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Abstract

Motor sequence learning (MSL) has a substantial impact on our day-to-day lives, as this type

of learning is at the basis of many skills. A well-established experimental paradigm to research

MSL is the Discrete Sequence Production (DSP) task, which investigates explicit MSL with

key-press finger movements. From results of the DSP task, the Cognitive framework for

Sequential Motor Behaviour (C-SMB) aims to outline the execution and learning of motor

skills. An important real-life application of motor skills is the ability to apply learned skills in

novel contexts, i.e. with novel effectors. However, in their classic forms, the DSP and C-SMB

mostly describe isolated key-press movements, which do not account for the entire spectrum of

movements that underlie many motor skills. Larger, whole-body movements are more

complex, focus more on motor execution and are another important part of the spectrum of

real-life movements. We conducted a Go/No-Go Dance Step Discrete Sequence Production

(DS-DSP) task with 6-element sequences using the hands or feet. A total of 40 participants

took part in the experiment, of which half learned two sequences with their hands and the

other half with their feet, by 144 repetitions per sequence divided over six practice blocks. To

investigate transfer, in the testing phase, participants executed the sequences they learned in

the practice phase with the novel effector. Participants who learned with their hands learned

faster, showed no concatenation, and had more difficulty integrating new sequences with their

learning effector. On the contrary, participants who learned with their feet were slower and

showed concatenation. Additionally, participants in the hands group did not transfer motor

sequence knowledge to the feet, indicating an effector-dependent sequence representation,

which is known to be used at a later learning stage. Simultaneously, participants in the feet

group succeeded at transferring motor sequence knowledge to the hands, indicating a

visuo-spatial sequence representation, which is known to be used at an earlier learning stage.

Finally, participants who practiced with the hands effector had more difficulty integrating two

new sequences after learning compared to participants who used the foot effector.

Keywords: Motor sequence learning, discrete sequence production task, concatenation,

effector-independent sequence representation, visuo-spatial sequence representation
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1. Introduction

The importance of motor sequence learning (MSL) can be seen throughout our

day-to-day lives, by all behaviours that are based on a learned order of movements. Think of

lacing your shoes, typing on a keyboard, or riding a bike (Barnhoorn et al., 2016). Research

suggests that these behaviours can be flexibly applied throughout the body, for example,

writing with your non-dominant hand or using a bike with pedals for hands instead of feet. A

key question in Cognitive Psychology is how individuals learn these behaviours, how the brain

represents and controls these motor events, and how these learned motor sequences can be

flexibly applied throughout the body (Abrahamse et al., 2013; Verwey, 2001; Verwey et al.,

2015). One of the main experimental paradigms to study MSL is the Discrete Sequence

Production (DSP, Abrahamse et al., 2013) task. This task is designed to investigate MSL in

which individuals are aware of their knowledge and its effects, otherwise known as explicit

MSL (Barnhoorn et al., 2016; Rauch et al., 1995; Verwey, 2001).

Throughout this study, the main theoretical model is based on results of the DSP task,

namely the Cognitive framework for Sequential Motor Behaviour (C-SMB, Verwey et al.,

2015). The C-SMB aims to outline the execution of motor sequences as well as to describe

information processing across various motor sequence tasks. This framework also supports the

ability to flexibly apply motor sequences throughout the body, or transfer of motor sequence

knowledge, through associations between perceptual- and central-symbolic representations

(Verwey et al., 2015). This study will focus on MSL and transfer of motor sequence knowledge

between the hands- and feet effectors1. It is important to study transfer with larger effectors

and with movements that include greater motor complexity, as they are an integral part of

real-life movements (Du and Clark, 2018). By doing so, we aim to provide a deepening in

approximation and understanding of whether transfer of motor sequence knowledge is possible

between larger effectors.
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1.1. The Discrete Sequence Production task

The DSP task uses two sequences of three to seven stimulus which are presented in

random order, typically both with a different first stimulus. Participants then recreate these

sequences with key-presses, by pressing the spatially compatible key as quickly as possible

following the presentation of the stimulus. The reaction times (RT’s) that are the response to

single stimuli provide sensitive temporal indicators of underlying cognitive- and motor

processes (Rhodes et al., 2004). As participants learn to recognize the entire sequence by its

first stimulus, over time the DSP task turns from a [number of stimuli]- RT task into a

2-choice RT task after the initiation of the first stimulus.

RT data from previous research with DSP tasks shows that the execution of a learned

sequence has three distinct phases. First is the initiation phase, in which the sequence is

selected and prepared based on the first stimulus, and usually consists of the execution of the

first stimulus in a sequence (T1, Figure 1, Verwey, 2001). Typically, T1 has a slower RT

compared to the rest of the steps in the sequence, which is assumed to be because of

preparation and loading of the entire sequence as single stimuli into the motor buffer before

1 Throughout the current study the terms ’hands effector’ and ’feet effector’ relate to the acting body part, or

the body part that is being used to execute a motor activity. Specific to this paper, the ’hands effector’ refers to

both hands and the ’feet effector’ refers to both feet. There will be no differences made between, for example,

the right- or left hand effector.

Figure 1

Typical reaction time pattern of the execution of a 6-key sequence, including the processing

phases initiation (T1), and execution(T2-T6), concatenation(T4). From Abrahamse et al.

(2013), p. 3.
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initiation. Second is the execution phase (T2-T6, Figure 1), in which the elements in the

motor buffer are executed by means of a motor chunk. Finally, longer sequences, consisting of

more than five stimuli, seem to show a slow RT in one of the inter-element intervals before the

sequence has ended, also referred to as concatenation interval (T4, Figure 1). This is assumed

to be due to the division of the entire sequence into more than one motor chunk, as the

number of stimuli in the sequence has exceeded the capacity of the motor buffer (Cowan,

2001; Miller, 1956). Concatenation could potentially disappear with practice, when two motor

chunks are gradually integrated into a single motor chunk (Abrahamse et al., 2013). The

reason behind the concatenation interval is like that of the first stimulus, as this interval

indicates the preparation for an upcoming motor chunk (e.g., Abrahamse et al., 2013; Acuna

et al., 2014; Bo and Seidler, 2009; Kennerley et al., 2004; Verwey, 2010; Verwey and Wright,

2004; Verwey et al., 2015). An alternative explanation for concatenation is that the sequence

was strategically parsed by the participant (Verwey et al., 2009; Wymbs et al., 2012).

The current study used a modified version of the classic DSP task, namely the Dance

Step Discrete Sequence Production (DS-DSP) task. In this version the involved effectors are

hands and feet, and the input device is a dance mat (Figure 2). Previous research has shown

that it is possible to transform experimental motor tasks into tasks that use a different

modality than the original experiment. For example, Du and Clark (2018), used a foot

stepping serial reaction time (SRT) task, in which the task necessitated whole body actions

and changes in posture. Additionally, this task had a larger emphasis on movement execution,

because participants would move from a resting position towards the goal-key instead of

having their fingers resting on the goal-key already.

1.2. The Cognitive framework for Sequential Motor Behaviour

The C-SMB (Verwey et al., 2015) suggests that there are three levels of cognitive

processing at which MSL can develop: the perceptual level, the central level, and the motor

level. Representations at the perceptual level result from perceptual processing, and motor

representations exist at a motor level. Representations at the central level are not directly

related to perceptual or motor processing, and are called central-symbolic representations.

These representations are grounded in perceptual and/or motor representations, but are more

complex and can include verbal coding (Abrahamse et al., 2013; Fischer and Zwaan, 2008;

Goldfarb and Treisman, 2013; Stoet and Hommel, 1999). The distinction between the
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cognitive processing levels is gradual, as some processes use more than one type of

representation. Even though the processing levels are not mutually exclusive from each other,

a distinction between processing levels is still important because they can exist independently

from each other (Verwey et al., 2015).

At the central level, the central processor is responsible for loading features of the

movement into the motor buffer and the short-term memory (STM), this process is also

known as motor program activation or parameter specification (Rosenbaum, 1980;

Rosenbaum, 1980; Verwey et al., 2015). Through Hebbian learning (what fires together wires

together), the repeated use of the features of the single sequence elements together can enable

a close association between motor parameters and motor programs. As this association

develops, the entire sequence can be loaded into the motor buffer simultaneously by activating

a single stimulus (T1, Figure 1). The perceptual processor is responsible at input level, at

which there are processors for auditory, visual, and proprioceptive modalities (Verwey et al.,

2015). At the presentation of a stimulus, the perceptual processor makes a perceptual

representation of the stimulus and makes it accessible to the central processor by loading it

into the STM. The representations can consist of the entire sequence, or of several successive

representations of parts of the sequence. Pre-processing, extraction of stimulus features, and

habitual forms of identification are also responsibility of the perceptual processor. The motor

processor executes the content of the motor buffer, and there are separate motor processors for

the hands- and feet, as well as for speech (Tattersall and Broadbent, 1991). In the motor

buffer are motor representations with concrete instructions for movement, such as the order of

execution in the case of a sequence (Verwey, 2001). Additionally, motor representations

include how a movement should be adjusted to the bio-mechanics of the effector (Andresen

and Marsolek, 2012; Park and Shea, 2003; Verwey and Wright, 2004; Verwey et al., 2015).

Generally, sequences are represented in an effector-independent manner. However, the

representation can become more specific to the effector with practice (Abrahamse et al., 2013;

Bapi et al., 2000; Hikosaka et al., 1999; Verwey, 2001; Verwey et al., 2009; Verwey and

Wright, 2004). This has been demonstrated in previous research by Verwey and Wright

(2004), in which participants practiced two sequences with five stimuli each in a DSP task. To

execute the sequences, participants used either both hands, or three fingers of a single hand.
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With a novel effector 2, execution of the novel sequence was slower compared to execution of

the learned sequence, but was faster compared to the execution of a novel sequence by the

effector that was initially was used in learning. A later study done by Verwey et al. (2009) in

which participants were tested by using the adjacent fingers to the fingers used to learn the

sequence, it was suggested that effector-dependent representations can result from

effector-based visuo-spatial coding. Additionally, Park and Shea (2003) suggest that

adjustment is needed to the bio-mechanical properties of the effector used during learning for

effector- specific representations.

1.3. Transfer of motor sequence knowledge

The C-SMB assumes that motor knowledge can be applied flexibly, based on

associations between perceptual- and central processing levels (Barnhoorn et al., 2016),

otherwise known as transfer of motor sequence knowledge. Transfer of motor sequence

knowledge would be indicated by a relatively satisfactory performance of a learned skill, with

an unpractised effector. Visuo-spatial representations and motor representations develop

simultaneously during learning, however the visuo-spatial representation develops faster than

the motor representation (Hikosaka et al., 1999; Verwey et al., 2009). Hence, early in learning

sequence execution is based on the visuo-spatial representation and later in learning execution

is based on the motor representation. Visuo-spatial representations are effector-independent

and attention-driven, and rely on explicit knowledge and working memory, which enables

transfer of motor sequence knowledge to unpractised effectors. Motor representations are more

founded in effector-specific information in neural motor systems, which are adjusted to

biomechanical neurological properties of the effector used (Hikosaka et al., 2002). This

information is exploited to optimize execution of the skill and would result in limited transfer

of the skill to other effectors (Jordan, 1995; Park and Shea, 2005).

Previous research done on transfer of motor sequence knowledge focused on

inter-manual transfer of finger key-press movements (e.g. Verwey and Wright, 2004; Wiestler

et al., 2014), finger-movements to arm-movements (e.g. Grafton et al., 1998), or inter-limb

transfer using flexion-extension movements with the forearm (e.g. Barnhoorn et al., 2016;

Kovacs et al., 2009). Also, transfer has been described along several spectra. Positive transfer

2 Throughout this study the term ’novel effector’ is used to describe any effector that was not involved in the

initial learning process of the motor skill or motor sequence.
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is when training a skill with one effector, in this case, would facilitate performance with a

novel (Müssgens and Ullén, 2015). The opposite is negative transfer, where knowledge learned

with one effector disrupts performance with a novel effector. Finally, transfer can be narrow in

which the learned motor sequence knowledge is only applicable in a similar task. Otherwise,

transfer can be broad, in which the learned motor sequence knowledge can be applied to a

broader spectrum of tasks. Additionally, previous research has shown that variable training

schedules lead to greater retention of performance and transfer of motor sequence knowledge

than blocked schedules of learning (e.g., Shea and Morgan, 1979). This phenomenon is

deemed contextual interference, and is assumed to occur because variable practice forces the

reconstruction of motor parameters in the working memory at each task switch (e.g., Cross

et al., 2007).

1.4. Current study

This study was aimed at exploring the possibility of transfer of sequence knowledge

between hands- and feet effectors with a Go/No-Go DS-DSP task, and to understand the

sequence representations used by the hands- and feet effectors. The first goal was to explore

MSL in the hands- and feet effectors on a block level, as well as on stimulus level. It is

predicted that the temporal effects of the DS-DSP task will be comparable to that of a classic

DSP task, and that there is no difference between effectors regarding MSL. The second, and

more important, goal is to investigate transfer of motor sequence knowledge between the

hand- and feet effectors, by comparing the execution of a learned sequence with a novel

effector compared to the practiced effector. It is predicted that transfer of motor sequence

knowledge will be equal from the hands- to feet effectors compared to the feet- to hands

effectors. Furthermore, it is predicted that the transfer will be positive in both directions.
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2. Methods

2.1. Participants

Forty students from the University of Twente (32 female, M age = 20.5, SD = 1.78)

took part in the experiment in exchange for course credits. All participants were non-smokers,

had not consumed alcohol 24 hours prior to participation, and had no physical impairments

that would affect performance. The study was approved by the ethics committee of the

Behavioural, Management and Social sciences at the University of Twente (ethics number

211415), and all participants signed an informed consent before participation.

2.2. Apparatus

The experiment was programmed and conducted using E-Prime 2.0 on a 24-inch LG

Flatron W224422PE DFC full HD monitor set to a refresh rate of 60 Hz. The input device

was connected to a laptop with the experiment program running, and unnecessary Windows

services were shutdown to avoid any potential delays in RT measurements. A dance mat, as

shown in Figure 2, was used as the input device. The arrows on the dance mat were

programmed to correspond with spatially comparable placeholders in the experiment program,

using Joy- To-Key. The upper arrow on the dance mat was mapped to the ‘w’-key which

corresponded to the upper placeholder in the experiment file. The bottom, left, and right

arrows were mapped to the s-key, a-key, and d-key, which also corresponded to the spatially

comparable placeholder on-screen.

Figure 2

Dance mat used as input device for the DS-DSP task. The dance mat (92cm by 81cm) is

equipped with a non-slip bottom and no-delay technology (Dancepadmania, n.d.). The

placeholders on the screen in are spatially comparable to the arrow.
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2.3. Design and counterbalancing

The experiment consisted of a practice phase of 6 blocks, and a testing phase of four

blocks. In the practice phase the participants completed the DSP task with either hands or

feet as an output modality. Both sequences were presented to the participants during the

practice phase 24 times per block, with a total of 144 repetitions per sequence during the

practice phase. In the testing phase, each block was a different condition: (1) the learned

sequences with the familiar effector (fam/same), (2) the learned sequences with the unfamiliar

effector, which is also known as the transfer condition (unfam/same), (3) novel sequences with

the familiar effector (fam/nov), and (4) novel sequences with the unfamiliar effector

(unfam/nov). The familiar effector is the effector that was used during the practice phase. For

a participant who was in the hands group during the practice phase, the familiar effector

would be hands and the unfamiliar effector would be feet. The learned sequences are the

sequences that were learned by the participants during the practice phase, the novel sequences

are sequences that were initially presented during the testing phase. Transfer was measured

between the sixth practice block, and the testing condition with learned sequences with the

unfamiliar effector. The order in which participants completed the testing blocks was

counterbalanced. Participants were allocated to a group (hands or feet) in the practice phase,

and an order of testing conditions according to their participant number. The entire

counterbalancing scheme can be found in, and an example of the counterbalancing can be seen

in Figure 3. The sequences were counterbalanced within- as well as between participants. A

fundamental element in the DSP task is that both learned sequences have a different first key,

which enables the development of the ability to recognize an entire sequence by the first

stimulus. As such, each sequence presented to the participant, the learned and the unlearned

sequences, had a different first key. The sequence elements were counterbalanced within the

sequence as well. There were four base sequences, of which variations were created through

rotation. This resulted in a total of 16 variations of sequences. Various variations of the

sequences were tweaked to assure that the difficulty of each sequence was comparable.

2.4. Dance-Step Discrete Sequence Production task

Participants in the feet group completed practice blocks of the DS-DSP task in a

standing position, in the middle of the dance mat, participants in the hands group completed

the practice blocks in a seated position with both their hands rested on the middle of the
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dance mat. The viewing distance was about 90 centimetres and 90 degrees from eye-height for

both groups. Each practice block consisted of 48 repetitions; each sequence was presented 24

times in random order. In the middle of each block, participants had a 30 second break in

which the participants in both groups were instructed to remain in the starting position until

the experiment resumed. After each block, participants had a three-minute break, in which

they could stretch their legs and have refreshments. However, they were not allowed to do any

activities with their mobile phones or read. Each trial consisted of the presentation of one of

the two sequences, in the form of a Go/ No-Go procedure. Before the successive stimuli were

presented, all placeholders on-screen were empty for a duration of 1000 milliseconds (ms). The

stimuli were presented by lighting up a placeholder yellow on- screen for a duration of 750ms

per stimuli. When the six successive stimuli had been presented, the participants would

receive either a Go stimulus by lighting up the cross in the middle blue, or a No-Go stimulus

by lighting up the cross in the middle red. The Go stimulus served as a prompt for

participants to reproduce the sequence by pressing the spatially comparable target areas on

the dance mat in the seated position, or by stepping in the standing position. The participants

were instructed to wait until the cross in the middle had turned white to reproduce the

sequence. The No-Go stimulus served as a prompt for participants to remain still and wait

until the presentation of the upcoming sequence commenced. The Go and the No-Go stimulus

were presented for 3000ms. The No-Go stimulus was presented four times per block, in the

practice blocks as well as in the testing blocks. Participants also received feedback about their

performance. When participants received a Go stimulus, and reproduced the sequence before

the cross turned write, “too early!” was presented on-screen. A new sequence was presented

Figure 3

Example of order of blocks in the experiment for a participant. The participant was placed in

the hands group in the practice phase and had sequence 1 and 2 as learned sequences. In the

first and third testing block the participant used the unfamiliar effector, feet. In the second and

third testing block the participant performed the novel sequences, 3 and 4.
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immediately afterwards. When participants received a No-Go stimulus and reproduced the

sequence, no warning was given. When participants reproduced a sequence correctly, “good!”

was displayed on the monitor. In the case of mistakes while reproducing the sequence,

participants were told one by one which stimuli were not reproduced correctly.

Figure 4

Example of a trial, with the onset, 6 sequences

steps and the Go/No-Go signal.

During the practice phase,

participants in the hands group were in

a seated position and participants in the feet

group were in a standing position for all six

blocks. However, during the testing phase

participants switched effectors and thus had

to switch from standing to seated position,

or the other way around. The researcher

accommodated the transfer from one

position to the other and assured that the

viewing distance and viewing angle was the

same for both positions. Participants were

encouraged to reproduce the stimuli in the

manner most convenient to them, there were

no specific instructions regarding the use

of the left of right effector for certain steps.

2.5. Data analysis

There are various advantages of the

linear mixed model (LMM) approach over the repeated-measures ANOVA, which is the usual

approach to analyse DSP tasks. The main benefit of LMMs is that they allow for the

specification of random effects as a partition of the variance that is specifically associated with

subject- level differences, instead of building this variance into an error term. In other words,

in this approach will restrict to the comparisons within the subject, considering innate

difference subjects might have regarding physical performance. The RT data were analysed

using lmer, from the lme4 package version 1.1.32. (Bates et al., 2015) and the Flexplot

package (Fife, 2021), in the R environment 4.2.2.

Prior to analysis, data were processed by transforming them from an E-Prime output
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file, to .csv using the syntax provided in. The data was then prepared by applying exclusion

criteria to improve the accuracy of the models. The total dataset consisted of 19,200 trials.

First, all trials with one or more mistakes were removed from the raw dataset, leaving only

accurate trials. Second, all trials with a Mean RT 2.5 standard deviation above the mean.

The RT was calculated by adding the RT’s for each stimulus and dividing them by six per

trial. Third, all trials with the sum of the six stimuli RT”s were removed if they were 2.5

standard deviation of the mean.

The first model aimed to understand MSL on a block-level between effectors with

Mean RT in milliseconds (ms) per trial as outcome variable. The second model aimed to

understand the potential differences between the first response position and a concatenation

interval at the third/fourth response position between effectors, with Stimulus RT in ms as

outcome variable. The first and second model include data from the practice phase. A third

model was aimed at understanding differences in testing conditions between the hands and

feet effectors. A final model was aimed to investigate the directionality of transfer. The third

and fourth model had Mean RT in ms per trial as outcome variable. The third model included

data from the testing phase, and the fourth model included data from the last practice block

as well as the transfer condition. The fixed effects Block (1 – 6), Position (1 – 6), and

Condition (fam/same, unfam/same, fam/nov, unfam/nov), were within-participant variables,

and Group (hands – feet) was a between-participant variable. Furthermore, each model

contained a random effect on subject-level. The R-syntax for the models concerning the

practice phase can be found in Appendix C, that of the models concerning the testing

conditions in Appendix D and that of the models concerning transfer in Appendix E.
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3. Results

3.1. Practice phase block-level

Within the model predicting Mean RT with Block and Group, the effect of Block was

significant and negative (β = −175.13, 95%CI[−183.45, −166.80], t(9123) = −41.24, p < .001),

such that both groups showed a reduction in RT across Blocks. There was a significant and

negative Group [hands] x Block interaction, (β = −34.05, 95%CI[−46.31, −21.80], t(9123) =

−5.45, p < .001), such that Group [hands] demonstrated a higher reduction in RT across

Blocks compared to Group [feet] (Figure 5). The effect of Group was non-significant (p = .85),

there were no differences between Group in Mean RT per Block. Post-hoc Tukey tests with

Kenward-Roger degrees-of-freedom with Mean RT and Block, and Mean RT and Block x

Group interaction were done. Pairwise differences to explore the effect of Block showed that

RTs in Blocks 1, and 2 were significantly slower compared to RTs in the ensuing Blocks

(p < .0001). RTs in Block 3 were slower compared to RTs in Block 5, and 6 (p < .0001). RTs

Figure 5

Prediction of Mean RT with Block and Group as fixed factors, and Subject as a random factor.

A reduction in RT between the first and sixth Block is clearly visible, with the highest reduction

taking place between the first and second Block and the second and third Block.
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in Block 4 were also slower compared to RTs in Block 5 (p = .008) and Block 6 (p < .0001).

RTs in Blocks 3, and 4 were not significantly different from each other (p = .03) and well as

RTs in Block 5, and 6 (p = .55).

3.2 Practice phase stimulus-level

Within the model predicting Stimulus RT with Block, Group, and Position the effect

of Position is significant, and negative (β = −189.68, 95%CI[−196.26, −183.10], t(54748) =

−56.52, p < .001), such that there effect of position on RT for across trials. Furthermore, the

interaction of Group [hands] x Position was statistically significant and negative (β = −92.47,

95%CI[102.21, −82.74], t(54748) = −18.62, p < .001), such that Group [hands] showed a higher

reduction in RT per across trials compared to Group [feet]. Furthermore, the interaction effect

Block x Position was significant and positive (β = 85.49, 95%CI[68.88, 102.09], t(54748) =

10.09, p < 001) , such that there was an increase in RT across Blocks. Finally, a there was a

Figure 6

Position per Group and per Block. There is a slight difference, although not significant, that

can be seen in Block 5 and Block 6 between Groups. Group [feet] is showing a clearer

concatenation interval around Position 5 than Group [hands], but Group [hands] has a slower

Position 1 compared to Group [feet].
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significant three-way negative interaction effect for Block x Group x Position (β = −39.76,

95%CI[−64.25, −15.27], t(57748) = −3.18, p = .001), such that the interaction on Position

between Block x Group is reduced across Position. In other words, the reduction in RT in

Group [hands] compared to Group [feet] is less in the latter steps per Block. Post-hoc Tukey

tests with Kenward-Roger degrees-of- freedom were done for the main effect of Position. In

both groups, Position 1 was slower compared to Position 2 – 6 (p < .0001). Furthermore,

Position 2 was significantly faster compared to Position 3 and Position 5 (p < .0001), and was

significantly slower compared to Position 4 and 6 (p < .0001). Position 3 was significantly

slower compared to Position 4 and 6 (p < .0001), but was not significantly different compared

to Position 5 (p = .25). Position 4 was significantly faster compared to Position 5 (p < .001),

but was not significantly different compared to 6 (p = .051). Position 5 was significantly

slower compared to 6 (p < .0001).

Additional post-hoc tests were done for the Position x Block interaction. In every

Block (1 - 6) Position 1 was significantly slower compared to the ensuing Position 2, 3, 4, 5,

and 6 (p < .0001). In Block 1, Position 2 was significantly faster compared to Position 5

(p = .0006) and significantly slower than Position 6 (p = .01), and Position 3 was significantly

slower than Position 6 (p < .0001). In Block 2 and 3, Position 3 was faster compared to

Position 5 (p = .05). In Block 5, Position 3 and Position 4 were significantly faster compared

to Position 5 (p = .002; p < .0001). In Block 6 Position 3 was faster compared to Position 4

(p = .03) and to Position 6 (p = .02). In every Block (1 – 6) Position 5 was significantly

slower than Position 6 (p < .0001). Post-hoc tests showed that there were no differences

between Group for each Position and Block. For example, there were no significant differences

between Group [hands] and Group [feet] for Position 1, Block 1 and so forth. Each Position

per Block and Group can be seen in Figure 6.

3.3. Testing phase

We fitted a LMM to predict Mean RT with Condition and Effector (hands or feet),

and included Subject as a random factor. The model’s intercept corresponding to Effector

[feet] and Condition [fam/other] is at 365.26(95%CI[296.65, 433.87], t(4288) = 10.44,

p < .0001) Within this model, the interaction effect of Condition [nov/same] on Effector

[hands] is statistically significant and positive (β = 144.45, 95%CI[46.21, 242.70], t(4288) =

2.88, p = .004) , such that Mean RT was higher for Effector [hands] compared to Effector [feet]
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in Condition [nov/same]. Post-hoc Tukey tests with degrees-of-freedom method

Kenward-Roger with Condition and Effector pointed out that Effector [hands] in the

Condition [fam/other] was faster than Effector [hands] in the Condition [fam/same]

(p = .0007). Additionally, Effector [feet] in the Condition [fam/same] was significantly faster

than Effector [feet] in the Condition [nov/other].

Figure 7

Mean RT per Condition and Group. A significant difference between Groups can clearly be

seen in Condition [nov/same].

3.4. Transfer of sequence knowledge

We fitted a LMM to predict Mean RT with Session (training or testing) and the

directionality of Transfer (hands to feet [hf] or feet to hands[fh]). The model’s intercept,

corresponding to Session [testing] and Transfer [hf] is 402.31(95%CI[315.69, 45.93],

t(2713) = 15.58, p < .0001). Within this model the effect of Session [training] was statistically

significant and positive (β = 17.92, 95%CI[2.79, 33.05], t(2713) = 2.32, p = .020). Furthermore,

the effect of Transfer [hf] was statistically significant and positive (β = 82.42, 95%

CI[66.29, 98.55], t(2713) = 10.02, p < .0001). Finally, there was a significant negative

interaction between Transfer [hf] and Session [training] (β = −101.20, 95%CI[−126.5, −75.89],

t(2713) = −7.84, p < .0001). Post-hoc pairwise comparisons showed that RTs in Session
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[testing] were lower for Transfer [fh], compared to Transfer [hf] (p < .0001). Finally, we fitted

a LMM to predict Position with Session and Transfer. For Transfer [hf], Position 1 was slower

for Session [testing] compared to Session [training] (p < .0001), but Position 2 was faster for

Session [testing] to Session [training]. For Transfer [fh], Position 1 was faster in Session

[training] than Session [testing]. However, for Position 2 – 6 was Session [training] was

significantly slower than Session [testing] (p < .0001). Within Session [testing], there was no

significant difference for Position 1 between Transfer directions. However, for Position 2 – 6,

Transfer [hf] was significantly faster than Transfer [fh] (p < .0001).

Figure 8

It is clearly visible that there is positive transfer in the feet to hands directionality. However,

there is negative transfer in the directionality from hands to feet
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Discussion

The purpose of this study was to gain a better understanding of the possibilities of

transfer of motor sequence knowledge between the hand- and feet effectors using a DS-DSP

task. The results strongly imply that there are differences between effectors. First, from the

decrease in RT between blocks it can be inferred that participants learned the sequences, as a

decrease in RT is an indication of an increase in performance. Second of all, participants from

both groups had a relatively slow RT in the first response, which is in line with previous

literature (e.g. Abrahamse et al., 2013; Verwey, 2001), and provides evidence that there is a

similar response selection stage for larger movements, specifically with the hands and feet

effectors (Verwey, 1999; Verwey, 2001). A visible but non-significant difference between groups

was that participants in the hands group had a slower RT to the first stimulus. Previous

research suggests that increase in RT to the first stimulus could be an indication of an

improvement in performance (Abrahamse et al., 2013). This is because this RT is a temporal

representation of the preparation of single sequence elements, and the more elements must be

prepared the slower the RT will be. The idea of an improved performance by participants in

the hands group is further supported by the lack of a concatenation interval. As suggested by

research done by De Kleine and Verwey (2009), the concatenation interval can disappear with

practice as two motor chunks might develop into a larger sequence-encompassing motor chunk.

Whereas Abrahamse et al. (2013) found the concatenation to be around the fourth sequence

element, the present study has shown the initiation of a second motor chunk at the fifth

sequence element.

Secondly, significant differences between the hands and feet effectors can be seen when

participants were given two new sequences to practice with the same effector they used during

the practice blocks. Participants who practiced with the feet effector performed well and

integrated the two novel sequences. On the contrary, participants who practiced with the

hands effector did not perform the two new sequences as well. A possible explanation for this

interference could be that introducing the two new sequences turned the 2-choice RT task into

a 4-choice RT task for participants using this effector. Assuming that the participants in the

hands modality were already indeed using an effector-dependent representation, this might

have caused interference during activation of the motor program and specification of the

parameters for the movement (Rosenbaum, 1980; Schmidt, 1975; Verwey et al., 2015). Finally,
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the results show asymmetry in the directionality of transfer also implies differences in

representations of sequence knowledge between effectors after the same amount of practice.

The results show that there is positive transfer from the feet to the hands effector, but that

there is negative transfer from the hands to the feet effector (Barnhoorn et al., 2016). One

interpretation of these findings is that the participants in who practiced with the feet effector

used a visuo-spatial representation and that participants who practiced with the hands

effector used a motor representation. A visuo-spatial representation would enable transfer and

happens early in learning, and a motor representation does not enable transfer well and is

used later in learning (Müssgens and Ullén, 2015). The asymmetry might imply that, after the

same amount of practice, the participants in the who practiced with the feet effector were still

at a relatively earlier stage in MSL compared to participants who practiced with the hands

effector. Potentially, because there was less adjustment needed to the biomechanical

properties of the hands effector, which in turned enabled the earlier use of an

effector-dependent representation (Park and Shea, 2003). Besides our own interpretation of

the data, an additional explanation warrants comment. Differences between effectors could

have also have been caused by the need to strategically parse the sequence in accordance with

any biomechanical factors (Abrahamse et al., 2013; Wymbs et al., 2012). It might be expected

especially with execution of sequences in a standing position, in which balance is imminent. If,

as the present study suggests, there are differences between effectors in MSL then there is a

need for research that explores explicit sequence knowledge at various phases during MSL, as

this is an indication of the sequence representation at play. Furthermore, it would be at least

interesting to explore the role of the primary motor cortices and supplementary cortices

during MSL with different effectors. Much work remains to be done before a full

understanding of the extent of MSL within the entire body is established.

Although the generality of the current results must be established by future research,

the present study has provided clear support for variations in MSL between effectors. Not

only was there a clear difference between concatenation intervals between hands and feet, but

there was also evidence for use of different sequence representations between hands and feet

after the same amount of learning. The present research, therefore, contributes to a growing

theoretical body about how individuals learn sequences, how these sequences are represented

and how they are flexibly applied throughout the body.
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Appendix B

Syntax for data transformation from .edat2 to .csv
Loading the libraries I need. These are all the libraries for the entire script

library(tidyverse)

library(rprime)

library(wrapr)

library(dplyr)

library(tidyr)

library(data.table)

Function to read in e-prime text files

df_path <- setwd("C:/Data files") #setting working directory

reduce_df <- function(df_path) { #opening the function

df_lines <- read_eprime(df_path) #telling to "read e-prime" for the wd

df_frames <- FrameList(df_lines) #converting the lines into objects

experiment_df <- to_data_frame(df_frames) #making a dataframe

dat <- as_tibble(experiment_df) %>%

select(qc(

Session, Subject, h, feedback.RTTime, feedback.ACC, feedback.RT #selecting the variables I need from

))

dat <- dat[1:1486, ] #telling where the trials are (this is every line per file)

}

files <- dir(pattern = "*.txt") #telling to look through the directory and take all .txt files

length(files) #checking how many files are in the directory (should be 400)

df <- map_df(files, reduce_df) #creating a data frame from all the files with the function applied to them

names(df) #checking the variable names that are in the data frame

Saving data frame as csv

write.csv(df, "C:/df.csv", row.names = FALSE)
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Appendix C

Syntax for cleaning the raw data set
{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE)

library(dplyr)

library(tidyr)

library(data.table)

Loading the raw dataset

df <- read.csv("C:/df.csv")

#1. Cleaning the data ##Filling Session & Subject columns

df <-

df %>%

fill(Session) %>%

fill(Subject)

##Removing any rows that have NA in them

df <- na.omit(df)

#2. Adding variables for analysis ##ID variable based on Subject number

df <-

df %>%

mutate(ID = case_when(Subject == 1 | Subject == 9 | Subject == 17 | Subject == 25 | Subject == 33 ~ 1,

Subject == 2 | Subject == 10 | Subject == 18 | Subject == 42 | Subject == 34 ~ 2,

Subject == 3 | Subject == 11 | Subject == 19 | Subject == 27 | Subject == 35 ~ 3,

Subject == 4 | Subject == 12 | Subject == 20 | Subject == 28 | Subject == 36 ~ 4,

Subject == 5 | Subject == 13 | Subject == 21 | Subject == 29 | Subject == 37 ~ 5,

Subject == 6 | Subject == 14 | Subject == 22 | Subject == 30 | Subject == 38 ~ 6,

Subject == 7 | Subject == 15 | Subject == 23 | Subject == 31 | Subject == 39 ~ 7,

Subject == 8 | Subject == 16 | Subject == 24 | Subject == 32 | Subject == 40 ~ 8 ))

##Phase variable based on ID value

df <-

df %>%

mutate(Phase = case_when(Session == 1 | Session == 2 | Session == 3 | Session == 4 | Session == 5 |

Session == 6 ~ ’training’, Session == 7 | Session ==8 | Session == 9 | Session == 10 ~ ’testing’))

##Step per trial

df$step <- c(1,2,3,4,5,6)

##Repetition per sequence per session
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df$rep <- rowid(df$h, df$step, df$Subject)

#3. Excluding data ##Trials with at least one incorrect step

df1 <- df[df$feedback.ACC != 0, ] #taking out all incorrect steps

df1 <-

df1 %>%

group_by(Session, Subject, h, rep) %>%

mutate(counter = cumsum(step != 21))

df1 <-

df1 %>%

group_by(Subject, Session, h, rep) %>% #grouping per repetition

mutate (var = sum(counter <= 6)) %>% #setting max of the counter to 6

filter (var > 5) %>% #variable should be less than 6

select (-var) #exclude

df1 <- select(df1, c(-counter)) #removing counter column

##Trials with a mean RT > 2.5 standard deviation above the mean ###Creating dataframe with mean RT

per repetition per sequence

df2 <- #summarizing data frame over step with mean per trial

df1 %>%

group_by(Session, Subject, h, rep) %>% #grouping per trial

summarise(meanrt = mean(feedback.RT)) #creating mean per trial

###Creating dataframe with mean RT per session to determine exclusion criteria

df3 <- #summarizing data frame over repetition with mean per session

df1 %>%

group_by(Session) %>% #determining sd per session

summarise(sdrt = sd(feedback.RT), meanrt = mean(feedback.RT))

df3$excl_crit <- (df3$meanrt + (df3$sdrt * 2.5))

df2 <- left_join(df2, df3, "Session")

###Excluding trials above the exclusion criteria

df4 <- subset(df2, df2$meanrt.x < df2$excl_crit)

df5 <- left_join(df4, df1, by = c("Session", "rep", "h", "Subject"))

##Trials with a sum RT > 2.5 standard deviation above the mean

df6 <- #data frame summarized over step with sum per trial

df5 %>%

group_by(Session, Subject, h, rep) %>%

summarise(sum = sum(feedback.RT))
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df7 <-

df6 %>%

group_by(Session) %>%

summarise(sdsum = sd (sum), meansum = mean(sum))

df7$excl_crit <- (df7$meansum + (df7$sdsum * 2.5))

df8 <- left_join(df7, df6, "Session")

df9 <- subset(df8, df8$sum < df8$excl_crit)

df10 <- left_join(df9, df5, by = c("Session", "rep", "h", "Subject" ))

df10 <- select(df10, -c(sdsum, meansum, excl_crit.x, meanrt.x, sdrt, meanrt.y))

Adding modality per session #Subsetting into training and testing blocks

training <- subset(df10, Phase == "training")

training$modality[training$ID == 1 | training$ID == 3 | training$ID == 5 | training$ID == 7] <- "feet"

training$modality[training$ID == 2 | training$ID == 4 | training$ID == 6 | training$ID == 8] <- "hands"

testing <- subset(df10, Phase == "testing")

ses7 <- subset(testing, Session == 7)

ses8 <- subset(testing, Session == 8)

ses9 <- subset(testing, Session == 9)

ses10 <- subset(testing, Session == 10)

Adding modality per block and ID

ses7$modality[ses7$ID == 1 | ses7$ID == 3 | ses7$ID == 6 | ses7$ID == 8] <- "hands"

ses7$modality[ses7$ID == 2 | ses7$ID == 4 | ses7$ID == 5 | ses7$ID == 7] <- "feet"

ses8$modality[ses8$ID == 1 | ses8$ID == 3 | ses8$ID == 6 | ses8$ID == 8] <- "hands"

ses8$modality[ses8$ID == 2 | ses8$ID == 4 | ses8$ID == 5 | ses8$ID == 7] <- "feet"

ses9$modality[ses9$ID == 1 | ses9$ID == 3 | ses9$ID == 6 | ses9$ID == 8] <- "hands"

ses9$modality[ses9$ID == 2 | ses9$ID == 4 | ses9$ID == 5 | ses9$ID == 7] <- "feet"

ses10$modality[ses10$ID == 1 | ses10$ID == 3 | ses10$ID == 6 | ses10$ID == 8] <- "hands"

ses10$modality[ses10$ID == 2 | ses10$ID == 4 | ses10$ID == 5 | ses10$ID == 7] <- "feet"

Adding relative novelty of the modality per block and ID

ses7$rel_effect[ses7$ID == 1 | ses7$ID == 2 | ses7$ID == 3 | ses7$ID == 4] <- "other"

ses7$rel_effect[ses7$ID == 5 | ses7$ID == 6 | ses7$ID == 7 | ses7$ID == 8] <- "same"

ses8$rel_effect[ses8$ID == 1 | ses8$ID == 2 | ses8$ID == 3 | ses8$ID == 4] <- "same"

ses8$rel_effect[ses8$ID == 5 | ses8$ID == 6 | ses8$ID == 7 | ses8$ID == 8] <- "other"
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ses9$rel_effect[ses9$ID == 1 | ses9$ID == 2 | ses9$ID == 3 | ses9$ID == 4] <- "other"

ses9$rel_effect[ses9$ID == 5 | ses9$ID == 6 | ses9$ID == 7 | ses9$ID == 8] <- "same"

ses10$rel_effect[ses10$ID == 1 | ses10$ID == 2 | ses10$ID == 3 | ses10$ID == 4] <- "same"

ses10$rel_effect[ses10$ID == 5 | ses10$ID == 6 | ses10$ID == 7 | ses10$ID == 8] <- "other"

Adding relative novelty of sequence per block and ID

ses7$test[ses7$ID == 1 | ses7$ID == 4 | ses7$ID == 5 | ses7$ID == 8] <- "fam"

ses7$test[ses7$ID == 2 | ses7$ID == 3 | ses7$ID == 6 | ses7$ID == 7] <- "nov"

ses8$test[ses8$ID == 1 | ses8$ID == 2 | ses8$ID == 7 | ses8$ID == 8] <- "fam"

ses8$test[ses8$ID == 3 | ses8$ID == 4 | ses8$ID == 5 | ses8$ID == 6] <- "nov"

ses9$test[ses9$ID == 2 | ses9$ID == 3 | ses9$ID == 6 | ses9$ID == 7] <- "fam"

ses9$test[ses9$ID == 1 | ses9$ID == 4 | ses9$ID == 5 | ses9$ID == 8] <- "nov"

ses10$test[ses10$ID == 1 | ses10$ID == 2 | ses10$ID == 7 | ses10$ID == 8] <- "fam"

ses10$test[ses10$ID == 3 | ses10$ID == 4 | ses10$ID == 5 | ses10$ID == 6] <- "nov"

testing <- rbind(ses7, ses8, ses8, ses10)

testing$condition <- paste(testing$test, testing$rel_effect)

testing <- select(testing, -c(Phase, test, rel_effect))

Writing csv for training data

write.csv(training, "training.csv", row.names = FALSE)

writing csv for testing data

write.csv(testing, "testing.csv", row.names = FALSE)
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Appendix D

Syntax for the analysis of the data from the training blocks
{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE)

library (tidyverse)

library(lme4)

library(flexplot)

library(report)

library(emmeans)

library(pbkrtest)

library(lmerTest)

library(effects)

library(writexl)

#I. Data preparation ##Opening the training data set {r Working directory} getwd() {r Original

dataset} d_original <- read.csv('training.csv') ##Rename columns and making Block and Step and ordered

factor {r Dataset for Block level analysis} d <- d_original %>% rename(Block = Session,

Sequence = h, Repetition = rep, SumRT = sum, Step = step, Group =

modality, StepRT = feedback.RT) %>% mutate(Block = factor(Block, ordered = T), Step =

factor(Step, ordered = T), Group = factor(Group)) {r Adding Mean RT as a variable} d <- d %>%

group_by(Group, Block, Subject, Sequence, Repetition) %>% summarize(MeanRT = mean(StepRT)) {r Dataset

for Step level analysis} d1 <- d_original %>% rename(Block = Session, Sequence = h,

Repetition = rep, SumRT = sum, Step = step, Group = modality, StepRT

= feedback.RT) %>% mutate(Block = factor(Block, ordered = T), Step = factor(Step, ordered = T))

Hypothesis 1 - Group level differences between Blocks #Setting up the model, with SumRT (trial-levelRT) as dependent

variable, #Block and Group as fixed factors, and Subject as a random factor. {r H1: Full model Block X Group

interaction} train_1F = lmer(MeanRT ~ Block * Group + (1|Subject), data = d) #Making a reduced model

without an interaction effect {r H1: Reduced model without Block X Group interaction} train_1R <- lmer(MeanRT ~

Block + Group + (1|Subject), data = d) {r H1: Comparing full and reduced model} model.comparison(train_1F,

train_1R) ##From these results we can conclude that we should ##use the full model with interaction effect Block X

Group #Visualizing the residuals to check if the model can be trusted {r H1: Visualizing residuals of the full

model} visualize(train_1F, plot = "residuals") ##looks a little asymmetrictal, S-L plot looks good too

train_1F

#Running an ANOVA on the full model {r H1: Type III Anova on lmer with Block X Group interaction}

anova(train_1F, type='III') {r H1: Reporting on the effects} report(train_1F) {r H1: Post-hoc Tukey tests

Block main effect} emmeans(train_1F, list(pairwise ~ Block), adjust = "tukey", pbkrtest.limit = 9137) {r

H1: Post-hoc Tukey tests with Block X Group interaction} emmeans(train_1F, list(pairwise ~ Block * Group),

adjust = "tukey", pbkrtest.limit = 9137) {r H1: Modelling the full model into a dataset} ae.train_1F =

allEffects(train_1F) ae.df.train_1F = as.data.frame((ae.train_1F[[1]]))

p1.ae.df.train_1F = ggplot(ae.df.train_1F, aes(x = Block, y = fit, color = Group)) +

geom_errorbar(aes(ymin = fit - se, ymax = fit + se), width = .1) +

geom_line() +

geom_point() +
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ylab("Mean RT in ms") +

xlab("Block") +

theme_classic()

plot(p1.ae.df.train_1F)

Hypothesis 2 - Predicting Mean RT with Group, Block, and Step ##Setting up and fitting the model, with

StepRT (step-levelRT) as ##dependent variable, Block, Group and step as fixed factors, and Subject as a ##random

factor. {r H2: Full model Step X Group X Block interaction} train_2F = lmer(StepRT ~ Step * Group * Block +

(1|Subject), data = d1) ##Making a reduced model without interaction effects {r H2: Reduced model. No

interaction.} train_2R = lmer(StepRT ~ Step + Group + Block + (1|Subject), data = d1) ##Comparing the full

model to the reduced model {r H2: Model comparison} model.comparison(train_2F, train_2R) ##The bayes factor

tells that the models are significantly different from ##each other. The AIC is higher for the model without an

interaction effect #Making a second reduced model with only Step X Group interaction {r H2: Model comparison -

Step X Group - Reduced model} train_3R = lmer(StepRT ~ Step * Group + Block + (1|Subject), data = d1)

model.comparison(train_2F, train_3R) ##Here again we see a significant bayes factor, the AIC again votes for the

##reduced model. ##Making a third reduced model with only Step X Block interaction {r H2: Model comparison -

Step X Block - Reduced model} train_4R = lmer(StepRT ~ Step * Block + Group + (1|Subject), data = d1)

model.comparison(train_4R, train_2F) ##Another significant bayes factor, and a higher AIC for the reduced model.

{r H2: Model comparison - Step X Group vs. Step X Block} model.comparison(train_4R, train_3R) ##Making a

fourth reduced model with only Group X Block interaction

train_5R = lmer(StepRT ~ Step + Block * Group + (1|Subject), data = d1)

model.comparison(train_4R, train_5R)

##The models are not significantly different. Even though the AIC is higher for ##the Group X Block

interaction effect model, the Step X Block X Group ##interaction (full model) model will be used as the difference ##is

very small regarding the AIC, and the latter will give more information ##regarding H2. {r H2: Residuals

visualization} visualize(train_4R, plot = "residuals") ##The histogram shows that the residuals look ok. They

are slightly skewed to ##the right. The S-L plot also looks normal.

{r H1: Printing the model} train_2F #Running an ANOVA on the full model {r H1: Type III Anova on

lmer with Block X Group X Step interaction} anova(train_2F, type='III') {r H2: Reporting on the effects}

report(train_2F)

{r H1: Modelling the reduced model into a dataset} ae.train_2F = allEffects(train_2F)

ae.df.train_2F = as.data.frame((ae.train_2F[[1]]))

p1.ae.df.train_2F = ggplot(ae.df.train_2F, aes(x = Step, y = fit, color = Group)) +

geom_errorbar(aes(ymin = fit - se, ymax = fit + se), width = .1) +

geom_line() +

geom_point() +

ylab("Mean RT in ms") +

xlab("Step") +

theme_classic() +

facet_wrap(facets = vars(Block))

plot(p1.ae.df.train_2F)
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{r Post-hoc Tukey test main effect of Step} emmeans(train_2F, list(pairwise ~ Step), adjust =

"tukey", pbkrtest.limit = 9137) {r Post-hoc Tukey test Step X Block interaction} emmeans(train_2F,

list(pairwise ~ Step * Block * Group), adjust = "tukey", pbkrtest.limit = 54822)

emmeans(train_2F, list(pairwise ~ Step * Block), adjust = "tukey", pbkrtest.limit = 54822)

d2 <- d1 %>% group_by (Group, Block, Step) %>%

summarise(mean_RT = mean(StepRT))

d2

d3 <- d_original %>% group_by (modality, Session) %>%

summarise(mean_RT = mean(feedback.RT))

d3

d4 <- d_original %>% group_by (Session) %>%

summarise(mean_RT = mean(feedback.RT))

d4

knitr::knit("Training.Rmd")

rmarkdown::pandoc_convert("Training.Rmd", to = "latex", output = "Training.tex")
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Appendix E

Syntax for the analysis of the data from the testing blocks
{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE)

library(tidyr)

library(dplyr)

library(flexplot)

library(report)

library(effects)

library(ggplot2)

library(emmeans)

library(lme4)

options(max.print = 10000)

#I. Data preparation ##Opening the training data set {r Working directory} getwd()

d_original <- read.csv(’testing.csv’)

{r Original dataset} d <- d_original %>% rename(Block = Session, Sequence = h,

Repetition = rep, SumRT = sum, Step = step, Group = modality, StepRT

= feedback.RT, Condition = condition) %>% mutate(Block = factor(Block, ordered = T),

Step = factor(Step, ordered = T), Group = factor(Group), Condition = factor(Condition))

test_1F <- lmer(StepRT ~ Condition + (1|Subject), data = d)

test_1F

summary(test_1F)

anova(test_1F)

visualize(test_1F, plot = "residuals")

report(test_1F)

d1 <- d_original %>%

group_by(condition, modality, Session, Subject, h, rep) %>%

summarize(MeanRT = mean(feedback.RT))

test_2F <- lmer(MeanRT ~ condition + (1|Subject), data = d1)

test_2F

report(test_2F)

{r H1: Modelling the full model into a dataset} ae.test_2F = allEffects(test_2F) ae.df.test_2F =

as.data.frame((ae.test_2F[[1]]))
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p1.ae.df.test_2F = ggplot(ae.df.test_2F, aes(x = condition, y = fit, color = condition)) +

geom_errorbar(aes(ymin = fit - se, ymax = fit + se), width = .1) +

geom_line() +

geom_point() +

ylab("Mean RT in ms") +

xlab("Condition") +

theme_classic()

plot(p1.ae.df.test_2F)

emmeans(test_2F, list(pairwise ~ condition), adjust = "tukey", pbkrtest.limit = 9137)

test_3F <- lmer(MeanRT ~ modality * condition + (1|Subject), data = d1)

test_3F

emmeans(test_3F, list(pairwise ~ condition * modality), adjust = "tukey")

ae.test_3F = allEffects(test_3F)

ae.df.test_3F = as.data.frame((ae.test_3F[[1]]))

p1.ae.df.test_3F = ggplot(ae.df.test_3F, aes(x = condition, y = fit, color = modality)) +

geom_errorbar(aes(ymin = fit - se, ymax = fit + se), width = .1) +

geom_line() +

geom_point() +

ylab("Mean RT in ms") +

xlab("Condition") +

theme_classic()

plot(p1.ae.df.test_3F)

report(test_3F)

anova(test_3F)

test_4F <- lmer(StepRT ~ Condition * Step + (1|Subject), data = d)

test_4F

report(test_4F)

test_5F <- lmer(StepRT ~ Condition * Step * Group + (1|Subject), data = d)

test_5F

anova(test_5F)

ae.test_5F = allEffects(test_5F)

ae.df.test_5F = as.data.frame((ae.test_5F[[1]]))

p1.ae.df.test_5F = ggplot(ae.df.test_5F, aes(x = Step, y = fit, color = Group)) +

geom_errorbar(aes(ymin = fit - se, ymax = fit + se), width = .1) +

geom_line() +
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geom_point() +

ylab("Mean RT in ms") +

xlab("Step") +

theme_classic() +

facet_wrap(vars(Condition))

plot(p1.ae.df.test_5F)

emmeans(test_5F, list(pairwise ~ Condition * Group * Step), adjust = "tukey")

knitr::knit("Testing.Rmd")

rmarkdown::pandoc_convert("Testing.Rmd", to = "latex", output = "Testing.tex")
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Appendix F

Syntax for the analysis of the data from transfer data
{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) {r Library}

library(dbplyr)

library(tidyr)

library(tidyverse)

library(report)

library(effects)

library(emmeans)

library(lme4)

library(writexl)

i. Getting the data {r Original training datset} d1 <- read.csv('training.csv') {r Original testing

dataset} d2 <- read.csv('testing.csv')

ii. Taking variables from both datasets {r Sixth session from the training phase} d1 <- d1[d1$Session == 6,

] d1 = subset(d1, select = -c(sum, excl_crit.y, feedback.RTTime, feedback.ACC, ID, Phase)) {r

Familiar/Other condition from the testing phase} d2 <- d2[d2$condition == "fam other", ] d2 =

subset(d2, select = -c(sum, excl_crit.y, feedback.RTTime, feedback.ACC, ID, condition))

iii. Putting datasets togeter for directionality analysis {r Sixth training session + Familiar/Other condition}

d3 <- rbind(d1, d2) d3 <- d3 %>% mutate(step = factor(step, ordered = T))

iv. Adding directionality variable {r Adding extra variable depending on Session and modality} d3 <- d3

%>% mutate(Transfer = case_when(Session == 7 & modality == "hands" ~ "f2h",

Session == 8 & modality == "hands" ~ "f2h", Session == 9 & modality ==

"hands" ~ "f2h", Session == 10 & modality == "hands" ~ "f2h",

Session == 6 & modality == "feet" ~ "f2h", Session == 7 & modality ==

"feet" ~ "h2f", Session == 8 & modality == "feet" ~ "h2f",

Session == 9 & modality == "feet" ~ "h2f", Session == 10 & modality ==

"feet" ~ "h2f", Session == 6 & modality == "hands" ~ "h2f"))

v. Differentiating between testing & training {r Session 6 is Training and the rest are Testing} d3 <- d3

%>% mutate(Session = case_when(Session == 6 ~ "Training", Session ==

7 | Session == 8 | Session == 9 | Session == 10 ~ "Testing"))

vi. Making a dataset with Mean RT per trial {r Mean RT per trial - Block level} d4 <- d3 %>%

group_by(Transfer, modality, Session, Subject, h, rep) %>% summarize(MeanRT = mean(feedback.RT))

1. Transfer on block level {r Mean RT with Block and Transfer} transfer1 <- lmer(MeanRT ~ Session *

Transfer + (1|Subject), data = d4) report(transfer1)

ae.transfer_1 = allEffects(transfer1)

ae.df.transfer_1 = as.data.frame(ae.transfer_1[[1]])

p1.ae.df.transfer_1 = ggplot(ae.df.transfer_1, aes(x = Session, y = fit, color = Transfer)) +

geom_errorbar(aes(ymin = fit - se, ymax = fit + se), width = .1) +
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geom_line() +

geom_point() +

ylab("RT in ms") +

xlab("Session") +

theme_classic() +

scale_color_brewer(palette = "Dark2")

plot(p1.ae.df.transfer_1)

{r Post-hoc comparisons} emmeans(transfer1, list(pairwise ~ Session * Transfer), adjust = "tukey",

pbkrtest.limit = 9137) {r Making means and sd table} d5 <- d3 %>% group_by (Session, Transfer) %>%

summarise(mean_RT = mean(feedback.RT)) d5 2. Transfer on Step level {r Step RT with Block and Transfer}

transfer2 <- lmer(feedback.RT ~ Session * Transfer * step + (1|Subject), data = d3) report(transfer2)

ae.transfer_2 = allEffects(transfer2)

ae.df.transfer_2 = as.data.frame(ae.transfer_2[[1]])

p1.ae.df.transfer_2 = ggplot(ae.df.transfer_2, aes(x = step, y = fit, color = Transfer)) +

geom_errorbar(aes(ymin = fit - se, ymax = fit + se), width = .1) +

geom_line() +

geom_point() +

ylab("RT in ms") +

xlab("Step") +

facet_wrap(vars(Session)) +

theme_classic() +

scale_color_brewer(palette = "Dark2")

plot(p1.ae.df.transfer_2)

{r Adjusting max print option to enable printing all comparisons} options(max.print=1000000) {r

Post-hoc of Session by directionality by step} emmeans(transfer2, list(pairwise ~ Session * Transfer *

step), adjust = "tukey", pbkrtest.limit = 9137)

d6 <- d3 %>% group_by (Session, Transfer,step) %>%

summarise(mean_RT = mean(feedback.RT))

d6

write_xlsx(d6,"C:/Users/evelyn/OneDrive - Sigmax/Documents/Evelyns big bad Masters Thesis/Data analyses/d6.xlsx")
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