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Abstract

High precision systems are critical in many scientific and engineering fields. Applications include telescopes,
particle colliders, interferometers and lithography machines. Systems like this are subject to disturbances that
limit their performance. To attenuate these disturbances, the critical payload is typically suspended to the floor
by means of a vibration isolation system. As such, a distinction can be made between direct disturbances, that
act directly on the sensitive payload, and indirect disturbances, that enter the system through the suspension.
Direct disturbances, for example, could be reaction forces of some process taking place on the critical payload
whereas indirect disturbances are usually floor vibrations. The performance of passive vibration isolation
systems is characterized by two tradeoffs. The first is expressed in terms of the suspension frequency, where
low suspension frequency gives good attenuation of floor vibrations but high sensitivity to direct disturbance
forces. For high suspension frequencies this is the other way around. Adding mass attenuates both types of
disturbances, however there are some obvious practical limits to the amount of mass that can be added to a
system. The second tradeoff is characterized by the relative damping, where increasing the relative damping
at the suspension frequency will decrease high frequency indirect disturbance rejection.
Active vibration isolation systems (AVIS) have shown to mitigate the effects of these tradeoffs. Typical active
solutions focus on a passive payload. Recently however, this has been extended to a payload with motion
stage that introduces additional direct disturbances due to reaction forces. This thesis presents a structured
method for deriving the equations of motion of an AVIS with motion stage. The equations of motion are used
to construct the disturbance feedforward controllers in a mixed feedback/feedforward control strategy. The
performance of feedforward control greatly depends on parameter accuracy. These parameters may be difficult
to identify or they can be time-varying, for example due to temperature changes. Therefore, an adaptive
algorithm in the form of a filtered-error Kalman approach is proposed and implemented. The control strategy
is tested in a simulation environment and implemented on an experimental setup. Substantial performance
improvement was observed with respect to the passive and feedback controlled system, especially on axes where
disturbances due to motion stage reaction forces were most prominent. Results include a reduction of 91.1%
of the power spectral density of the payload acceleration (x-axis) at the fundamental frequency of the motion
stage with respect to passive system. At the 3rd harmonic an improvement up to 99.99% was observed. The
tracking error of the motion stage reduced with 90% to approximately 300 nm compared to the passive system.
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Introduction

This chapter explains the tradeoffs that exist within passive vibration isolation systems. A discussion on how
active vibration isolation systems attempt to mitigate the effects of these tradeoffs is provided. Finally, an
overview on the current state of the art is given along with the research challenges and contributions of this
thesis.

2.1 Background

High precision systems are critical in many scientific and engineering fields. Typical applications include
telescopes, particle colliders, interferometers and lithography machines [1]. Systems like this are subject to
various disturbances, for example floor vibrations, that limit their performance. In general, a sensitive payload
is connected to the floor via a suspension system [2], [3], as illustrated in figure 2.1

m

dk

x0

x1

Fd

Figure 2.1: Passive vibration isolation system where x0 and x1 represent the position of the floor and sensitive
payload respectively.

Usually the disturbances a categorized as either direct or indirect. As the name suggests, direct disturbances
act directly on the sensitive payload whereas indirect disturbances enter the system through the suspension.
Passive solutions to attenuate indirect (floor) disturbances introduce tradeoffs in terms of transmissibility (2.1)
and compliance (2.2).

T (s) =
ẍ1(s)

ẍ0(s)
=

ds+ k

ms2 + ds+ k
(2.1)

C(s) =
x1(s)

Fd(s)
=

1

ms2 + ds+ k
(2.2)

If the suspension frequency is defined as ωn then using k
m = ωn and d

m = 2ζωn, equations 2.1 and 2.2 can
be rewritten as

T (s) =
2ζωns+ ω2

n

s2 + 2ζωns+ ω2
n

(2.3)

C(s) =
ω2
n

s2 + 2ζωns+ ω2
n

1

k
. (2.4)

From 2.3 and 2.4 the first tradeoff can now be derived, which is characterized by the suspension frequency.
Lowering the suspension frequency will improve indirect disturbance rejection at higher frequencies but will
deteriorate direct disturbance rejection at lower frequencies. This is illustrated in figure 2.2.
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Figure 2.2: Transmissibility and compliance for suspension frequencies of 0.1 (dashed), 1 (solid) and 10 (dotted)
Hz

The second tradeoff is characterized by the relative damping. Increasing the relative damping at the
suspension frequency will decrease high frequency indirect disturbance rejection, as shown in figure 2.3.
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Figure 2.3: Transmissibility and compliance for a relative damping of 0.01 (dashed), 0.1 (solid) and 1 (dotted)

In more general terms, passive systems always require some application specific balance between direct and
indirect disturbance rejection which is determined by choice of suspension frequency and relative damping.
This poses some difficult design choices when active elements are present on the critical payload in which case
direct disturbances, such as reaction forces, can become a dominant factor. Typically, the balance would shift
towards a hard-mount setup [4], which makes the process more susceptible to indirect disturbances. Active
vibration isolation has shown to mitigate the effects of presented tradeoffs [5].

2.2 Active vibration isolation

Active disturbance attenuation can, to some extent, be achieved trough classical feedback control. Typical
solutions include Skyhook damping, virtual balance mass and force feedback [2]–[4]. In addition,
disturbance-observer-based methods provide a more modular approach which can be particularly useful when
reference tracking is involved and when specific types of disturbances are considered [6]. Feedback control,
however, also comes with several challenges imposed by the physical properties of the system and sensor
noise. In closed loop systems stability has to be considered, usually by means of the Nyquist criterion.
Additionally, there is Bode’s sensitive integral such that disturbance attenuation in a certain frequency band
will always lead to disturbance amplification in another, commonly known as the waterbed effect.
Performance gain will therefore always be limited.

4



Disturbance feedforward control does not introduce the aforementioned stability issues. It requires
measurement of some variable that correlates to the primary disturbance. The general idea is that a
secondary disturbance with opposite phase is produced to cancel the primary disturbance [2]. The
performance gain of feedforward control relies on several factors such as model accuracy and the correlation
between the measured variable and the disturbance [7]. Even though some limitations of passive systems can
be addressed, active control comes with its own tradeoffs and limitations.

A mixed control strategy where feedback is combined with disturbance feedforward control appears to be
promising method [3], [8]. Here, floor vibrations (indirect disturbances) are measured and used to create a
secondary disturbance of opposite phase to cancel payload vibrations. An advantage of using a floor vibration
measurement (disturbance feedforward) is that it generally gives a better signal-to-noise ratio then using
critical payload measurement (feedback) where the disturbances may already be partly filtered by the
suspension system [9]. Measuring and discretization, however, will always introduce delays. Therefore, a
perfect feedforward controller that is also practically implementable (e.g. causal) does not exist. An
alternative solution is found in solving the H2 optimal control problem which results in the Wiener filter [7].
Combined with a model based approach a highly efficient formulation of the feedforward controller is obtained
[10]. Since the reference signal is measured and not generated, disturbance feedforward control is limited in
performance by the waterbed effect, similar to Bode’s sensitivity integral for feedback systems [9].

As mentioned, model accuracy of one the key aspects in performance gain of feedforward control as the
controller coefficients are based on some system model. In practice, model errors may arise because system
parameters can be hard to identify [11] or vary in time, for example due to changes in temperature. Model
accuracy may be improved through adaptation algorithms. Least mean squares (LMS) based variants are
such as FxLMS, FuLMS and FeLMS are widely used. The coefficients are adapted through an LMS algorithm
using the measured residual disturbance. With FxLMS, the regressor is constructed by filtering the reference
signal by an estimated model of the secondary path. FuLMS can be interpreted as an IIR extension to
FxLMS where the regressor is extended with controller output ’u’ to account for any feedback dynamics from
’u’ to the reference. FeLMS differs from FxLMS by the fact that the error, or residual disturbance, is filtered
instead of the reference. For MIMO systems where the number of inputs exceeds the number of outputs the
latter is usually more efficient. LMS based algorithms are attractive for their low computational loads,
however in their original definition convergence speed is typically low. Methods such as preconditioning may
reduce this effect. Similar variants can be found in recursive least squares (RLS) algorithms, which minimize
the mean square error instead of the instantaneous error that is minimized by LMS algorithms. An FeRLS
approach appears to be superior to FeLMS in terms of steady-state parameter variance, convergence
uniformity and speed [12].

Up to this point only active vibration isolation systems with a passive payload have been considered.
However, payload with active elements comprise an important class of systems [13]. Recently, promising results
have been obtained for an AVIS with motion stage and compliant frame mode [8]. Here, the disturbance
feedforward controller is extended with information from the motion stage, acting as a virtual balance mass.
The provided framework will serve as basis for this thesis.

2.3 Objectives and contributions

With the addition of a motion stage and complient frame mode, additional disturbance forces are introduced
into the system. As such, a linear approach in construction of the equations of motion may not be sufficiently
accurate for model based feedforward control. It is therefore desired that the non-linear equations of motion
are derived for an AVIS with motion stage and complient frame mode. As such, a systematic method for
determining the equations of motion of the system shall be provided and implemented. The equations will
serve as a basis for model based controller design.

Parameter adaptation has shown promising results in combination with disturbance feedforward control
[8], [10], [12]. Several LMS and RLS algorithms exist, each with their own advantages and disadvantages.
Recent work on an AVIS with motion stage and complient frame mode [8] proposed a combination of a
filtered-error LMS algorithm for the critical payload parameters along with a Kalman filter for the motion
stage parameters. However, a filtered-error RLS algorithm has shown to be practically implementable while
holding some important advantages over LMS algorithms [12]. In this thesis a filtered-error Kalman
algorithm, of which the filtered-error RLS algorithm is a special case, is proposed and implemented for both
the critical payload en motion stage parameters. A wide variety of Kalman filters have been researched and
used extensively which makes that resources for common issues [14] and specific usecases are plentiful.
Inspired by [12], the filter can be implemented in a computational highly efficient manner with only some
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mild assumptions.

Testing and debugging control algorithms can be a difficult task as they get increasingly more complex.
Desired parameters may not be readily available for measurement, hard to identify or there can be (unknown)
disturbances. Additionally, it may not be possible to analyze some parts of a system individually but only as
part of a whole system. A simulation model provides may help to overcome these issues and is a good starting
point for any control system design. Therefore, a three-dimensional model of the proposed framework [8] shall
be implemented in a simulation environment to test the developed control algorithm. Additionally, results of
the simulation shall be validated experimentally on a benchmark system.
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System dynamics and control strategy

First a modeling scheme for an AVIS is presented. Then a systemic method for deriving equations of motions
is discussed and applied to the model. Subsequently, a mixed feedback/feedforward control scheme is designed
in which the feedforward controllers are generated from the equations of motion. Finally, a novel adaption law
is proposed to update the feedforward parameters.

3.1 System description

An ideal physical model (2D) of an active vibration isolation system with motion stage and compliant frame
mode is provided in figure 3.1 [8].

Motion stage

Isolated base
ai

af

mi

mm

x

z

θy

Compliant frame mode
mc

Fi

Fi

Ti

Fm

∆xm

∆zc

Figure 3.1: Ideal physical model of an AVIS with motion stage and compliant frame mode, where the AVIS
comprises the floor, suspension, isolated base and the respective actuators.

A total of four bodies can be distinguished, being the floor (f), isolated base (i), motion stage and compliant
frame mode (c). From here on, related parameters will be denoted with the subscripts {f, i,m, c} respectively.
The isolated base is suspended to the floor by means of springs and dampers. It is host to some critical process
that requires high accuracy such as measurement or positioning actions. Thus, it may represent some platform
or machine frame whereas the motion stage represents the critical process. The motion stage is suspended to
the frame of the isolated base. Actuation of the motion stage generates reaction or direct disturbance forces on
the isolated base. Finally, there is the frame deformation as a result of finite frame stiffness, which is represented
by the compliant frame mode.
Note that ∆xm and ∆zc are displacements of the motion stage and compliant frame mode with respect to
their initial positions and expressed in the coordinate frame of the isolated base. Figure 3.1 is depicted as a
2D planar schematic, but it is easily interpreted in three dimensions. The only DOF of the motion stage is
the x-direction in the local coordinate frame of the isolated base. In all other local directions the connection
between motion stage and isolated base is considered rigid. In similar fashion, the only DOF of the compliant
frame mode is the z-direction in the local coordinate frame of the isolated base and in all other directions their
connection is considered rigid. The floor is regarded rheonomic and can be seen as a disturbance input [5].
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In the light of a 3D interpretation, all six degrees of freedom of the isolated base (xi,yi, zi,θi,x,θi,y,θi,z) are
actuated, allowing disturbance attenuation in every direction.

3.2 Constrained equations of motion in augmented form

In this section the equations of motion of the AVIS will be derived. They are used to identify relevant forces
and serve as a basis for controller design and implementation. The approach of constrained equations of motion
in augmented form [15] is adopted. The main contribution to this application is that it provides a structured
formulation in terms of the kinematic constraints and system parameters, as shown in 3.4.

The first step is to define the generalized coordinate vector q that describes the origins of the local coordinate
frames of each body, expressed in some inertial frame of reference. These coordinate frames are typically located
in the center of mass of each body. When elasticity of bodies is considered, q may contain more coordinates
per body, however that is not the case here. The generalized coordinate vector is, however, extended with the
two local coordinates ∆xm and ∆zc. This will greatly simplify the process of constructing the equations. The
coordinates related to each body are denoted by x∗ ∈ R6×1 with ∗ = {f, i,m, c}, such that the generalized
coordinate vector is defined by

q =
[
xf xi xm xc ∆xm ∆zc

]T ∈ R26×1. (3.1)

The inertial frame of reference (O) is located at the ’radial center’ of the AVIS such that, in steady state,
the center of masses are aligned along its z-axis as illustrated in figure 3.2a. The offsets of the floor, isolated
base, motion stage and compliant frame mode are defined by hf , hi, hm and hc respectively. The floor frame
is chosen such that it coincides with the frame of the isolated base so hf = hi, as illustrated in figure 3.2b.

O

rOOc

rOOm

rOOi

c

m

i

hi

hm

hc

hf

f

x

z

x

z

(a)

O

c

m

i

m ′

c ′

f

∆
x
m

∆
z
c

x

x

z

z

(b)

Figure 3.2: Schematic of the floor, isolated base, motion stage and compliant frame mode in relation to frame
O.

For vectors the notation rcab is used, meaning the vector from a to b expressed in frame c. In the same light,
θcab refers to the angle between a and b expressed in frame c. Then based on figure 3.2, the constraint equations
can be formulated as

C(q) =



riim −

 ∆xm
0

hm − hi


θi
im

riic −

 0
0

∆zc + hc − hi


θi
ic


= 0, (3.2)
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where {riim, θi
im, riic, θ

i
ic} ∈ R3×1. Thus, ∆xm is defined as the relative x position of the motion stage

expressed in the frame of the isolated base. As such, ∆zc is defined as the relative z position of the compliant
frame mode expressed in the frame of the isolated base. The orientation of the motion stage and compliant
frame mode are always equal to the orientation of the isolated base. Rewriting in terms of vectors expressed in
the inertial frame gives

C(q) =



RO
Oi(r

O
Om − rOOi)−

 ∆xm
0

hm − hi


θO
Om − θO

Oi

RO
Oi(r

O
Oc − rOOi)−

 ∆zc
0

hc − hi


θO
Oc − θO

Oi


= 0, (3.3)

where RO
Oi ∈ R3×3, {rOOm, rOOi, r

O
Oc, θ

O
Om, θO

Oi, θ
O
Oc} ∈ R3×1. The next step is to apply the equations of

motion in augmented form given by [
M ΦT

q

Φq 0

] [
q̈
λ

]
=

[
QA −Dq̇ −Kq

γ

]
(3.4)

Here, QA contains the applied forces such as gravity and actuator forces. M , D and K contain the mass,
damping and stiffness properties of the respective elements. The constraint forces are included in Lagrange
multiplier form as ΦT

q λ, where ΦT
q is the Jacobian of the constraint equations found in 3.3 with respect to

the generalized coordinate vector q. This vector can be partitioned in dependent and independent coordinates
where, by choice,

qd =
[
xm θm xc θc

]T ∈ R12×1

qi =
[
xf θf xi θi ∆xm ∆zc

]T ∈ R14×1.
(3.5)

Applying this partitioning to the equations of motions givesMdd Mdi ΦT
qd

M id M ii ΦT
qi

ΦT
qd ΦT

qi 0

q̈d

q̈i

λ

 =

Qd
A

Qi
A

γ

−

Ddd Ddi

Did Dii

0 0

q̇d

q̇i

0

−

Kdd Kdi

Kid Kii

0 0

qd

qi

0

 . (3.6)

Then because of the additional coordinates ∆xm and ∆zc in combination with 3.5, the subsets of the stiffness
and damping matrices related to the dependent coordinates are zero, thus the following equations are obtained.Mdd Mdi ΦT

qd

M id M ii ΦT
qi

ΦT
qd ΦT

qi 0

q̈d

q̈i

λ

 =

 Qd
A

Qi
A −Diiq̇i −Kiiqi

γ.

 (3.7)

This partitioning allows for rewriting all equations in terms of the independent coordinates. The complete
derivation, without stiffness and damping matrices, can be found in [15].

[
M ii −M idΦ−1

qd
Φqi −ΦT

qiΦ
−T
qd

[
Mdi −MddΦ−1

qd
Φqi

]]
q̈i

= Qi
A −M idΦ−1

qd
γ−ΦT

qiΦ
−T
qd

[
Qd

A −MddΦ−1
qd

γ
]
−Diiq̇i −Kiiqi

(3.8)

This can be written in compact form, resulting in the reduced equations of motion

M̂q̈i = Q̂− D̂q̇i − K̂qi (3.9)

where

M̂ =
[
M ii −M idΦ−1

qd
Φqi −ΦT

qiΦ
−T
qd

[
Mdi −MddΦ−1

qd
Φqi

]]
D̂ = Dii

K̂ = Kii

Q̂ = Qi
A −M idΦ−1

qd
γ −ΦT

qiΦ
−T
qd

[
Qd

A −MddΦ−1
qd

γ.
] (3.10)
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Note that some subsections of the Jacobian and Hessian of the constraint equations may require qd or q̇d.
Then qd can be found by setting Φqd = 0 and solving for qd. This allows qd to be written in terms of qi.

Then q̇d = −Φ−1
qd

Φtt and γ = −
[
Φqq̇

]
q
q̇ − 2Φqtq̇ −Φtt.

For kinematically solvable systems this embedded formulation directly gives a minimal set of equations
in terms of the independent coordinates. The problem of obtaining the equations of motion has now mainly
been reduced to obtaining the kinematic constraint equations, which is considerably more easy for the system
discussed in this thesis. Since the equations of motion contain the actuator forces, they can be used to determine
the required actuator forces to cancel all disturbance forces included in the model.

3.3 Controller design

The main objectives of the active vibration isolation system is to ensure proper reference tracking of the motion
stage while minimizing internal frame deformation [8]. As such, the following mixed feedback/feedforward
control scheme [8] is adopted to attenuate direct and indirect disturbances.

P2,i

CFB,i

+

P1,i +

CFF,im

CFF,i

P4,mi

P1,m

s
−2

P2,m ++CFB,m

CFF,m

+
–

+
– bmi

af

r

ai

∆xm

xm

xi

ui

Figure 3.3: Control scheme AVIS

Here P1,i is the primary path where floor vibrations enter the isolated base. P2,i is the secondary path
through which actuator forces act on the isolated base. In similar fashion, P1,m is the primary path where
isolated base vibrations affect the motion stage and P2,m the secondary path through which the motion stage
is actuated. P4,mi models the forces of the motion stage on the isolated base.

Isolated base

For the isolated base we can distinguish three controllers. A feedback controller for direct disturbances and
unmodelled dynamics, a feedforward controller to cancel floor disturbances and another feedforward controller
to cancel motion stage induced disturbances. For the feedforward controllers a reverse approach is taken. The
actuator forces are determined under the assumption of perfect disturbance attenuation. That is, the equations
of motion are solved for the actuator forces and the position of the isolated base is assumed zero. The forces
for each actuator are then described by

Fi,x = −df,xẋf − kf,xxf +mm∆ẍm

Fi,y = −df,y ẏf − kf,yyf

Fi,z = −df,z żf − kf,zzf + (mi +mm +mc)g +mc∆z̈c

Ti,x = −df,θx θ̇x,f − kf,θxθf,x

Ti,y = −df,θy θ̇y,f − kf,θyθf,y +mmg∆xm −mm∆ẍm(hm − hi)

Ti,z = −df,θz θ̇z,f − kf,θzθf,z

(3.11)

For some axes the required actuator forces depend on both floor and motion stage related variables,
confirming the control scheme of 3.3. ∆zc is not actuated and in general not measured, merely a variable
which is subject to indirect minimization by cancelling all other disturbances acting on the system. It will
therefore not be used in cancellation of disturbance forces. The gravitational term in z-direction is not
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considered, as it is not related to any independent coordinate. In case of proper tracking, ∆xm ≈ r. Since r
and all its derivates are determined analytically, they are exactly known at all times and no differentiation is
required. As a result the actuator forces are approximated in the frequency domain by the follow relations

Fi,x(s) = −(df,xs− kf,x)xf (s) +mmr(s)s
2

Fi,y(s) = −(df,ys− kf,y)yf (s)

Fi,z(s) = −(df,zs− kf,z)zf (s)

Ti,x(s) = −(df,θxs− kf,θx)θf,x(s)

Ti,y(s) = −(df,θys− kf,θy )θf,y(s) +mmgr(s)−mm(hm − hi)r(s)s
2

Ti,z(s) = −(df,θzs− kf,θz )θf,z(s).

(3.12)

These equations do not yet include actuator dynamics. For the isolated base six voltage controlled voice
coil motors (VCM’s) are used to generate the desired actuation forces. Then actuator dynamics can then be
included by substituting each force on the lefthand side of equation 3.12 with Fi,∗(s) = kf (Ls + R)−1Vi,∗(s)
[16]. Then solving for Vi,∗(s) by multiplying each side with the inverse actuator dynamics provides the final
equation for calculation of the feedforward voltage.

VFF,i(s) = −k−1
f,i

[
DfLi KfLi +DfRi KfRi a3 a2 a1 a0

]
[
xfs

2 xfs xf rs3 rs2 rs r
]T (3.13)

where VFF,i(s) ∈ R6×1, Df ∈ R6×6, Kf ∈ R6×6, xf ∈ R6×1 and

a3 =
[
mmLi 0 0 0 −mmLi(hm − hi) 0

]T
a2 =

[
mmRi 0 0 0 −mmRi(hm − hi) 0

]T
a1 =

[
0 0 0 0 mmgLi 0

]T
a0 =

[
0 0 0 0 mmgRi 0

]T
(3.14)

The floor accelerations, xf (s)s
2, are directly measured. They will be denoted as af (s). The velocity and

position can then be obtained by integration. Pure integrators, however, amplify low frequent noise and have
infinite DC gain. Therefore, they are approximated by ’weak integrators’ [10] using the following structure.

Ha,n(s) =
1− La,n(s)

s
(3.15)

La,n(s) = (
α

α+ s
)n (3.16)

Here an nth-order low-pass filter is obtained with cut-off frequency α, which is then chosen such that Ha,n(s)
approximates a pure integrator within the desired frequency band. Rewriting equation 3.13 with the proposed
modifications leads to the following notation that is linear in the parameters and where the two feedforward
controllers are combined.

VFF,i(s) = −k−1
f,i

[
DfLi KfLi +DfRi KfRi a3 a2 a1 a0

]
[
af Hnaf H2

naf rs3 rs2 rs r
]T (3.17)

In relation to figure 3.3 this can be interpreted as

VFF,i(s) =
[
CFF,i CFF,im

] [af (s)
r(s)

]
(3.18)

For the feedback controller CFB,i proportional velocity feedback, or Skyhook damping, is chosen. This
is implemented by integrating the isolated base acceleration with weak integrators according to the following
structure

CFB,i =
ωi

1 + ωi
kvI6. (3.19)

The weak integrators have a cutoff frequency of 1 rad/s and the proportional gain kv is tuned such that
relative damping of approximately 0.7 is achieved at the resonance frequency [12].
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Motion stage

As a prerequisite for 3.17, accurate reference tracking was assumed. It is therefore crucial to implement a
proper controller. Inversion based feedforward control allows for high performance reference tracking in motion
systems [17]. This could lead to causality issues for plants with relative degree ≥ 1, but since the reference
signal and all its derivates can be determined analytically this is not a problem here [18]. The motion stage is
actuated by current controlled VCM’s. Therefore, there is no additional pole as was the case for the isolated
base. The nominal plant model is then given by

Pnom =

1
meq

s2 + d
ms+

k
m

. (3.20)

Then the feedforward controller can be written linear in the parameters as

IFF,m(s) = meq

[
1 dm

mm

km

mm

] [
rs2 rs r

]T
(3.21)

In order to account for robust stability and to improve disturbance rejection, a feedback controller is added
in the form of a PID+ controller [19]. This controller adds some phase lead at the desired crossover frequency
and the ’+’ is for the additional high frequency rolloff. The latter provides some extra robustness against
parasitic modes. This controller is designed using the following structure.

τi =

√
1
α

ωc

τp =
1√
1
αωc

kp =
meqω

2
c√

1
α

K(s) = kp
(s2τ2i + 2ζnτis+ 1)

sτi(s2τ2p + 2ζdτps+ 1)

(3.22)

where α = 0.1, ωc = 100 Hz and ζn,d = 1√
2
. The stability margins can then be obtained from figures 3.4

and 3.5.
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Figure 3.4: Bode plot of nominal plant model of the motion stage Pm and CPID · Pm
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Figure 3.5: Nichols plot of nominal plant model of the motion stage Pm and CPID · Pm

The smallest two gain margins are 7.61 dB at 217 Hz and 12.6 dB at 33.7 Hz. Phase margin is 30.9 deg at
101 Hz. Because of the phase lead at the crossover frequency, the bandwidth is a lot larger than would have
been possible with for example just proportional feedback. The complex pole accounts for the additional high
frequency rolloff for possible parasitic modes, which are not present in the model but may be in practice.

3.4 Control strategy

By linearizing the equations of motion around the initial position, an approximation of the transfer functions
in figure 3.3 is obtained. The primary path of the isolated base is the transfer function from floor vibrations
af to isolated base vibrations ai. It is denoted by

P1,i = G(Dis+Ki), (3.23)

where Di and Ki contain the damping and spring properties of the isolated base. The secondary path of
the isolated base describes the relation between actuator input voltage and acceleration and is given by

P2,i = s2GPa,i. (3.24)

The common factor G is given by

G = (Mis
2 +Dis+Ki)

−1, (3.25)

where Mi contains the mass properties of the isolated base. The isolated base actuator dynamics are

Pa,i = Kf,i(Lis+Ri)
−1, (3.26)

where Kf,i is a diagonal matrix with force constants and Li and Ri the armature self-inductance and
resistance. Then the motion stage primary path describes the relation between isolated base position and
motion stage position. It is given by
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P1,m = gm(dms+ km), (3.27)

where dm and km contain the damping and spring properties of the motion stage. The motion stage
secondary path is given by

P2,m = gmkf,m (3.28)

where kf,m is the actuator force constant. In similar fashion to the isolated base, there is a common factor
gm which given by

gm = (mms
2 + dms+ km)−1 (3.29)

where mm contains the mass properties of the motion stage. Looking at figure 3.3 we obtain the following
transfer functions. For the motion stage

S−1
m xm(s) = (P1,m + P2,mCFB,mbmi)s

−2ai(s) + (P2,m(CFF,m + CFB,m))r(s) (3.30)

where the motion stage sensitivity is given by

Sm = (I + P2,mCFB,m)−1. (3.31)

Then for the isolated base the following relation is obtained

S−1
i ai(s) = (P1,i + P2,iCFF,i)af (s) + (P2,iCFF,im + P4,miSmP2,m(CFF,m + CFB,m))r(s) (3.32)

where the sensitivity is given by

Si = (I − P2,iCFB,i − P4,miSm(P1,m + P2,mCFB,mbmi)s
−2)−1 (3.33)

Then the required feedforward controllers in terms of these general transfer functions can be derived. The
feedforward controller of the motion stage is given by

CFF,m = P−1
2,m. (3.34)

In a similar fashion the optimal feedforward controller for the isolated base is

CFF,i = −P−1
2,i P1,i. (3.35)

Then substituting these controllers in equation 3.32 gives

S−1
i ai(s) = (P2,iCFF,im + P4,miSm (I + P2,mCFB,m)︸ ︷︷ ︸

S−1
m

)r(s) = (P2,iCFF,im + P4,mi)r(s) (3.36)

such that the feedforward controller to attenuate disturbances induced by the motion on the isolated base
is given by

CFF,im = −P−1
2,i P4,mi, (3.37)

concluding the definition for all feedforward controllers. Note that filling in the transfer functions provided
by 3.23 - 3.26 into the feedforward controller definitions of the isolated base, 3.35 and 3.37, will result in the
feedforward controller equations derived previously in 3.17.
There are several limitations that must be considered. As stated, accurate reference tracking is critical because
of substitution of the motion stage position by the reference signal as controller input. Another limitation arises
due to the use of ’weak integrators’. Since the approximation of the pure integrators deteriorates quickly below
the chosen α, performance is limited for lower frequencies. Also, the accuracy of the feedforward leans heavily
on system parameters. A slight mismatch, for example due to temperature drift or identification accuracy
limitations, may decrease controller performance. Figure 3.6 shows the effect of both the ’weak integrators’
and parameter mismatch on the transmissibility and reference compliance.
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Figure 3.6: Transmissibility and reference compliance for different controller combinations

Here, ’weak integrators’ are used where α = 1 Hz. Even with ’perfect’ feedforward control, there is very
little performance gain with respect to the transmissibility below α. Also, parameters mismatch appears to
greatly diminish the performance of both the transmissibility and reference compliance.

3.5 Adaptation

Parameter adaptation is a widely used method to deal with parameter variation and uncertainty. Since all
feedforward controllers for both the isolated base and motion stage are linear in the parameters, an adaptation
algorithm can be used to update the parameters. In general, the update law follows by minimization of some
relevant error. Recent work shows that an FeRLS approach is implementable in real time and can achieve
good vibration isolation [12]. The modified filtered-RLS algorithm is shown to be a specific case of the Kalman
algorithm where no uncertainty in the secondary path is assumed [7]. In this thesis the Kalman algorithm is
applied in combination with the filtered error approach. The proposed exploitation of regression matrix sparsity
from [12] is adopted to ensure real time implementation.
Equations 3.38 and 3.39 show the isolated base and motion stage feedforward controllers, where

VFF,i(s) = −k−1
f,i

[
DfLi KfLi +DfRi KfRi a3 a2 a1 a0

]︸ ︷︷ ︸
W

·

[
af Hnaf H2

naf rs3 rs2 rs r
]T︸ ︷︷ ︸

ψ̃

(3.38)

IFF,m(s) = meq

[
1 dm

mm

km

mm

]
︸ ︷︷ ︸

W

·
[
rs2 rs r

]T︸ ︷︷ ︸
ψ̃

(3.39)

To explain this in a more general sense, VFF,i(s) and IFF,m(s) are denoted by the controller output signal
uFF (k), where k is the iteration number. Then uFF (k) is rewritten to align the notation with the algorithm.

uFF (k) =

ψ̃
T (k) . . . 0
...

. . .
...

0 . . . ψ̃T (k)


︸ ︷︷ ︸

Ψ̃(k)

(W(1,:)(k))
T

...
(W(n,:)(k))

T


︸ ︷︷ ︸

w(k)

(3.40)

where n is the nth row in W. As such, w(k) is a vertical concatenation of the transposed rows of W and
Ψ̃(k) is a blockdiagonal repetition of ψ̃T (k). Now the goal of the algorithm is to minimize the error as a result
of a mismatch between estimated and ’true’ parameters. This process can be described as

e(k) = P2(Ψ(k)w(k) + Ψ̂(k)ŵ(k|k − 1)) (3.41)

where

Ψ̂ = Ψ + Ψ̃ (3.42)

ŵ = w + w̃. (3.43)
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Here, Ψ̂ is the regressor that may be corrupted with noise. For the isolated base, Ψ̂ is partly constructed
from the measurement of af and therefore contains noise. For the motion stage, Ψ̂ is constructed solely from
the reference signal which is analytically determined and does not contain noise. ŵ is the parameter vector
that contains an estimation error.
The error of the process which is minimized is e(k). For the isolated base the error is the measurement of the
isolated base acceleration

êi(k) = ai(k) + ni(k). (3.44)

where êi(k), ai(k) and ni(k) ∈ R6×1. For the motion stage the error is the difference between the reference
and the measured local motion stage position.

êm(k) = r(k)−∆xm(k) + nm(k) (3.45)

In both cases, n is the measurement noise. For the isolated base this is considered uncorrelated to the
measurement noise of the floor acceleration that is part of Ψ̂. The error is filtered by the estimated inverse of
P2 to align the error with the feedforward output. A noise shaping filter N is added to attenuate high frequency
noise and make NP̂−1

2 causal. Thus, the filtered error is obtained by

êfilt(k) = N(q)P̂−1
2 (q)ê(k). (3.46)

Then following a Kalman scheme [20], the rest of the algorithm will go as follows.
The covariance matrix of the innovation is given by

S(k) = N(q)Ψ̂(k)P (k|k − 1)Ψ̂T (k)NT (q) +R. (3.47)

Then the Kalman gain can be calculated as

K(k) = N(q)Ψ̂(k)P (k|k − 1)S−1(k). (3.48)

The parameter and covariance update law yield

ŵ(k|k) = ŵ(k|k − 1) +K(k)êfilt(k) (3.49)

P (k|k) = P (k|k − 1)−K(k)N(q)Ψ̂(k)P (k|k − 1) (3.50)

respectively, where ŵ(k|k) is the updated estimate of the true system parameters w(k). For the next iteration
the parameters are considered equal to the updated parameters with some unknown error.

ŵ(k + 1|k) = ŵ(k|k) + w̃(k) (3.51)

P (k + 1|k) = P (k|k) +Q (3.52)

R and Q are the covariance matrices of the measurement noise and process noise respectively. R represents
the uncertainty in the measurement model, usually due to sensor noise. As such, if R is relatively high with
respect to P , the measurement will not affect the parameters a lot and vise versa. Q represents the uncertainty
in the prediction model, which in this case can be interpreted as the variation in parameters over time. Electric
parameters like resistance are affected by temperature. As such, the armature resistance of the VCM’s is likely
to change over time due to the power dissipation as a result of this same resistance. Therefore, parameters
that include armature resistance may have more uncertainty than pure mechanical parameters such as damping
and stiffness that are not likely to change much over time. Looking at 3.38, the armature resistance is quite
abundant within the parameter vector of the isolated base. Additionally, Q will serve as a lower limit when
P becomes very small as a result of convergence. This allows the parameter adaptation to continue after
convergence, similar to a forgetting factor applied in RLS algorithms [12].
The initial covariance is a measure of the uncertainty of the initial parameters. It greatly determines the
initial adaptation rate. If all parameters are properly identified, the initial covariance will be relatively small.
However, if identification is poor then parameter uncertainty will be high and the initial covariance will be
relatively large. Here, care must be taken as a high initial uncertainty along with a low measurement uncertain
may result in an adaptation rate that is too fast and cause instability.

For the isolated base the algorithm in its current form is computationally expensive as Ψ̂ ∈ R6×132 and
P ∈ R132×132. Due to the blockdiagonal nature of Ψ̂, the covariance matrix P is blockdiagonal as well.
Therefore, each row in equation 3.40 can be calculated individually as

uFF,n(k) =
[
ψ̃T (k)

]︸ ︷︷ ︸
Ψ̃(k)

[
(W(n,:)(k))

T
]︸ ︷︷ ︸

w(k)

(3.53)
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where each row is denoted by n. Note that the regressor vector ψ̃T (k) has to be calculated only once for
all rows. As a result S, the covariance matrix of the innovation, reduces to a scalar, avoiding matrix inversion.
This greatly improves calculation efficiency. The motion stage is a SISO system so S is already a scalar.

Figure 3.7 shows the control scheme of figure 3.1 updated with the proposed parameter adapatation.

P2,i

CFB,i

+

P1,i +

CFF,i

P4,mi

P1,m

s
−2

P2,m ++CFB,m+
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update
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–

NP̂2,m

N

update

CFF,m

NP̂2,i

N

Ψ

Ψ

af

r

ai

+
– bmi

xi

∆xm

ui

xm

Figure 3.7: Control scheme AVIS with adaptation

Note that it is actually the filtered error that is minimized and not necessarily the error itself. The cost
function is defined as the expectation of the (filtered) error squared, commonly known as the mean squared
error.

ϵ = E(ê2filt(k)) (3.54)

It is important to realize that the algorithm will always attempt to convergence to a set of parameters that
minimizes the error for the system in its current state.
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Simulation

A simulation model based on the scheme from the previous chapter is build using Simscape Multibody. The
proposed controller is implemented and tested. The simulation setup and results are presented in this chapter.

4.1 Simulation setup

The model as described in Chapter 2 is build using Matlab/Simulink and the Simscape Multibody library. This
allows for easy testing of control algorithms in preparation for practical implementations. The visual editor
also provides great flexibility for testing with different system configurations or parameters.
An argument against usage of an external library is that the underlying physics is not transparent and may give
rise to inaccuracies. This library does have a proven trackrecord [21] such that the risk is assumed minimal.
Additionally, the use of model-based feedforward control provides an implicit sanity check of the simulation
model with the equations of motion derived earlier. An overview of the model layout is given in figure 4.1.

Figure 4.1: Simulation setup

Similar to the model described, four bodies can be distinguished, being the floor, the isolated base, the
motion stage and the compliant frame mode. Joints are provided stiffness and damping properties such that
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their presence is not immediately visible. The floor is connected to a reference frame by means of a 6-DOF
’bushing’ joint. The displacement and its derivates a provided as input. Therefore, its mass and inertia are
properties and not of interest for the calculation. The isolated base is connected to the floor by means of a
similar joint, however in this case the displacement is a result of forces and torques acting on the body. The
motion stage and compliant frame mode are connected to the isolated base by means of a 1-DOF ’prismatic’
joint. In addition, a rigid transformation is used to enforce a constraint in x and z direction respectively, local
to the coordinate frame of the isolated base. The controller obtains the floor accelerations, isolated base
accelerations and motion stage displacement and interfaces with the actuators. The actuators are connected
to the joints of the isolated base and motion stage where the force is applied to the system.

The simulations are conducted with a controller sample rate of 9 kHz. Initial parameter estimates where
derived from [3], [5], [22] and later corrected with identification results.
Since the floor is considered rheonomic, its position is a disturbance input to the model. The power of the
input noise is based on the ASML floor spectrum [23]. The reference path of the motion stage is a third
degree displacement function, shown in figure 4.2. The derivates are determined analytically according to [19,
sec. 14.3].
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Figure 4.2: Motion stage reference position, velocity, acceleration and jerk in the time domain.

Figure 4.3 shows a PSD of the motion stage reference and its derivates. As the jerk is a square wave, the
frequency spectrum typically contains the odd harmonics. Then in the frequency domain the acceleration (n=1),
velocity(n=2) and displacement(n=3) are obtained by multiplication with 1

sn . The signals do not contain a
lot of power outside the base frequency and the odd harmonics such that below the base frequency the PSD
becomes inaccurate.
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Figure 4.3: PSD of the motion stage reference.

Based on the results of [12], [22], 3rd order weak integrators with a cutoff frequency of 1 Hz are used. The
pass band of the noise shaping filter is set from 5 to 500 Hz.

4.2 Simulation results

Figure 5.6 shows the power spectral density of the isolated base acceleration for a passive system, feedback
control and feedback + feedforward control. The feedback controller of the isolate base greatly dampens the
first resonance peak for all axes. With feedback and feedforward control an additional reduction is achieved
between 1 and 500 Hz, whereas the greatest performance gain is achieved between approximately 5 and 300
Hz.

The effect of the motion stage is predominantly visible for the x and θy directions, which is to be expected
as its only degree of freedom is in the x-direction local to the isolated base. The frequencies at which the
peaks occur coincide with PSD of the reference signal provided in figure 4.3. With only feedback control the
3rd and 5th harmonic are somewhat dampened compared to the passive system. For other harmonics the
effect is very limited. With feedback and feedforward control the disturbance at fundamental frequency of the
motion stage is completely cancelled for the x-axis. Higher harmonics persist but are greatly reduced. As for
the y-axis the trend is roughly the same, however the fundamental frequency is not completely cancelled.
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Figure 4.4: Power spectral density of ai for a passive system (blue), feedback control (red) and feedback +
feedforward control (yellow).
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Figure 4.5: Power spectral density zoom of ai,x for a passive system (blue), feedback control (red) and feedback
+ feedforward control (yellow).

1 3 5 7 9 11 13
Passive 1.45e-5 5.34e-2 2.15e-2 8.45e-4 2.17e-4 2.51e-4 2.15e-5
FB 1.23e-5 4.73e-3 7.61e-3 6.54e-4 2.04e-4 2.49e-4 2.22e-5
FB + FF 1.15e-9 7.15e-7 4.44e-6 1.20e-6 9.02e-7 2.02e-6 2.96e-7

Table 4.1: PSD values for ai,x at odd harmonics of the motion stage reference. The fundamental frequency, or
1st harmonic, is 6.25 Hz.

Figure 4.5 shows the PSD of the isolated base acceleration for the x-axis where the frequency range of 5 to
500 Hz is highlighted. Up to the resonance frequency, the power density for feedback + feedforward control is
at least two orders of magnitude lower than for passive and feedback control. Also, the improved attenuation
of motion stage harmonics for feedback + feedforward control continues up to at least 500 Hz. In table 4.1 the
values of the power spectral densities at the odd harmonics of the motion stage are listed up until the 13th
harmonic, which is at 81.25 Hz.
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Figure 4.6: Cumulative power spectral density of ai,x for a passive system (blue), feedback control (red) and
feedback + feedforward control (yellow).

Figure 4.6 shows the cumulative sum of the power spectral densities shown in figure 4.4 up to 500 Hz.
The plot line of feedback + feedforward controlled system is more or less similar to the baseline in any graph,
indicating the significant performance gain that is achieved.

4.3 Adaptation

To test the adaptation algorithm, system parameters are initialized at 10% of their expected optimal value.
Figure 4.7 shows the evolution of the estimated motion stage parameters over time. The estimated mass and
stiffness appear nearly perfect, the damping is slightly off. The convergence time here is typically around 10
seconds. As the motion stage is considered a relatively simple SISO system, it provides a nice validation of the
filtered error Kalman approach.
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Figure 4.7: Evolution of normalized motion stage parameters over time. The adaptation starts at t = 100 s.
Nominal parameter values are m = 0.1689 kg, d = 3.6671 Ns/m, k = 614.4 N/m.

Figure 4.8 shows the evolution of the motion stage error over time for different combinations of isolated base
controllers. The motion stage controller is always a mixed feedback/feedforward controller with adaptation.
For the passive system the maximum error is around 2.65 µm. With only feedback enabled this reduces to 1.3
µm. Additional feedforward pushes error down further to maximum of 600 nm and with adaption the best
result is obtained with a maximum error of approximately 400 nm.
The motion stage error after isolated base controller adaptation is highlighted in the right figure of 4.8, along
with the motion stage reference signal. There appears to be some repetitive pattern still present in the error,
suggesting that more performance gain is possible.
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Figure 4.8: Evolution of the motion stage error over time for different controllers (left) and a zoom on the error
after adaptation (right). The adaptive feedforward controller is denoted as Caff .

Figures 4.9 and 4.10 show the power spectral density filtered error and unfiltered error of the isolated base
respectively. Note that the error here is the measured isolated base acceleration. Although the goal is to
minimize the actual unfiltered error, the filtered error is that what is actually being minimized. As such,
within the pass band of the noise shaping filter, minimization of the filtered error should also lead to
minimization of the unfiltered error. The passband of the noise shaping filter is 5 to 500 Hz. According to
figures 4.9 and 4.10 this is also the range where for most axes the performance gain with adaptation is
achieved. The effect of the high pass characteristic of the noise shaping filter is clearly visible below 5 Hz,
where the PSD of the filtered error decreases. The low pass characteristic beyond 500 Hz in combination with
the natural low pass characteristics of the system results in a very steep rolloff.
The isolated base acceleration in figure 4.10 shows some performance gain with respect to floor induced
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disturbance attenuation, as is best illustrated by axes θx and θz, where the motion stage has little effect. The
same effect is visible on the x and θy axes, however not on the y and z axes. After adaption the PSD of the x
direction shows some improvement with respect to the base frequency of the motion stage reference. For the
θy direction no real improvement is shown for this frequency. Both directions show large improvements with
respect to higher harmonics up to approximately 100 Hz.

Figure 4.9: Filtered error of the isolated base before (blue) and after (red) adaptation
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Figure 4.10: Unfiltered error of the isolated base before (blue) and after (red) adaptation
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Experimental Validation

The proposed controller is implemented and tested on an experimental setup. The secondary paths of the
isolated base and motion stage are identified and the results are presented in this chapter.

In order to validate several aspects of the simulation model, the experimental AVIS setup as depicted in
figure 5.1 is used.

Figure 5.1: CAD render[8] (left) and photo (right) of the experimental AVIS with VCM’s (1), flexure based
straight guide (2), motion stage (3), isolated base (4), isolated base accelerometers (5), floor (6), floor
accelerometers (7), piezoelectric actuators (8). In the CAD render some parts a left out for better visualization.

A total of six ’legs’ can be distinguished that suspend the isolated base to the floor. Each leg consists
of a VCM in series with a wire flexure. The VCM coil is connected to the housing by means of a flexure
based membrane. The wire flexure is connected to this coil on one end and to the isolated base on the other.
Its stiffness is most dominant in axial direction, which is highly desired, as other directions (e.g. bending or
torsional) will introduce parasitic stiffness [4]. The positions of the legs is chosen such that six DOF can be
constrained, resulting in an exact-constraint platform. On top the isolated base, the motion stage is mounted.
It consists of a shuttle that is suspended to a rigid frame by means of six folded leaf springs. Two VCM’s
lateral to the shuttle provide the motion. Finally, there is the compliant frame mode, which is suspended to
the same rigid frame by means of leaf springs. It is not actuated and therefore a passive component. The floor
is excited with three piezoelectric actuators, allowing for excitation along the axes z, θx and θy.
The setup is equipped with a total of twelve accelerometers, six for the floor and six for the isolated base. The
isolated base accelerometers are located in line with each wire flexure, defining the local frame for each leg. The
controller is implemented on a dSpace MicroLabBox at a sample rate of 9 kHz. The accelerometer interface
is provided by Nexus 2692-0S4 (B&K) amplifiers. The VCM’s for actuation of the isolated base are of type
VM4032-250 (Geeplus), whereas the motion stage VCM’s are of type AVM30-15 (Akribis). TA-105 amplifiers
(Trust) provide the actuator interface for the VCM’s, where the isolated base VCM’s are voltage controlled and
the motion stage VCM’s current controlled. The motion stage position is measured using a Ti4000 (Renishaw)
encoder.

5.1 System identification

The error filter defined in equation 3.46 contains an estimate of P2. Proper identification of P2 is required, as
its accuracy is important in the adaptation process. The general structure is defined in equation 3.24. Figure
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5.2 shows the FRF of P2 in the local frame for each ’leg’. Parasitic modes start to become prominent after
approximately 500 Hz.
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Figure 5.2: Local FRF of P2.

Using the structure from 3.24, transfer functions s2G and Pa,i can be distinguished. With the assumption
that the actuator dynamics are relatively accurate by using datasheet parameters, s2G is fitted with such that
the total transfer function matches the FRF. Two delay samples are added for DAC and ADC conversion. This
is depicted in figure 5.3. The first natural frequency is at approximately 35 Hz.

29



-80

-60

-40

-20

0

20

M
a
g
n
it
u
d
e
 (

d
B

)

100 101 102 103
-540

-450

-360

-270

-180

-90

0

90

180

270

P
h
a
s
e
 (

d
e
g
)

P2 FRF

P2 Fit

G Fit

Act Fit

Frequency  (Hz)

Figure 5.3: FRF and fit of P2,i

The motion stage FRF along with a parametric fit is provided in figure 5.4. The fit is based on the structure
provided in equation 3.20. This structure is reasonably accurate up to 400 Hz, where parasitic modes start
to become visible. The first natural frequency is at approximately 9.6 Hz. Beyond the first natural frequency
the transfer function is predominantly described by 1

meqs2
, thus this can be used to determine meq. Then the

relative damping can be approximated from the FRF. Two samples time delay were added to match the phase.
This can be explained by DAC and ADC in the loop.
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Figure 5.4: FRF and fit of P2,m

5.2 Results

Figure 5.5 shows the filtered error of the isolated base. Although most prominent for the x and θy directions,
the fundamental frequency of the motion stage is clearly visible in all directions, suggesting a coupling between
the axes. It appears that some parasitic modes start to emerge around 200 Hz.
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Figure 5.5: Power spectral density of the filtered error for a passive system (blue), feedback control (red) and
feedback + feedforward control (yellow).

Figure 5.6 shows the acceleration of the isolated base. The results resemble those of the filtered error.
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Figure 5.6: Power spectral density of ai for a passive system (blue), feedback control (red) and feedback +
feedforward control (yellow).

The feedback + feedforward controller appears to provide a substantial performance gain up to
approximately 100 Hz for all axes except θz.
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Figure 5.7: Power spectral density zoom of ai,x for a passive system (blue), feedback control (red) and feedback
+ feedforward control (yellow).

1 3 5 7 9 11 13
Passive 2.06e-5 6.04e-2 6.66e-2 1.25e-3 3.09e-4 3.85e-4 3.37e-5
FB 1.60e-5 4.19e-3 9.04e-3 9.34e-4 3.33e-4 3.62e-4 3.80e-5
FB + FF 1.82e-6 8.58e-6 1.48e-7 5.97e-7 8.97e-7 1.48e-6 1.90e-8

Table 5.1: PSD values for the ai,x at odd harmonics of the motion stage reference. The fundamental frequency,
or 1st harmonic, is 6.25 Hz.

Figure 5.7 shows the PSD of the isolated base acceleration for the x-axis where the frequency range of 5
to 500 Hz is highlighted. Feedback + feedforward control clearly provides a performance improvement up to
approximately 200 Hz with respect to the passive system and feedback control. Especially for the odd motion
stage harmonics. The peak around 10 Hz is most likely the resonance frequency of the motion stage. In table
5.1 the values of the power spectral densities at the odd harmonics of the motion stage are listed up until the
13th harmonic, which is at 81.25 Hz.
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Conclusion & Discussion

In this thesis, a method is proposed to systematically determine the equations of motion for an active vibration
isolation system with motion stage and compliant frame mode. The equations of motion have been used to
construct the feedforward controllers in an adopted mixed feedback/feedforward control scheme. A filtered-error
Kalman adaption is proposed in order to cope with unknown or time-varying system parameters. These
propositions have been incorporated in a simulation model and validated on an experimental AVIS setup.

6.1 System dynamics and control strategy

A method is proposed to systematically determine the equations of motion for an active vibration isolation
system with motion stage and compliant frame mode. By extending the generalized coordinate vector with
local variables, the construction of the equations of motion was greatly simplified. These equations are then
used to determine the actuator forces required to cancel disturbances acting on the sensitive payload. Using
these forces, a feedforward controller is constructed that is linear in the parameters. A filterd-error Kalman
adaptation is proposed to update the parameters and account for parameter uncertainty and time-varying
parameters.

6.2 Simulation

Using a Simulink Simscape model, the proposed controller was implemented and tested. It is shown that a mixed
feedback/feedforward controller greatly mitigates vibrations for all axes and their rotations within the passband
of the noise shaping filter. Due to its orientation, the effect of the motion stage disturbance is predominantly
visible on the x and θy axes. For the x-axis the effect of the motion stage at its fundamental frequency appears
almost completely attenuated. As for the θy-axis there is still some residual disturbance at this frequency. For
both axes the harmonics are still present, however strongly reduced compared to the passive system or solely
feedback control. With the mixed feedback/feedforward approach the maximum motion stage error improved
from 2.65 µm to 600 nm. Applying parameter adaptation resulted another reduction to a maximum error of
around 400 nm. The adaptation improved overall disturbance attenuation for all axes within the passband of
the noise shaping filter. The harmonics of the motion stage showed a strong reduction. For the thetay axis the
fundamental frequency did not appear to be affected after adaption.

6.3 Experimental validation

The designed controller was implemented and experimentally validated on an existing AVIS. An efficient
implementation of the filter-error Kalman algorithm allowed for a realtime sample rate of 9 kHz. Overall, the
mixed feedback/feedforward controller showed improved disturbance attenuation on all axes, with respect to
the passive system. Also, the harmonics of the motion stage that were visible on all axes due to coupling,
were clearly reduced. The maximum motion stage error reduced from 3 µm with the passive system to
approximately 300 nm after adaptation of the feedforward parameters.

6.4 Discussion

It is important to consider the context that has lead to the aforementioned findings such that it may serve as
a starting point for further research. Therefore, some important elements of this thesis will be discussed here.

The proposed method for deriving the equations of motion works nicely because the system is
kinematically solvable and all relevant independent coordinates are available as measurements. The motion
stage, that represents some critical process, is a relatively simple system with a single DOF that may
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approximate a wide variety of systems with a single dominant mode. The applied method, however, remains
applicable for more complex motion stages, as long as the system is kinematically solvable. For example, the
motion stage could have three DOF’s as long as they are all available for measurement. If the system is not
kinematically solvable, then some states must be estimated. Since there is already an adaptive law that uses
these states to update the parameters, it turns into a combined parameter and state estimation problem,
which increases the complexity quite drastically.

The equations of motion for this system are nonlinear and quite extensive. In order to obtain the linear
feedforward equations, the position of the isolated base was set to zero, leaving only forces that do not
directly depend on the isolated base position. Conveniently this leaves out any crossterms between isolated
base coordinates and other coordinates, such that the result is a controller that is linear in the parameters.
The downside is that this is a great simplification and the performance of the feedforward controller decreases
when the position of the isolated base is not zero, for example due to parameter mismatch, unmodelled
disturbances or delays. This is likely one of the reasons that there are still residuals of the motion stage
disturbance visible in the PSD’s of the isolated base acceleration. Since the complete generalized coordinate
vector and its derivatives are readily available in the simulation model, it is suggested to use these to calculate
the original nonlinear equations of motion. This may identify some principal components that are missing in
the current controller as a result of the simplification.
A possible improvement could be to linearize the system around its estimated position and then apply the
adaptation. This is presumably computationally more expensive, such that it may introduce a tradeoff with
the sample rate.

Through the update law a feedback loop is constructed within the disturbance feedforward controller.
This loop can also be found in figure 3.7. The effect of this loop on stability is not considered, but could be a
topic for further research.

Although a common trend was observed between the PSD’s for the isolated base of the simulation and
experimental setup, they are definitely not the same. To some extent this can be explained by the fact that
the number piezoelectric actuators available to excite the floor was limited to three, excitation of the floor was
only possible in z, θx and θy direction. It is therefore not possible to provide all floor axes with equal noise
power density. It is likely that this also affects parameter adaptation as some parts of the spectrum may have
more ’weight’ in the adaptation process. The latter does not necessarily explain any differences between
PSD’s, but is important to consider when comparing parameter convergence.
The model used for simulation did not have coupling between the axes and also no parasitic modes. The
experimental results clearly indicate their presence. Although they do not necessarily have to be included in
the model, it is important to consider these phenomena when exploring stability and robustness of the
controlled system.
Another point of interest is that a (Gaussian) noise model for the sensors was implicitly assumed by use of the
filtered-error Kalman adaptation, but actual sensor dynamics were not included in the simulation model. In
any case, it is important to either include them in the model or verify experimentally that they can be
neglected.
The floor is considered rheonomic. In practice, however, this is not the case. The isolated base actuators exert
reaction forces on the floor, causing vibrations that backpropagate through the suspension. This creates
another transfer path that will likely affect parameter adaptation as these vibrations correlate with the
applied actuator forces to some extent. To include this path, the model could be extended with finite floor
stiffness as described for a 1-DOF system in [5, Ch. 4].
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