idx_std_rep = trialinfo(:, 17) == 1 & trialinfo(:, 2) > 4 & trialinfo(:, 4) == 0 & trialinfo(:, 10) 

== 0; 

   idx_std_swi = trialinfo(:, 17) == 1 & trialinfo(:, 2) > 4 & trialinfo(:, 4) == 0 & trialinfo(:, 10) 

== 1; 

   idx_bon_rep = trialinfo(:, 17) == 1 & trialinfo(:, 2) > 4 & trialinfo(:, 4) == 1 & trialinfo(:, 10) 

== 0; 

   idx_bon_swi = trialinfo(:, 17) == 1 & trialinfo(:, 2) > 4 & trialinfo(:, 4) == 1 & trialinfo(:, 10) 

== 1; 

   % Calculate ERPs by averaging across trials within each condition combination 

   erp_std_rep = mean(chan_data(:, idx_std_rep), 2); 

   erp_std_swi = mean(chan_data(:, idx_std_swi), 2); 

   erp_bon_rep = mean(chan_data(:, idx_bon_rep), 2); 

   erp_bon_swi = mean(chan_data(:, idx_bon_swi), 2); 

   % Get indices of correct standard and bonus trials for start- versus end-of-sequence trials 

   idx_std_start = trialinfo(:, 17) == 1 & trialinfo(:, 2) > 4 & trialinfo(:, 4) == 0 & trialinfo(:, 22) 

<= 4; 

   idx_std_end   = trialinfo(:, 17) == 1 & trialinfo(:, 2) > 4 & trialinfo(:, 4) == 0 & trialinfo(:, 22) 

> 4; 

   idx_bon_start = trialinfo(:, 17) == 1 & trialinfo(:, 2) > 4 & trialinfo(:, 4) == 1 & trialinfo(:, 22) 

<= 4; 



51 
 

   idx_bon_end   = trialinfo(:, 17) == 1 & trialinfo(:, 2) > 4 & trialinfo(:, 4) == 1 & trialinfo(:, 22) 

> 4; 

   % Calculate ERPs by averaging across trials within each condition combination 

   erp_std_start = mean(chan_data(:, idx_std_start), 2); 

   erp_std_end   = mean(chan_data(:, idx_std_end  ), 2); 

   erp_bon_start = mean(chan_data(:, idx_bon_start), 2); 

   erp_bon_end   = mean(chan_data(:, idx_bon_end  ), 2); 

   % Copy ERPs to ERP-result matrix 

   erp_matrix(s, 1, :) = erp_std_rep; 

   erp_matrix(s, 2, :) = erp_std_swi; 

   erp_matrix(s, 3, :) = erp_bon_rep; 

   erp_matrix(s, 4, :) = erp_bon_swi; 

   erp_matrix(s, 5, :) = erp_std_start; 

   erp_matrix(s, 6, :) = erp_std_end; 

   erp_matrix(s, 7, :) = erp_bon_start; 

   erp_matrix(s, 8, :) = erp_bon_end; 

end % End subject loop 

% Average ERPs across subjects -> grand averages as condition x time matrix 

grand_averages = squeeze(mean(erp_matrix, 1)); 

% Create a plot of ERPs, averaged across subjects 

figure; 

plot(erp_times, grand_averages(1, :), '-', 'LineWidth', 2, 'Color', 'k'); 

hold on; 
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plot(erp_times, grand_averages(2, :), ':', 'LineWidth', 2, 'Color', 'k'); 

plot(erp_times, grand_averages(3, :), '-', 'LineWidth', 2, 'Color', 'r'); 

plot(erp_times, grand_averages(4, :), ':', 'LineWidth', 2, 'Color', 'r'); 

legend({'standard-repeat', 'standard-switch', 'bonus-repeat', 'bonus-switch'}); 

xline(0); 

xline(800); 

xlim([-500, 2000]); 

% Create a plot of ERPs, averaged across subjects 

figure; 

plot(erp_times, grand_averages(5, :), '-', 'LineWidth', 2, 'Color', 'k'); 

hold on; 

plot(erp_times, grand_averages(6, :), ':', 'LineWidth', 2, 'Color', 'k'); 

plot(erp_times, grand_averages(7, :), '-', 'LineWidth', 2, 'Color', 'r'); 

plot(erp_times, grand_averages(8, :), ':', 'LineWidth', 2, 'Color', 'r'); 

legend({'standard-start', 'standard-end', 'bonus-start', 'bonus-end'}); 

xline(0); 

xline(800); 

xlim([-500, 2000]); 

 

 

Matlab behavioural analysis 

 

% Path to behavioral data 
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path_behavioral_data = 'C:\Users\woute\Desktop\BoCoTilt Datafiles/'; 

% Load data 

load([path_behavioral_data, 'behavioral_data.mat']); 

% Determine number of participants 

n_subjects = size(behavior_rt, 1); 

% Perform rmANOVA for rt 

varnames = {'id', 'b1', 'b2', 'b3', 'b4'}; 

t = table([1 : n_subjects]', behavior_rt(:, 1), behavior_rt(:, 2), behavior_rt(:, 3), behavior_rt(:, 4), 

'VariableNames', varnames); 

within = table({'std'; 'std'; 'bon'; 'bon'}, {'rep'; 'swi'; 'rep'; 'swi'}, 'VariableNames', {'bonus', 

'switch'}); 

rm = fitrm(t, 'b1-b4~1', 'WithinDesign', within); 

anova_rt = ranova(rm, 'WithinModel', 'bonus + switch + bonus*switch'); 

anova_rt 

% Perform rmANOVA for accuracy 

varnames = {'id', 'b1', 'b2', 'b3', 'b4'}; 

t = table([1 : n_subjects]', behavior_ac(:, 1), behavior_ac(:, 2), behavior_ac(:, 3), behavior_ac(:, 

4), 'VariableNames', varnames); 

within = table({'std'; 'std'; 'bon'; 'bon'}, {'rep'; 'swi'; 'rep'; 'swi'}, 'VariableNames', {'bonus', 

'switch'}); 

rm = fitrm(t, 'b1-b4~1', 'WithinDesign', within); 

anova_ac = ranova(rm, 'WithinModel', 'bonus + switch + bonus*switch'); 

anova_ac 

%1 st rep, 2 st switch, 3 bonus rep, 4 bonus switch 
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%means, st.dev and st.error for response times across participants 

mean_rt = mean(behavior_rt) 

std_rt = std(behavior_rt) 

stderror_rt= std(behavior_rt) / sqrt( length(behavior_rt)) 

%means, st.dev and st.error for accuracy across participants 

mean_ac = mean(behavior_ac) 

std_ac = std(behavior_ac) 

stderror_ac= std(behavior_ac) / sqrt( length(behavior_ac)) 

%Response barchart, labels + standard error of the mean 

figure 

bar(mean(behavior_rt)) 

%title('Mean response times in ms across conditions') 

xlabel ('Conditions') 

ylabel ('Average response times in ms') 

set(gca,'xticklabel',{'Low reward Repetition','Low reward Switch','High reward Repetition', 'High 

reward Switch'}); 

ylim([450, 550]) 

%errorbar rt 

hold on 

er = errorbar(mean_rt,stderror_rt); 

er.Color = [0 0 0];                            

er.LineStyle = 'none';  

hold off 
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saveas(gcf,'RT+SEM.png') 

%Accuracy barchart, labels + standard error of the mean 

figure 

bar(mean(behavior_ac)) 

%title('Mean accuracy rates in percentage across conditions') 

xlabel ('Conditions') 

ylabel ('Average Percentage of correct answers') 

set(gca,'xticklabel',{'Low reward Repetition','Low reward Switch','High reward Repetition', 'High 

reward Switch'}); 

ylim([.85, .95]) 

%errorbar ac 

hold on 

er = errorbar(mean_ac,stderror_ac); 

er.Color = [0 0 0];                            

er.LineStyle = 'none';  

hold off 

saveas(gcf,'AC+SEM.png') 

 

Matlab EEG analysis 

 

% path variables 

path_erp_data = 'C:\Users\woute\Desktop\BoCoTilt Datafiles\'; 

path_eeglab   = 'C:\Users\woute\AppData\Roaming\MathWorks\MATLAB Add-

Ons\Collections\EEGLAB'; 
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path_results  = 'C:\Users\woute\Desktop\BoCoTilt Datafiles\'; 

% Initialize eeglab 

addpath(path_eeglab); 

eeglab; 

% Load the erp data: 

load([path_erp_data, 'erp_bocotilt.mat']); 

% defining frontal and posterior electrode patches that we want to use for analyses 

frontal_idx = [33, 17, 34, 65, 66, 21, 127, 22, 97, 98, 35, 18, 36]; 

posterior_idx = [37, 19, 38, 71, 72, 45, 63, 46, 107, 108]; 

% Plot these electrode patches to show which electrodes are included 

figure() 

subplot(1, 2, 1) 

topoplot(ones(1, 127), chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'off', 'emarker2', {frontal_idx, '.', 'k', 14, 1}); 

colormap('white') 

title('frontal electrode patch') 

subplot(1, 2, 2) 

topoplot(ones(1, 127), chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'off', 'emarker2', {posterior_idx, '.', 'k', 14, 1}); 

colormap('white') 

title('posterior electrode patch') 

% Plotting the posterior electrode ERPS 

erp_posterior_low_reward_repeat  = squeeze(mean(erp_matrix(:, 1, 1, posterior_idx, :), [1, 4])); 
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erp_posterior_low_reward_switch  = squeeze(mean(erp_matrix(:, 1, 2, posterior_idx, :), [1, 4])); 

erp_posterior_high_reward_repeat = squeeze(mean(erp_matrix(:, 2, 1, posterior_idx, :), [1, 4])); 

erp_posterior_high_reward_switch = squeeze(mean(erp_matrix(:, 2, 2, posterior_idx, :), [1, 4])); 

% plotting all posterior conditions in a single plot 

figure() 

plot(eeg_times, erp_posterior_low_reward_repeat, 'k-', 'LineWidth', 2) 

hold on; 

plot(eeg_times, erp_posterior_low_reward_switch, 'k:', 'LineWidth', 2) 

plot(eeg_times, erp_posterior_high_reward_repeat, 'r-', 'LineWidth', 2) 

plot(eeg_times, erp_posterior_high_reward_switch, 'r:', 'LineWidth', 2) 

title('Posterior electrodes ERP') 

legend({'low-repeat', 'low-switch', 'high-repeat', 'high-switch', 'target-onset'}) 

%xline([0, 800, 300, 400, 1100, 1200]) 

xlabel ('Time in ms') 

ylabel ('Voltage (μV)') 

% Plotting the frontal electrode ERPs 

erp_frontal_low_reward_repeat  = squeeze(mean(erp_matrix(:, 1, 1, frontal_idx, :), [1, 4])); 

erp_frontal_low_reward_switch  = squeeze(mean(erp_matrix(:, 1, 2, frontal_idx, :), [1, 4])); 

erp_frontal_high_reward_repeat = squeeze(mean(erp_matrix(:, 2, 1, frontal_idx, :), [1, 4])); 

erp_frontal_high_reward_switch = squeeze(mean(erp_matrix(:, 2, 2, frontal_idx, :), [1, 4])); 

% Plotting all frontal conditions in a single plot 

figure() 

plot(eeg_times, erp_frontal_low_reward_repeat, 'k-', 'LineWidth', 2) 
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hold on; 

plot(eeg_times, erp_frontal_low_reward_switch, 'k:', 'LineWidth', 2) 

plot(eeg_times, erp_frontal_high_reward_repeat, 'r-', 'LineWidth', 2) 

plot(eeg_times, erp_frontal_high_reward_switch, 'r:', 'LineWidth', 2) 

title('Frontal electrodes ERP') 

legend({'low-repeat', 'low-switch', 'high-repeat', 'high-switch', 'target-onset'}) 

%xline([0, 800, 325, 375, 440, 1025, 1075]) 

xlabel ('Time in ms') 

ylabel ('Voltage (μV)') 

%Inspecting the posterior P3 on cue anova 

% Reset out time indices 

time_idx = eeg_times >= 300 & eeg_times <= 400; 

% We use loops to iterate participants and conditions 

% We want to store our results here (initialize as an empty matrix) 

anova_table_cueP3 = []; 

% Loop participants 

for s = 1 : size(erp_matrix, 1) % First dimension has length of number of participants... 

   % A counter 

   counter = 0; 

   % Loop high versus low reward 

   for rew = 1 : 2 

       % Loop repeat / switch 

       for sw = 1 : 2 
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           % Since we have a specific subject-condition combination here, we 

           % can index the matrix accordingly.  

           erp_value = squeeze(mean(erp_matrix(s, rew, sw, posterior_idx, time_idx), [4, 5])); 

           % Increase counter 

           counter = counter + 1; 

           % Now we store this value in the 'anova_table'. We need the counter for this to 

           % find the correct column. 

           anova_table_cueP3(s, counter) = erp_value; 

       end 

   end 

end 

% You can now save this table as a csv file 

writematrix(anova_table_cueP3, [path_results, 'anova_table_cueP3.csv']); 

% Performing an ANOVA in Matlab: 

varnames = {'id', 'cond1', 'cond2', 'cond3', 'cond4'}; 

t = table([1 : size(erp_matrix, 1)]', anova_table_cueP3(:, 1), anova_table_cueP3(:, 2), 

anova_table_cueP3(:, 3), anova_table_cueP3(:, 4), 'VariableNames', varnames); 

within = table({'std'; 'std'; 'bon'; 'bon'}, {'rep'; 'swi'; 'rep'; 'swi'}, 'VariableNames', {'bonus', 

'switch'}); 

rm = fitrm(t, 'cond1-cond4~1', 'WithinDesign', within); 

anova_posterior_p3cue = ranova(rm, 'WithinModel', 'bonus + switch + bonus*switch'); 

% Print anova results to matlab console 

anova_posterior_p3cue 
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%creating a P3 cue onset topography 

time_idx = eeg_times >= 300 & eeg_times <= 400; 

% 'squeeze()' gets rid of the now useless temporal dimension: 

erp_matrix_timewin = squeeze(mean(erp_matrix(:, :, :, :, time_idx), 5)); 

% Again, select repeat and switch in the high reward condition and average across participants. 

% The resulting data is a vector of length 127. One value for each electrode. 

topo_values_repeat = squeeze(mean(erp_matrix_timewin(:, 2, 1, :), 1)); 

topo_values_switch = squeeze(mean(erp_matrix_timewin(:, 2, 2, :), 1)); 

% Lets use eeglabs topoplot function to plot the mV values of this timewindow for both 

conditions: 

figure() 

subplot(1, 2, 1) 

topoplot(topo_values_repeat, chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'on'); 

title('repeat in high reward - 300-400 ms') 

colorbar() 

clim([-6, 6]) 

subplot(1, 2, 2) 

topoplot(topo_values_switch, chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'on'); 

title('switch in high reward - 300-400 ms') 

colorbar() 

clim([-6, 6]) 
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%Inspecting Posterior P3 on Task-Onset ANOVA 

%reset the time windows. 

time_idx = eeg_times >= 1100 & eeg_times <= 1200; 

% We use loops to iterate participants and conditions 

% We want to store our results here (initialize as an empty matrix) 

anova_table_taskP3 = []; 

% Loop participants 

for s = 1 : size(erp_matrix, 1)  

   % A counter 

   counter = 0; 

   % Loop high versus low reward 

   for rew = 1 : 2 

       % Loop repeat / switch 

       for sw = 1 : 2 

           % Since we have a specific subject-condition combination here, we 

           % can index the matrix accordingly. 

           erp_value = squeeze(mean(erp_matrix(s, rew, sw, posterior_idx, time_idx), [4, 5])); 

           % Increase counter 

           counter = counter + 1; 

           % Now we store this value in the 'anova_table'. We need the counter for this to 

           % find the correct column. 

           anova_table_taskP3(s, counter) = erp_value; 

       end 
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   end 

end 

% You can now save this table as a csv file 

writematrix(anova_table_taskP3, [path_results, 'anova_table_taskP3.csv']); 

% Matlab ANOVA 

varnames = {'id', 'cond1', 'cond2', 'cond3', 'cond4'}; 

t = table([1 : size(erp_matrix, 1)]', anova_table_taskP3(:, 1), anova_table_taskP3(:, 2), 

anova_table_taskP3(:, 3), anova_table_taskP3(:, 4), 'VariableNames', varnames); 

within = table({'std'; 'std'; 'bon'; 'bon'}, {'rep'; 'swi'; 'rep'; 'swi'}, 'VariableNames', {'bonus', 

'switch'}); 

rm = fitrm(t, 'cond1-cond4~1', 'WithinDesign', within); 

anova_posterior_p3task = ranova(rm, 'WithinModel', 'bonus + switch + bonus*switch'); 

% Print anova results to matlab console 

anova_posterior_p3task 

% Creating a p3 target onset topography 

time_idx = eeg_times >= 1100 & eeg_times <= 1200; 

% 'squeeze()' gets rid of the now useless temporal dimension: 

erp_matrix_timewin = squeeze(mean(erp_matrix(:, :, :, :, time_idx), 5)); 

%  Select repeat and switch in the high reward condition and average across participants. 

% The resulting data is avector of length 127. One value for each electrode. 

topo_values_repeat = squeeze(mean(erp_matrix_timewin(:, 2, 1, :), 1)); 

topo_values_switch = squeeze(mean(erp_matrix_timewin(:, 2, 2, :), 1)); 
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% Lets use eeglabs topoplot function to plot the mV values of this timewindow for both 

conditions: 

figure() 

subplot(1, 2, 1) 

topoplot(topo_values_repeat, chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'on'); 

title('repeat in high reward - 1100-1200 ms') 

colorbar() 

clim([-6, 6]) 

subplot(1, 2, 2) 

topoplot(topo_values_switch, chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'on'); 

title('switch in high reward - 1100-1200 ms') 

colorbar() 

clim([-6, 6]) 

%Inspecting the posterior LPP on cue anova 

% Reset out time indices 

time_idx = eeg_times >= 400 & eeg_times <= 800; 

% We use loops to iterate participants and conditions 

% We want to store our results here (initialize as an empty matrix) 

anova_table_cueLPP = []; 

 

% Loop participants 

for s = 1 : size(erp_matrix, 1) % First dimension has length of number of participants... 

 

    % A counter 

    counter = 0; 
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    % Loop high versus low reward 

    for rew = 1 : 2 

 

        % Loop repeat / switch 

        for sw = 1 : 2 

 

            % Since we have a specific subject-condition combination here, we 

            % can index the matrix accordingly. In time and space we are not specific 

            % yet, as we have a patch of electrodes and multiple timepoints constitute 

            % The time window. So we average across these dimensions.  

            erp_value = squeeze(mean(erp_matrix(s, rew, sw, posterior_idx, time_idx), [4, 5])); 

 

            % Increase counter 

            counter = counter + 1; 

 

            % Now we store this value in the 'anova_table'. We need the counter for this to 

            % find the correct column. 

            anova_table_cueLPP(s, counter) = erp_value; 

 

        end 

    end 

end 

 

% You can now save this table as a csv file to use in R or SPSS or whatever... 

writematrix(anova_table_cueLPP, [path_results, 'anova_table_cueLPP.csv']); 

 

% As an alternative, Matlab has also an ANOVA function. It is a bit clunky, but 

% if you know how to set it up it works just fine.  

% An example: 

varnames = {'id', 'cond1', 'cond2', 'cond3', 'cond4'}; 



65 
 

t = table([1 : size(erp_matrix, 1)]', anova_table_cueLPP(:, 1), anova_table_cueLPP(:, 2), 

anova_table_cueLPP(:, 3), anova_table_cueLPP(:, 4), 'VariableNames', varnames); 

within = table({'std'; 'std'; 'bon'; 'bon'}, {'rep'; 'swi'; 'rep'; 'swi'}, 'VariableNames', {'bonus', 

'switch'}); 

rm = fitrm(t, 'cond1-cond4~1', 'WithinDesign', within); 

anova_posterior_LPPcue = ranova(rm, 'WithinModel', 'bonus + switch + bonus*switch'); 

 

% Print anova results to matlab console 

anova_posterior_LPPcue 

 

%Now for a nice LPP cue onset topography 

time_idx = eeg_times >= 400 & eeg_times <= 800; 

% 'squeeze()' the again gets rid of the now useless temporal dimension: 

erp_matrix_timewin = squeeze(mean(erp_matrix(:, :, :, :, time_idx), 5)); 

% Again, select repeat and switch in the high reward condition and average scross participants. 

% The resulting data is avector of length 127. One value for each electrode. 

topo_values_repeat = squeeze(mean(erp_matrix_timewin(:, 2, 1, :), 1)); 

topo_values_switch = squeeze(mean(erp_matrix_timewin(:, 2, 2, :), 1)); 

% Lets use eeglabs topoplot function to plot the mV values of this timewindow for both 

conditions: 

figure() 

subplot(1, 2, 1) 

topoplot(topo_values_repeat, chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'on'); 

title('repeat in high reward - 600-800 ms') 

colorbar() 

clim([-6, 6]) 

subplot(1, 2, 2) 

topoplot(topo_values_switch, chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'on'); 

title('switch in high reward - 600-800 ms') 
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colorbar() 

clim([-6, 6]) 

 

% Frontal cue-onset N2. 

%reset the time windows. 

time_idx = eeg_times >= 325 & eeg_times <= 375; 

% We use loops to iterate participants and conditions 

% We want to store our results here (initialize as an empty matrix) 

anova_table_cueN2 = []; 

% Loop participants 

for s = 1 : size(erp_matrix, 1) % First dimension has length of number of participants... 

   % A counter 

   counter = 0; 

   % Loop high versus low reward 

   for rew = 1 : 2 

       % Loop repeat / switch 

       for sw = 1 : 2 

           % Since we have a specific subject-condition combination here, we 

           % can index the matrix accordingly.  

           erp_value = squeeze(mean(erp_matrix(s, rew, sw, frontal_idx, time_idx), [4, 5])); 

           % Increase counter 

           counter = counter + 1; 

           % Now we store this value in the 'anova_table'. We need the counter for this to 
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           % find the correct column. 

           anova_table_cueN2(s, counter) = erp_value; 

       end 

   end 

end 

% You can now save this table as a csv file  

writematrix(anova_table_cueN2, [path_results, 'anova_table_cueN2.csv']); 

% Matlab ANOVA 

varnames = {'id', 'cond1', 'cond2', 'cond3', 'cond4'}; 

t = table([1 : size(erp_matrix, 1)]', anova_table_cueN2(:, 1), anova_table_cueN2(:, 2), 

anova_table_cueN2(:, 3), anova_table_cueN2(:, 4), 'VariableNames', varnames); 

within = table({'std'; 'std'; 'bon'; 'bon'}, {'rep'; 'swi'; 'rep'; 'swi'}, 'VariableNames', {'bonus', 

'switch'}); 

rm = fitrm(t, 'cond1-cond4~1', 'WithinDesign', within); 

anova_frontal_cueN2 = ranova(rm, 'WithinModel', 'bonus + switch + bonus*switch'); 

% Print anova results to matlab console 

anova_frontal_cueN2 

%n2 cue onset topography 

time_idx = eeg_times >= 325 & eeg_times <= 375; 

% 'squeeze()' gets rid of the now useless temporal dimension: 

erp_matrix_timewin = squeeze(mean(erp_matrix(:, :, :, :, time_idx), 5)); 

% Again, select repeat and switch in the high reward condition and average across participants. 

% The resulting data is avector of length 127. One value for each electrode. 



68 
 

topo_values_repeat = squeeze(mean(erp_matrix_timewin(:, 2, 1, :), 1)); 

topo_values_switch = squeeze(mean(erp_matrix_timewin(:, 2, 2, :), 1)); 

% Lets use eeglabs topoplot function to plot the mV values of this timewindow for both 

conditions: 

figure() 

subplot(1, 2, 1) 

topoplot(topo_values_repeat, chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'on'); 

title('repeat in high reward - 325-375 ms') 

colorbar() 

clim([-6, 6]) 

subplot(1, 2, 2) 

topoplot(topo_values_switch, chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'on'); 

title('switch in high reward - 325-375 ms') 

colorbar() 

clim([-6, 6]) 

%Now for the frontal N2 task onset. 

%reset the time windows. 

time_idx = eeg_times >= 1025 & eeg_times <= 1075; 

% We use loops to iterate participants and conditions 

% We want to store our results here (initialize as an empty matrix) 

anova_table_taskN2 = []; 
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% Loop participants 

for s = 1 : size(erp_matrix, 1) % First dimension has length of number of participants... 

   % A counter 

   counter = 0; 

   % Loop high versus low reward 

   for rew = 1 : 2 

       % Loop repeat / switch 

       for sw = 1 : 2 

           % Since we have a specific subject-condition combination here, we 

           % can index the matrix accordingly.  

           erp_value = squeeze(mean(erp_matrix(s, rew, sw, frontal_idx, time_idx), [4, 5])); 

           % Increase counter 

           counter = counter + 1; 

           % Now we store this value in the 'anova_table'. We need the counter for this to 

           % find the correct column. 

           anova_table_taskN2(s, counter) = erp_value; 

       end 

   end 

end 

% You can now save this table as a csv file to use in R or SPSS or whatever... 

writematrix(anova_table_taskN2, [path_results, 'anova_table_cueN2.csv']); 

% Matlab ANOVA 

varnames = {'id', 'cond1', 'cond2', 'cond3', 'cond4'}; 
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t = table([1 : size(erp_matrix, 1)]', anova_table_taskN2(:, 1), anova_table_taskN2(:, 2), 

anova_table_taskN2(:, 3), anova_table_taskN2(:, 4), 'VariableNames', varnames); 

within = table({'std'; 'std'; 'bon'; 'bon'}, {'rep'; 'swi'; 'rep'; 'swi'}, 'VariableNames', {'bonus', 

'switch'}); 

rm = fitrm(t, 'cond1-cond4~1', 'WithinDesign', within); 

anova_frontal_taskN2 = ranova(rm, 'WithinModel', 'bonus + switch + bonus*switch'); 

% Print anova results to matlab console 

anova_frontal_taskN2 

%n2 target onset topography 

time_idx = eeg_times >= 1025 & eeg_times <= 1075; 

% 'squeeze()' gets rid of the now useless temporal dimension: 

erp_matrix_timewin = squeeze(mean(erp_matrix(:, :, :, :, time_idx), 5)); 

% Again, select repeat and switch in the high reward condition and average across participants. 

% The resulting data is a vector of length 127. One value for each electrode. 

topo_values_repeat = squeeze(mean(erp_matrix_timewin(:, 2, 1, :), 1)); 

topo_values_switch = squeeze(mean(erp_matrix_timewin(:, 2, 2, :), 1)); 

% Lets use eeglabs topoplot function to plot the mV values of this timewindow for both 

conditions: 

figure() 

subplot(1, 2, 1) 

topoplot(topo_values_repeat, chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'on'); 

title('repeat in high reward - 1025-1075 ms') 

colorbar() 
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clim([-6, 6]) 

subplot(1, 2, 2) 

topoplot(topo_values_switch, chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'on'); 

title('switch in high reward - 1025-1075 ms') 

colorbar() 

clim([-6, 6]) 

%Now for the CNV. 

%reset the time windows. 

time_idx = eeg_times >= 440 & eeg_times <= 800; 

% We use loops to iterate participants and conditions 

% We want to store our results here (initialize as an empty matrix) 

anova_table_CNV = []; 

% Loop participants 

for s = 1 : size(erp_matrix, 1) % First dimension has length of number of participants... 

   % A counter 

   counter = 0; 

   % Loop high versus low reward 

   for rew = 1 : 2 

       % Loop repeat / switch 

       for sw = 1 : 2 

           % Since we have a specific subject-condition combination here, we 

           % can index the matrix accordingly. 
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           erp_value = squeeze(mean(erp_matrix(s, rew, sw, frontal_idx, time_idx), [4, 5])); 

           % Increase counter 

           counter = counter + 1; 

           % Now we store this value in the 'anova_table'. We need the counter for this to 

           % find the correct column. 

           anova_table_CNV(s, counter) = erp_value; 

       end 

   end 

end 

% You can now save this table as a csv file  

writematrix(anova_table_CNV, [path_results, 'anova_table_CNV.csv']); 

% Matlab ANOVA 

varnames = {'id', 'cond1', 'cond2', 'cond3', 'cond4'}; 

t = table([1 : size(erp_matrix, 1)]', anova_table_CNV(:, 1), anova_table_CNV(:, 2), 

anova_table_CNV(:, 3), anova_table_CNV(:, 4), 'VariableNames', varnames); 

within = table({'std'; 'std'; 'bon'; 'bon'}, {'rep'; 'swi'; 'rep'; 'swi'}, 'VariableNames', {'bonus', 

'switch'}); 

rm = fitrm(t, 'cond1-cond4~1', 'WithinDesign', within); 

anova_frontal_CNV = ranova(rm, 'WithinModel', 'bonus + switch + bonus*switch'); 

% Print anova results to matlab console 

anova_frontal_CNV 

%cnv timewindow topography 

time_idx = eeg_times >= 440 & eeg_times <= 800; 
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% 'squeeze()' the again gets rid of the now useless temporal dimension: 

erp_matrix_timewin = squeeze(mean(erp_matrix(:, :, :, :, time_idx), 5)); 

% Again, select repeat and switch in the high reward condition and average scross participants. 

% The resulting data is avector of length 127. One value for each electrode. 

topo_values_repeat = squeeze(mean(erp_matrix_timewin(:, 2, 1, :), 1)); 

topo_values_switch = squeeze(mean(erp_matrix_timewin(:, 2, 2, :), 1)); 

% Lets use eeglabs topoplot function to plot the mV values of this timewindow for both 

conditions: 

figure() 

subplot(1, 2, 1) 

topoplot(topo_values_repeat, chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'on'); 

title('repeat in high reward - 440-800 ms') 

colorbar() 

clim([-6, 6]) 

subplot(1, 2, 2) 

topoplot(topo_values_switch, chanlocs, 'plotrad', 0.7, 'intrad', 0.7, 'intsquare', 'on', 'conv', 'off', 

'electrodes', 'on'); 

title('switch in high reward - 440-800 ms') 

colorbar() 

clim([-6, 6]) 
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