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Management Summary

This thesis explores the importance of precise inflation forecasting in business valuation,
recognizing the substantial influence of inflation on a company’s expected cash flows and
risk, thereby shaping its overall value. The research specifically examines the performance
of traditional econometric models alongside neural network models, undertaking a compre-
hensive comparison of their respective forecasting capabilities using the Dutch Consumer
Price Index (CPI) as the key inflation measure. In order to anticipate future fluctuations in
the general price level of goods and services, this study incorporates several macroeconomic
factors as predictors of inflation, including historical inflation rates, money supply, GDP, in-
terest rates, unemployment rates, and the price of gold. By investigating the performance of
these models, this research aims to contribute valuable insights for businesses and decision-
makers, shedding light on the most effective methods for accurate inflation forecasting and
ultimately enhancing the process of business valuation.

The econometric models used to forecast inflation are ARIMA (Autoregressive Integrated
Moving Average) and VAR (Vector Autoregression), which are both time series models.
ARIMA models use a combination of autoregressive (AR) and moving average (MA) com-
ponents to model the relationships between a dependent variable and its past values and
error terms. VAR models, on the other hand, are used to model the joint behavior of mul-
tiple dependent variables. They assume that each variable is linearly dependent on its own
past values, as well as the past values of other variables in the system. VAR models are
particularly useful for modeling the dynamics of economic systems, where multiple variables
influence each other.

The three Neural Networks (NNs) that are investigated are Feedforward Neural Network
(FFNN), Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). A
FFNN is a type of neural network where information flows in one direction, from input
to output layer, through one or more hidden layers. RNNs work by using feedback connec-
tions that allow the output of a layer to be fed back into the input of the same layer, creating
a loop that enables the network to remember previous inputs. Long Short-Term Memory
(LSTM) is a type of RNN that can handle long-term dependencies by using a memory cell,
which allows the network to selectively remember or forget previous inputs. Training these
models involves optimizing the weights of the NNs to minimize the difference between pre-
dicted and actual values. The process involves an iterative procedure, where the model is fed
with training data, the weights are adjusted based on the errors, and the process is repeated
until the model reaches an acceptable level of accuracy. The training of FFNNs, RNNs, and
LSTMs involves the use of backpropagation algorithm with gradient descent optimization,
where the gradients of the error function with respect to the weights are computed and the
weights are adjusted accordingly. The process of training neural networks is computation-
ally intensive and requires careful selection of hyperparameters and optimization methods
to avoid overfitting.

The findings of this study are presented in Tabel 1 and indicate that the neural network mod-
els outperform the econometric models in the in-sample forecasts. Specifically, the LSTM
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model shows the best in-sample performance, suggesting that it is the most accurate model
for predicting inflation based on historical data. However, when it comes to out-of-sample
forecasting, the econometric models perform better, indicating that they can better general-
ize to future data. The RNN and LSTM model also did not perform better than the naive
predictor out of sample. The challenging nature of the dataset, which includes the financial
crisis, the COVID-19 pandemic and the invasion of Ukraine by Russia, posed significant
difficulties for the RNN and LSTM models in their out-of-sample forecast. These extreme
events caused sudden and significant shocks to the economy, resulting in rapid changes in
market dynamics that the RNN and LSTM models struggled to adjust to. Furthermore,
the RNN and LSTM models may not have been able to capture the complex interactions
between economic variables during such unprecedented events. It is worth noting that the
study highlights that a more complex model does not necessarily result in better and more
accurate performance. This is evident from the performance of the RNN and LSTM models,
which, despite their complexity, did not perform as well as the simpler econometric models
in out-of-sample forecasting.

RMSE in RMSE out MAE in MAE out
Naive predictor 0.2812 1.2286 0.2033 0.7526
ARIMA 0.2798 1.1965 0.2062 0.7239
VAR 0.2765 1.1964 0.2076 0.7107
FFNN 0.2760 1.2203 0.2035 0.7449
RNN 0.2413 1.2672 0.1814 0.8195
LSTM 0.2055 1.7197 0.1459 1.2044

Table 1: Performance measure of the Econometric & Neural Network models

Despite the poor performance of the neural networks, their inherent ability to capture com-
plex patterns and relationships within data suggests that they hold great potential for future
advancements, highlighting the need for continued research and development to unlock their
full capabilities. Future research should explore the use of other machine learning models,
examine the performance of the models on different data frequencies, inflation predictors,
and forecast horizons, and test the performance of the models with different architectures.

Keywords: Inflation rate, Forecasting, Artificial Neural Networks, Recurrent Neural Net-
works, LSTM, VAR, ARIMA
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1 Introduction

1.1 Background

One of the primary macroeconomic indicators that the public and private sectors look at is
inflation. Inflation is the rate at which the general level of prices for goods and services is
rising and subsequently, purchasing power is falling. It is expressed as a percentage change
over a specific period of time, usually a year. Inflation is a crucial indicator of an economy’s
health and is monitored closely by policymakers and economists to determine monetary
policy and economic growth prospects. When inflation is high, it can lead to decreased
purchasing power, reduced economic growth, and increased interest rates. Conversely, low
inflation can indicate weak demand and economic slowdown. In the Netherlands, the infla-
tion rate in 2022 was reported to be 10.0% based on the Dutch Consumer Price Index (CPI).
This is significantly higher than the inflation rate of 2.8% in 2021 and 1.3% in 2020, as can
be seen in Figure 1. The COVID-19 pandemic has led to disruptions in global supply chains
and changes in consumer behavior, which have affected the prices of goods and services.
In addition, many central banks in Europe, including the European Central Bank (ECB),
have implemented monetary policy measures such as lowering interest rates and engaging
in asset purchases in order to provide support to the economy and financial markets during
the pandemic. These measures have led to an expansion of the money supply in the United
States. According to data from the Federal Reserve, the change in the M2 supply peaked
during the pandemic at a year-over-year percent growth rate of 27% in February 2021 (Fed-
eral Reserve, 2022). Similarly, the European Central Bank (ECB), the central bank of the
European Union, has also implemented a range of monetary policy measures in response to
the COVID-19 pandemic, including lowering interest rates and engaging in asset purchases.
These measures have contributed to an expansion of the money supply in Europe. Accord-
ing to data from the ECB, the change in the M2 supply peaked during the pandemic at a
year-over-year percent growth rate of more than 11% (European Central Bank, 2022).

Another driver of the recent increase of inflation is Russia’s invasion of Ukraine. As Russia is
Europe largest energy supplier, many countries in Europe are heavily dependent on oil and
gas form Russia. The energy prices in Europe have significantly increased as a result of the
the political disagreements with Russia, with direct effects on the inflation rate . The Rus-
sian invasion of Ukraine has had a number of economic consequences, including an impact
on the inflation rate in Europe. Russia is a major supplier of energy, particularly oil and gas,
to many countries in Europe, and the political disagreements between the two sides have
resulted in increased energy prices in Europe (Dräger et al., 2022). Higher energy prices can
contribute to higher inflation, as they increase the cost of producing and distributing goods
and services. For example, if the cost of transportation increases due to higher oil prices,
this can lead to higher prices for goods that are shipped long distances. Similarly, if the cost
of electricity increases due to higher gas prices, this can lead to higher prices for goods that
are produced using electricity.

Especially during times of high inflation, accurate forecasting of future inflation rate has
become critical for policymakers, businesses, and individuals as it helps them to plan for
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Figure 1: Consumer Price Index (CPI) in the Netherlands (Source: CBS)

the future and make informed decisions. Inflation forecasting is relevant in general as it
provides insights into the future economic conditions, the direction of interest rates, and the
purchasing power of money. The concept of inflation and the need to measure and forecast
it has existed for centuries. The first official consumer price index (CPI) was created in
the United States in the late 1800s. It was designed to measure the changes in the cost of
living for urban wage earners and clerical workers. Since then, economists began to develop
theories and models to explain the causes of inflation and how it could be measured and
forecasted. Today, inflation forecasting is a critical tool used by central banks, governments,
pension funds, businesses, and investors around the world to guide policy and investment
decisions.

1.1.1 Relevance for PwC

The Valuation & Modeling team of PwC Amsterdam is responsible for providing valuation
and modeling services to Dutch and international clients. These services may include valu-
ing businesses, intangible assets, financial instruments, and real estate, as well as providing
financial modeling support for a variety of purposes, such as forecasting, budgeting, and
business planning.

The team works with a variety of clients, including large and small businesses, financial in-
stitutions, private equity firms, and other organizations. They use a range of approaches and
techniques to value assets and provide financial modeling support, including discounted cash
flow (DCF) analysis, comparable company analysis, comparable transaction analysis and real
options analysis, among others. In addition to providing valuation and modeling services
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to clients, the team is also be involved in business development activities, such as building
relationships with potential clients and identifying new business opportunities. They are
also involved in training and mentoring junior team members and staying up-to-date on the
latest developments in valuation and modeling techniques.

Inflation is a key economic indicator that can have significant impact on the valuation and
modeling analysis of PwC. Accurate forecasting of inflation rates is therefore crucial for
business valuations. While traditional statistical techniques have been widely used for infla-
tion forecasting, recent advances in machine learning, particularly neural networks, offer the
potential for improved forecast accuracy.

1.2 Problem context

The inflation rate is an important metric that can significantly impact the value of com-
panies and the financial forecasts of those companies (Ehrhardt and Brigham, 2013; Ross
et al., 2003). When the general level of prices is expected to increase, the purchasing power
of money is likely to decrease. This is an important consideration when valuing businesses,
intangible assets, financial instruments, and real estate, as it can affect the nominal value of
these assets. The inflation rate can also affect the required rate of return on investments.
When the general level of prices is expected to increase, investors may require a higher nom-
inal return on their investments in order to compensate for the erosion of the purchasing
power of money. This is a crucial aspect to keep in mind when offering financial modeling
assistance for forecasting, budgeting, and business planning as it can impact the predicted
return on investments (Brigham and Ehrhardt, 2013).

In addition, the inflation rate can impact the forecasted cost of goods and services and the
forecasted revenue of companies. When the general level of prices is expected to increase, the
cost of goods and services is also likely to increase, which can reduce the forecasted profits of
businesses. Similarly, when the general level of prices is expected to increase, the prices that
businesses can charge for their products and services may also increase, which can increase
the forecasted revenue of businesses. These factors are important considerations when pro-
viding financial modeling support for forecasting, budgeting, and business planning, as they
can impact the financial performance of businesses (Ross et al., 2003).

There are several different types of inflation indices that can be used to measure inflation,
such as the Consumer Price Index (CPI), Producer Price Index (PPI), Harmonized Index
of Consumer Prices (HICP) and the Gross Domestic Product Deflator (GDP Deflator). In
terms of relevance for business valuation, the CPI and PPI are the most relevant. The CPI
captures the changes in prices of goods and services consumed by households and the PPI
captures the changes in prices of goods and services at the wholesale level. These are the
most relevant as they measure prices of goods and services that are most likely to be con-
sumed or used by a company, and therefore have direct implications on the cost of goods
and revenue for the company (Ehrhardt and Brigham, 2013; Ross et al., 2003). All together,
different types of inflation indices can be used to estimate the expected rate of inflation when
valuing businesses. The CPI and PPI are the most relevant for business valuation as they
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measure changes in prices of goods and services that are most likely to be consumed or used
by a company and have direct implications on the cost of goods and revenue for the company.

Inflation has a direct impact on the value of a company as it affects the estimated future cash
flows. The discounted cash flow (DCF) method, which is widely used to value investment,
calculates the value of the company by discounting the estimated future cash flows. The
formula for DCF is the sum of the cash flow in each period divided by one plus the discount
rate (WACC) raised to the power of the period number. Inflation reduces the purchasing
power of money, meaning that money in the future is worth less than money today. As a re-
sult, the present value of each cash flow is reduced by the discount rate, which incorporates
the impact of inflation. Additionally, the inflation rate can influence the WACC and the
discount rate, which are important factors in the calculation of the company’s value. When
the inflation rate is expected to increase, the required rate of return on investments is also
likely to increase, which can increase the cost of capital for a company and, in turn, increase
the WACC (Ehrhardt and Brigham, 2013).

In conclusion, the inflation rate is an important metric that can significantly impact the
value of companies and the financial forecasts of those companies. It can affect the purchas-
ing power of money, the required rate of return on investments, the forecasted cost of goods
and services, the forecasted revenue of companies, and the WACC and discount rate. Under-
standing the impact of the inflation rate on these factors is important for accurately valuing
companies and making informed business decisions. Accurate forecasting of the inflation
rate is therefore important for the Valuation & Modeling team of PwC, as it can impact
the accuracy of the valuations and financial forecasts produced by the team. To address
the uncertainty surrounding the inflation rate, the team may use a range of approaches and
techniques to estimate the impact of the inflation rate on the value of businesses and assets,
and may also be involved in conducting research to better understand the factors that drive
the inflation rate. This can help to improve the accuracy of the valuations and financial
forecasts produced by the team and contribute to better decision-making by their clients
(Ehrhardt and Brigham, 2013; Ross et al., 2003).

1.3 The Core Problem

Inflation is a complex phenomenon that is influenced by a wide variety of factors, including
economic growth, changes in interest rates, and shifts in the supply and demand for goods
and services (Phillips, 1958). As a result, it can be difficult to predict using traditional
statistical models. One reason why inflation is hard to forecast is that it is influenced by
both short-term and long-term factors. Short-term factors, such as changes in oil prices
or weather-related disruptions to agricultural production, can have a significant impact on
inflation in the near term (Cecchetti and Moessner, 2008). However, these effects may not
persist over the long run. Long-term factors, such as trends in productivity or changes in the
demographic makeup of the population, can have a more persistent impact on inflation, but
they may be more difficult to measure or predict (Blanchard and Gali, 2007). Another reason
why inflation is hard to forecast is that it is affected by structural changes in the economy.
For example, technological innovation and globalization have led to increased competition
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and disinflation in many sectors of the economy (Baldwin, 2018). These structural changes
can make it difficult for traditional statistical models, which are based on historical data, to
accurately predict future inflation.

Additionally, there are multiple different factors influencing inflation and they are interre-
lated, so it can be hard to predict how each of these factors will evolve and how they will
influence inflation. Also, there might be unexpected events that can affect inflation, such
as a pandemic or a geopolitical event, that can influence both the supply and demand and
the expectations of inflation, making it hard to forecast. In light of these challenges, many
central banks and other organizations use a combination of statistical models and expert
judgment to forecast inflation (Fulton and Hubrich, 2021). This can help to incorporate
the latest economic data and account for the impact of unexpected events and structural
changes on the economy.

Traditional econometric models such as Vector Autoregression (VAR) and Autoregressive
Integrated Moving Average (ARIMA) are widely used for inflation forecasting. VAR models
take into account the interdependence between multiple macroeconomic variables such as
inflation, GDP, and interest rates to make predictions about future inflation. On the other
hand, ARIMA models use past inflation data to make predictions about future inflation,
considering trends and seasonality in the data. Both VAR and ARIMA models are rela-
tively simple and easy to implement, but their performance can be affected by the choice of
variables and the length of the time series data used for analysis. Despite these limitations,
traditional econometric models continue to play a significant role in inflation forecasting,
especially for medium-term and long-term horizons.

Neural networks, also known as artificial neural networks (ANNs), are a type of machine
learning model that can be used to improve inflation forecasting. Throughout the past
decades, machine learning models have become more and more popular. Due to the increas-
ing availability of databases and computer power, machine learning models have become a
popular method to forecast inflation (Rodŕıguez-Vargas, 2020). They are particularly well-
suited for this task because they are able to learn complex nonlinear relationships between
input variables and the output variable such as inflation. One way neural networks can be
used to improve inflation forecasting is by incorporating a wide variety of relevant data,
including both economic and non-economic data. Machine learning models enable the ex-
ploration of the inflation dynamics using a wide variety of macroeconomic data and other
financial measurements (Yadav et al., 2019). For example, a neural network model could be
trained on a dataset that includes information on interest rates, GDP, oil prices, and even
weather patterns (Hochreiter and Schmidhuber, 1997). The ability of neural networks to
handle large and complex datasets can be useful for capturing the various short-term and
long-term factors that influence inflation.

Another way that neural networks can be used to improve inflation forecasting is by model-
ing the nonlinear and non-stationary relationships between variables. Traditional statistical
models such as ARIMA and VAR are based on linear and stationary assumptions, which
are not always met in the real-world (Tsay, 2010; Enders, 2014). Neural networks, however,
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can model nonlinear and non-stationary relationships which are more likely to capture the
true underlying structure of the data. Additionally, Neural network models have been able
to incorporate high dimensional time-series data, which enables the capturing of complex
dynamics (Vapnik, 1999; Goodfellow et al., 2016), this is especially relevant for forecasting
inflation because many factors like oil prices, GDP, and money supply which can be incor-
porated together in a neural network model.

In summary, inflation is a complex phenomenon that is influenced by multiple factors and is
difficult to predict. Central banks and organizations use a combination of statistical models
and expert judgment to make inflation forecasts. Traditional econometric models such as
VAR and ARIMA are widely used and have been successful, but they have limitations and are
based on linear and stationary assumptions. Neural networks, or artificial neural networks
(ANNs), have become increasingly popular for inflation forecasting due to the ability to
handle large and complex datasets, model nonlinear and non-stationary relationships, and
incorporate high dimensional time-series data.

1.4 Research Questions

Inflation forecasting is a critical aspect of economic analysis and decision-making, as it can
have significant impacts on a wide range of areas including monetary policy, investment, and
financial planning. Accurate inflation forecasting can help policymakers, businesses, and
individuals make informed decisions about how to allocate resources and plan for the future.

Traditionally, inflation forecasting has been performed using econometric models, which are
statistical models that are used to analyze the relationships between economic variables.
These models are based on assumptions about the underlying economic relationships and
can be used to make predictions about future values of variables such as inflation. In recent
years, there has been growing interest in the use of neural networks as a tool for inflation
forecasting. Neural networks are a type of machine learning algorithm that are inspired by
the structure and function of the human brain. They consist of multiple layers of inter-
connected ”neurons” that can process and transmit information. Neural networks have the
ability to learn and adapt to new data, and have been widely used in a variety of applications
including image and speech recognition, natural language processing, and finance.

The aim of this research is to investigate the inflation rate forecasting performance of tradi-
tional and neural network models. The specific objectives of the research are to first review
the existing literature on inflation forecasting, including traditional statistical techniques and
machine learning approaches. Secondly, explore the use of different neural network architec-
tures and training methods for inflation forecasting. Thereafter, compare the performance
of traditional inflation forecasting models with neural network-based models using a range
of evaluation metrics. Finally, To identify any factors that may affect the performance of
traditional and neural network-based inflation forecasting models, and to suggest strategies
for improving their accuracy.

Given the importance of inflation forecasting and the emergence of neural networks as a tool
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for this purpose, the main research question can be formulated as follows:

How does the forecasting performance of econometric and neural network models compare in
predicting Dutch inflation rates?

To address this main research question, the following sub questions will be explored:

• What are the key factors that influence Dutch inflation rate, and how are they captured
by econometric and neural network models?

• What are the practical considerations for using econometric and neural network models
for inflation rate forecasting in the Dutch context?

• How do the assumptions and limitations of econometric models, as compared to neural
network models, impact their forecasting performance?

By answering these sub questions, this thesis will provide a comprehensive analysis of the
forecasting performance of econometric and neural network models for Dutch inflation rate
forecasting. This will be of value for the PwC valuations & modeling team, as well as, for
policymakers, businesses, and individuals seeking to make informed decisions about how to
allocate resources and plan for the future.

Furthermore, it is expected that this research will contribute to a better understanding of
the potential of neural networks for forecasting inflation rates, and will provide insights into
the factors that may affect the performance of such models. The research will also provide
a comparison of the performance of neural network-based inflation forecasting models with
traditional statistical methods and other machine learning approaches, which will be useful
for practitioners seeking to choose the most appropriate forecasting method. Accurate infla-
tion forecasting is important for a range of stakeholders, including individuals, businesses,
and governments. The use of neural networks for inflation forecasting has the potential to
improve forecast accuracy, which could have significant implications for decision-making and
policy-making. This research will therefore contribute to a better understanding of the capa-
bilities and limitations of neural networks for inflation forecasting, and will provide valuable
insights for practitioners seeking to use these methods in practice. Regarding the contribu-
tion to the existing literature, this research will enrich the existing academic literature by
offering a comprehensive comparison between various econometric models and neural net-
works for inflation rate forecasting. This research will contribute to a better understanding
of the strengths and weaknesses of econometric and neural network models in the Dutch
context. By exploring the key factors that influence Dutch inflation rates and how they
are captured by econometric and neural network models, this research will provide valuable
insights into the factors that influence inflation. Finally, the thesis can shed light on the
assumptions and limitations of econometric and neural network models and their impact on
forecasting performance.
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1.5 The Problem Approach

A comprehensive approach to answer the sub questions related to the influence of key factors
on Dutch inflation rates, the comparison of econometric and neural network models for
inflation rate forecasting, and their performance over different time horizons, can be achieved
through the following steps. First, a review of the relevant literature will be conducted to
gather information about the key factors that influence Dutch inflation rates and how they
are captured by econometric and neural network models. The literature review also includes
an overview of various prior studies on inflation forecasting using econometric and neural
network models. Next, data on Dutch inflation rates, relevant macroeconomic indicators,
and other relevant variables will be collected for a relevant time period. Based on the
literature review, econometric and neural network models will then be selected and described.
Thereafter the models will be designed and developed to forecast Dutch inflation rates based
on the collected data, and their performance will be evaluated based on their ability to
capture the key factors that influence inflation rates. The design process of the models is
depicted in Figure 2. The performance of the two models will be compared based on various
performance metrics such as the mean squared error, mean absolute error, and the impact of
their assumptions and limitations will also be analyzed. Finally, the forecasting performance
of the models will be analyzed over different time horizons to determine their strengths
and weaknesses for different forecasting scenarios. This information will be synthesized to
arrive at a conclusion regarding the suitability of econometric and neural network models
for inflation rate forecasting in the Dutch context.

Figure 2: Design process of the inflation rate forecasting models

1.6 Outline of the Report

The structure of this report is organized into six main sections, each of which focuses on
a specific aspect of inflation forecasting. The introductory section provides an overview
of the report and introduces the problem and the research questions that are addressed.
The subsequent section, which is the literature review, delves into the existing research on
inflation, discussing measures of inflation, inflation targeting, and the impact of inflation on

15



business valuation. This section also highlights gaps in the literature and reviews previous
studies on inflation forecasting. The third section, the methodology, outlines the various
methods used for inflation forecasting. This includes traditional econometric models and
artificial neural networks. In addition, the section covers the training of (recurrent) neural
networks. The fourth section is the empirical approach, which provides specific details on
the data used in the study, the performance measures, and the hyperparameters selection
process for the neural network models. The fifth section presents the results and discussions
of the study, analyzing the findings obtained from both the econometric and neural network
models and comparing their respective performances. Finally, the sixth and final section
is the conclusion and future research, which summarizes the key findings of the study and
offers suggestions for future research on inflation forecasting.

2 Literature Review

2.1 Introduction

The literature review aimed at exploring the impact of inflation on business valuation begins
by examining the effects of inflation on the valuation of businesses. This is followed by an
overview of the various measures of inflation that are used to track and analyze this economic
phenomenon. The next section of the review focuses on identifying the key predictors of in-
flation and exploring their relationship with inflation. Finally, the literature review provides
an overview of prior research on inflation forecasting, including studies that have explored
the effectiveness of econometric models and neural network approaches for forecasting in-
flation. The aim of this literature review is to provide a comprehensive understanding of
inflation and its impact on business valuations. By synthesizing the existing research and
highlighting the key findings, the literature review will inform the selection of the measure
of inflation for this research, the predictors of inflation to be investigated, and the most
appropriate econometric and neural network models for forecasting inflation. The findings
of this literature review will contribute to the current body of knowledge on inflation and its
impact on business valuations and inform future research in this field.

2.2 Measures of Inflation

There are several measures of inflation that are commonly used to track changes in the
general level of prices for goods and services. Some of the most widely used measures of
inflation include:

1. Consumer Price Index (CPI): The CPI is a measure of the average change in prices of
a basket of goods and services consumed by households. It is typically used to track
changes in the cost of living and is often used as a benchmark for adjusting wages and
other payments (Ehrhardt and Brigham, 2013).

2. Producer Price Index (PPI): The PPI measures the average change in prices received
by domestic producers for their output. It is often used to track changes in the cost of
raw materials and other inputs used in the production process Ross et al. (2003).
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3. Harmonized Index of Consumer Prices (HICP): This index measures the change in the
price of a basket of goods and services consumed by households. It is similar to the
CPI but it is calculated according to EU standards and it is used for comparing the
inflation rate between countries in the European Union (Diewert, 2002).

4. Gross Domestic Product Deflator (GDP Deflator): This index measures the change
in the overall level of prices in the economy. It is considered to be a comprehensive
measure of inflation as it covers all goods and services produced within a country
(Brigham and Ehrhardt, 2013).

Inflation is typically measured as the percentage change in one of these measures over a
certain period of time, such as a month, a quarter, or a year. The CPI and PPI are the
most relevant for business valuation as they measure changes in prices of goods and services
that are most likely to be consumed or used by a company and have direct implications on
the cost of goods and revenue for the company (Ehrhardt and Brigham, 2013; Ross et al.,
2003). One of the main downsides of using the PPI are that it is an indicator with little
public impact, and also that it excludes services, which is one of the largest sectors of the
economy in most countries (Auray et al., 2009). The Valuations team of PwC, in general,
also uses the CPI as most relevant measure of inflation for their valuation and modelling
projects. The CPI is considered by many as the best measure of inflation for investors due
to several reasons. First and foremost, CPI reflects consumer spending, which is crucial for
investors to know how inflation affects the prices of goods and services that they invest in
or consume (Öner, 2012). CPI is a relevant metric for investors since it reflects the prices
paid by consumers for everyday items such as groceries, healthcare, transportation, and
housing. Another reason CPI is popular among investors is its wide usage and transparency.
The government, policymakers, and market participants widely use CPI as a benchmark for
measuring inflation (Heenan et al., 2006). This transparency means that the index is easily
accessible and regularly updated, making it an important reference point for investors to
assess the overall trend of inflation. Lastly, CPI helps inform investment decisions Rashid
and Saeed (2017). For investors, understanding inflation is critical to making informed in-
vestment decisions. By tracking CPI, investors can better assess the real returns of their
investments and adjust their investment strategies accordingly. Investors can also use CPI
to assess the relative attractiveness of different asset classes and investment opportunities.

To conclude, the Consumer Price Index is a widely used and transparent measure of inflation
that reflects consumer spending, adjusts for changes in the quality and quantity of goods
and services purchased over time, and helps inform investment decisions. Therefore, it
is a valuable tool for investors to assess the overall trend of inflation and make informed
investment decisions. For these reasons the Dutch CPI will be used as measure of inflation
for this research.

2.3 Inflation targeting

Central banks around the world have a primary mandate to ensure price stability in their re-
spective economies. To achieve this objective, central banks adopt different monetary policy
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tools and strategies to manage inflation. This section will explore how central banks target
inflation and the various strategies they use to achieve their goals.

Central banks use a variety of tools and strategies to manage inflation. One of the most
common approaches is to set an inflation target. An inflation target is the desired level
of inflation that a central bank aims to achieve within a specified period. The target can
be set as a range or a specific number. For instance, the US Federal Reserve has a long-
term inflation target of 2%, while the European Central Bank aims to keep inflation below,
but close to 2%. Central banks use different tools to achieve their inflation targets. One
such tool is the policy interest rate, which is the rate at which central banks lend money
to commercial banks. By adjusting the policy interest rate, central banks can influence the
borrowing and lending rates in the economy. When the central bank raises the policy rate,
commercial banks tend to raise their lending rates, which reduces borrowing and spending in
the economy. This, in turn, lowers demand for goods and services, leading to lower inflation
(Cornand and M’baye, 2018).

Another tool that central banks use to manage inflation is open market operations (OMOs).
OMOs involve buying or selling government bonds in the open market to adjust the money
supply. When the central bank buys bonds, it injects money into the economy, which in-
creases the money supply and lowers interest rates. This encourages borrowing and spending,
which can stimulate economic growth and increase inflation. Conversely, when the central
bank sells bonds, it reduces the money supply, which increases interest rates and reduces
spending, leading to lower inflation. Central banks also use forward guidance to manage
inflation expectations. Forward guidance is a communication strategy where central banks
provide guidance on the future path of monetary policy. By providing clear and consistent
guidance on future policy actions, central banks can influence market expectations and pre-
vent any surprises that could destabilize the economy. For example, if a central bank signals
that it will keep interest rates low for an extended period, it can encourage borrowing and
spending, leading to higher inflation (Rocheteau et al., 2018).

In addition to these tools, central banks also use unconventional monetary policy measures to
manage inflation. Unconventional measures include quantitative easing (QE), where central
banks buy long-term government bonds or other assets to lower long-term interest rates. QE
can stimulate borrowing and spending and increase inflation by increasing the money supply
and encouraging investment Reis (2016). Another unconventional measure is negative inter-
est rates, where central banks set policy rates below zero, effectively charging commercial
banks to hold excess reserves. Negative interest rates can encourage banks to lend more,
leading to higher borrowing and spending, and increased inflation.

Central banks use different strategies to achieve their inflation targets. One strategy is the
Taylor rule, which is a mathematical formula that links interest rates to inflation and output
gaps. The Taylor rule suggests that central banks should raise interest rates when inflation
is above the target level and lower them when inflation is below the target level. This strat-
egy aims to stabilize inflation and promote economic growth. Another strategy is inflation
targeting, where central banks set a specific inflation target and use policy tools to achieve
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it. Inflation targeting has been widely adopted by central banks worldwide, including the
European Central Bank, Reserve Bank of Australia, the Bank of England, and the Bank
of Canada. Under an inflation targeting regime, central banks communicate their inflation
targets to the public and use various monetary policy tools to achieve them. This approach
has been successful in achieving price stability in many countries and has become a popular
approach to monetary policy (Mishkin, 2001).

Before central banks started targeting inflation, inflation was generally more volatile and
less predictable. Inflation was often driven by supply-side shocks such as fluctuations in
oil prices, agricultural output, or geopolitical tensions. These shocks could lead to sudden
changes in the price level, making it difficult for businesses and households to plan for the
future. However, when central banks began targeting inflation, they became more proactive
in managing inflation by adjusting monetary policy to achieve their inflation targets. By
using a combination of tools such as interest rates, open market operations, and forward
guidance, central banks could influence the level of aggregate demand in the economy and
stabilize inflation.

Eickmeier and Hofmann (2022) analyze the behavior of inflation in the United States and the
euro area over the past 50 years by estimating indicators of aggregate demand and supply
conditions based on a structural factor model. The results suggest that during the Great
Inflation of the 1970s, a combination of strong demand and tight supply were at work, while
the Volcker disinflation of the early-1980s was driven by the elimination of strong demand.
The Global Financial Crisis was characterized by a collapse of demand and a marked tight-
ening in supply, which explains the missing disinflation during the crisis. The most recent
observations indicate that the inflation surge since mid-2021 has been driven by a combi-
nation of extraordinarily expansionary demand conditions and tight supply in both regions,
with a greater role of tight supply conditions in the euro area due to adverse energy supply
developments in the wake of the Russia-Ukraine war. The analysis further suggests that
tighter monetary policy primarily dampens demand, while financial shocks adversely impact
demand and supply in a similar fashion, implying that central banks could bring inflation
back down through an appropriate tightening of the monetary policy stance.

In conclusion, central banks have a crucial role in managing inflation in their respective
economies. They use various monetary policy tools and strategies to achieve their inflation
targets, such as policy interest rates, open market operations, forward guidance, quantitative
easing, negative interest rates, and inflation targeting. These tools and strategies aim to
stabilize inflation and promote economic growth while avoiding the negative effects of high or
unstable inflation. Central banks’ ability to manage inflation is critical to ensuring economic
stability, promoting sustainable growth, and improving the welfare of their citizens.

2.4 Impact of Inflation on Business Valuation

When assessing the impact of inflation on individual company values, it is important to con-
sider the effect inflation has on expected cash flows/growth and risk. Companies that are less
exposed to high and rising inflation are those that have pricing power on their products and
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services, with low input costs, and operate in a business where investments are short term
and reversible. On the risk front, these companies should have a large and stable earnings
stream and a light debt load. Historical data has shown that small-cap stocks tend to out-
perform in decades where inflation is higher than expected, while the value effect, measured
as the difference between low price to book and high price to book stocks, was highest in the
1970s when both actual and unexpected inflation were high. The recent experience in 2022
has shown similar patterns, with small-cap and value stocks outperforming in the context of
higher than expected inflation (Damodaran, 2022).

Cornell and Gerger (2017) discusses the impact of inflation on business valuation using dis-
counted cash flow models. It explains that the most common way to estimate the continuing
value is to assume a steady state growth rate, but that handling inflation correctly is crucial
and often done wrong. The paper simplifies the analysis by isolating the two key issues and
providing example calculations to show that proper treatment of inflation has a significant
impact on valuation, even at low levels. It also highlights that if inflation were to accelerate
in the future, the significance of this issue will increase.

The Weighted Average Cost of Capital (WACC) is a widely-used approach in the valuation of
companies. The WACC is the average cost of all the capital a company has raised, including
both debt and equity. It is typically used to evaluate a company’s ability to generate cash
flow, and is often used as a discount rate when determining the present value of a company’s
future cash flows in a discounted cash flow (DCF) analysis. In practice, PwC’s valuation
and modeling team would use the WACC in a DCF analysis as a discount rate to determine
the present value of a company’s future cash flows. The WACC is a measure of the overall
cost of capital for a company. It is calculated by weighting the cost of each type of capital
(e.g. debt, equity, etc.) in proportion to its relative importance in the company’s capital
structure. The WACC is used to determine the required rate of return that a company needs
to earn on its investments in order to provide an acceptable level of return to its sharehold-
ers. Inflation is an important factor that can affect the WACC of a company. When the
general level of prices is expected to increase, the cost of capital is also likely to increase.
This is because the cost of capital is typically expressed in nominal terms, which means that
it is denominated in a specific currency and is not adjusted for changes in the purchasing
power of that currency. As a result, when the general level of prices increases, the cost of
capital will also increase in nominal terms, even if the real cost of capital remains unchanged
(Ehrhardt and Brigham, 2013).

There are a few different ways in which the inflation rate can be incorporated into the calcu-
lation of the WACC. One way is to use an inflation-adjusted discount rate when calculating
the cost of capital. This involves adjusting the discount rate for the expected impact of
inflation in order to reflect the real cost of capital. This can be done by using an inflation
rate forecast or by making assumptions about the expected increase in the general level of
prices. Another way to incorporate the inflation rate into the calculation of the WACC is
to use inflation-adjusted cash flows when estimating the value of a company’s assets. This
involves adjusting the forecasted cash flows for the expected impact of inflation in order to
reflect the real value of the cash flows. This can be done by using an inflation rate forecast or
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by making assumptions about the expected increase in the general level of prices. It is worth
noting that the impact of inflation on the WACC will depend on the specific characteristics
of the company and its capital structure. For example, companies with a higher proportion
of debt in their capital structure may be more sensitive to changes in the cost of debt as a
result of inflation, while companies with a higher proportion of equity may be less affected.
Additionally, the impact of inflation on the WACC will depend on the expected rate of in-
flation and the duration of the investments being considered (Ehrhardt and Brigham, 2013).

In discounted cash flow (DCF) valuations, estimating the continuing value is crucial. One
common method is to assume that the company reaches a steady state and grows at a con-
stant rate by the terminal horizon. However, incorporating inflation into this calculation
can be complex and often done incorrectly, leading to a significant impact on the valuation.
Cornell et al. (2021) aim to simplify the analysis by identifying and addressing the two key
issues related to inflation and providing example calculations to demonstrate the importance
of proper treatment of inflation, even at low levels. As inflation may increase due to current
monetary and fiscal policies, the significance of this issue will become even more important.

In conclusion, inflation has a significant impact on business valuation, particularly for es-
timating continuing value. To mitigate the effects of inflation, companies should focus on
increasing prices, improving operations, and reviewing finances. Incorporating inflation into
WACC calculations using inflation-adjusted discount rates or cash flows is crucial. Accu-
rately estimating continuing value is also essential for precise DCF valuations.

2.5 Predictors of Inflation

Inflation forecasting involves the use of various economic indicators to predict future changes
in the general price level of goods and services. Finding the variables with the highest
predictive power is the main challenge in inflation forecasting. According to Rodŕıguez-
Vargas (2020) some of the factors that drive inflation are money supply, interest rate and
Gross National Product (GNP). These drivers have predictive power which can be used
to forecast future inflation rates. Historical inflation can also provide insight into long-
term trends in the rate of inflation and can help to identify patterns that may influence
future inflation. Throughout this section various predictions of inflation and their relation
to inflation are introduced.

2.5.1 Historical inflation

Historical inflation data can be used to forecast future inflation rates in a number of ways.
Some of the main approaches to using historical inflation data for forecasting purposes in-
clude:

1. Statistical analysis: Statistical techniques such as regression analysis and time series
analysis can be used to identify patterns in historical inflation data and to forecast
future inflation rates. These techniques can be useful for identifying trends, seasonal
patterns, and other factors that may influence inflation.
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2. Econometric models: Econometric models are statistical models that are used to an-
alyze economic data and make forecasts. These models can incorporate a range of
economic variables, including historical inflation data, to forecast future inflation rates.

3. Machine learning: Machine learning algorithms, such as neural networks, can be
trained on historical inflation data to learn patterns and relationships that can be
used to forecast future inflation rates. These approaches can be particularly useful
for handling large datasets and for identifying complex, non-linear relationships in the
data.

Overall, the accuracy of forecasts made using historical inflation data will depend on the
quality of the data, the techniques used for analysis and modeling, and the underlying
economic conditions. Figure 3 provides a graph of the behavior of the Dutch CPI over time
giving a clear depiction of the rise of inflation in 2022.
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Figure 3: Historical Dutch Consumer Price Index (CPI)

2.5.2 Interest rate

Inflation and interest rates are two important economic indicators that are closely related.
Inflation is a measure of the rate at which the general level of prices for goods and services
is rising, and is typically measured as the percentage change in a price index over a certain
period of time. Interest rates, on the other hand, refer to the cost of borrowing money,
and are typically expressed as a percentage of the amount borrowed. Figure 4 depicts the
yield curve of the 30 year Dutch Government Bond over time which is a relevant measure of
the historical interest rate. In general, a higher interest rate will lead to higher borrowing
costs, which can in turn help to reduce inflation by slowing down the demand for goods and
services. As can be seen in the figure, the interest rate has increased the past year to slow
down inflation. When interest rates are high, consumers and businesses are less likely to
borrow money to make purchases, which can help to reduce the overall level of demand in
an economy. This can put downward pressure on prices, helping to keep inflation in check.
Conversely, a lower interest rate may encourage borrowing and lead to higher demand, which
can contribute to higher inflation. When interest rates are low, consumers and businesses
may be more willing to borrow money to make purchases, which can increase the overall level
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of demand in an economy. This can put upward pressure on prices, potentially leading to
higher inflation. As a result, central banks and other monetary authorities often use changes
in interest rates as a tool to help control inflation and maintain price stability.

By raising or lowering interest rates, they can help to influence the level of demand in an
economy and maintain a healthy level of inflation. The Fisher effect, an economic theory
that states that the nominal interest rate equals the real interest rate plus the expected
inflation rate and named after economist Irving Fisher (1930), highlights the correlation
between inflation and interest rates. According to the Fisher effect, changes in inflation
expectations will be reflected in changes in nominal interest rates, and monetary policy can
be used to control inflation by manipulating nominal interest rates. The Fisher Effect is
now considered outdated due to its assumptions of rational expectations, stable relationship
between nominal interest rates and inflation, and inability to account for other factors that
influence interest rates. Angelina and Nugraha (2020) analyzes the impact of various factors
on inflation in Indonesia including interest rate. Their findings indicate that interest rates
have a significant and negative effect on inflation.
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Figure 4: Historical yield curve of the 30 year Dutch Government Bond

2.5.3 Money Supply

The money supply refers to the total amount of money in circulation in an economy, and
it is typically measured by central banks and other financial authorities. There are several
ways to measure the money supply, and M1, M2, and M3 are three commonly used measures
that include different types of money and financial assets.

• M1 is the narrowest measure of the money supply and includes only the most liquid
forms of money, such as cash and checking deposits.

• M2 is a broader measure of the money supply that includes M1 plus other assets that
are relatively liquid and can be easily converted into cash, such as savings deposits,
money market securities, and certificates of deposit.

• M3 is the broadest measure of the money supply and includes M2 plus other less liquid
assets, such as institutional money market funds and large-denomination time deposits.
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There is generally a positive relationship between the money supply and inflation. When
the money supply increases faster than the supply of goods and services in the economy, it
can lead to an excess of money chasing a limited number of goods and services, which can
put upward pressure on prices (inflation). Conversely, when the money supply grows more
slowly than the supply of goods and services, it can help to keep prices in check. Figure 5
provides a graph of the historical M3 money supply of the Euro where 2015 equal to 100. The
figure clearly depicts the increase in money supply due to the monetary policy during the
COVID-19 pandemic. Ofori et al. (2017) investigates the correlation between money supply
and inflation in Ghana. Data from 1967 to 2015 was analyzed using an Ordinary Least
Squares model. The study focuses solely on the effect of money supply on inflation, and the
Bank of Ghana’s role in controlling money supply. The findings indicate a long-term positive
relationship between money supply and inflation in Ghana. In the research of Angelina and
Nugraha (2020), their findings indicate that money supply and previous money supply have
a significant and positive effect on inflation in Indonesia.
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Figure 5: Historical European M3 money supply (in trillions)

The M3 money supply is a crucial measure of the money supply in an economy, and it is
particularly relevant for inflation forecasting. M3 includes not only the most liquid forms of
money but also less liquid assets such as time deposits and repurchase agreements. Time de-
posits represent funds held in bank accounts that are not available for immediate withdrawal,
while repurchase agreements are agreements between banks and other financial institutions
to sell and repurchase securities. M3 is relevant for inflation forecasting because it reflects
the total amount of money in circulation in an economy, including both the most liquid
forms of money and less liquid assets that are still part of the money supply. Increases
in the M3 money supply can indicate a greater availability of credit and spending power,
which can lead to inflationary pressures. Conversely, decreases in the M3 money supply can
suggest a contraction in credit availability and spending power, which can lead to deflation-
ary pressures. Moreover, M3 is also relevant for assessing the overall health of an economy.
An increase in M3 can indicate strong economic growth and investment activity, while a
decrease in M3 can suggest a weakening of the economy. Therefore, M3 is a key indicator for
policymakers and analysts when it comes to making decisions about monetary policy and
predicting future economic conditions.
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2.5.4 Gross Domestic Product

GDP and inflation are both key indicators of the health and performance of an economy, and
they are often closely watched by policymakers, businesses, and investors. Understanding
the relationship between these two variables can help policymakers make informed decisions
about monetary and fiscal policy and can also provide insight into the direction and strength
of the economy. Figure 6 shows the historical GDP of the Netherlands with a clear dip in
2021 caused by the COVID-19 pandemic. In general, there is a positive relationship between
GDP and inflation, which means that when GDP is growing, inflation is likely to rise as well.
This is because GDP reflects the overall level of economic activity in an economy, and when
economic activity is increasing, it can lead to increased demand for goods and services, labor,
and other resources. As firms compete to attract and retain workers and other resources,
they may be willing to pay higher wages and prices, which can lead to higher costs and
ultimately higher prices for goods and services (inflation). Mallik and Chowdhury (2001)
examine whether there is correlation between economic growth and inflation and find that
inflation and economic growth are positively related.
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Figure 6: Historical GDP

2.5.5 Unemployment rate

The relationship between inflation and the unemployment rate is a topic of much debate
in macroeconomics. The Phillips curve, first introduced by economist Phillips in 1958,
suggested that unemployment and inflation are negatively correlated. According to the
Phillips curve, when unemployment is low, inflation tends to be high, and vice versa. This
relationship was thought to be driven by the fact that when unemployment is low, labor
markets are tight, and employers have to compete for workers by offering higher wages. This
increase in wages then leads to higher prices and inflation. Conversely, when unemployment is
high, there is less competition for workers, and wages tend to be lower, which puts downward
pressure on prices and inflation. Figure 7 depicts the historical unemployment rate in the
Netherlands with a small peak during the COVID-19 pandemic and a slight increase over
the past months. The highest unemployment rate in 2014 was caused by the financial crisis.
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Figure 7: Historical unemployment rate (in thousands)

2.5.6 Gold price

Gold has long been seen as a hedge against inflation. The relationship between gold and
inflation is complex and multifaceted, and there are several ways in which gold can be used
as a tool to protect against inflation. First, gold is a tangible asset with intrinsic value,
meaning that it has value in and of itself, independent of any other factors. This makes it
a popular choice for investors who are looking for a way to protect their wealth in the face
of inflation. As inflation erodes the purchasing power of paper currency, the value of gold
can increase, making it a valuable store of wealth. Second, gold is often seen as a safe haven
asset, meaning that it tends to perform well during times of economic and political turmoil.
Inflation often occurs during times of economic uncertainty, and as a result, gold can be
an effective way to protect against the negative effects of inflation on investment portfolios.
Finally, gold can be used as a way to diversify investment portfolios. As inflation can have
a negative impact on a wide range of asset classes, including stocks, bonds, and real estate,
holding gold can help to balance out the risks in a portfolio and provide a hedge against
inflation-related losses (Ghosh et al., 2004). Figure 8 represents the historical XAU/EUR
exchange rate which is the spot price between gold and the euro. As can be seen in the
figure, during times of uncertainty or high inflation the gold price increases.
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Figure 8: Historical gold price
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2.5.7 Conclusion

In conclusion, inflation forecasting is crucial in predicting future changes in the general price
level of goods and services, and identifying the variables with the highest predictive power is
a significant challenge. This section focused on several factors that drive inflation, including
historical inflation, interest rate, money supply, GDP, the unemployment rate and gold price.
Historical inflation data can be used to forecast future inflation rates using statistical analysis,
econometric models, and machine learning. Interest rates and inflation are closely related,
and monetary authorities often use changes in interest rates to help control inflation and
maintain price stability. The money supply is another crucial factor that influences inflation,
and there is generally a positive relationship between the money supply and inflation. GDP
and inflation have a negative relationship, meaning that as GDP increases, inflation tends
to decrease. Regarding the relation between inflation and the unemployment rate, there is a
widely recognized inverse relationship between the two, known as the Phillips curve. Finally,
the gold spot price is a predictor of inflation, as it has long been seen as a hedge against
inflation. As such, these factors are closely monitored to accurately forecast inflation as is
depicted in Figure 9.

Figure 9: Predictors of inflation

2.6 Prior research and studies on inflation forecasting

The literature on inflation forecasting highlights the use of a wide range of modeling tech-
niques, including univariate autoregressive integrated moving average (ARIMA) and multi-
variate vector autoregressive (VAR) models. Both methods have their own advantages and
disadvantages. On the other hand, VAR models incorporate multiple independent variables,
providing a more comprehensive understanding of the economic factors influencing inflation.
Univariate forecasting models use a single variable to predict future outcomes while multi-
variate forecasting models use multiple variables to make predictions. A univariate model
only considers the historical data of the variable of interest, while a multivariate model
takes into account multiple variables that might affect the outcome. The main advantage of
univariate models is its simplicity, while multivariate models are able to consider multiple
factors that might affect the outcome. In general, multivariate models tend to provide more
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accurate predictions than univariate models, but they can be more complex to develop and
interpret (Montgomery et al., 2015).

The traditional methodology for forecasting inflation were the Box-Jenkins with moving av-
erage linear models (Liu et al., 1992). The Box–Jenkins method applies ARMA or ARIMA
models to find the best fit of a time-series model to past values of a time series. Another tra-
ditional inflation forecasting model is Vector Auto-regression (VAR) which is a multivariate
time series model that incorporates the relationship between multiple economic variables to
predict future inflation trends. Central Banks typically use a variety of forecasting models
to back their inflation predictions, such as dynamic stochastic general equilibrium (DSGE)
models, factor models, vector autoregressive models, and the Phillips curve (Iversen et al.,
2016).

The Phillips Curve, introduced by British economist Phillips in 1958, was originally used
to forecast inflation by assuming that there is a stable, inverse relationship between unem-
ployment and inflation. In other words, as unemployment decreases, inflation is expected to
increase, and vice versa. Based on this relationship, economists could use historical data to
estimate the future inflation rate based on current unemployment levels. For example, if the
unemployment rate was low, inflation was expected to be high, and vice versa. However, the
relationship between unemployment and inflation is not always stable, and it can be influ-
enced by other factors such as changes in technological progress, globalization, and monetary
policy. As a result, the use of the Phillips Curve for inflation forecasting has become less
popular in recent decades.

Several studies have compared the performance of univariate and multivariate models in
forecasting inflation. Fritzer et al. (2002) give a comparison of VAR and ARIMA models for
forecasting Austrian HICP inflation over the short term. The evaluation of forecasting per-
formance reveals that VAR models predict the HICP inflation more accurately than ARIMA
specifications over a longer forecasting horizon (8 to 12 months ahead). Meyler et al. (1998)
also found that ARIMA models are effective in forecasting inflation during periods of relative
stability, but may not be as accurate in volatile and high-frequency data. However, it is im-
portant to note that univariate models should not be seen as a replacement for multivariate
techniques. Papavangjeli (2019) estimated several univariate models to forecast short-term
inflation in Albania and found that a Bayesian vector autoregressive (BVAR) model, which
incorporates more economic information, outperforms univariate and unrestricted VAR mod-
els at different time horizons. (Ogunc et al., 2018) also used a Bayesian VAR model with five
variables to examine inflation dynamics in Turkey. Kasuya et al. (2000) similarly found that
BVAR models performed better than ordinary VAR models in forecasting Japanese inflation.

Ramakrishnan and Vamvakidis (2002) conducted a study on the transmission effects of do-
mestic and international factors on inflation in Indonesia and found that the exchange rate
and foreign inflation had a strong predictive power on domestic inflation, while the impact
of base money growth on the headline Consumer Price Index (CPI) was relatively small.
Ulke and Ergun (2011) examined the relationship between inflation and import volume in
Turkey, using monthly data from 1995 to 2010. They applied various econometric techniques
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and found that there was a long-term and short-term co-integration relationship between
inflation and import volume. Similarly, Muktadir-Al-Mukit et al. (2013) investigated the
relationship between inflation and imports in Bangladesh over the period of 2000-2011 using
different econometric frameworks. Their results showed that there is a stable, positive, and
significant relationship between inflation and imports. Moreover, Khalid (2005) studied the
leading factors that influence inflation in Pakistan and found that imported inflation, deficit-
GDP ratio, seigniorage, money depth, exchange rate depreciation, and domestic credit are
important factors that contribute to inflation in Pakistan. This is consistent with the expe-
rience of many emerging economies in their early stages. In addition to these studies, others
have also found that the monetary aggregate M3 and bank loans are important variables
for forecasting Swiss inflation (Lack et al., 2006). Arsene and Guy-Paulin (2013) examined
the relationship between credit to the private sector, inflation, and monetary policy in West
Africa and found that the relationship between credit and inflation is non-linear.

Overall, the literature suggests that different factors and models may be more useful in
predicting inflation in different countries and contexts. It is important for forecasting to
take into account the specific economic conditions and the availability of data for a given
country or region.

2.6.1 Comparison between Traditional models and Neural Networks

There are several different types of neural networks that can be used for inflation forecasting,
including feedforward neural networks, recurrent neural networks, and convolutional neural
networks. Each type of neural network has its own unique characteristics and is well-suited
to different types of data and forecasting tasks. One of the key advantages of using neural
networks for inflation forecasting is their ability to handle large amounts of data and iden-
tify patterns and trends that may not be apparent with traditional methods. Similar to
multivariate models, NNs can also be trained to consider a wide range of factors that may
influence inflation, such as economic growth, unemployment, and monetary policy. In addi-
tion, neural networks are able to capture non-linear relationships between variables, which
can be a major limitation of traditional econometric models.

Zhang et al. (1998) claim that Artificial Neural Network (ANN) models in forecasting eco-
nomic indicators, such as inflation, are more effective than traditional statistical methods.
This paper is one of the first to investigate the potential of ANNs for inflation forecasting,
and it provides important insights into the advantages of using these models in economic
analysis. The paper identifies several characteristics of ANNs that make them particularly
useful for forecasting tasks. Firstly, unlike traditional model-based methods, ANNs are data-
driven self-adaptive methods. Secondly, ANNs have the ability to generalize, meaning they
can make predictions based on patterns in the data, even if the data is not seen before.
Thirdly, ANNs are universal functional approximators, meaning they can approximate any
function, and finally, ANNs are nonlinear, making them able to handle complex relation-
ships and patterns in the data. Another older paper compared the performance of NNs with
traditional inflation forecasting model, Moshiri and Cameron (2000) found that feedforward
neural networks (FNNs) were able to predict inflation with a similar level of accuracy to
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traditional multivariate autoregression models, such as vector autoregression (VAR) and
Bayesian vector autoregression (BVAR), over both short-term (3 months) and long-term (12
months) horizons. They found that FNNs were more accurate than traditional models in the
particularly short prediction horizon of one month. Šestanović and Arnerić (2021) investi-
gate the ability of a specific type of recurrent neural network, Jordan neural network (JNN),
to capture expected inflation compared to commonly used feedforward neural networks and
traditional time-series models. They also compare predictions of expected inflation made
by survey respondents to predictions made by forecasting models. The paper suggests a
strategy for modeling non-stationary time-series data using JNN and finds that it accurately
predicts inflation within a 2-year horizon. The results also suggest that JNN predictions of
inflation are consistent with predictions made by survey of professional forecasters, making
it a useful tool for monetary policy makers.

Furthermore, a study by Binner et al. (2005) compares the forecasting performance of linear
models (ARIMA and VAR) and nonlinear models (NN) for Euro inflation. Results sug-
gest that nonlinear models provide better forecasts than linear models, and that the Divisia
index, which is an index of money supply, performs better when evaluated in a nonlinear
framework. A recent study by Almosova and Andresen (2023) explores the use of nonlinear
machine learning techniques, specifically a long short-term memory recurrent neural network
(LSTM), in forecasting U.S. consumer price index (CPI) inflation. Results show that LSTM
outperforms linear models like AR, RW, SARIMA, MS-AR and simple NN, in terms of the
root mean squared forecast error (RMSFE) at all horizons. The study also found that LSTM
rolling-window real-time forecasts are more accurate than those of AR and NN. The paper
also examines the sensitivity of the model to hyper-parameters and provides an interpreta-
tion of what the network learns. The conclusion is that LSTM’s good performance is due to
its ability to capture nonlinearities in the data and its flexible architecture. Işığıçok et al.
(2020) discuss the importance of forecasting inflation rates in the economy, and compares
the performance of two different techniques for predicting future inflation rates. The study
uses consumer price index (CPI) data from January 2002 to March 2019 to forecast 9-month
inflation rates in April-December 2019 using both Box-Jenkins (ARIMA) models and Artifi-
cial Neural Networks (ANN). The study aims to determine which technique performs better
in predicting future inflation rates based on statistical and econometric criteria. The results
show that both techniques provided similar results and were relatively close to each other.

2.7 Conclusion

In conclusion, the literature research has shown that the impact of inflation on business val-
uation is significant and should be handled correctly, making accurate inflation forecasting
extremely relevant. Inflation forecasting involves the use of various economic indicators to
predict future changes in the general price level of goods and services. Finding the variables
with the highest predictive power is the main challenge in inflation forecasting. The pre-
dictors used to forecast the inflation are the historical inflation, interest rate, money supply
(M3), GDP, unemployment rate and gold price. There are several different types of models
that can be used for inflation forecasting, such as the more traditional econometric models,
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as well as, Neural Networks. Both traditional econometric models and neural networks have
their own strengths and limitations when it comes to inflation forecasting. Econometric
models are well-established and have a long history of successful use, but can be limited by
their assumption of linear relationships and their reliance on large amounts of data. Neural
networks, on the other hand, have the ability to handle large amounts of data and capture
complex and non linear relationships, but can be sensitive to the initial conditions and hy-
perparameters used. The econometric models that are investigated in this research are the
VAR and ARIMA model and for the Neural Networks the Feedforward Neural Network, Re-
current Neural Network and LSTM. The performance of these models will be analyzed and
compared with each other. The measure of inflation used to train and validate the models
is the Dutch Consumer Price Index (CPI).
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3 Methodology

3.1 Traditional inflation forecasting models

This section explores traditional econometric models for inflation forecasting. There are sev-
eral traditional econometric models that are widely used for inflation forecasting, including
the Philips curve, VAR (Vector Autoregression), ARMA (Autoregressive Moving Average),
and ARIMA (Autoregressive Integrated Moving Average). These models have been widely
applied and studied for decades and are considered the backbone of inflation forecasting. In
this section, we will explore the different traditional econometric models and how they can
be applied to inflation forecasting.

3.1.1 The Autoregressive Moving Average (ARMA) model

The autoregressive moving average (ARMA) model was first introduced in the 1950s by the
statistician Whittle (1951), who developed it as a method for analyzing and forecasting time
series data. The ARMA model is a combination of an autoregressive (AR) model, which
uses past values of a time series to predict future values, and a moving average (MA) model,
which uses the residual errors from a prediction model to generate a forecast. While Whit-
tle is credited with the original development of the ARMA model, Box and Jenkins (1970)
made significant contributions to the development and application of ARMA models in the
1960s and 1970s. They published several influential papers on the topic and developed a
systematic approach to modeling and forecasting time series data using ARMA models and
related techniques, which is known as the ”Box-Jenkins methodology”. This approach has
become widely used in the field of statistical analysis and is still used today as a standard
method for modeling and forecasting time series data.

To create an ARMA model, you would first need to determine the appropriate values for
the p (the number of autoregressive terms) and q (the number of moving average terms)
parameters, which determine the order of the model. Once you have determined the appro-
priate values for p and q, you can use the following equation to create an ARMA(p,q) model:

yt =

p∑
i=1

ϕiyt−i︸ ︷︷ ︸
AR

+

q∑
i=1

θiϵt−i︸ ︷︷ ︸
MA

+ϵt (1)

where:
yt : the inflation rate at time t

ϕi : the autoregression coefficients for the AR component

θi : the moving average coefficients for the MA component

ϵt : the residual error at time t

p : the order of the autoregression component

q : the order of the moving average component

32



3.1.2 Autoregressive Integrated Moving Average (ARIMA) model

An Autoregressive Integrated Moving Average (ARIMA) model is a statistical model that is
used to analyze and forecast time series data. It is an extension of the Autoregressive Moving
Average (ARMA) model that can also handle non-stationary data. The model is composed of
three components: the autoregression (AR) component, the differencing (I) component, and
the moving average (MA) component. The autoregression component of an ARIMA model
captures the dependence between an observation and a number of lagged observations. The
mathematical representation of an autoregression model of order p (AR(p)) is given by the
following equation:

yt =

p∑
i=1

ϕiyt−i + ϵt (2)

The moving average component captures the dependence between the residual errors of the
time series at different times. The mathematical representation of a moving average model
of order q (MA(q)) is given by the following equation:

yt =

q∑
i=1

θiϵt−i + ϵt (3)

The differencing component, also known as the integration component, is used to remove
non-stationarity from the data. This is done by taking the difference between consecutive
observations. The mathematical representation of a differencing component of order d (I(d))
is given by the following equation:

∆dyt = yt − yt−d (4)

The ARIMA(p,d,q) model is a combination of the Autoregression (AR), Difference (I), and
Moving Average (MA) components. The general form of the ARIMA model can be rewritten
as:

yt =

p∑
i=1

ϕi∆
dyt−i +

q∑
i=1

θiϵt−i + ϵt (5)
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where:
yt : the inflation rate at time t

ϕi : the autoregression coefficients for the AR component

θi : the moving average coefficients for the MA component

ϵt : the residual error at time t

∆d : the difference operator applied d times to the time series data

p : the order of the autoregression component

d : the order of the differencing component

q : the order of the moving average component

In summary, an ARIMA model is a time series forecasting method that can handle both
stationary and non-stationary data by using a combination of autoregression, differencing,
and moving average components. The model is represented by the notation ARIMA(p,d,q),
where p is the order of the autoregression component, d is the order of the differencing
component, and q is the order of the moving average component.

3.1.3 Vector Autoregressive (VAR) model

Vector autoregressive (VAR) models are a class of statistical models that are often used to
forecast time series data, including inflation rates. A VAR model consists of a set of vari-
ables that are assumed to be related to one another through a set of linear equations. To
forecast inflation using a VAR model, we would first need to identify the variables that are
likely to influence inflation and include them in the model. These could include economic
indicators such as GDP growth, unemployment rate, and interest rates, as well as other
factors such as commodity prices and exchange rates (Lütkepohl, 2005). Once the variables
have been selected, we would estimate the VAR model by fitting the model to a dataset of
historical data for these variables. This typically involves estimating the coefficients of the
linear equations that describe the relationships between the variables, as well as any error
terms (Enders, 2014; Hamilton, 1994).

Let yt be a K x T matrix of K variables observed over T time periods. Each row of y
represents the time series of a particular variable, and each column represents a particular
time period. The VAR model can be represented as:

yt = A1yt−1 + A2yt−2 + ...+ Apyt−p + ϵt (6)

where A1, A2, ..., Ap are K x K matrices of coefficients, yt−1, yt−2, ..., yt−p are the lagged values
of yt, and ϵt is a K x T matrix of error terms. The coefficients in the matrices A1, A2, ..., Ap

are estimated using regression analysis, typically using a method called maximum likelihood
estimation (MLE). This allows us to estimate the relationship between the variables and use
this relationship to make predictions about future values of the variables based on their past
values.
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3.2 Artificial Neural Networks

This section gives an introduction to Artificial Neural Networks (ANNs), also known as
Neural Networks (NNs), and their ability to forecast time series such as inflation. Neural
networks are a type of machine learning algorithm inspired by the structure and function of
the human brain. They consist of interconnected artificial neurons that are organized into
layers and are trained to perform a specific task by adjusting the strengths of the connections
between the neurons, also known as the weights. In general, a neural network consists
out of an input layer, a number of hidden layers and an output layer. Neural networks
are particularly powerful at identifying patterns and relationships in complex and high-
dimensional data. One application of neural networks is in financial time series forecasting,
where the goal is to predict future values of financial variables such as stock prices, exchange
rates, and inflation rates. Neural networks have been shown to be effective at financial time
series forecasting because they are able to capture non-linear and dynamic dependencies in
the data, and can handle large amounts of historical data.

3.2.1 Feedforward Neural Networks

The most basic neural network is the Feedforward Neural Network (FFNN) and is also
known as a multi-layer perceptron (MLP). This is a type of neural network that consists
of an input layer, one or more hidden layers, and an output layer. The network processes
the input data by passing it through the different layers in a feedforward manner, without
any loops or cycles. This means that the information flows in one direction, from the input
layer to the output layer, without any feedback or recursion. Figure 10 depicts a feedfor-
ward neural network with a single hidden layer. However, it’s worth noting that it is also
possible to incorporate multiple hidden layers within the structure. When a neural network
comprises of more than one hidden layer, it is referred to as a ”deep” neural network. The
incorporation of multiple hidden layers allows the network to learn more complex patterns
and dependencies in the data, thereby potentially enhancing its performance.
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Figure 10: Feedforward Neural Network

A zoomed in node of the neural network is depicted in Figure 11 giving a clear visualization
of the structure of a neuron. Let x ∈ Rn be the input vector with n the number of input
features, denoted as follows x = [x1, x2, . . . , xn]

⊤. For example, the two input features could
be the inflation rate and the money supply of the previous time period. The bias bq for node
q acts in a similar fashion to the intercept as in a regression model. W ∈ Rqxn is the weight
matrix associated with the inputs, q refers to the number of neurons in the next layer. The
output yq is produced by passing the weighted sum of the inputs together with the bias
through the activation function (f). The output yq, as in Equation 7, is the input for the
next layer until it reaches the output layer which produces the final output ŷ.

yq = f(Wqx+ bq) (7)

Figure 11: Structure of a artificial neuron

This example only considers one of the neurons in the layer. To compute yq, row q of the
weights matrix (W ), corresponding to the weights associated with neuron q, is multiplied
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with the input vector (x). Then the bias is added and the activation function is applied.
However, when an entire network is taken into account the computation becomes very large
and complex. To simplify the function above, bias b can be considered as a weight that is
always multiplied with a ’dummy’ input value of 1. The simplified version for an entire layer
can be written as follows:

y = f(Wx) where W =


b1, w1,1, w2,1, . . . , wn,1

b2, w1,2, w2,2 . . . , wn,2
...

...
...

bq, w1,q, w2,q . . . , wn,q

 and x =


1
x1

x2
...
xn

 (8)

An activation function, represented mathematically as f , plays a crucial role in determining
the output of a node or multiple nodes in a layer of a neural network. The activation function
transforms the weighted sum of the inputs into the final output. There are several commonly
used activation functions, including the linear function, the sigmoid (or logistic) function, the
hyperbolic tangent (tanh) function, and the Rectified Linear Unit (ReLU) function. These
functions are expressed mathematically as follows:

Linear : f(x) = x

Sigmoid : f(x) =
1

1 + e−x

tanh : f(x) =
ex − e−x

ex + e−x

ReLU : f(x) = max(0, x)

The activation function can be either a linear function, known as the ’identity function’ or
’no activation’, where the input is equal to the output, or a non-linear function such as the
sigmoid, tanh, or ReLU functions. The sigmoid function has a range of 0 to 1 and is often
used in the hidden layer to mimic the behavior of biological neurons. The tanh function has
a range of -1 to 1 and is also used in the hidden layer. For classification problems, the ReLU
function is more commonly used in the output layer, while a linear function is preferred for
regression problems. The choice of activation function is a crucial factor in the design of an
Artificial Neural Network (ANN). If all the activation functions were linear, the ANN would
be reduced to a linear regression model, and the non-linear functions such as the sigmoid
and tanh enable the ANN to discover complex relationships between targets and features.
With linear activation function, also known as ’no activation’ or identity function’, the input
is equal to the output. The sigmoid and tanh function are mostly used in the hidden layer
mimicking the behavior of biological neurons. The sigmoid function has a range of 0 to
1, and the tanh function has a range of -1 to 1. For classification problems, the ReLU

37



function is more commonly used in the output layer, whereas a linear function is preferred
for regression problems. The selection of activation functions is critical in the architecture of
an ANN. It is worth noting that if all of the activation functions were linear, the ANN would
be reduced to a linear regression model, whereas non-linear functions such as the sigmoid
and tanh functions enable ANNs to discover complex functional relationships that may exist
between targets and features (Sharma et al., 2017).
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3.3 Training Artificial Neural Networks

Artificial Neural Networks (ANNs) were inspired by the human brain and both learn from
experience and adjust themselves in response to mistakes. This section aims to provide an
intuitive understanding of how ANNs are trained. The goal of the training algorithm is to
optimize the performance of the neural network by adjusting the weights to minimize the
observed error. To enable the model to learn from its mistakes, a loss function is introduced.
This loss function calculates the difference or error between the actual value and the predicted
value at a given moment (Gurney, 2018). The Mean Squared Error (MSE) function is
commonly used for regression problems such as inflation forecasting. The MSE formula
takes the squared difference between the predicted and actual value 9.

L(y, ŷ) =
1

2

n∑
i=1

(yi − ŷi)
2 (9)

Where n is the number of observations in the sample, yi is the observed value and ŷi the
predicted value. The neural network is trained using a sample set, which is a subset of the
entire dataset. The goal of the training process is to start with a poorly performing network
and to improve the accuracy of the predictions by adjusting the weights and bias. The train-
ing process begins by initializing the weights and biases of the network with random values,
resulting in a poorly performing network. As the training process progresses, the accuracy
of the predicted output produced by the model improves by adjusting the weights and bias
(Alpaydin, 2020).

Figure 12: Gradient descent with large
learning rate

Figure 13: Gradient descent with small
learning rate

The optimization of NNs is a crucial step in achieving a high-performing model, and one of
the most widely used methods for this purpose is gradient descent. Gradient descent is an
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optimization algorithm that is used to find the local minimum of a differentiable function.
The algorithm works by determining the derivative or slope of a function at a certain point,
and then adjusting the input value in order to move closer to the local minimum. For in-
stance consider Figure 12 & 13, if the derivative (g’(x)) at a certain point is greater than
0, the input value (x) is reduced to move closer to the local minimum. Conversely, if the
derivative is less than 0, the input value is increased to move closer to the local minimum.
The learning rate (η), which is a value between 0 and 1, represents the size of the steps taken
to reach the local minimum. In general, a small learning rate is used, as a high learning rate
results in larger steps and faster convergence but less accurate results (Figure 12), while a
smaller learning rate results in small step sizes, slower convergence but more accurate results
(Figure 13).

However, determining the gradient for nodes in hidden layers of the network, which are one
or more steps away from the output layer, can be challenging. As the neural networks be-
comes larger and more complex, computing all partial derivatives is a very slow operation.
To address this issue, an efficient algorithm called backpropagation is used in combination
with gradient descent. Backpropagation was first introduced in the early 1970s and gained
widespread recognition after the publication of a paper by Rumelhart et al. (1985). Back-
propagation is a supervised learning algorithm used to calculate the gradients of the loss
function with respect to the weights of the network. The gradients are calculated by work-
ing backwards through the layers of the network, starting at the output and moving towards
the input. The algorithm uses the chain rule to calculate the gradients, and it stores the
partial derivatives as it moves back through the layers. Once the gradients have been calcu-
lated, they are used by the gradient descent algorithm to adjust the weights of the network.
The gradient descent algorithm updates the weights of the network in the opposite direction
of the gradients, which moves the network towards a lower value of the loss function (Good-
fellow et al., 2016).

The process of backpropagation and gradient descent is repeated multiple times, with each
iteration referred to as an epoch. During each epoch, the backpropagation algorithm is used
to calculate the gradients and the gradient descent algorithm is used to update the weights.
This process is repeated until the loss function is minimized, and the network has learned
to produce accurate predictions. The combination of backpropagation and gradient descent
allows for efficient training of neural networks by providing a way to calculate the gradients
and adjust the weights in a way that leads to a lower value of the loss function (Nielsen, 2015).

The above example just considers one independent variable, x. Now take the network de-
picted in Figure 10 as example, there is a weight matrix between the input and the hidden
layer and one between the hidden and output layer, Wx and Wy respectively. These matrices
are updated using gradient descent with backpropagation to optimize the model. After each
iteration the weights of the NN are updated as follows:

Wj := Wj +∆Wj (10)

The magnitude and direction of the weight update is computed by taking a step in the
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opposite direction of the cost gradient. Backpropagation calculates the loss with respect to
each individual weight separately, ∂L

∂wnq
using the chain rule. However, it is very inefficient to

do this for every weight separately. Therefore, the loss with respect to the weight matrix can
be written as in Function 11, where the gradient is calculated with respect to each weight in
the matrix.

∆Wj = −η
∂L

∂Wj

(11)

In Equation 11, L is the loss function, η is the learning rate and W is the weight matrix
corresponding to layer j. In each iteration, the weight vector between every layer is updated.
For the network depicted in Figure 10 the the gradient with respect to the weight matrix
Wx ∈ Rqxn and Wy ∈ Rkxq needs to be calculated to improve the performance of the model.
n is the number of features or inputs, q is the number of neurons in the hidden layer and k
is the number of outputs. The equations in the neural network are:

h = f(Wxx) (12)

ŷ = f(Wyh) (13)

The state of the hidden layer (h) is calculated by multuplying the imput vector x ∈ Rn with
the weight matrix Wx. To compute output ŷ, the hidden layer is multiplied with weight
matrix Wy. Now the gradients can be calculated as follows:

∂L

∂Wx

=
∂L

∂ŷ

∂ŷ

∂h

∂h

∂Wx

(14)

∂L

∂Wy

=
∂L

∂ŷ

∂ŷ

∂Wy

(15)

These equations represent the backpropagation algorithm used in artificial neural networks
to calculate the gradient of the loss function (L) with respect to the weights (W ) in the
network. The first equation calculates the gradient of the loss with respect to the input layer
weights (Wx), while the second equation calculates the gradient of the loss with respect to
the output layer weights (Wy). The equations use the chain rule to calculate the gradients
by breaking down the computation into smaller parts involving the partial derivatives of the
output layer (y), the hidden layer (h), and the weights in the network.

Even though the gradient descent method is the most common for the optimization of neu-
ral networks, there are some drawbacks. Gradient descent aims to find the global minimum
which is where the performance of the model is optimal. For a convex function, such as in
Figure 12 & 13, the global minimum is easily found. However, with nonconvex functions the
gradient descent can struggle to find the global minimum as there is a possibility to end up
in a local minimum or saddle point. This happens when the gradient of the loss function is
at or close to zero.

The are several types of gradient descent algorithms, each having their own advantages and
disadvantages. Firstly, Gradient Descent (GD) is a widely used optimization algorithm that
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calculates the gradients using the entire dataset. While it is considered the most standard
and traditional optimization algorithm, it can be computationally expensive and slow for
large datasets. As an alternative, Batch Gradient Descent (BGD) can be used, which is
similar to GD but uses a fixed batch size for each iteration. While it is also computationally
expensive for large datasets, it is less noisy than GD and can converge more quickly to the
optimal solution. Another optimization algorithm is Stochastic Gradient Descent (SGD)
which uses a single sample from the dataset to calculate the gradients, making it faster
than GD and BGD. However, the gradients are more noisy and it may converge to a local
minimum instead of global minimum. Lastly, Mini-batch Gradient Descent (MBGD) is an
optimization algorithm that uses a small subset of the dataset (a mini-batch) to calculate
the gradients. It is a trade-off between SGD and BGD, it is faster than BGD but less noisy
than SGD, it can converge more quickly to the optimal solution than SGD and it is compu-
tationally less expensive than BGD.

In summary, neural networks are trained using the backpropagation algorithm, a supervised
learning algorithm that adjusts the weights of the network in order to minimize the error
between the predicted output and the actual output. The backpropagation algorithm calcu-
lates the gradients of the error with respect to the weights using the chain rule of calculus
and updates the weights in the opposite direction of the gradient. The choice of which
optimization algorithm to use depends on the size of the dataset and the desired trade-off
between accuracy and computational efficiency.

3.3.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) were first introduced by psychologist Elman in the 1990s
as a solution to the limitations of Feedforward Neural Networks (FFNNs) in processing se-
quential data, such as time series, text, and speech. Unlike FFNNs, which analyze each set
of input variables in isolation with no knowledge of prior inputs and ignore the sequential
order of features within each sample, RNNs have a ”memory” that allows them to retain
information from previous time steps. This creates a loop where hidden layers receive data
from both previous time steps and current inputs, enabling the network to learn patterns
and dependencies across the entire input sequence Dematos et al. (1996). The basic building
block of an RNN is the recurrent neuron, which has a hidden state that is updated at each
time step and encodes the information learned from previous time steps. The input to the
network at each time step is a vector of real numbers and the output is also a vector of real
numbers. The term ”recurrent” refers to the fact that the hidden layer receives information
from previous time steps, making RNNs particularly useful for forecasting financial prices,
as this data is often time dependent. By being able to learn the time dependency of the
data as well as the data itself, RNNs are a suitable solution for addressing the shortcomings
of FFNNs in processing sequential data.

Recurrent Neural Networks (RNNs) are a type of neural network specifically designed to
process sequential data, such as time series, text, and speech. Unlike feedforward neural
networks (FFNNs), which analyze each set of input variables in isolation with no knowledge
of prior inputs and ignore the sequential order of features within each sample, RNNs have
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Figure 14: Recurrent Neural Network

a ”memory” that allows them to retain information from previous time steps. Figure 14
depicts an unfolded RNN where the input at time t, xt, represents the number of features
(n) and lags (s) and is a vector of real numbers. The output, yt, also a vector of real numbers,
has the size of yt ∈ Rk, where k = 1 for a single output value. The hidden state ht in between
consists of q number of neurons, often referred to as units, and the first time step, t = 1, is
initialized with h0. The weight matrix between the input and hidden layer is Wx ∈ Rqxn, the
weight matrix between the previous and current hidden layer is Wh ∈ Rqxq, and the weight
matrix between the hidden and the output layer is Wy ∈ Rkxq. The activation function, f ,
and the bias associated with each neuron q in the hidden layer, bq, are also included in the
calculation of the output, which is given by the following equation:

ŷt = f(Wyht + bq) (16)

Where,
ht = f(Whht−1 +Wxxt + bh) (17)

The Recurrent Neural Network (RNN) depicted in Figure 14 operates in a many-to-one
manner, aggregating multiple inputs from prior time steps to produce a single output. This
structure is commonly employed in sequence-related applications, such as predicting infla-
tion. Other popular variants of RNNs include one-to-many and many-to-many architectures.

3.3.2 Long Short-term Memory

Long Short-Term Memory networks, commonly referred to as LSTMs, are a variant of Recur-
rent Neural Networks (RNNs) that are specifically designed to learn long-term dependencies.
They were first introduced by Hochreiter and Schmidhuber (1997) and have undergone sig-
nificant advancements and improvements over the years. LSTMs are able to overcome the
problem of vanishing gradients, which is a common issue in traditional RNNs, that makes it
difficult for them to learn long-term dependencies. LSTMs have a structure similar to that
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of RNNs, but with a crucial difference in their internal cell. Instead of a single neural layer,
an LSTM cell comprises of four layers that interact with each other in a unique way. These
layers are responsible for maintaining and updating the cell’s internal state, which enables
the network to remember information over longer periods of time. The remainder of this
section provides a step-by-step explanation of how an LSTM network works, highlighting the
role of each of these layers and how they interact to enable the network to learn long-term
dependencies.

Figure 15: LSTM cell

Figure 15 illustrates a single LSTM cell, where a hidden layer consists out of multiple LSTM
cells. The square boxes within the cell represent the four trained neural network layers
and the circles indicate pointwise operations such as vector multiplication or addition. The
LSTM cell consists out of three gates: the forget gate, the input gate and the output gate.
The combination of these three gates and the cell state, which is the horizontal line at the top
of the cell in figure 16, gives this neural network the ability to learn long-term dependencies.
The square boxes within the cell are the four trained neural network layers and the circles
are pointwise operations such as a vector multiplication or addition.

Figure 16: LSTM cell state ct

The horizontal line running through the top of Figure 16 is the cell state (ct) which can be
seen as a transport line through the linked LSTM cells. The presence of the cell state, or
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long term memory state, is the reason that LSTMs do not suffer form exploding or vanishing
gradients (Graves, 2012). On the other hand, the hidden state (ht) at the bottom of the
cell, takes into account the most recent information and is known as the short term memory
state. Through the three regulated gates, the LSTM cell has the ability to remember or
forget (ir)relevant information. These three gates are known as the forget, input and output
gate. The inputs and outputs of the gates are the following:

n : number of input features

q : number of neurons in the LSTM cell

xt ∈ Rn : input current cell

ht ∈ Rq : hidden state input and output

ct ∈ Rq : cell state input and output

ft, it, oi ∈ Rq : forget, input and output gate

The computations in each gate are explained in the remainder of this section. First the
equations corresponding to each layer are introduced and at the end of the section the size
shape of the variables are explained in detail. As well as the input and output shape of the
LSTM.

Figure 17: LSTM forget gate

The forget gate is the first gate in the LSTM cell, it is responsible for deciding which in-
formation from the previous cell state can be forgotten. The forget gate is highlighted in
Figure 17. The output of the forget gate is passed on to the current cell state. Before the
output is passed on, it is processed by the sigmoid activation function, which bounds the
output between 0 and 1. A value of 0 means that all information from the previous cell
should be forgotten, while a value of 1 means that all information should be remembered.
The equation for the forget gate is given by:

ft = σ (Whfht−1 +Wxfxt + bf ) (18)

45



Where

Wxf ∈ Rqxn : input weight matrix for the forget gate

Whf ∈ Rqxq : hidden state weight matrix for the forget gate

bf ∈ Rq : bias forget gate

σ : sigmoid activation function

The LSTM cell has a layer called the ”input gate” which decides which new information
should be passed on to the cell state (Figure 18). This gate is composed of two layers. The
first layer is a sigmoid layer which uses the sigmoid function to calculate a value between
0 and 1 for the weighted sum of the input (xt) and previous hidden layer (ht−1) in order
to determine which information should be updated. The second layer is a tanh layer which
creates a new vector C̃t using the same inputs used in the sigmoid layer, which consists of
the information that could be added to the cell state. The tanh function outputs a value
between -1 and 1, which is useful in cases where the impact of a component in the cell state
needs to be reduced. The output of both layers is multiplied to determine which information
is added to the new cell state.

Figure 18: LSTM input gate

The input gate is computed using the equations represented by Equation 19 and Equation
20. it represents the output of the sigmoid layer and C̃t represents the output of the tanh
layer.

it = σ (Whiht−1 +Wxixt + bi) (19)

C̃t = tanh (WhCht−1 +WxCxt + bC) (20)

Where
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C̃t ∈ Rq : output tanh layer

Wxi,WxC ∈ Rqxn : input weight matrix of the input sigmoid and tanh gate

Whi,WhC ∈ Rqxq : hidden state weight matrix for the input sigmoid and tanh gate

bi, bC ∈ Rq : bias for the input sigmoid and tanh gate

σ : sigmoid activation function

tanh : tanh activation function

The long-term memory of the network can be updated by combining the output of the
forget gate ft and input gate it with the previous cell state Ct−1. This is done by taking the
element-wise product of the output of the forget gate ft and the previous cell state Ct−1, and
adding it to the element-wise product of the output of the sigmoid layer it and the output
of the tanh layer C̃t. This operation is also known as the Hadamard product and is denoted
by the symbol ◦. Equation 21 describes the update of the previous cell state ct−1 into the
new cell state ct.

ct = ft ◦ ct−1 + it ◦ C̃t (21)

The final gate in the LSTM cell is the ”output gate”, which is responsible for determining the
new hidden state (ht). This can be seen in Figure 19. In order to compute the new hidden
state, three inputs are required: the previous hidden state (ht−1), the updated cell state (ct),
and the current input (xt). Similar to the forget and input gates, a sigmoid layer is applied
to the input (xt) and the previous hidden state (ht−1) using Equation 22. To compute the
updated hidden state, the updated cell state is passed through the tanh function to scale the
output between -1 and 1, and then multiplied by the output of the sigmoid layer, as shown
in Equation 23.

Figure 19: LSTM output gate

ot = σ (Whoht−1 +Wxoxt + bo) (22)
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ht = ot ◦ tanh (ct) (23)

Where
Wxo ∈ Rqxn : input weight matrix for the output gate

Who ∈ Rqxq : hidden state weight matrix for the output gate

bo ∈ Rq : bias output gate

σ : sigmoid activation function

tanh : tanh activation function

The dimensions of all the variables involved in the LSTM cell computations, along with an
overview of all the equations used to compute the output, are provided below.

ft = σ (Whfht−1 +Wxfxt + bf )

it = σ (Whiht−1 +Wxixt + bi)

C̃t = tanh (WhCht−1 +WxCxt + bC)

ct = ft ◦ ct−1 + it ◦ C̃t

ot = σ (Whoht−1 +Wxoxt + bo)

ht = ot ◦ tanh (ct)
The size and shape of the variables involved in the LSTM cell computations depend on the
number of neurons q ∈ Z in the LSTM cell and the number of input features n ∈ Z. The
size and shape of the inputs, weights, bias and output can be expressed as:

xt ∈ Rn

ct, ht ∈ Rq

ft, it, C̃t, ot ∈ Rq

Wxf ,Wxi,WxC ,Wxo ∈ Rqxn

Whf ,Whi,WhC ,Who ∈ Rqxq

bf , bi, bC , bo ∈ Rq

ft, it, oi ∈ Rq

Figure 20 gives an example of how the input shapes flow through the cell, illustrating the
matrix multiplication in each gate. The number of neurons in the LSTM cell, denoted as
q, determines the size of the hidden state and cell state, and the number of input features,
denoted as n, determines the size of the input. In this example (Figure 20) the number of
neurons is q = 2 and the number of features n = 3. The matrix multiplication in each gate
is similar, for example, in the forget gate, the input matrix Wxf ∈ Rqxn is multiplied with
the input vector xt ∈ Rn and the hidden state matrix Whf ∈ Rqxq is multiplied with the
previous hidden state vector ht−1 ∈ Rq. The outcomes after the multiplication are added,
resulting in an output shape of Rq.

So far, we have only discussed a single LSTM cell and its computations. However, in practice,
a hidden LSTM layer typically consists of multiple cells. The number of cells in the layer is
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Figure 20: Dimensions within a LSTM cell

determined by the number of lags, which refer to the number of previous time steps used to
compute the output. Figure 21 illustrates a LSTM layer with s number of cells. The LSTM
layer receives input from the input layer and an initial hidden and cell state. For the entire
LSTM layer, the input xt ∈ Rnxs is composed of the number of features n and the number
of lags s. The initial hidden and cell state vectors are set to zero, which is only the case at
the first time step at the start of the training process. The output ht of the LSTM layer
is computed for the previous l time steps with input xt ∈ Rn. The s and T in Figure 20
represent the sigmoid (σ) and tanh activation functions.

Figure 21: LSTM layer

The output of the LSTM network, ŷt, is calculated according to Equation 24. The formula
for calculating this output uses the weight matrix Wy, which is a k x q dimensional matrix
and connects the hidden LSTM layer to the output layer. The number of values the model
outputs is equal to k. A bias, by, is added before the linear activation function is applied to
obtain the final output.

ŷt = f(Wyht + by) (24)
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Overall, LSTM networks are able to capture long-term dependencies in data by using the
memory cell and gates to selectively store and retrieve information from the past. This allows
the network to effectively ”remember” important information from earlier in the sequence,
even when the input data is noisy or otherwise difficult to interpret.

3.4 Training Recurrent Neural Networks

Recurrent neural networks (RNNs) are trained using a variant of the backpropagation algo-
rithm called backpropagation through time (BPTT). The basic idea of BPTT is to unroll
the recurrent network over multiple time steps and treat it as a Feedforward Neural Network
with multiple layers (Yu et al., 2019). The weights of the network are then updated using the
standard backpropagation algorithm, where the error is propagated from the output layer to
the input layer, and the gradients are calculated with respect to the weights. The training
process begins by initializing the weights and biases of the network with random values.
Then, the input sequence is fed into the network one time step at a time, and the network
produces an output at each time step. The error between the predicted output and the
actual output is then calculated, and the gradients of the error with respect to the weights
are calculated using the chain rule of calculus.

The gradients of the error with respect to the weights are calculated by the following equation:

∂L

∂Wj

=
∂L

∂ŷ

∂ŷ

∂ht

T∑
k=1

((
T∏

i=k+1

∂hi

∂hi−1

)
∂hk

∂Wj

)
(25)

where Wj is either weight matrix Wh or Wx. Note that when k = T , the value of the product
is treated as 1 as there is nothing to multiply:

T∏
i=T+1

∂hi

∂hi−1

= 1 (26)

RNNs are a type of neural network that are commonly used to process sequential data.
However, when training RNNs using the traditional backpropagation algorithm, known as
Backpropagation Through Time (BPTT), the network can suffer from a problem known as
vanishing or exploding gradients. The vanishing gradient problem occurs when the gradi-
ents become smaller and smaller as the algorithm progresses backwards through the layers,
eventually approaching zero and preventing the model from learning. On the other hand,
the exploding gradient problem occurs when the gradients keep increasing as the algorithm
progresses, resulting in large weight updates and causing the training algorithm to diverge.
These problems become more pronounced as the number of previous time steps included
in the algorithm increases. This is because the product of ∂hi

∂hi−1
(in Equation 26) becomes

smaller than 1, causing the gradients to vanish or larger than 1, causing the gradients to ex-
plode. This can make it difficult for the BPTT algorithm to converge to the optimal solution.
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The LSTM model is a solution to the problem of vanishing or exploding gradients that can
occur in RNNs. LSTMs are a type of RNN that are able to capture long-term dependencies by
introducing a new element called the cell state (ct). This cell state helps prevent gradients
from vanishing by keeping track of the derivative of the cell state. This can be seen in
Equation 28 and 29. Additionally, LSTMs have weight matrices between the current and
previous hidden layers, as well as the input and hidden layers, which also depend on inputs
in previous time steps. These matrices can be computed in a similar fashion as explained in
Section 3.3 and the beginning of this Section. However, not all the partial derivatives of the
weight matrices are stated. The goal of the training algorithm for LSTMs is to optimize the
performance of the model by adjusting the weights to minimize the observed error, which is
measured by the Mean Square Error, also known as the loss function (L).

ct = ft ◦ ct−1 + it ◦ C̃t (27)

Via the multivariate chain rule, the derivative of the cell state with respect to the previous
cell state is:

∂ct
∂ct−1

=
∂ct
∂ft

∂ft
∂ht−1

∂ht−1

∂ct−1

+
∂ct
∂it

∂it
∂ht−1

∂ht−1

∂ct−1

+
∂ct

∂C̃t

∂C̃t

∂ht−1

∂ht−1

∂ct−1

+
∂ct
∂ct−1

(28)

Now the four derivative terms are computed:

∂ct
∂ct−1

= σ′ (ft) ·Whf · ot−1 ◦ tanh′ (ct−1) · ct−1

+ σ′ (it) ·Whi · ot−1 ◦ tanh′ (ct−1) · C̃t

+ σ′
(
C̃t

)
·WhC · ot−1 ◦ tanh′ (ct−1) · it

+ ft

(29)

The terms in partial derivative ∂ct
∂ct−1

are multiplied by the number of time steps that are
backpropagated. At any time step, each term can take a value above 1 or between 0 and 1.
Thus, when the number of time steps increases it is not guaranteed that ∂ct

∂ct−1
converges to 0

or infinity. Whereas in the vanilla RNN, ∂hi

∂hi−1
will eventually take on values that are either

always above 1 or between 0 and 1 which is what causes the gradient to vanish or explode
(Noh, 2021).

In summary, Recurrent Neural Networks are trained using a variant of the backpropagation
algorithm called backpropagation through time (BPTT), which unrolls the network over
multiple time steps and treats it as a feedforward neural network with multiple layers. The
weights of the network are updated using the standard backpropagation algorithm, and op-
timization algorithms such as stochastic gradient descent or Adam are used to minimize the
error.
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4 Empirical Approach

4.1 Data

To achieve reliable inflation rate forecasts, it is essential to gather relevant data that reflects
the current economic conditions and trends. Econometric models such as ARIMA and VAR,
as well as Neural Networks such as FFNN, RNN, and LSTM, require large amounts of data,
including historical inflation rates and macroeconomic indicators. The quality and quantity
of data used to train these models significantly impact their accuracy, making data gathering
and preparation a critical step in the inflation rate forecasting process. The more accurate
the data, the more reliable the forecasts, and the better the decisions that can be made
based on them. The data is used to forecast the monthly one step ahead inflation rate in
the Netherlands, where ŷt is the predicted inflation rate.

4.1.1 Stationary data

It is important for data to be stationary when forecasting with econometric models because
these models assume that the statistical properties of the data do not change over time.
Stationarity is a key assumption for these models, and violating this assumption can lead
to spurious forecasts. Stationary data means that the mean, variance, and autocorrelation
structure of the data do not change over time. If the data is non-stationary, the model
may produce biased forecasts and unreliable confidence intervals. To address this issue,
the data can be transformed to achieve stationarity, for example by taking first differences,
logarithms, or seasonal differences. If the data is non-stationary, the model may produce
unreliable forecasts and biased estimates of the coefficients.

To determine whether data is stationary or not, a common test used in econometrics is the
Dickey-Fuller test. The Dickey-Fuller test is a statistical test that checks for the presence of
a unit root in a time series dataset. A unit root implies that the data is non-stationary, as
it indicates that the statistical properties of the data change over time. The null hypothesis
of the Dickey-Fuller test is that the data has a unit root and is non-stationary, while the
alternative hypothesis is that the data is stationary. The mathematical formula for the
Dickey-Fuller test is as follows:

∆zt = α + βt+ γzt−1 + ϵt (30)

where ∆zt is the first difference of the dependent variable, α is the intercept term, β is the
coefficient on time, γ is the coefficient on the lagged dependent variable, and ϵt is the error
term. If the calculated test statistic is less than the critical value at the chosen level of
significance, then we reject the null hypothesis of non-stationarity and conclude that the
data is stationary. Conversely, if the test statistic is greater than the critical value, we fail to
reject the null hypothesis and conclude that the data is non-stationary. If the data is found
to be non-stationary, it can be adjusted to become stationary by taking the first difference
of the data or by using other techniques such as seasonal adjustment or logarithmic transfor-
mation. Taking the first difference involves subtracting each observation from the previous
observation to remove the trend component from the data. Once the data is stationary, it
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can then be used for inflation forecasting using econometric models.

For neural networks data does not necessarily have to be stationary. Unlike traditional time
series models, neural networks are capable of modeling complex and nonlinear relationships
between variables, and can learn to adapt to changes in the statistical properties of the data
over time. However, stationarity can still be a useful property to have in the data, as it
can simplify the modeling process and improve the performance of the neural network. For
example, stationary data may exhibit simpler patterns and relationships that are easier for
the neural network to learn and generalize to new data. Additionally, stationarity may help
reduce the impact of noise and outliers in the data. If the data is non-stationary, it may
be necessary to apply transformations to the data, such as differencing or detrending, to
achieve stationarity or at least reduce the degree of non-stationarity. However, care must be
taken to avoid introducing biases or distorting the data, as some transformations can affect
the patterns and relationships in the data that the neural network is meant to learn.

4.1.2 Data gathering

This research is focused on forecasting the inflation rate in the Netherlands, using the Dutch
Consumer Price Index (CPI) as the measure of inflation. The CPI is collected from the
”Centraal Bureau voor de Statistiek” (CBS), which is an institution that publishes all kinds
of Dutch social and economic statistics. Additionally, the data of other macroeconomic in-
dicators, such as GDP and unemployment rates, are also collected from the CBS. In order
to prepare the data for analysis, the historical inflation rate, along with macroeconomic
indicators such as GDP, unemployment rates, interest rates, money supply and gold price
are collected from various data sources, including the CBS and ECB databases, as well as
the Investing.com database. For data for the gold price, GDP and money supply. The de-
scriptive statistics of the dataset are given in Table 2. After differencing, the Augmented
Dickey-Fuller (ADF) test rejects the null hypothesis of a unit root at the 5% level.

CPI Interest Gold Unemployment GDP M3
count 192 192 192 192 192 192
mean 2.25% 2.12% 0.01% 5.85% 0.26% 0.58%
std 2.31% 1.52% 0.05% 1.46% 0.57% 0.45%
min -0.20% -0.21% -0.11% 3.20% -2.24% -0.16%
25% 1.10% 0.98% -0.02% 4.70% 0.11% 0.40%
50% 1.80% 1.92% 0.00% 5.65% 0.24% 0.52%
75% 2.50% 3.49% 0.03% 6.80% 0.43% 0.64%
max 14.50% 4.96% 0.16% 9.00% 2.37% 4.40%
ADF -3.27 -5.79 -13.69 -3.23 -7.54 -7.2

Table 2: Descriptive statistics of dataset

The data covers a time period of 16 years from 2007-01-01 to 2022-12-01, consisting of
192 monthly observations. The length of the considered time period is mainly driven by
the availability of data. The data is then cleaned, transformed, and split into training,
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validation, and testing sets, with a split ratio of 60%, 20%, and 20%, respectively. The
training set, which covers the period from 2007-01-01 to 2019-09-01, is used to train the
models, while the out-of-sample period from 2019-10-01 to 2022-01-01 is used to evaluate
the out-of-sample forecast. A part of the training set is used as validation data to tune the
parameters of the neural network models. A visualization of the data split is provided in
Figure 22. The time period considered includes some major events such as the end of the
financial crisis, COVID-19 and the Russian invasion of Ukraine which had a major effect
on the global economic landscape. The end of the financial crisis marked a turning point
for many economies, as they began to recover and experience growth once again. However,
the outbreak of COVID-19 in late 2019 had a significant impact on the world, leading to
widespread lockdowns, economic disruption, and significant loss of life. Additionally, the
ongoing conflict between Russia and Ukraine has strained relations between these countries
and other nations, as well as impacting global trade and stability. Overall, the events during
this time period have had a profound effect on the world economy. As can be seen in Figure
22, inflation surged to extreme highs after COVID-19 and the Russian invasion of Ukraine.
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Figure 22: Historical inflation rate split into a training, validation and test set
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4.1.3 Data preparation

Once the data is collected, it must be prepared for analysis. This involves cleaning the data
by removing any missing or inaccurate data points, transforming the data into a suitable
format for analysis, and splitting the data into a training, validation and test set. They are
used to train and evaluate the model’s performance during the development phase and to
assess the model’s accuracy in making predictions on new, unseen data.

The training set is the portion of the data used to train the machine learning model. The
model is trained on this data to learn the underlying patterns and relationships between the
input features and output targets. The training set typically represents the largest portion
of the available data, typically around 60% to 80% of the total dataset. The validation set
is used to evaluate the performance of the model during training. After the model has been
trained on the training set, it is evaluated on the validation set to assess its performance.
The validation set helps to identify whether the model is overfitting or underfitting. Overfit-
ting occurs when the model is too complex and performs well on the training set but poorly
on the validation set. Underfitting occurs when the model is too simple and performs poorly
on both the training and validation sets. The test set is used to assess the accuracy of the
model’s predictions on new, unseen data. After the model has been trained and evaluated
on the training and validation sets, it is then evaluated on the test set. The test set provides
an unbiased evaluation of the model’s performance on new data that it has not been trained
on.

The next step is to normalize the data to ensure that it is on the same scale. Normalization is
essential for neural networks because it helps to prevent any single feature from dominating
the analysis. This can be done by scaling the data to certain range, for example between -1
and 1.

4.2 Performance measures

Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) are two common
performance measures used to evaluate the accuracy of a model’s predictions. Both measures
are used to compare the predicted values from a model to the true values in a dataset, and
provide an indication of the model’s prediction error. RMSE is calculated as the square root
of the mean squared error (MSE), which is the average of the squared differences between
the predicted values and the true values. The RMSE is defined as:

RMSE =

√√√√ 1

n

n∑
i

(yi − ŷi)
2 (31)

where n is the number of samples, yi is the true value for sample i, and ŷi is the predicted
value for sample i. RMSE is commonly used for regression tasks, where the goal is to predict
a continuous value. It is a popular choice because it is easy to interpret, as it is expressed
in the same units as the predicted and true values (Ghasemi and Zahedi, 2010).
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MAE is another common performance measure for regression tasks, and is calculated as
the average of the absolute differences between the predicted and true values. The MAE is
defined as:

MAE =
1

n

n∑
i

|yi − ŷi| (32)

where n is the number of samples, yi is the true value for sample i, and ŷi is the predicted
value for sample i. MAE is also easy to interpret, as it is expressed in the same units as
the predicted and true values. However, unlike RMSE, it is not sensitive to outliers in the
data, as it only takes into account the magnitude of the error, rather than the squared error
(Zhang and Yang, 2015).

Both RMSE and MAE have their advantages and disadvantages, and the appropriate per-
formance measure will depend on the specific task and requirements. Both RMSE and MAE
are easy to interpret, as they are expressed in the same units as the predicted and true values.
This can be helpful for understanding the magnitude of the prediction error (Ghasemi and
Zahedi, 2010). Howeverm RMSE is sensitive to outliers in the data, as the squared error will
be larger for larger errors. This can be a disadvantage if there are outliers in the data that
are not representative of the majority of the samples. MAE is not sensitive to outliers, as it
only takes into account the magnitude of the error (Zhang and Yang, 2015).

Both MSE and MAE provide an indication of the model’s prediction error, and can be used
to compare the performance of different forecasting models. MSE is often used when the
goal is to minimize the prediction error, as it penalizes larger errors more heavily due to the
squared difference. MAE is often used when the goal is to minimize the prediction error,
and the data contains outliers or the range of possible values is important to consider, as it
is not sensitive to outliers and only takes into account the magnitude of the error.

In general, RMSE is a good choice when the goal is to minimize the prediction error, and the
data is free of outliers. MAE is a good choice when the goal is to minimize the prediction error
and the data contains outliers, or when the range of possible values is important to consider
(Zhang and Yang, 2015). It is also worth noting that there are many other performance
measures that can be used for regression tasks, depending on the specific requirements and
characteristics of the data. Some examples include mean squared logarithmic error (MSLE),
mean absolute percentage error (MAPE), and coefficient of determination (R2).
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4.3 Hyperparameters of a Neural Network

Hyperparameters are values that are set before training a neural network model and are used
to control the learning process. They are typically chosen through a process called hyperpa-
rameter optimization, which involves searching for the best combination of hyperparameters
to achieve the best performance on a given task. There are many different hyperparameters
that can be adjusted in a neural network, and the specific hyperparameters that are rele-
vant will depend on the specific architecture and type of model being used. Some common
hyperparameters include:

1. Learning rate: This is a scalar value that determines the step size at which the optimizer
makes updates to the model weights during training. A larger learning rate can lead to
faster convergence, but also carries a higher risk of overshooting the optimal weights
and leading to poor generalization (Goodfellow et al., 2016).

2. Batch size: This is the number of training examples that are processed at once by the
model during training. A larger batch size can lead to faster training, but may also
require more memory and can result in worse generalization (Chollet, 2018).

3. Number of epochs: This is the number of times the model will see the entire training
dataset during training. A larger number of epochs can lead to better model perfor-
mance, but also carries a higher risk of overfitting (Raschka, 2015).

4. Activation function: This is a function applied to the output of each neuron in the
model that determines the output of the neuron. Common activation functions include
sigmoid, tanh, and ReLU (Chollet, 2018).

5. Number of hidden layers: The number of hidden layers in a neural network can affect
the model’s capacity and ability to learn complex patterns in the data. A deeper
network with more hidden layers can potentially capture more intricate relationships,
but also carries a higher risk of overfitting (Goodfellow et al., 2016).

6. Size of hidden layers: The size of the hidden layers, or the number of neurons in each
hidden layer, can also affect the model’s capacity and ability to learn complex patterns.
A larger number of neurons in the hidden layers can allow the model to capture more
intricate relationships, but again carries a higher risk of overfitting (Goodfellow et al.,
2016).

7. Optimizer: The optimizer is the algorithm used to update the model weights during
training. Different optimizers have different properties and may work better or worse
for different tasks and model architectures. Common optimizers include stochastic
gradient descent (SGD), Adam, and RMSprop (Chollet, 2018).

8. Loss function: The loss function is a measure of how well the model is able to predict
the desired output for a given input. Different loss functions are suitable for different
tasks and can have a significant impact on the model’s performance. Common loss
functions include mean squared error (MSE) for regression tasks and cross-entropy
loss for classification tasks (James et al., 2013).
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Hyperparameter optimization is typically done through a process called grid search, in which
a set of hyperparameters is defined and the model is trained and evaluated for each com-
bination of hyperparameters. The combination that leads to the best performance on the
validation set is then chosen as the final set of hyperparameters. Another approach to hy-
perparameter optimization is called random search, in which a set of hyperparameters is
randomly generated and the model is trained and evaluated with those hyperparameters.
This process is repeated a number of times, and the combination of hyperparameters that
leads to the best performance is chosen as the final set (Bergstra and Bengio, 2012). There
are also more advanced optimization techniques, such as Bayesian optimization and evolu-
tionary algorithms, that use probabilistic models and search heuristics to more efficiently
search the hyperparameter space (Snoek et al., 2012).

In general, it is important to carefully choose the hyperparameters for a neural network, as
the choice of hyperparameters can have a significant impact on the model’s performance. It
is also important to use a held-out validation set to evaluate the performance of the model
during the hyperparameter optimization process, to ensure that the chosen hyperparame-
ters will generalize well to unseen data. It is also worth noting that finding the optimal
set of hyperparameters can be a time-consuming and iterative process, as it often involves
training multiple models with different hyperparameter combinations and evaluating their
performance. Automated hyperparameter optimization techniques, such as those mentioned
above, can be helpful in speeding up this process and finding good hyperparameter values
more efficiently.

In summary, selecting the relevant hyperparameters for a neural network is an important
aspect of the model training process, and can have a significant impact on the model’s
performance. Careful selection of hyperparameters can help to ensure that the model is able
to effectively learn and generalize to new data.
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5 Results & Discussion

5.1 Introduction

In this section the hyperparameters of the econometric and neural networks are selected.
Once the hyperparameters of the econometric and Neural network models have been selected,
the models can be constructed. The remainder of this section presents and interprets the
results of the inflation forecasting models, including econometric and neural network models.
The models will be trained on the training and validation set to optimize the parameters
and weights. Furthermore, for each model the in and out of sample prediction are generated
and evaluated using RMSE and MAE. The lower the values of these measures, the better
the performance of the model.

5.2 Hyperparameter selection

5.2.1 Hyperparameter selection of ARIMA

The selection of the appropriate parameters for an ARIMA(p,d,q) model is crucial to ensure
that the model fits the data well and produces accurate forecasts. One common approach
to parameter selection is to use the Root Mean Squared Error (RMSE) as a measure of
accuracy and select the model with the lowest RMSE. The optimal values of p, d, and q for
the ARIMA model are selected by iterating through different combinations of p, d, and q.
The model with the lowest RMSE is considered the best-fitting model and is selected for out
of sample forecasting. The parameter combination with the lowest RSME is ARIMA(1,1,3),
as can be seen in Table 3.
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ARIMA(p,d,q) RMSE
ARIMA (1,1,1) 0.316
ARIMA (2,1,1) 0.312
ARIMA (3,1,1) 0.312
ARIMA (1,1,2) 0.314
ARIMA (1,1,3) 0.308
ARIMA (1,2,0) 0.371
ARIMA (2,2,0) 0.364
ARIMA (0,2,1) 0.306
ARIMA (0,2,2) 0.318
ARIMA (0,2,3) 0.315
ARIMA (1,2,1) 0.318
ARIMA (1,2,2) 0.314
ARIMA (1,2,3) 0.315
ARIMA (2,2,1) 0.317
ARIMA (2,2,2) 0.322
ARIMA (2,2,3) 0.362
ARIMA (3,2,0) 0.360
ARIMA (3,2,1) 0.315
ARIMA (3,2,2) 0.314

Table 3: In sample RMSE of ARIMA(p,d,q) model

The model parameter selection results in a constructed model with the following coefficients
represented in Table 4. The L1 AR coefficient is the autoregressive (AR) parameters of the
model, while the L1, L2 and L3 MA coefficients are the moving average (MA) parameter.
The AR parameter represent the correlation between the current value of the dependent
variable (CPI in this case) and its past values, where L indicates the number of time peri-
ods back in the past that the model considers. Similarly, the MA parameters represent the
correlation between the current value of the dependent variable and its past errors, where
L indicates the number of time periods back in the past that the model considers. The
ARIMA(1,1,1) model has R2 of 0.89 on the combined training and validation set.

variable coefficient std error z-value
AR L1 0.506 0.77 0.66
MA L1 -0.460 0.75 -0.61
MA L2 -0.063 0.12 0.53
MA L3 -0.130 0.09 -1.44

Table 4: Coefficient ARIMA model
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5.2.2 Hyperparameter selection of VAR

The selection of appropriate parameters for a VAR(p) model is also crucial to ensure that the
model fits the data well and produces accurate forecasts. The model with the lowest RSME
value is considered the best-fitting model and is selected for out of sample forecasting. The
model with the lowest RMSE is considered the best-fitting model and is selected for out of
sample forecasting. The parameter combination with the lowest RSME is VAR(1), as can
be seen in Table 5.

VAR(p) RSME
VAR(1) 0.317
VAR(2) 0.318
VAR(3) 0.322
VAR(4) 0.324
VAR(5) 0.340
VAR(6) 0.343
VAR(7) 0.338

Table 5: In sample RMSE of VAR(p) model

The model parameter selection results in a constructed model with the following coefficients
of the CPI factor represented in Table 6. L1 refers to the lag order of the variables included
in the model, the value of the variable from the previous time period. The variable included
in the VAR model are the historical CPI, the interest rate, gold price, unemployment, GDP
and the money supply (M3). The VAR(1) model has R2 of 0.89 on the combined training
and validation set.

variable coefficient std. error t-statistic
const 0.123 0.13 0.95
L1 CPI 0.060 0.08 0.72
L1 Interest -0.199 0.11 -1.81
L1 Gold 0.002 0.00 0.46
L1 Unemployment -0.021 0.02 -1.16
L1 GDP -0.090 0.14 -0.64
L1 M3 0.014 0.11 0.13

Table 6: The Coefficients for the VAR(1) CPI equation
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5.2.3 Hyperparameter selection of neural networks

In this section, the hyperparameters for the FFNN, RNN and LSTM are determined. This
process involves tuning the hyperparameters, which are the external configuration variables
of the model. Since there are countless possible parameter combinations, an initial architec-
ture is set up, and different hyperparameters are investigated to optimize the neural network.
The initial network consists of an input layer, a single hidden layer, and an output layer.
According to Stinchcombe and White (1992), a network with a single hidden layer can ap-
proximate a wide range of linear and nonlinear functions, provided that a reasonable number
of neurons are included in the hidden layer. Therefore, a single hidden layer is used for all
three types of neural networks. Including too many hidden layers can also cause overfitting
of the model. To ensure generality and comparability of the FFNN, RNN, and LSTM, the
same hyperparameters will be used for all three.

Figure 23: RNN & LSTM input shape

To tune the hyperparameters, it is crucial to understand the input shape of RNNs, including
LSTMs, in comparison to FFNNs. The input shape for RNNs is a three-dimensional array
(batch size, number of time steps, number of features) as shown in Figure 23. The first
dimension represents the batch size, which is a hyperparameter that specifies the number
of samples to be processed before updating the model’s internal parameters. The second
dimension is the number of time-steps, often referred to as lags, and this hyperparameter
determines the number of previous time-steps to include in the input. The third dimension
is the number of features, which are the different input variables. For the RNN and LSTM
models, the number of features is equal to the number of variables used to forecast the in-
flation rate: lagged inflation rate, interest rate, GDP, gold price, unemployment rate and
the M3 money supply. The number of lags and batch size are determined later on in this
section. The inputs are passed through the hidden layer to the output layer, which consists
of a single neuron that outputs the inflation rate forecast using a linear activation function.
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In contrast to recurrent neural networks, FFNNs require a two-dimensional input shape
(batch size, number of features) since they are unable to take prior time steps as input. In
order to compare the input sizes of three different types of neural networks investigated, the
FFNN input size is adjusted to (batch size, (number of features + number of lags)). Rather
than the prior lags flowing through the hidden state, they are included in the input array.
The sigmoid function is a typical choice for the activation function in the hidden layer of
FFNNs, according to Bucci (2020). In order to predict inflation rates, a linear activation
function is used in the output layer.

The model makes a prediction of the inflation rate for each time step. The actual inflation
rate from the test set is then used to forecast the inflation rate for the subsequent time step.
This process imitates a real-world scenario in which the inflation rate of the prior time step
is known and utilized to estimate the inflation rate for the next time step.

The optimization algorithm used is Adaptive Moment Estimation (Adam), as opposed to the
classical stochastic gradient descent (SGD). Unlike SGD, Adam employs a variable learning
rate throughout the model training process. Adam offers a significant advantage over other
optimization algorithms, such as SGD, in that it converges more rapidly to the local minima,
which leads to faster results Sang and Di Pierro (2019).

In order to avoid overfitting, a dropout rate is implemented in the hidden layer. Dropout
randomly removes neurons, reducing the sensitivity to specific weights of the individual neu-
rons (Srivastava et al., 2014). The dropout value is a trade-off between retaining accuracy
and avoiding overfitting. In the FFNN, a dropout rate of 0.1 is applied between the hidden
layer and the output layer, while for the RNN and LSTM models, a dropout rate of 0.1 is
applied to the recurrent input signals in the hidden layer.

The hyperparameters of the NNs are tuned after its construction. The order in which the
hyperparameters are selected is as follows: the number of lags and neurons in the hidden
layer, batch size, and number of epochs. It is noted by Breuel (2015) that successful hyper-
parameter selection on one dataset does not guarantee the same outcome on another dataset
with different characteristics. There is no set formula for selecting the right set of hyper-
parameters, and as such, decision-making often involves prior knowledge and trial-and-error
(Young et al., 2015). The performance of the model on the validation set is used to determine
the optimal hyperparameters.

The first step in tuning the hyperparameters involves finding the optimal combination of
lags per feature and the number of neurons in the hidden layer. The learning capacity of
the network is determined by the number of neurons. However, too many lags and neurons
can result in overfitting, where the model performs exceptionally well on the training data
but poorly on the unobserved test data. The number of lags is the same for all features, and
the root-mean-square error (RMSE) is calculated for each combination of lags and neurons
to determine the best NN architecture. The number of lags ranges from 1 to 6, while the
number of neurons in the hidden layer ranges from 2 to 20, with increments of 2. The results,
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presented in Table 7, indicate that the combination of 2 lags and 16 neurons yields the lowest
RMSE.

Number of Neurons
2 4 6 8 10 12 14 16 18 20

N
u
m
b
er

of
L
ag
s 1 0.389 0.375 0.385 0.412 0.398 0.341 0.369 0.341 0.367 0.361

2 0.515 0.508 0.346 0.349 0.406 0.471 0.426 0.286 0.315 0.330
3 0.493 0.363 0.344 0.328 0.384 0.407 0.361 0.308 0.326 0.338
4 0.489 0.368 0.350 0.376 0.371 0.394 0.363 0.326 0.331 0.322
5 0.489 0.497 0.391 0.401 0.386 0.418 0.357 0.347 0.417 0.318
6 0.495 0.341 0.380 0.359 0.361 0.341 0.358 0.342 0.450 0.324

Table 7: Average MSE of FFNN, RNN & LSTM for various Number of Lags & Neurons
combinations

In addition, the batch size hyperparameter is determined, which specifies the number of
samples to process before updating the model’s internal parameters. Often, batch sizes are
chosen to be powers of 2. A batch size of 1 and a batch size equal to the length of the training
dataset are also included. With these batch sizes, mini-batch-gradient descent is reduced to
SGD and converted batch gradient descent, respectively. The RMSE is calculated for each
batch size, and the batch size resulting in the lowest error is selected. As shown in Figure
24, a batch size of 16 yields the lowest RMSE for all three NNs.

1 16 32 64 114
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RNN
LSTM

Figure 24: Batch size

The final hyperparameter to be tuned is the number of epochs. It is an essential hyper-
parameter for the performance of a NN. The number of epochs represents the number of
times the learning algorithm passes through the entire training dataset. When the number
of epochs is too low, it will be difficult for the training data to converge, and if it is too high,
overfitting can occur. The train and validation RMSE scores are plotted in Figure 25, which
is often called the learning curve. It can be observed from the plot that after approximately
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1000 epochs, the learning rate stabilizes.
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Figure 25: Number of Epochs

Table 8 provides a summary of the architecture and hyperparameters used to train the
FFNN, RNN, and LSTM models. It includes the number of input features, the number of
lags used, the number of neurons in the hidden layer, the activation function used in the
hidden layer, the optimizer used for training, the dropout rate applied, the batch size used,
and the number of epochs trained. The FFNN, RNN and LSTM model have a R2 of 0.89,
0.92, 0.94 on the combined training and validation set respectively.

NN Model
Number of Hidden Layers Single hidden layer
Number of Neurons 16
Number of Lags 2
Inputs Historical inflation, interest rate
Output 1
Activation function output layer Linear
Number of epochs 1000
Batch Size 16
Loss Function Mean Square Error
Dropout Ratio 0.1
Training Set as of Total Data 60%
Validation Set as of Total Data 20%
Test Set as of Total Data 20%
Optimization Algorithm Adam

Table 8: NN model specifications
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5.3 Result Naive predictor

Naive forecasting is a simple method of forecasting where the future values of a variable are
assumed to be equal to the most recent value observed in the data. This method is commonly
used as a benchmark to compare the performance of more sophisticated forecasting models,
such as econometric and neural network models. The idea behind using naive forecasting
as a benchmark is to compare the accuracy of the more complex models with a simple and
easily understandable benchmark. The naive predictor used is the value of the variable at
time t− 1, as expressed in Equation 33.

ŷt = yt−1 (33)

Where ŷt is the forecasted value for the next time period (t) and yt−1 is the observed value at
time t−1. If a model cannot outperform the naive forecast, it may not be useful for practical
forecasting purposes. While naive forecasting is a very simple method, it can still provide
valuable insights into the forecasting problem. It is often used as a baseline model to assess
the accuracy of more complex models. A model that performs worse than the naive forecast
is unlikely to provide any real forecasting value. Figure 26 illustrates the performance of the
naive predictor, showing that the predicted forecast is lagging behind the actual values due
to its reliance on the previous observed value as the sole predictor. The naive predictor has
a R2 of 0.89 on the combined training and validation set.

2008 2010 2012 2014 2016 2018 2020 2022
Year

0%

2%

4%

6%

8%

10%

12%

14%

CP
I

CPI In sample forecast Out of sample forecast

Figure 26: Naive predictor result of Dutch inflation rate forecast

5.4 Results Econometric models

The econometric models used in this study include VAR and ARIMA. The results in Table
9 show that both ARIMA and VAR models outperform the naive predictor. The naive
predictor simply uses the last observed value as the prediction for the next period, and it
serves as a baseline for comparison. The results indicate that the VAR model has a slightly
lower RMSE in and out of sample compared to the ARIMA model, making it the better
performing econometric model. However, the both the ARIMA and the VAR model have
a higher in sample MAE. A possible reason for the higher in-sample MAE of the ARIMA
and VAR models could be due to the presence of outliers or unusual observations in the
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training data. Figure 27 visualized the ARIMA prediction compared to the actual inflation
and Figure 28 the prediction of the VAR model. As can be seen from both figures, both
models accurately forecast the one month ahead inflation rate. The VAR model captures
the dynamic interrelationships between the historical inflation rate, money supply, GDP,
interest rate, unemployment rate and the gold price. As can be seen in Figure 28, the VAR
model forecasts an overreacted drop in inflation as a reaction to the start of the COVID-19
pandemic in the beginning of 2020. This could be because the pandemic caused a sudden
and significant shock to the economy, causing the GDP to drop and unemployment and
money supply to increase.
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Figure 27: ARIMA result of Dutch inflation rate forecast

2008 2010 2012 2014 2016 2018 2020 2022
Year

0%

2%

4%

6%

8%

10%

12%

14%

CP
I

CPI
Forecasted in sample
Forecasted out of sample

Figure 28: VAR result of Dutch inflation rate forecast
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5.5 Results Neural Network models

The neural network models used in this study include FFNN, RNN, and LSTM. Table 9
shows the RMSE and MAE values of the models for in-sample and out-of-sample forecasts.
All three NNs have a lower RSME in sample compared to the naive predictor, indicating
the the NNs fit the in sample data well. However, RNN and LSTM models do not perform
better than the naive predictor out of sample. The results show that the LSTM model has
the lowest RMSE and MAE values among all the models tested for in-sample forecasting,
with RMSE of 0.2055 and MAE of 0.1459. For out-of-sample forecasting, the FFNN model
has the lowest RMSE and MAE values, with RMSE of 1.2203 and MAE of 0.7449. The in and
out of sample predicted inflation rate of the FFNN, RNN and LSTM models are depicted in
Figures 29, 30 & 31 respectively. The results also suggest that the LSTM model is the most
accurate model for predicting inflation based on historical data, while the FFNN model can
better generalize to future data. A reason for the better performance of the FFNN model
compared to the RNN and LSTM model could be because of the rapid increase of inflation
in out of sample test set. As the RNN and LSTM models have longer-term memory and are
able to retain information over a longer period of time, they may struggle to adjust to rapid
changing market dynamics compared to the FFNN model. This is because the FFNN model
relies on a simpler feedforward architecture that is better suited to processing and reacting
to rapid changes in data. In contrast, the RNN and LSTM models may be slower to adapt to
sudden shifts in market dynamics, which could explain their relatively poorer performance
on the out-of-sample data. It is important to note that this does not necessarily mean that
the RNN and LSTM models are inferior to the FFNN model in all contexts, but rather that
their strengths and weaknesses may differ depending on the specific characteristics of the
data being analyzed.
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Figure 29: FFNN result of Dutch inflation rate forecast

Another reason for the poor out of sample performance of the RNN and LSTM model could
the the nature of the out of sample data. Namely, the out of sample data set includes the
COVID-19 pandemic and Russia’s invasion of Ukraine. These extreme events caused sudden
and significant shock to the economy, and the RNN and LSTM models may have struggled
to incorporate these unusual events into their forecasts. This is because these models rely
on patterns and trends in past data to make predictions, and may not be well-suited to
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handling sudden and unexpected shocks to the system. Especially, the in the out of forecast
the LSTM it can be seen that the model over and under shoot when trying to predict the
next month inflation (Figure 31).
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Figure 30: RNN result of Dutch inflation rate forecast
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Figure 31: LSTM result of Dutch inflation rate forecast
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5.6 Comparison between the Econometric and Neural Network
models

The results show that the neural network models outperform the econometric models in
the in-sample forecasts. In terms of in-sample forecasting, LSTM has the best in-sample
performance, indicating that it is the most accurate model for predicting inflation based on
historical data. However, in terms of out-of-sample forecasting, econometric models have
a better performance, indicating that it can better generalize to future data. Due to the
challenging data set, containing the COVID-19 pandemic and the invasion of Ukraine by
Russia, the RNN and LSTM poorly performed in the out-of-sample forecast. These extreme
events caused sudden and significant shocks to the economy, resulting in rapid changes in
market dynamics that the RNN and LSTM models had difficulty adjusting to. Additionally,
the RNN and LSTM models may not have been able to capture the complex interactions
between economic variables during such unprecedented events, as they rely on past patterns
in data to make predictions. It is worth noting that the study highlights that a more complex
model does not necessarily result in better and more accurate performance. This is evident
from the performance of the RNN and LSTM models, which, despite their complexity, did
not perform as well as the simpler econometric models in out-of-sample forecasting. This
suggests that the appropriate model choice should depend on the specific context and dataset
being analyzed, rather than simply selecting the most complex model available.

RMSE in RMSE out MAE in MAE out
Naive predictor 0.2812 1.2286 0.2033 0.7526
ARIMA 0.2798 1.1965 0.2062 0.7239
VAR 0.2765 1.1964 0.2076 0.7107
FFNN 0.2760 1.2203 0.2035 0.7449
RNN 0.2413 1.2672 0.1814 0.8195
LSTM 0.2055 1.7197 0.1459 1.2044

Table 9: Performance measure of the Econometric & Neural Network models

The computation time per model is stated in Table 10. As expected, the ARIMA and VAR
model are much faster than the Neural Networks. The econometric models are estimated us-
ing the Maximum Likelihood Estimation method and the NNs are trained using the methods
explained in Section 3.3 & 3.4. The running time of a VAR model is faster than that of the
ARIMA model because VAR model has fewer parameters to estimate than ARIMA model.
Regarding the NNs, the FFNN model has the shortest running time as it is the simplest NN
of the three. The RNN and LSTM also take output from prior time steps as input which
increases the number of computation needed to train the network. The LSTM model takes
the longest to train as it is the most complex model.
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Model Running Time (s)
ARIMA 0.105
VAR 0.010
FFNN 27
RNN 35
LSTM 42

Table 10: Running time of Econometric and Neural Network Models
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6 Conclusion & Future Research

In conclusion, inflation forecasting is highly relevant for business valuation as it affects the
expected cash flows and risk of a company, which are crucial factors in determining its value.
Proper handling of inflation is necessary in discounted cash flow models and can significantly
impact the valuation of a business. Incorporating inflation into the WACC calculation and
forecasting inflation-adjusted cash flows can help minimize the impact of inflation on the
value of a business. Therefore, businesses should focus on increasing prices, improving oper-
ations, and revisiting finances to mitigate the impact of inflation on their value. Inflation is
a complex phenomenon that is influenced by a wide variety of factors, including short-term
and long-term factors, as well as structural changes in the economy. Traditional econometric
models such as VAR and ARIMA have been successful in predicting inflation rates, but they
have limitations and are based on linear and stationary assumptions. Neural networks, or
artificial neural networks (ANNs), have become increasingly popular for inflation forecasting
due to their ability to handle large and complex datasets, model nonlinear and non-stationary
relationships, and incorporate high dimensional time-series data. In this study, we have ex-
plored the forecasting performance of econometric and neural network models in predicting
the Dutch inflation rate. The macroeconomic factors used as predictors of inflation are
the historical inflation rate, money supply, GDP, interest rate, unemployment rate and the
gold price. The time period that is considered to train the models and forecast inflation is
challenging, as it includes the effects of the financial crisis, COVID-19 and the Russian in-
vasion of Ukraine. Especially as COVID-19 and the invasion are in the out of sample data set.

The findings of this study indicate that the neural network models outperform the econo-
metric models in the in-sample forecasts. Specifically, the LSTM model shows the best
in-sample performance, suggesting that it is the most accurate model for predicting inflation
based on historical data. However, when it comes to out-of-sample forecasting, the econo-
metric models perform better, indicating that they can better generalize to future data. The
RNN and LSTM model also did not perform better than the naive predictor out of sample.
The challenging nature of the dataset posed significant difficulties for the RNN and LSTM
models in their out-of-sample forecast. These extreme events caused sudden and significant
shocks to the economy, resulting in rapid changes in market dynamics that the RNN and
LSTM models struggled to adjust to. Furthermore, the RNN and LSTM models may not
have been able to capture the complex interactions between economic variables during such
unprecedented events, as they rely on past patterns in data to make predictions. It is worth
noting that the study highlights that a more complex model does not necessarily result in
better and more accurate performance. This is evident from the performance of the RNN
and LSTM models, which, despite their complexity, did not perform as well as the simpler
econometric models in out-of-sample forecasting. This suggests that the appropriate model
choice should depend on the specific context and dataset being analyzed, rather than simply
selecting the most complex model available.

However, there are several limitation of this research that could be further investigated. Fu-
ture research should explore the use of other machine learning models, as only the forecasting
performance of two econometric models and three NN have been examined. Evaluating other
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models could be of interest to achieve an even more reliable result. Furthermore, the per-
formance of neural networks could also be tested with different architectures, for example
by modifying the the number of features, or enlarging the number of hidden layers. An-
other interesting possibility is to investigate the performance of the models on different data
frequencies, inflation predictors and forecast horizons.
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Iversen, J., Laséen, S., Lundvall, H., and Soderstrom, U. (2016). Real-time forecasting for
monetary policy analysis: The case of sveriges riksbank. Riksbank Research Paper Series.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical
learning. Springer.

Kasuya, M., Tanemura, T., et al. (2000). Small scale bayesian var modeling of the japanese
macro economy using the posterior information criterion and monte carlo experiments.
Technical report, Bank of Japan.

Khalid, A. M. (2005). Economic growth, inflation, and monetary policy in pakistan: Pre-
liminary empirical estimates. The Pakistan Development Review, pages 961–974.

Lack, C. et al. (2006). Forecasting swiss inflation using var models. Technical report, Swiss
National Bank.

Liu, L.-M., Hudak, G. B., Box, G. E., Muller, M. E., and Tiao, G. C. (1992). Forecasting
and time series analysis using the SCA statistical system, volume 1. Scientific Computing
Associates DeKalb, IL.

Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer, Berlin.

Mallik, G. and Chowdhury, A. (2001). Inflation and economic growth: evidence from four
south asian countries. Asia-Pacific Development Journal, 8(1):123–135.

Meyler, A., Kenny, G., and Quinn, T. (1998). Forecasting irish inflation using arima models.

Mishkin, F. S. (2001). From monetary targeting to inflation targeting. Number 2684. World
Bank Publications.

Montgomery, D. C., Jennings, C. L., and Kulahci, M. (2015). Introduction to time series
analysis and forecasting.

Moshiri, S. and Cameron, N. (2000). Neural network versus econometric models in forecasting
inflation. Journal of forecasting, 19(3):201–217.

76



Muktadir-Al-Mukit, D., Shafiullah, A., and Ahmed, M. R. (2013). Inflation led import or
import led inflation: Evidence from bangladesh. Asian Business Review, 2(2):65–69.

Nielsen, M. A. (2015). Neural networks and deep learning, volume 25. Determination press
San Francisco, CA, USA.

Noh, S.-H. (2021). Analysis of gradient vanishing of rnns and performance comparison.
Information, 12(11):442.

Ofori, C. F., Danquah, B. A., and Zhang, X. (2017). The impact of money supply on
inflation, a case of ghana. Imperial Journal of Interdisciplinary Research, 3(1):2312–2318.

Ogunc, F., Ozmen, M. U., Sarikaya, C., et al. (2018). Inflation dynamics in turkey from a
bayesian perspective. Technical report.

Öner, C. (2012). Inflation: Prices on the rise. International Monetary Fund.

Papavangjeli, M. (2019). Forecasting the albanian short-term inflation through a bayesian
var model. Technical report, The Graduate Institute of International and Development
Studies . . . .

Phillips, A. W. (1958). The relation between unemployment and the rate of change of money
wage rates in the united kingdom, 1861–1957. Economica, 25(100):283–299.

Ramakrishnan, U. and Vamvakidis, A. (2002). Forecasting inflation in indonesia.

Raschka, S. (2015). Python machine learning. Packt Publishing.

Rashid, A. and Saeed, M. (2017). Firms’ investment decisions–explaining the role of uncer-
tainty. Journal of Economic Studies, 44(5):833–860.

Reis, R. (2016). Funding quantitative easing to target inflation.

Rocheteau, G., Wright, R., and Xiao, S. X. (2018). Open market operations. Journal of
Monetary Economics, 98:114–128.
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