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Abstract 
 
With global healthcare demands intensifying, optimizing healthcare processes and resource 
allocation is vital for sustaining hospital competitiveness and meeting healthcare needs. This 
article proposes a machine learning-based approach to enhance bed occupancy via length-of-
stay predictions and patient scheduling.  
 
The literature study encompasses two systematic literature reviews on length-of-stay 
predictions and patient scheduling. The first review underlines the growing adoption of machine 
learning techniques in length-of-stay predictions. It further notes a shift in predictive modelling 
trends, where these techniques display beneficial performance when compared to traditional 
methods. Secondly, the literature review on patient scheduling highlights integer linear 
programming as a commonly used method.  
 
The chosen methodology comprises two stages: machine learning-based length-of-stay 
predictions and ILP patient scheduling. Initially, various machine learning models are evaluated 
to identify the most effective performers. An integrated approach, combining regression and 
classification, is employed to ensure accurate and reliable length-of-stay predictions. The 
outputs of the regression model are validated using an independent operating classification 
model to verify the obtained results. 
 
Artificial neural networks emerged as the superior regression model, achieving an R2score of 
0.776 and a mean average error of 55.1. For classification, Random Forest exhibited the highest 
average accuracy of 77.20%. In the subsequent stage, the ILP patient scheduling method 
demonstrated remarkable effectiveness in optimizing bed occupancy, with the potential to 
significantly increase it from 1.47 to 3.33 or even higher. Additionally, a user-friendly graphical 
user interface was developed to seamlessly integrate all models and provide valuable support 
to hospital planners seeking to enhance bed occupancy rates. 
   
This study presents valuable contributions to both theory and practice by introducing a 
comprehensive and innovative approach. It introduces a novel validation method that combines 
regression and classification, which has not been explored in the existing literature. 
Furthermore, the integration of length-of-stay predictions from patients on the waiting list as a 
basis for patient scheduling represents a significant advancement that has not been previously 
investigated. These research findings fill critical gaps in the current knowledge and offer 
promising avenues for future advancements in healthcare optimization. 
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1 Introduction  
 
The efficient allocation of healthcare resources is crucial in modern healthcare systems. 
Resources such as medical personnel, equipment, and facilities have limitations, and the 
growing demand for healthcare services further emphasises the importance of optimal resource 
allocation. Effective bed allocation is a critical aspect within hospitals, as it directly impacts the 
treatment capacity of patients. The availability of beds determines the number of people who 
can receive medical care, which makes the efficient utilisation of these resources of the utmost 
importance. Optimising patient allocation in the same number of beds improves bed occupancy 
rates within hospitals, maximising the utilisation of these important resources. 
 
Healthcare care provided in western European countries is highly advanced and complicated 
and is becoming more advanced and expensive every year. This is no different in the 
Netherlands, and expenses are taking up more of the gross domestic product every year, rising 
from 10.0% in 2000 to 14.5% in 2021. (Zorguitgaven; Kerncijfers, 2022)*. The Netherlands 
National Institute for Economic Policy Analysis (CBP) estimates that this figure will increase 
to 18% of the total gross domestic product in 2060 (CPB, 2022). 

The increase in these figures can be attributed in part to the increase in hospital expenses, as 
noted by Vonk et al. (2020). The increase in hospital expenses is due to various factors, 
including intensification of care, improved diagnostic techniques leading to earlier care, more 
costly care, and demographic ageing, which will result in higher healthcare costs for the 
government in the future (Vonk et al., 2020). In addition to increasing costs, there is also the 
problem of decreasing the number of medical personnel. According to the Dutch Social 
Economic Council (SER), additional 700,000 medical employees will be required in the 
healthcare sector over the next 20 years to maintain the current level of quality of care (Sociaal-
economische Raad, 2020). In 2020, one in seven members of the working population is 
employed in healthcare care, with a projected increase to one in four by 2040 if no intervention 
is made (Raad, 2021). Rising costs and a shortage of medical personnel will pose a challenge 
for both local authorities and the government. Partial solutions to these challenges lie in a better 
use of existing resources. Research on sophisticated planning and capacity management is 
necessary to improve hospital efficiency, allowing the successful treatment of more patients 
with the same resources.  
 
With the increasing demand for healthcare services, the hospital is under pressure to optimise 
its resources, including bed occupancy. Bed occupancy is the fraction of patients per bed per 
day and is a metric that indicates how well resources are allocated. Scheduling multiple patients 
in a single bed requires an optimised planning strategy. The current patient scheduling process 
faces several challenges that result in inefficient use of scarce resources. This research aims to 
elucidate these challenges and provide information on the urgent need for a more effective bed 
occupancy planning strategy in a small regional hospital. 
 
In the hospital, the daycare department plays a critical role as a dedicated recovery area for 
patients who have undergone various medical operations. Currently, patients who arrive from 
the operating room are moved to the A2X department to recover from surgery. The department 
is equipped with a limited number of beds. Daycare departments only hospitalise outpatients, 
which are patients who are expected to leave the same day as arriving. The length of stay 
experienced by these patients can show significant variations, influenced by factors such as type 
of operation, individual recovery rates, specific medical conditions, and different types of 
anaesthesia. Patients arriving at the daycare department occupy a bed. It is imperative to allocate 
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beds efficiently to ensure optimal patient care and resource utilisation. Furthermore, the time 
of patients in the hospital encompasses four distinct phases. The preoperative phase involves 
the arrival of patients and the necessary preparations for their procedures. Subsequently, the 
operation phase occurs, where the medical procedure is performed. After the operation, the 
patients enter the recovery phase, during which their vital signs are closely monitored until 
consciousness is restored. Finally, patients progress to the department phase, where they 
recover from their respective operations with the diligent care provided by the medical staff. 
The sum of time of all the above-mentioned phases is called the length of stay of a patient. In 
Figure 1, a schematic overview of the length of stay structure is shown.  
  

 
Figure 1. Schematic overview of the length of stay 
 
The existing planning process begins with the patient being placed on a waiting list by a 
physician or the administration department. The waiting list contains all patients who are 
currently waiting for a medical procedure. Subsequently, the operating room (OR) planning 
department reviews the list and selects patients for surgery. However, OR planners face 
significant challenges in determining which patients can be planned to increase bed occupancy, 
as they lack crucial information on the expected length of stay for individual patients.  
 
The lack of reliable length-of-stay predictions poses several issues for the planning department. 
First, it hinders their ability to accurately forecast bed availability with potential bottlenecks in 
patient flow and increased waiting times for surgery. This, in turn, could result in lower patient 
satisfaction and compromise the overall quality of care provided by the hospital.  Second, a 
lack of accurate length-of-stay predictions can lead to suboptimal resource allocation. OR 
planners often schedule surgeries for patients with short stays as if they need a bed for the whole 
day. In addition, they can schedule two patients with long LOS on a single bed, resulting in 
capacity problems at the end of the day. Such an inefficient allocation of resources can worsen 
the already stretched capacity in the day care department of the hospital, affecting the hospital’s 
ability to meet the growing demand for healthcare services in the region. Third, the manual 
nature of the current bed allocation process not only increases the likelihood of human error, 
but also imposes a considerable workload on the OR Planning department. Since employees 
are scarce in the healthcare sector, efficient working processes are crucial to ensure high job 
satisfaction rates. 
 
Given these challenges, it is evident that the small regional hospital needs to gather more 
insiders in its current planning process, as well as provide them with tools to make informed 
decisions. Implementing a data-driven prediction model for length-of-stay predictions could 
address these issues by allowing the OR Planning department to make these informed decisions 
regarding bed allocation based on accurate patient recovery times. By incorporating such a 
model into the hospital planning process, the small regional hospital can optimise its resources 
and ensure that it continues to provide high-quality healthcare services to the growing and 
ageing population of the Netherlands. 
 
To address the challenge of increasing bed occupancy, an integrated system of length-of-stay 
predictions and patient scheduling will be developed. In order to tackle the problem 
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systematically, a main research question and sub-research question are established. This 
approach will help break down the complex problem into smaller, manageable pieces, 
facilitating the development of a tool for hospital planners to increase the bed occupancy.  
 
Main research question: 
 
How can patient scheduling algorithms and optimisation techniques be integrated with length-
of-stay predictions to effectively allocate resources and maximise bed occupancy? 
 
Sub-research questions: 
 
Current Bed Allocation Process and Management 

• Who is responsible for managing the bed allocation process and what factors are 
considered when making allocation decisions? 

• What are the current work processes for arranging beds for patients? 
 
Length-of-stay predictions 

• What factors influence the length of stay for patients and how can they be predicted or 
estimated? 

• What models or algorithms are used to generate accurate length-of-stay predictions for 
outpatients, what are their capabilities, and how do they compare? 

• How can length-of-stay predictions be incorporated into the bed allocation decision-
making process, and how can they help solve bed allocation decision problems? 

• How can the robustness and reliability of length-of-stay predictions be ensured? 
 

Patient scheduling 
• What are the most used techniques in patient scheduling? 
• How can patient scheduling be used to increase bed occupancy? 

 
Implementation 

• How can the developed system be implemented in the small regional hospital? 
• What challenges will be faced during implementation? 

 
The research question and sub-research questions serve as a guide of the research process. The 
answers are obtained through a thorough examination of the relevant literature, data analysis, 
model development and evaluation, and scheduling model. In addition, a practical tool will be 
developed to enable the planning department to effectively implement the research findings in 
their real-world planning workflow.  
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2 Literature review 
 
2.1 Introduction 
The literature review will examine the current state of knowledge on the predictions of length 
of stay and patient planning. The review aims to identify gaps in the existing literature and 
provide information on potential solutions that can improve the efficiency of bed allocation 
processes. The review will explore the various factors that influence bed occupancy, length of 
stay, allocation of resources, and planning models. By analysing the relevant literature, the 
review will provide a basis for the proposed solution, a tool that helps OR planners increase 
bed occupancy at the small regional hospital. 
 
The final product will be an integrated system of patient care and length-of-stay predictions. In 
this chapter, two systematic reviews of the literature will be conducted according to the 
PRISMA guidelines (Moher et al., 2009). The first systematic literature is on prediction of 
length of stay for hospitalised patients. Studies will be evaluated and the findings will be 
summarised to serve as a solid foundation for this research. The second systematic review of 
the literature is on patient planning. Various approaches are known in the field of patient 
planning. The systematic review of the literature will reveal the methodologies that occur most 
frequently and will help guide research.  
 
In general, the literature will provide a logical progression of the topics. The review will serve 
as the foundation for the proposed data-driven solution, which aims to develop a prediction 
model for LoS and a planning system to improve the allocation of beds in the hospital.   
 
2.2 PRISMA Systematic literature review | Length of Stay Predictions 
This section presents a meticulous and comprehensive literature review focusing on the 
predictions of length of stay. It offers a concise summary of significant findings and notable 
advancements in this area of research. 
 

 Introduction 
To ensure optimal levels of care, healthcare systems have started to place a growing emphasis 
on effective resource management and forecasting. The desired result is to minimise associated 
costs and improve patient care (Garg et al., 2012). Effective resource management can be aided 
by accurate prediction of the length of stay of patients.  The length of stay is a healthcare metric 
that is used to determine the duration, in terms of days or hours, that a patient is expected to 
stay in the hospital after a single admission event (Huntley et al., 1998). Accurate predictions 
of length of stay are crucial for hospitals, as they help with proper management of hospital 
capacity, quality, and efficiency (Tibby et al., 2004; Weissman et al., 2007). On the contrary, 
inaccurate predictions can lead to extended hospitalisation of patients, which can result in 
dissatisfaction for both the patient and healthcare workers (Lequertier et al., 2021).  
 
Length-of-stay predictions can be challenging because the population groups of patients are 
heterogeneous (Huntley et al., 1998; Schmidt, Geisler, Spreckelsen et al., 2013). There is a 
substantial body of literature that has investigated various methods of predicting length of stay, 
including physician assessments. Unfortunately, physician evaluations are poorly reliable in 
many cases due to the lack of background information on patients and heterogeneous opinions 
of healthcare professionals (Durstenfeld et al., 2016; Nassar & Caruso, 2016). Therefore, it is 
crucial to develop models that can empower the predictions of medical personnel. 
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Many articles describe techniques such as regression (statistical) techniques (Combes et al., 
2014; Grampurohit & Sunkad, 2020) and artificial intelligence (AI) methods (Bacchi et al., 
2022; Kadri et al., 2022; Mansoori et al., 2023; Mekhaldi et al., 2020). 
 
Lequertier et al. (2021) conducted a systematic review of the literature on the use of these 
different techniques and found that the prediction of length of stay is moving towards the use 
of more sophisticated methods such as machine learning. However, the validity of these models 
is difficult to verify due to the challenges in reproducing the research findings (Lequertier et 
al., 2021). Machine learning techniques are superior for complex pattern findings and in cases 
with a large number of input data. (Bzdok et al., 2018; Bacchi et al., 2022).  
 
Machine learning has increased in recent years due to technical advancements (Lequertier et 
al., 2021), availability of big data, and their outstanding performance compared to other models 
(Kuwajima et al., 2020; Le et al., 2011). Predicting length of stay of a patient is a regression 
problem for which machine learning can be a fitting solution (Ray, 2019). For this reason, the 
focus will be on state-of-the-art machine learning techniques to successfully predict the length 
of stay at the small regional hospital. 
 
In the remainder of this chapter, the aim is to explore the field of length-of-stay predictions for 
hospital patients. An elaborate review of the existing literature will be conducted over the last 
couple of years. The literature will be reviewed according to the guidelines provided by the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). By 
conducting a comprehensive search across multiple databases, including Scopus, PubMed, and 
Web of Science. The objective of the review is to examine different approaches and 
methodologies used in the prediction of the length of stay of patients. This includes identifying 
the factors that influence LOS, information about model use, and evaluation methodologies.  
 
The systematic review of the literature will revolve around predictions of length of stay for 
hospitalised patients. The research question will be 
 
What are the most widely used methodologies using machine learning algorithms to predict 
length of stay in hospital patients? 
 
With this research question, the systematic review of the literature aims to identify and 
analyse relevant studies that have explored the topic. To perform a systematic review of the 
literature, multiple databases will be used. Databases are known to cover a wide range of 
research articles in the field of healthcare and machine learning. Using a systematic approach, 
the review aims to minimise bias and ensure a thorough examination of the existing literature.  
 
The analysis of the studies will analyse the use and evaluation of methodologies of different 
predictive models for the length of stay. This will involve evaluating the strengths and 
limitations of various machine learning algorithms, along with their performance metrics and 
validation techniques. The results of the systematic review of the literature will provide a solid 
foundation for this research. 
 

 Data Sources and Search Methods 
The systematic review of the literature conducted in this study adhered to the PRISMA 
guidelines (Moher et al., 2009). To ensure a complete analysis, a thorough search was 
performed in multiple databases, including Scopus, PubMed, and Web of Science. 
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Carefully constructed queries, as presented in Appendix X, were used to capture relevant 
studies related to length-of-stay predictions. These queries incorporated key concepts and terms 
relevant to the research objectives, with the aim of covering a wide range of perspectives and 
approaches. 
 

 Study Selection 
The PRISMA study selection was carried out independently by the researcher and was validated 
by Supervisor. The titles and abstracts of the selected publications were reviewed by an 
independent reviewer. At first, the titles will be scanned and held against the inclusion and 
exclusion criteria. Consecutively, studies that passed the title scanning will be evaluated based 
on their abstract. The studies that will be included in the review were read and analysed in full 
text.  
 

 Inclusion and exclusion criteria 
The objective of the study is to conduct a systematic review of the literature to explore the field 
of length-of-stay predictions for hospital patients. Throughout the search, strict adherence to 
predefined inclusion and exclusion criteria was maintained to ensure quality. 
 
To gain an complete understanding of the potential to predict length of stay, a deliberate 
decision was made not to focus solely on studies related to the daycare department. This 
approach allows for a broader exploration of the topic, taking into account the diverse 
population of patients who may not be limited to the daycare setting. Consequently, no articles 
were excluded on the basis of specialisation. To ensure the inclusion of studies with sufficient 
statistical power and state-of-the-art methodologies, specific criteria were established. Articles 
considered for inclusion needed to have a sample size that exceeded 100 patients and be 
published between January 2015 and January 2023. Furthermore, to maintain relevance to the 
quality standards of the population in the hospital, only articles from western countries were 
included. This criterion was designed to ensure that the selected studies reflect a similar 
standard of quality and care. For a comprehensive overview of the inclusion and exclusion 
criteria, together with an explanation for each criterion, see Table 1. Table 1 provides 
transparency and clarity on the selection process. 
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Table 1. Inclusion and exclusion criteria - systematic review of the literature LOS 
Criteria Description 
Inclusion  

 

Study Design Review articles, editorials, original studies,  
Patient population Adult, hospitalised patients  
Outcome measure Studies evaluating length of stay as primary or secondary outcome measure 
Prediction methodology Studies that develop or evaluate prediction models specifically designed to predict 

the length of stay of hospitalised patients. Includes both retrospective and 
prospective models. 

Language Studies published in English, as language restrictions may impact the feasibility of 
data extraction and analysis.  

Geographical Location Studies conducted in well-developed countries. 
Publication date  Studies published from January 2015 to January 2023, to ensure relevance and 

accessibility.  
Statistical methods Studies employing a wide range of statistical analysis to enhance the results.  
Exclusion   
Population  Studies that have a too specific population group. E.g. specific disease. 
Western countries  To match healthcare quality standards in the Netherlands. 
Duplicate studies Studies identified through database searches and manual  
Data Completion Studies with incomplete or insufficient data to evaluate the development or 

evaluation of prediction models will be excluded. 
Full text availability Studies for which full text is not available will be excluded 
Sample size Studies with very small sample sizes (n<100) may not provide robust findings and 

will be excluded. 
 

 Data extraction  
To ensure a systematic and structured approach to data extraction, a data extraction form was 
designed. This section presents a detailed overview of the data extraction form. The data 
extraction form was designed to capture essential information from the articles included in the 
study.  
 
The evaluation of the articles during the full text screening involved evaluating general 
elements and task-specific elements related to the length-of-stay predictions. The 
comprehensive approach enabled the extraction of data to address the research objectives. This 
includes information on the predictive model used, performance evaluation measures, and 
factors that influence stay duration. Table 2 displays a comprehensive overview of the 
information collected. The full data extraction table can be found in Appendix A. 
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Table 2. Data extraction table LOS systematic literature review 
Information Description 
General aspects 
Study identification Author(s), year of publication, title, journal, DOI, study design. 
Study Characteristics Country, sample size, funding source. 
Study Population Patient demographics (e.g., age, gender), medical speciality, type of admission 
Prediction model details Model development or evaluation, model type, predictor variables, model 

performance measures. 
Validation cohorts Description of independent validation, sample size, patient characteristics, setting, 

and results. 
Length of stay outcomes Definition of length of stay, units of measurement, median/mean length of stay, 

IQR, proportion of short/long stays, classification classes. 
Missing data Description of missing data, methods used to handle missing data. 
Task-specific aspects 

 

Predictor Variables Detailed list of predictor variables used in the prediction model. 
Medical specialisation  Description of the speciality or department. 
Model results Description of the process for model development, variable selection, model fitting 

techniques, feature engineering. 
Model Evaluation Performance measures of the prediction model, calibration measures 
Model Validation Model validation and calibration results. 
Feature selection The selection process of the included prediction variables.  
Limitations Discussion of the limitations of the prediction model, potential bias, and 

generalisability concerns. 
 

 Search strategy 
The search strategy used incorporates a selection of synonyms to achieve a comprehensive 
coverage of relevant studies. To help construct the query, a synonym table, Table 3, was created 
as a reference. Considering various terms and variations, the search strategy aims to include a 
wide range of literature relevant to the research topic. The search query was established using 
the AND and OR operators. The final query can be found in Appendix A.   
 
Table 3. Synonyms table LOS 
Search terms Synonyms 
Prediction Forecast, Estimation, Projection, Modelling, Prognostication 
Length of stay Duration, Hospital stay, Inpatient stay, LOS 
Hospital Medical Centre, Healthcare Facility, Clinic, Institution 
Patients Individuals, Subjects, Participants, Medical Cases 
Predictive Models Machine Learning Models, Statistical Models, and AI Models 
Factors Variables, Predictors, Covariates, and Features 
Outcome Result, End Point, Event, Dependent variable 
Analysis Examination, Evaluation, Assessment, Study 

 
 

 Quality Assessment  
The systematic review of the literature in this study used PubMed, Scopus, and Web of Science 
databases. It is important to note that other databases could have been included to minimise the 
risk of missing relevant sources. The exclusion of certain databases increases the probability of 
overlooking valuable information. Furthermore, it is essential to consider the possible influence 
of the researcher’s personal opinion during the article selection process. When interpreting the 
findings of the systematic review of the literature, these two aspects must be recognised and 
taken into account to ensure an unbiased analysis.   
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 PRISMA flow diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. PRISMA flow diagram LOS 
 

 Data Synthesis 
The data synthesis section offers an overview of the characteristics and findings of the included 
studies. This section examines the general characteristics and task-specific characteristics, to 
provide an overview of the findings in the articles. By analysing and summarising these 
characteristics, the section presents a clear and concise overview of the key findings within the 
included articles.  
 
2.2.9.1 General Characteristics 
Table 4 provides an overview of the general characteristics extracted from the articles included 
in the literature review. The table discusses various general aspects such as country, study 

Records identified from: Scopus, 
PubMed, Web of Science 

Databases (n = 3) 
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Web of Science = 59 
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Duplicate records removed  (n = 85) 
 

Records screened for title 
(n = 2087) 

Records excluded: 
(n = 1988) 

Reports sought for retrieval 
(n = 99) 

Reports not retrieved: 
(n = 6) 

Reports assessed for eligibility 
(n = 93) 

Reports excluded: 
Image analysis (n = 2) 
Outside hospital (n=3) 
Incorrect population (n=11) 
Incorrect outcome predictor(s) (n = 58) 
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population, approach, outcome, handling of missing data, validation cohorts and best models 
utilised in the studies. By providing the frequency and percentage distribution of each 
characteristic, the table offers a concise summary of the key features found within the included 
articles. 
 
Table 4. General characteristics table systematic review of the literature LOS 
Characteristics   n % 
Country USA 11 68,75%  

Australia 2 12,50%  
Taiwan 1 6,25%  
Unknown 1 6,25%  
Germany 1 6,25%  
Multiple 1 6,25% 

Study Population Non-specific 7 41,80%  
Specific 10 58,20% 

Approach Classification 9 56,25%  
Regression 3 18,75%  
Both 4 25,00%  
None 1 6,25% 

Outcome LOS Short stay, Long stay 4 22.22%  
Extended stay 2 11.11%  
discharge, no discharge 1 55,60%  
Days 9 50,00% 

Missing data Unspecified 8 47.06%  
Dropped Missing 3 17.65%  
Extra-class 1 5.88%  
Imputation 1 5.88%  
Multiple 2 11.76% 

Validation cohorts Cross-validation/Hold-out 6 40,00%  
Hold-out 5 33,33%  
Cross-validation 1 6,67%  
Not specified 5 33,33% 

Best Model Logistic regression 3 18.75%  
Neural Network 2 12.50%  
Random Forest 1 6.25%  
Combination 2 12.50%  
Bayesian Model 1 6.25%  
XGBoost 1 6.25%  
Empirical Logistic Discrete Hazard Model 1 6.25%  
One-class JITL-ELM 1 6.25%  
Naive Bayesian Model 1 6.25%  
LightGBM 1 6.25% 

  Positive Unlabelled Learning 1 6.25% 
 
The distribution of studies in different countries reveals a notable concentration of research in 
the United States, which reaches 68,75% of the included studies. The finding suggests a strong 
presence of research in the United States. The other included studies vary from different 
continents, where only Heim et al. (2019) are located in Europe. Another remarkable included 
article is that of Barsasella D et al. (2022), researched in Taiwan. The article is included because 
Taiwan is a well-developed country and the article is insightful.  
 
The characteristics of the study population indicate a wide range of research fields. 
Approximately 58,20% focused on a specific population. Most of the included studies focused 
on specific procedures such as total knee arthritis (Navarro et al., 2018), or the ICU department 
(Ma et al., 2020). The other 41,80% did not have a specific procedure and included a variety of 
patients in their length-of-stay predictions. 
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Regarding the methodological approach, included studies can be categorised into three groups: 
classification, regression, and a combination of both. The most prevalent approach was 
classification, observed in 56,25% of the included studies. The study by Banga et al. (2017) did 
not use a prediction method, but rather a statistical approach. The findings of this study focus 
on procedure-related variables, which are independent predictors, but are not used to make 
predictions. It suggests that the approach, classification, or regression, is correlated with the 
main objective of the article.  
 
In terms of outcome measures, the included studies demonstrated a single focus on the duration 
of stay as the most important outcome factor. There are also studies that combine costs and 
length of stay(Navarro et al., 2018; Ramkumar et al., 2019), which is irrelevant in the case of 
hospital, as the focus is on LOS and planning. Unfortunately, no included studies incorporated 
their findings into a patient planning algorithm to increase bed occupancy.  
 
Addressing missing data is a critical aspect in developing machine learning models for length-
of-stay predictions. Missing data cannot be handled by most machine learning models and must 
be addressed during the data pre-processing phase. Approximately 47,06% of the studies 
excluded this pre-processing step. Based on the characteristics table with studies that included 
this step, dropping the missing records from the data set was the most common approach.  
 
The validation cohorts used to assess model performance showed variations. Cross-validation 
in combination with a holdout approach was the validation cohort used the most frequently 
(40%). There were differences in the percentages for the hold-out approach. Most studies had 
a train-test division of 80:20, where Zeng (2022) used a division of 99: 1. For classification 
approaches, all studies included the accuracy as an evaluation metric in some studies 
accompanied by the F1 score, sensitivity, specificity and the ROC curve with AUC. The 
validation metric chosen most (60%) for the regression approach is the mean squared error. 
 
Finally, the methodologies of the machine learning models constructed and evaluated. 
Approximately 47% of the studies deployed multiple models and evaluated their performance 
to select the best working model for the specific case. Studies that included only one model 
based their choice on related work. The machine learning models that were used the most 
frequently in the analysed studies included logistic regression (n = 9), XGBoost (n = 5), 
Random Forest (n = 4) and neural networks (n = 3). 
 
2.2.9.2 Studies of the systematic literature 
During the systematic review of the literature, two systematic reviews of the literature were 
identified. The first is by Lu et al. (2015) and the second is by Bacchi et al. (2022). The two 
reviews serve as an important reference in the field and contribute valuable information to the 
current study’s research.  
 
The systematic review by Lu et al. dates from 2015 which can be seen in the investigated 
approaches. The articles reviewed mainly focus on conventional statistical techniques, and no 
state-of-the-art machine learning techniques were discussed. The most used technique is 
Ordinary Leas Squares, which is a technique not seen in the review by Bacchi et al. The 
performance of the models is also significantly lower (R2 score 0.3 -0.6) than the studies 
presented by Bacchi et al. (0.63 – 0.973) The reviewed literature is focused on the determinants 
in the predictions of length of stay. Based on the included articles, a conceptual framework was 
constructed that describes the factors that influence the length of stay. Figure 3 presents this 
conceptual framework of Lu et al. (2015).  
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Figure 3. Influencing factors of LOS in patients 
 
Lu et al. (2015) primarily investigated conventional techniques for predicting length of stay, 
while Bacchi et al. (2022) specifically focused on machine learning techniques to predict length 
of stay patients. A total of 21 articles were included in the review, which examined various 
medical specialities and patient populations. The machine learning models in the studies 
included support vector machines, (artificial) neural networks, Bayesian networks, decision tree 
algorithms, random forest and logistic regression models. The results of these studies varied 
widely in outcome measures and validation cohorts. The two outstanding results achieved an 
accuracy of 80% and an AUC of 0.94 using Random Forest (Daghistani et al., 2019). Another 
study showed an accuracy of 87.4% and an AUC of 0.905 using ANN(Launay et al., 2015). 
 
The two systematic reviews of the literature conducted by Lu et al. (2015) and Bacchi et al. 
(2022) offer valuable information on predicting the length of stay of patients. The review by Lu 
et al. focused on conventional statistical techniques and identified determinants of length of 
stay. The review by Bacchi et al. (2022) explored the state-of-the-art machine learning 
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techniques and found varying results in different models. Right now, there is no consensus on 
which model to use for which specific situation. The studies presented by Bacchi et al. (2022) 
achieved higher performance measures compared to the results presented by Lu et al. These 
findings highlight the potential of machine learning approaches to predict the length of stay of 
patients.  
 
2.2.9.3 Classification  
The most used approach (n=9) is the classification in the prediction of the length of stay. All 
studies provide different classification classes. The study by Bacchi et al. (2020) categorises 
patients into two groups, similar to Arora et al. (2022). The first group includes patients with 
stays less than two days, while the second group includes patients with stays longer than two 
days. The two studies by Arora et al. (2021, 2023) both employed different classification 
criteria. One study focused on stays of less than 2 days and more than 2 days, and the other 
classified as normal or extended stay.  
 
Various models are used to perform the classifications for patients. Bayesian networks (Cai et 
al., 2016), XGBoost (Chen, 2021), positive unlabelled learning techniques (Arora et al., 2022), 
and support vector machines (Bacchi et al., 2020). The non-linear weighted extreme gradient 
boost technique proved by Chen (2021) achieved the highest accuracy of 87.3%. 
 
The techniques have relatively high accuracy, but it is hard to compare the studies based on 
precision because they all have different study populations and categories. The studies 
underscore the potential of classification models to be used as information tools. Furthermore, 
at this point, there is no golden standard on categories for classifications, as all included studies 
report different categories. The classification categories depend greatly on the use case and the 
available data.  
 
2.2.9.4 Regression  
The second approach identified in the studies involves the use of regression analysis, and all 
included studies reported their predictions of the length of stay in terms of days. Within the 
study populations, there are differences and the populations differ significantly. Heim et al. 
(2018) investigated the factors that influence length of stay in patients with severe odontogenic 
infections, where Muhlestein et al. (2018) developed a model to predict brain tumour patients 
with LOS. In addition to the different study populations, there were also significant differences 
in the predictor variables used. Muhlestein et al. used preoperative pneumonia, sodium 
abnormality, weight loss, and race as key predictors, which are not seen in other studies. Siddiqa 
et al. (2022) analysed a large data set from New York hospitals and compared various machine 
learning models to predict the length of stay. They found that random forest regression 
outperformed the other models evaluated. In this study, an accuracy of 92% was achieved. Zeng 
(2022) constructed a regression prediction model using an unseen method: LightGBM. He 
achieved an R2 of 96% and a relatively low MSE of 2.231. The study used a large data set that 
contains more than two million patient records, suggesting that a larger data set improves 
accuracy. 
 
Studies contribute to the advancement of length-of-stay prediction methodologies. They also 
highlight the importance of accurate predictions for resource allocation, cost management, and 
patient care. The findings of these studies showcase the possibilities of machine learning 
techniques for the prediction of stay duration.  
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2.2.9.5 Ensemble Models  
The third approach is to use ensemble methods when multiple predictions are made. The studies 
by Karnuta et al. (2020) and Navarro et al. (2018) focus on predicting length of stay, discharge 
position, and hospital costs using machine learning techniques. Both studies underscore the 
importance of cost prediction in the healthcare setting. Two promising neural networks were 
constructed to provide valuable information to healthcare providers, patients, and insurance 
companies on the length of stay of patients.  
 
Similarly, Barsasella et al. (2021) aimed to predict two outcomes for patients; the length of stay 
and mortality among patients with Type 2 diabetes and hypertension. A combination of 
XGBoost for length of stay predictions and a logistic regression model for mortality predictions 
presented the best performance. Another study by Cai et al. (2015) developed a Bayesian 
network that provides real-time predictions for length of stay, mortality, readmission, all at once 
by using EHRs. The model estimated the probabilities that a patient would be home, 
hospitalised or alive within the next seven days. The researchers achieved an average accuracy 
of 82% with an AUROC of 0.84.  
 
Studies by Karnuta et al., Navarro et al., Barsasella et al., and Cai et al. show the ability to 
accurately forecast multiple outcome variables using machine learning techniques. Accurate 
predictions for length of stay, costs, discharge positions, and readmissions enable improved 
resource management in the future. 
 
The use of ensemble models offers decision makers a comprehensive set of information for 
informed decision making. Despite their potential advantages, the specific implementations of 
these ensemble models are not discussed in this article. The absence of a detailed discussion on 
implementation methodologies leaves room for further exploration and investigation for future 
research.  
 

  Conclusions 
Length-of-stay predictions have been an emerging field of research in the last couple of years, 
garnering increasing attention and publication frequency. In particular, there has been a shift 
from traditional statistical methods to machine learning approaches in this domain. 
Geographically, most of these studies originated in the United States.  
 
A comprehensive analysis of the existing literature reveals significant variations in multiple 
aspects of these studies. Sample sizes, model selection, specialisation, featured variables, 
validation cohorts, and outcome measures vary significantly.  This diversity underscores the 
complexity and multifaceted nature of the length-of-stay predictions. Despite the growing 
popularity of machine learning techniques, a consensus on a definitive choice of models, 
handling missing data, and feature selection has yet to be established. The lack of 
standardisation can be attributed to the absence of a universally superior model for all scenarios. 
Consequently, the approach involves a custom solution for each specific case and the 
performance of experiments with multiple models to determine the most effective solution.  
 
It is worth noting that there is a scarcity of studies that explore the combined use and research 
of multiple outcome predictors or models. In addition, the discussion and subsequent 
implementation of these approaches in most studies is lacking. Furthermore, none of the 
reviewed studies followed up the use of predicted results in planning systems, which was 
envisioned as a potential application in this research. The systematic review of the literature by 
Bacchi et al. (2022) provides an elaborated overview of studies that contain predictions about 
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length of stay using machine learning techniques. The work did not include two crucial aspects: 
validation cohorts and handling missing data. The handling of missing data is crucial 
information to other researchers as it highly influences the outcomes of the models. The 
validation cohorts are also not discussed. Validation cohorts such as hold-out technique and 
cross-validation provide insights in the validity and power of the methodology. The literature 
research conducted, does include these aspects and showed a mixture of approaches. Most 
studies used a hold-out of 80/20 and a fivefold cross-validation to empower the results.  
 
The conceptual framework proposed by Lu et al. (2015) serves as an initial reference for the 
feature selection procedure. The dataset obtained from the RCH includes variables that are 
identified as significant within the framework. Specifically, variables such as speciality, type 
of procedure, age, sex, physicians involved, and admission condition (ASA) are considered 
crucial by Lu et al. (2015). In particular, these variables are present within the RCH dataset. On 
the other hand, additional variables such as weight, length, second physician, and anaesthesia 
technique, which are not explicitly mentioned, exist within the data set and will be examined 
for relevance as part of the research. 
 
In response to the research question "What are the most effective machine learning algorithms 
for predicting length of stay in hospital patients?", the review highlights the absence of a 
definitive answer. Instead, the findings emphasise the need for continued exploration and 
experimentation to identify the most effective algorithms for different scenarios. 
 
The field of length-of-stay predictions has witnessed significant growth and attention in recent 
years. It slowly shifts towards machine learning approaches, as shown by the number of 
publications. However, a great deal of diversity is observed in how these studies approach 
problems, as the field of research is relatively new. Unfortunately, no specific research is 
focused on the exact same topic as the main research question. Therefore, this research needs 
to experiment with innovative methodologies to ensure robustness and reliability.  
 
 
2.3 PRISMA systematic literature review | Patient scheduling 
This chapter presents a systematic literature on patient planning in a hospital setting, 
summarising key findings and advancements in the field.  
 

 Introduction 
In this research, patient scheduling and operating room scheduling are treated as synonymous 
terms, since the primary focus is on patients in the daycare department who have undergone 
an operation. Research focusses on exploring strategies for efficient patient care within 
operating room schedules. It will recognise the critical importance of effective operating room 
management in hospitals. 

Effective management of operating rooms is critical for hospitals, as ORs are both costly to 
maintain and generate significant revenues (Marjamaa et al., 2008). However, managing ORs 
can be challenging due to conflicting preferences among stakeholders, such as management and 
physicians (Cardoen et al., 2001). Physicians strive primarily for high patient satisfaction, 
where hospital management is focused on cost-effectiveness. 

To properly manage operating rooms, hospitals must consider the mix of treated patients. 
Admissions can be divided into two categories: scheduled and nonscheduled (Adan & Vissers, 
2002; Demeulemeester et al., 2013). Scheduled patients are selected from a waiting list, while 
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non-scheduled patients are emergency admissions (Adan & Vissers, 2002). Within this group 
of patients, there are still many different care needs. You have various specialisations that then 
also perform different procedures. To allocate patients to operating rooms, patient scheduling, 
several decisions need to be made. First, the number of slots per surgical group must be 
determined, and second, patients must be assigned to these slots (Testi & Tànfani, 2009). In the 
process of making these decisions, planners always need to take into account the availability of 
resources, especially beds.  

The planning of operating rooms depends on the number of patients and resources available, 
including beds (Adan & Vissers, 2002). The scarcity of beds is a limiting factor in the freedom 
of planners. According to Robb et al, up to 62.5% of cancelled general operating room 
procedures at a large university teaching hospital were attributed to the absence of available 
beds (Robb et al., 2004). To increase efficiency and bed occupancy, it is crucial to adequately 
handle resources. In addition to cancelled operations, bed shortages can cause delays in 
scheduled inductions. When postpartum beds are full, patients are blocked in the upstream 
labour and delivery areas, preventing new admissions (Wang et al., 2019).   
 
In the remainder of this chapter, the aim is to explore the field of patient planning in the daycare 
facility by assessing the literature in a systematic approach. The literature will be reviewed 
according to the guidelines provided by the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA). The objective of the review is to examine the different 
approaches and methodologies used for patient scheduling in daycare facilities.  
 
The systematic review of the literature will focus on the scheduling of ILP patients. The 
research question will be: 
 
What different methodologies can be applied to optimise patient scheduling in daycare 
departments? 
 
With this research question, the systematic review of the literature aims to identify and analyse 
relevant studies that have explored the topic. To conduct the systematic literature review, 
multiple databases will be used. The databases are known to cover a wide range of research 
articles in the field of healthcare. Using a systematic approach, the review aims to minimise 
bias and ensure a thorough examination of the existing literature. The studies will be analysed 
for their methodologies, results, and evaluation methods to obtain a comprehensive overview 
of the available literature. 
 

 Data Sources and Search Methods 
The systematic review of the literature was performed according to the PRISMA guidelines 
(Moher et al., 2009). A comprehensive search was carried out in the databases of Scopus, 
PubMed, and Web of Science. 
 
The queries will be constructed and presented in Appendix X, and the databases will search 
with the constructed query to capture relevant studies related to patient scheduling. These 
queries incorporated key concepts and terms pertinent to the research objectives, with the aim 
of encompassing a wide range of perspectives and approaches. 
 

 Study Selection 
The selection of the PRISMA study was carried out independently by the researcher and 
validated by the Supervisor. The titles and abstracts of the selected publications were 



 

 24 

independently reviewed by the researcher. At first, the titles will be scanned and held against 
the inclusion and exclusion criteria. Consequently, studies that passed the title scan will be 
evaluated based on their abstract. The studies that will be included in the review underwent full 
text reading and analysis. 
 

 Inclusion and exclusion criteria 
The objective of this study is to conduct a systematic review of the literature in order to explore 
the field of patient scheduling. To ensure a comprehensive review, well-defined inclusion and 
exclusion criteria are established. 
 
Given the diverse patient population in the daycare department, it is crucial to obtain a holistic 
understanding of the possibilities of scheduling patients. Therefore, the decision was made to 
include articles from all specialisations, as it allows for a more comprehensive analysis. 
However, if the articles exclusively focus on specific diseases or conditions, they will be 
excluded to maintain the relevance of the study to the broader population of patients. 
 
For a detailed and transparent overview of the inclusion and exclusion criteria, refer to Table 5. 
The table provides clarity and transparency in the study selection process, ensuring a systematic 
and comprehensive review of the literature.  
 
Table 5. Inclusion and exclusion criteria systematic literature review LOS 
Criteria Description 
Inclusion 

 

Study design Articles that discuss scheduling optimisations for outpatients 
Patient Population Studies focussing on daycare departments or similar outpatient settings. 
Optimisation Studies proposing or applying planning algorithms or approaches for patient 

scheduling. 
Outcome Measures Studies evaluating relevant outcomes such as resource utilisation, waiting times, 

patient satisfaction, or cost effectiveness. 
Constraints Studies that discuss constraints, variables, or factors considered in ILP models 

for scheduling patients in the daycare department. 
Publication Type Peer-reviewed journal articles, conference papers, and reputable academic 

sources. 
Exclusion 

 

Inpatient setting Studies focussing solely on inpatient scheduling or scheduling in other 
healthcare settings without direct relevance to daycare departments. 

General Scheduling Studies focussing on general scheduling methods or approaches without 
specifically addressing patient scheduling in daycare departments. 

Theoretical Studies primarily discussing theoretical aspects of ILP without practical 
application or evaluation in the scheduling of patients in the daycare department. 

Language Studies not published in English, as language limitations may affect the 
comprehension and synthesis of findings. 

Accessibility Studies that are not available in full text format or are not available through 
reliable sources. 

Population Specificity Studies that have a too specific population group not representative of 
outpatients. 

Duplicate Studies Studies identified through database searches and manual screening that are 
duplicates of studies already included. 

Data Insufficiency Studies with incomplete or insufficient data to evaluate scheduling or their 
application in scheduling patients in the daycare department. 

 
 Data Extraction 

To ensure a systematic and structured approach to data extraction, a data extraction form was 
designed and used. Each article that met the defined inclusion criteria underwent a title 
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selection, followed by a screening of the abstract. Articles that remained within the inclusion 
criteria were subjected to full-text screening.  
 
During the evaluation of these articles, both general elements and task-specific elements related 
to patient scheduling were considered. The data extracted will be a solid foundation for this 
research. Table 6, presents the information collected related to the general aspects and the task-
specific aspects. The table containing the results of the data extraction can be found in Appendix 
B.  
 
 
Table 6. Extraction table systematic literature review Patient Planning 
Information Description 
General aspects 
Authors The author(s) of the study. 
Title The title of the research article. 
Year The year of publication. 
Country The country where the study was conducted. 
Task-specific aspects 
Main Objective The primary aim or goal of the study. 
Study Population The population or group of patients involved in the study. 
Input Variables The variables used as input in the patient scheduling model. 
Data The type and source of data used in the study. 
Intervention/Approach The approach or intervention used for patient scheduling. 
Findings The main results and findings of the study. 
Implementation Details about how the patient scheduling system was implemented. 
Discussion/Implications Discussion of the implications of the study and potential impact. 
Software used The software or tools used for patient scheduling. 
Conclusions The overall conclusion or summary of the study. 
Appointment type The type of appointments considered in the study (e.g., outpatient, inpatient). 
Validation The process of validating the patient scheduling model or system. 
Future directions Suggestions for future research or improvements in patient scheduling. 

 
 Search strategy 

The search strategy employed incorporates a selection of synonyms to achieve a comprehensive 
coverage of relevant studies. To help construct the query, a synonym table, Table 7, was created 
as a reference. Taking into account various terms and variations, the search strategy aims to 
encompass a broad range of literature relevant to the research topic. The search query was 
established using the AND and OR operators. The final query can be found in Appendix B as 
well as the employed search query.   
  



 

 26 

Table 7. Synonyms table systematic literature review Patient Planning 
Term Synonyms 
Optimisation Mathematical Optimization, Integer Programming, Integer Optimization, 

Optimization Models, Optimization Techniques, Mathematical Models, Operations 
Research, Combinatorial Optimization, Decision Optimization, Heuristic 
Optimization, Metaheuristic Optimization, Constraint Programming 

Patient Scheduling Appointment Scheduling, Planning, Scheduling Optimization, Scheduling, Patient 
Planning, Patient Appointment, Patient Booking, Scheduling Efficiency, Scheduling 
Algorithms, Scheduling Models, Scheduling Systems, Scheduling Strategies, 
Scheduling Policies 

Daycare Department Daycare, Day Care, Day Treatment, Day-care, Outpatient Department, Ambulatory 
Care Center, Outpatient Care, Outpatient Clinic, Clinic, Outpatient Treatment, 
Same-Day Care, Same-Day Treatment, One-Day Care, One-Day Treatment, Single-
Day Care, Single-Day Treatment, Short Stay, Minor Procedures, Non-Admitted 
Patients, Brief Intervention, Transitional Care, Ambulatory Services, Same-Day 
Surgery, Walk-In Clinic 

 
 

 Quality assessment 
The systematic review of the review of the literature in this study used PubMed, Scopus, and 
Web of Science databases. It is important to note that other databases could have been included 
to minimise the risk of missing relevant sources. The exclusion of additional databases increases 
the probability of overlooking valuable information. Furthermore, it is essential to consider the 
potential influence of the researcher’s personal opinion during the article selection process. 
When interpreting the findings of the systematic review of the literature, these two aspects must 
be acknowledged and taken into account to ensure unbiased analysis.  
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 PRISMA flow diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. PRISMA flow diagram Patient Planning 
 

 Data Syntheses 
The data synthesis section offers an overview of the characteristics and findings of the included 
studies. This section examines the general characteristics and task-specific characteristics to 
provide an overview of the findings in the articles. By analysing and summarising these 
characteristics, the section presents a clear and concise overview of the key findings within the 
included articles.  
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2.3.9.1 General Characteristics 
Table 8, provides an overview of the general characteristics extracted from the articles included 
in the literature review. The table presents various general aspects such as country, type of 
appointment, approach, and validation. By providing the frequency and percentage distribution 
of each characteristic, the table offers a concise summary of the key features found in the 
included articles. 
 
Table 8.Synthesis of general statistics literature review Patient planning 
Characteristics Feature n % 
Country USA 8 25,81%  

Hong-Kong 5 16,13%  
The Netherlands 4 12,90%  
Canada 4 12,90%  
China 3 9,68%  
Germany 2 6,45%  
Jordan 2 6,45%  
South-Korea 1 3,23%  
Tunisia 1 3,23%  
Unspecified 1 3,23% 

Appointment type Single-appointment 26 83,87%  
Multi-appointment 5 16,13% 

Approach (M)ILP 10 32,26%  
Simulation 5 16,13%  
Heuristic 3 9,68%  
Mathematical modelling 3 9,68%  
SIP 2 6,45%  
Simulation with combination 2 6,45%  
Data analysis, regression 1 3,23%  
Greedy heuristic 1 3,23%  
MDP 1 3,23%  
MOPSO, MO-PASS 1 3,23%  
SAA 1 3,23%  
Simulated annealing 1 3,23% 

Software Used Unspecified software 12 38,71%  
CPLEX 4 12,90%  
Combination 4 12,90%  
Matlab 3 9,68%  
Arena 3 9,68%  
Python 2 6,45%  
IVE Xpress 8.6, Simpy 1 3,23%  
Gurobi 1 3,23%  
Microsoft Visual Basic 1 3,23% 

Validation Simulation 14 45,16%  
Unspecified 8 25,81%  
Sensitivity analysis 5 16,13%  
Validated with real data, experiments 3 9,68%  
Comparing models 1 3,23% 

 
The analysis of the general characteristics table deduced from the data extraction table reveals 
noteworthy findings. First, in terms of country representation, it is evident that most of the 
studies focused on scheduling originated in western countries. The United States had the highest 
representation with 25.81% of the articles, followed by Hong Kong (16,13%), the Netherlands 
(12.90%), and Canada (12.90%). The observation suggests significant research interest in 
patient scheduling within Western nations, possibly driven by factors such as healthcare 
infrastructure, research funding, or academic institutions.  
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Regarding the type of appointment, the vast majority of studies (83,87%) focused on single 
appointment scheduling. The statistic emphasises the prominence of single-appointment 
scheduling in the literature and the potential need for further research on multi-appointment 
scheduling. The research ahead will focus on single appointment scheduling, as they target 
outpatients who only stay one day at the hospital.  
 
Analysing the various approaches employed in the study, it is notable that a significant portion 
(32.26%) utilised (Mixed) integer linear programming techniques. Simulation-based 
approaches also played an important role, accounting for 16.12% and two studies used a 
combination of ILP and simulation to schedule. Other approaches, such as heuristics, 
mathematical modelling, and various optimisation algorithms, were used in smaller 
proportions. It can be concluded that a wide range of methodologies are being employed in the 
field of patient scheduling. The variety of methodologies can be driven by the need for different 
tools for specific problems as well as the personal preference of researchers. The same can be 
concluded about the choice of software usage. Among the different software packages used, 
CPLEX (12.90%) and a combination of several software packages (12.90%) are the most 
frequently deployed. Additionally, Matlab by Mathworks and Arena by Rockwell Automation 
are also being used frequently with 9.68%.  There is also a significant proportion (38,71%) that 
does not specify the software packages being used, which makes replication harder.  
 
Regarding the validation techniques, the most significant proportion (45.16%) used simulation 
as a validation technique. The articles implemented their scheduling approach within simulation 
software to assess performance and effectiveness. Simulation allows for the creation of virtual 
environments to mimic real-world scenarios, providing a platform to evaluate the scheduling 
algorithms and the impact on system efficiency. Furthermore, 25.81% of the studies did not 
specify the validation methodology. The information gap makes it challenging to assess the 
validity of the approach taken. Among other studies, sensitivity analysis of the ILP and 
comparison of the results with real-world data were the approaches to validate the results. 
 
2.3.9.2 Task-specific 
General characteristics provide information on geographical locations, methodologies, 
validation techniques, and software usage. In this section, the articles will be analysed in depth 
to find similarities, abnormalities, and outstanding articles to achieve a deeper understanding 
of how other researchers approach patient planning.  
 
A subset of the articles included in the review focus on optimisation and improvement of 
scheduling efficiency in outpatient services. The articles by Lü and Zhang (2023), Feng et al. 
(2023), Kuiper et al. (2023), Belien et al. (2023), Mahdavi et al. (2023), and Song and Zhao 
(2021) show a particular interest in the field of improving patient schedules using an ILP or 
mathematical modelling. Collectively, they point toward improving current appointment 
scheduling methods. The main objectives of these articles focus on both increasing patient 
satisfaction, reducing waiting times, and effectively managing work schedules. 
 
Meanwhile, the studies of Bovim et al. (2022, Gao et al. (2022), Wing and VanBerkel (2022), 
and Khaaled et al. (2022) revolve around the theme of resource utilisation and management. 
Most of the resources are considered beds, and the availability of nurses is used in the most 
optimal way. The emphasis of these articles also is on reducing waiting times, suggesting that 
this is a major challenge in outpatient scheduling.  
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Several other papers, such as the paper by Yang et al. (2017), and Forghani and Masoumi 
(2017), Lin (2015), explore the field of adaptive appointment scheduling, hybrid systems, and 
resource allocation. Adaptive appointment scheduling systems use real-time data and advanced 
algorithms to adjust appointment schedules based on various factors such as patient needs, 
provider availability, and unexpected events. The more advanced planning schedules are more 
state-of-the-art approaches and are only being researched in more recent articles. It is an 
additional challenge to incorporate the mentioned unexpected events as no-shows as described 
in the study of Tohidi et al. (2021). The articles published by Aslani et al. (2021), Anvaryazdi 
et al. (2020), and Tohdi et al. (2021) also incorporate the element of uncertainty and stochastic 
variations. These more models show progress towards a more realistic and robust model.  
 
Another remarkable approach by Luo et al. (2012) focusses on handling scheduling 
interruptions. They offer a unique perspective compared to other articles. When considering 
interruptions within appointment scheduling, effectiveness increases significantly compared to 
models that do not incorporate interruptions. Another noteworthy study is that of Schafer et al. 
(2019), which focusses on patient-to-bed assignments. They address the problem of having 
multiple stakeholders within their appointing methodology and outperform other scheduling 
algorithms.   
 
Across all studies, many different input variables are used in the constructed models. The most 
common input variables that occur are service times (n=11), arrival times (n = 9) and hospital 
capacity (n=7). An important note is that all arrival and service times are not generated by 
probability distributions. The purpose of this research is to implement real-time, personally 
generated timings for the service time of a patient. 
 
The articles presented in the systematic literature review have a scientific approach, in which 
reality is modelled and an algorithm is evaluated. Unfortunately, as shown in the extraction 
table in Appendix X, only 16% of the articles proposed a practical implementation of the 
researched scheduling methodology. The other articles do not discuss the practical 
implementation at all or point out that additional research is required. In the articles where 
implementation is discussed, is on a small scale, only being deployed at a single hospital, 
department, or clinic.  
 

  Conclusions 
The systematic review of the literature on patient scheduling provides valuable information in 
the field. Analysis of general characteristics provided an overview of the methodologies, 
validations, and software packages used. Task-specific analysis provided information about 
objectives, outstanding articles, input variables, and implementation strategies.  
 
The most frequently occurring approaches used a combination of ILP and CPLEX to achieve 
the set goal. Therefore, ILP and CPLEX will be used as a basis for patient scheduling. It is 
important to note that the objectives differ slightly from the objective of this research, since it 
follows a consecutive approach. The combination of first predicting the length of stay of the 
patients followed by scheduling the patients accordingly was not found as a methodology in the 
articles. Combining the two methodologies bridges a gap in the literature to see whether or not 
the approach at hand is feasible. Furthermore, the actual implementation of this consequential 
approach is also not discussed in the literature and adds direct value to the hospital planning 
system. Taken together, the systematic review of the literature provided rich insights that will 
be used and evaluated in the following chapters, in which the methodologies will be tested. 
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2.4 Conclusion literature 
The systematic literature on patient scheduling and length of stay predictions for outpatients 
has provided comprehensive information on the field and laid the foundation for this research. 
Analysis of the literature revealed key findings and trends, as well as shed light on challenges, 
methodologies, and approaches. 
 
In the last few years, the attention has shifted towards machine learning approaches to predict 
the length of stay of hospital patients. The relatively new approaches demonstrate superior 
predictive capabilities compared to traditional methodologies. While machine learning models 
are often criticised for their lack of transparency, commonly referred to as a "black-box" 
characteristic, the enhanced performance they offer outweighs this limitation. Consequently, it 
is highly likely that machine learning will surpass traditional approaches, as evidenced by the 
increasing frequency of its publications. 
 
It was evident that there is no consensus on which machine learning model to implement in the 
case of length-of-stay predictions. Therefore, the experimentation and evaluation of state-of-
the-art machine learning is crucial to find out which model is most suitable. The input variables 
used in different studies also varied significantly and the choice of which to use was mainly 
decided by the availability of the data. The literature review by Lu et al. (2015) presented a 
detailed exploration of the factors associated with the length of stay. The results of the study 
will be a solid foundation for selecting relevant characteristics in the selection process of this 
research. 
 
The scheduling of patients in daycare departments revealed the complexity of managing 
resources, considering the diverse needs and uncertainties of patients. Furthermore, the 
literature revealed that there is a wide range of optimisation objectives, suggesting tailer-made 
solutions for each specific case. The single specific objective of this investigation is to increase 
bed occupancy and was not found among the included studies. However, the main objectives 
were clear: improve patient care while adhering to cost-conscious strategies. 
 
Comprehensive literature reviews on length-of-stay predictions and patient scheduling have 
significantly enriched this research, providing foundational insights. These reviews expand the 
scientific knowledge base by introducing critical information on the management of missing 
data and validation cohorts, aspects not covered comprehensively in previous systematic 
literature reviews, thus substantiating the scientific contribution of this study. 
 
The aim of this study is to develop an integrated approach that tackles the overarching challenge 
of increasing bed occupancy in healthcare facilities. Taking advantage of the knowledge and 
methodologies of reviews in the literature, this research aims to achieve improvements in 
healthcare operations. These improvements include increased efficiency, patient satisfaction, 
and cost-effectiveness. This research seeks to contribute innovative solutions to the 
complexities of patient care and resource optimisation to advance healthcare management. 
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3 Methodology 
 
The bed allocation process at hospital is currently managed by a planning department consisting 
of five team members. They assign patients to operating slots based on the operation room 
schedule, with a limitation being the number of hospital beds available. The current procedure 
is hindered by insufficient knowledge of the length of stay of patients, usually resulting in one 
patient per bed. In exceptional cases, after consulting physicians, multiple patients might be 
scheduled per bed. This lack of information poses challenges for planners in optimally 
allocating beds. This research aims to establish an integrated system to assist planners in the 
process and increase bed occupancy. The next chapter outlines the methodology developed to 
achieve this research's objectives. 
 
3.1 Introduction 
The conclusions of systematic literature research provided the insight that there is no single 
machine learning model outperforming another. Therefore, state-of-the-art machine learning 
models will be developed and evaluated to find out which one is outstanding in this specific 
scenario.  
 
Initially, patient records are collected containing demographic information, medical 
evaluations, and length of stay. The collected data will be preprocessed before performing 
exploratory data analysis and feature selection. Exploratory data analysis provides information 
on the data set that will provide information about the population at hand. The knowledge will 
lead to the identification of valuable features in length of stay predictions. To develop an 
accurate prediction model, a selection of state-of-the-art machine learning models will be 
developed and tuned. The models that will be included are random forest, gradient boosting, 
support vector machines, decision tree, K-nearest neighbours, XGBoost, logistic regression, 
ridge regression, and neural networks. To validate the accuracy of the prediction model, two 
different approaches were implemented: a classification approach and a regression technique. 
The classification approach involved categorising patients into groups according to their length 
of stay. On the other hand, the regression technique involves predicting the total number of 
minutes a patient will be in the hospital and will occupy a bed. 
 
The combination of these two techniques will be used to validate the results, after which they 
will be corrected. The output of the classification model, indicating the probability of belonging 
to a specific class, will be compared with the output of the regression model to validate the 
results. The performance of both approaches and all models will be evaluated using various 
metrics such as accuracy, precision, R2, recall, and F1 score, and the best performing models 
are selected for further optimisation and implementation. In addition to machine learning to 
predict the length of stay, an ILP will be formulated to schedule patients. The ILP model 
integrates the length-of-stay predictions to create schedules that contain sequentially plannable 
patients. In addition to length-of-stay predictions, the input includes the planning horizon and 
the speciality for which the planners will be conducting the planning. The aim of the approach 
is to increase bed occupancy by providing a guide schedule for the planner. The last step is to 
build a graphical user interface for planners to implement the system into their workflow.  
 
Sequential steps of the process are shown in Figure 5. The initial step in the system involves 
evaluating patients on the waiting list at the small regional hospital. Demographic information, 
medical evaluations, and other available data are collected for these patients. The information 
collected serves as input for the prediction model, which uses two machine learning techniques 
to predict the length of stay of each patient. The results of the prediction models undergo a 
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trustworthiness and usability evaluation. If necessary, corrective measures are implemented to 
improve the reliability of the planning process. In the subsequent step, the length-of-stay 
predictions of patients on the waiting lists are obtained and used as input for the patient 
scheduling ILP. The output of the model will be a schedule that can be used by operation room 
planners. The schematic diagram in Figure 5 provides a comprehensive overview of the system 
as a whole. To achieve the envisioned system, several steps need to be taken. In this chapter, 
the steps to achieve the system will all be worked out in-depth.  
 
 

 
Figure 5. Schematic overview of envisioned system 
 
3.2 Data collection and pre-processing. 
The data collected will be extracted from the HiX electronic patient records (EPR) system by 
Chipsoft. The HiX data management system has the ability to export selected data to be 
analysed in R and Python. No privacy-sensitive information, for example, name, date of birth, 
or images, will be saved during the data collection phase to prevent misuse. The exported data 
set contains columns; see Appendix X for column names, with information on patients at the 
A2X department.  
 
Pre-processing the data set involves several steps. First, duplicate entries will be removed. 
Second, patients who have undergone multiple operations within one year will be excluded, as 
these multiple medical procedures may be correlated. The third step is to address the missing 
values in the database. In many cases, the patient’s records are incomplete. Missing values can 
occur, for example, due to the absence of a medical assessment or errors in the administrative 
process. To address numerical missing values, the "imputation" method will be utilised. This 
imputation method was recognised as a reliable and effective approach to handling missing data 
during the literature review, as demonstrated by Muhlestein et al. (2017). In case a record is 
incomplete, an imputation algorithm fills the empty cell with the mean of the column. Missing 
values for categorical columns will be handled by adding a new category called ‘missing’, a 
methodology found in the systematic review of the literature. Subsequently, outliers outside a 
99% confidence interval will be removed for the total time, weight, length, and age of the 
columns to decrease the complexity of the model. The result is a data set that contains 17,545 
patient records. 
 
Additionally, two methodologies will be applied in the data preprocessing phase to enable the 
models to comprehend the data. The first methodology is to scale the numerical variables 
according to the Min-Max scaling process. By scaling the values to a range between 0 and 1, 
Min-Max scaling preserves the relative relationships and proportions between the data points. 
This can be advantageous in certain algorithms that rely on absolute values and relationships, 
such as the distance-based algorithm k-nearest-neighbours. In Equation 1, the formula for the 
scaling the values accordingly is depicted. 
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The second methodology hot-one encoding. It is necessary when dealing with categorical data 
because most machine learning algorithms work with numerical data and cannot directly 
process categorical variables. Figure 6 presents a visualisation of one hot encoding.  
 

 
Figure 6. One-hot Encoding Visualisation 
 
3.3 Data Analysis  
Upon completion of the preprocessing, the data will be subjected to exploratory data analysis 
(EDA) techniques to extract insights from the dataset. EDA will facilitate the identification of 
trends, patterns, and relationships between variables, as well as the detection of outliers. 
Identification of outliers is important for several reasons. Outliers can represent critical events 
or special patients. For example, obese patients or patients with complications with an extended 
stay. Inclusion of outliers can confuse the model during training and can increase the 
complexity of the model. An increase in complexity can then lead to a decrease in the potential 
prediction quality. Therefore, outliers outside of a 95% confidence interval will be removed 
from the dataset. 
 
An overview of the descriptive statistics will be presented to grasp insights about the data set 
at hand. It is also crucial to display the descriptive statistics for reproducibility to compare 
datasets. In addition to descriptive statistics, the EDA will consist of tables and visualisations 
to provide insight into the different probability distributions of length of stay.  
 
The distribution of length of stay will be depicted by a box plot to present the information 
extracted from the EPR. In addition, the data will serve to uncover correlations between 
features, which will be displayed using correlation plots. This information will be invaluable 
during the subsequent feature selection phase. In addition to providing information on 
population characteristics and correlations within the population, the current use of beds at 
small regionalwill also be quantified. The bed occupancy can be calculated according to 
Equation 2. 
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Bed occupancy can be assessed daily or monthly to analyse patterns and trends. The current 
status of bed occupancy will be compared with the results of the schedules, allowing an 
evaluation of the impact of these schedules on bed occupancy.  
 
  



 

 35 

3.4 Feature Selection 
It is crucial to identify the features that show a correlation with the length-of-stay of patients. 
Incorporating features that have a meaningful correlation can substantially enhance the 
predictive performance of the model. The hospital-sourced dataset comprises ten features, 
including factors such as the type of procedure and the attending physician. The study by Liu 
et al. (2015) provided a solid framework of influential features. A significant proportion of the 
available features are present in the framework and will therefore be used. Other factors, which 
are not present in the framework will be evaluated using two techniques.  
 
To determine the significance of the numerical features, a correlation plot will be used. The 
correlation plot visualises the linear relationship between pairs and features. The correlation 
coefficient ranges from -1 to 1. The correlation coefficient serves as an indicator of the strength 
of the relationship between variables. A higher absolute value identifies a stronger correlation, 
whereas values closer to 0 indicate a weaker association.  
 
The categorical variables are evaluated using a technique known as permutation. The technique 
involves the construction of a temporary neural network to predict the duration of stay. 
Subsequently, a baseline performance will be established considering all features. Next, an 
algorithm will be employed to randomly shuffle one of the features while keeping the remaining 
features intact. This procedure generates a modified data set in which only one feature is 
randomly rearranged. The neural network will then be re-trained using the modified dataset and 
its performance will be evaluated. The extent of performance degradation serves as an 
indication of the importance of the feature. When the algorithm is applied to all features, a 
comprehensive insight into their correlations can be obtained.   
 
The permutation feature importance test is a model-agnostic technique, which means that it can 
be applied to neural networks. Neural networks need to be developed in a later phase as well, 
so the model can also be used to determine the importance of the feature. The permutation 
feature importance technique also evaluates the numerical features which can also be used and 
interpreted. The technique offers a valuable tool for selection, interpretation, and understanding 
of the contribution of individual features to the overall performance of the model.  
 
3.5 Model Development  
The literature research provided information on the methodologies used in developing machine 
learning models for length-of-stay predictions. This section will dive into the workings of 
machine learning algorithms and present a comprehensive overview on how the different 
models are developed.  
 

 Machine learning 
Machine learning techniques have made significant progress over the last two decades, and 
today they are the most rapidly growing technological field (Jordan & Mitchell, 2015). The 
availability of more powerful computers and vast data sources has allowed the use of machine 
learning techniques. Machine learning has various applications across a wide range of 
disciplines, with common applications including classification, regression, and clustering 
(Kourou et al., 2015). 
 
The healthcare industry is also adopting the prevalence of machine learning techniques. Disease 
diagnoses and detection (Fatima & Pasha, 2017), treatment prognosis (Kourou et al., 2015), 
disease risk prediction, and health monitoring (Saleem & Chishti, 2020) all areas where 
machine learning is currently being implemented.  
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Machine learning, which is a subset of artificial intelligence, is concerned with the task of 
learning from data samples and relates this task to the broader concept of inference (Bishop & 
Nasrabadi, 2006; Mitchell, 2006; Witten & Frank, 2002). When building a machine learning 
model to complete tasks, a learning phase must be completed. The learning phase consists of 
two phases. In the first phase, unknown dependencies of a system will be estimated (Kourou et 
al., 2015). That is, the correlations between the input variables and the output variables need to 
be revealed. In the second phase, these found dependencies will be used to predict new outputs 
for the system (Kourou et al., 2015). The learning phase can use labelled, unlabelled, and 
partially labelled data, and the specific approach used is classified as supervised, unsupervised, 
or partially supervised machine learning, respectively (Ang et al., 2016). Each method has its 
own strengths and weaknesses, and the choice of approach will depend on the specific needs 
and characteristics of the data being analysed. When the learning phase is complete, the model 
enters the model testing phase where the performance of the model is evaluated on unseen data 
(Sarker et al., 2021). In Figure 7, the general structure of a machine learning-based predictive 
model is shown considering both the training and the testing phase. After the testing phase, the 
results will be evaluated by comparing the predictions with the ground truth.  
 

 
Figure 7. General structure of a machine (Sarker et al., 2021) 
 
There exists a wide range of algorithms that are utilised to achieve desired objectives, such as 
linear regression, logistic regression, Decision Trees (DT), Random forest (RF), Naïve bayes 
(NB), Support vector machines (SVM), Gradient Boosting (GB), Artificial Neural Networks 
(ANN), K-Nearest Neighbours (KNN). The systematic review of the literature did not find a 
consensus on which model to use. Therefore, the machine learning models used in the 
systematic literature review of Bacchi et al. (2021) and the systematic literature review on 
length-of-stay predictions will be developed. These models are Random Forest (RF), Gradient 
Boosting (GB), Support Vector Machines (SVM), Decision Tree (DT), K-Nearest neighbour 
(KNN), XGBoost, Logistic regression (LR), Ridge Regression (RR), and Neural Networks 
(NN). The study conducted by Sarker et al. (2021) provides a valuable resource for 
understanding the inner workings of all machine learning models used in the thesis. 
 
For the model development, two separate approaches are constructed, namely classification and 
regression. The development of both approaches is essential, as the results of the two 
independently operating models will be used for validation. Both approaches are types of 
supervised learning, as the target value, the length of stay, is known. According to Bacchi et al. 
(2021), these are the two types of predictions that are being used most. To designate the 
predictions of the length of stay as a classification problem, four different groups are specified. 



 

 37 

The patient stays 0-2 hours (class 0), 2-4 hours (class 1), 4-6 hours (class 2) and 6 hours or more 
(class 3). The implementation of these exact groups is based on current estimates from planners. 
A schematic overview of the methodology is shown in  
Figure 8.   
  
 

 
 
Figure 8. Overview of methodology of length of stay predictions 
 
The proposed methodology comprises several sequential steps aimed at generating accurate 
length-of-stay predictions. Patient data and procedure information is inputted into both a 
regression model and a classification model. The regression model produces a numerical value 
representing the length of stay in minutes, while the classification model generates probabilities 
indicating the probability that a patient belongs to a specific class. For example, patient X can 
be assigned to class A (0-2 hours) with a probability of 0.90. The combination of these outputs 
is then utilised during the validation and correction step, as outlined in Section 3.6. The 
corrected and validated results subsequently serve as input to the ILP patient scheduling 
process. 
 

 Parameter Tuning 
Machine learning models are derived by training a model on historical data. Training machine 
learning models comes with a pre-set number of parameters that alter the behaviour of the 
model. These parameters are termed hyperparameters (Lavesson & Davidsson, 2006; Probst et 
al., 2018). Hyperparameter tuning is a crucial process for optimising the performance of 
machine learning algorithms (Weerts et al., 2020; Yang & Shami, 2020). As the performance 
of many machine learning algorithms depends on their hyperparameter settings, it is essential 
to explore and select optimal values for these parameters to achieve qualitative results. The 
objective is to identify optimal settings and minimise time and cost through a few sequential 
queries for parameter tuning (Nguyen, 2019). With hyperparameter optimization, the goal is to 
find global optimum -⋆of an unknown black box function .where .(-) can be evaluated for 
any arbitrary - ∈ 2 (Cho et al., 2020). The mathematical notation is depicted in Equation 3. 
 

-⋆ = arg6#7
6∈8

.(-)      (3) 

 
Given the numerous models to be developed and evaluated, along with extensive search spaces 
and multiple parameters for each model, the implementation automation of hyperparameter 
tuning is required. Bayesian optimisation has been recognised as a technique for addressing 
various design problems in the realm of parameter optimisation (Shahriari et al., 2016). 
According to Shahriari et al. (2016), the Bayesian optimisation technique has demonstrated its 
superiority over human experts in terms of both quality and speed of tuning. This claim is 
further supported by the findings of Snoek et al. (2012). The purpose of Bayesian optimisation 
is to discover the global optimum of the function f(x) by constructing a probabilistic model for 



 

 38 

f(x), which represents an unknown function to be optimised. Bayesian optimisation uses the 
probabilistic model to make informed decisions on where to evaluate the function next within 
parameter space X, effectively accounting for uncertainty (Nguyen, 2019). The algorithm's 
implementation is facilitated by the Bayesian Optimisation class from Keras (Chollet & others, 
2015). A total of n=30 iterations of Bayesian optimisation were performed for each model. 
 
The search space was deliberately defined with a wide range by setting a conservative lower 
bound and an expansive upper bound. The objective is to encompass a wide range of parameter 
configurations, taking into account complexity and computational efficiency. The upper and 
lower bounds were established to ensure a thorough exploration of feasible values within the 
practical range. It should be noted that the potential values might not have been explicitly 
included in the search space. The complete search space can be found in Appendix C 
accompanied with explanation of the parameters, and, as an example, the Random Forest search 
space is displayed in Table 8. 
 
Table 8. Hyperparameter tuning search space for Random Forest 
Hyperparameter  Type Range 
Number of estimators Integer [10,200] 
Maximum features Categorical {auto, sqrt, log2} 
Maximum depth Integer [10,100] 
Minimum sample split Integer [2,10] 
Minimum sample leaf Integer [1,4] 
Bootstrap Categorical {True, False} 

 
3.6 Model validation and evaluation  
Accurate validation and evaluation of predictive machine learning models is paramount in 
scientific research. It enables the researcher to assess the reliability and performance of the 
machine learning models constructed. In the first part of this section, the validation 
methodology of the models will be explained. Later, the evaluation of the different models will 
be explained.  
 
Validation of machine learning models will be two-fold. The first technique is to divide the data 
into train, validation, and testing data. The systematic review of the literature revealed that a 
significant number of articles used an 80/20 division for train test data. Therefore, the 
constructed training set contains 80% of the records and is used to train the models. Within this 
80%, 10% of the training set is used as validation data to enhance the model during the training 
process. The last 20% of the data is reserved as test data to evaluate performance. The structure 
of the different data sets can be seen in Equations 4a, 4b, 4c.  
 

8 =	8train ∪ 8val ∪ 8test             (4a) 
	d9 = 8train ∩ 8val      (4b) 
	d: = 8val ∩ 8test      (4c) 

 
The total data set D contains all records of all patients. Set d9 consists of the records used for 
model training and enhancement. Set d: contains records that are utilised for evaluating the 
model's performance after training. Set d: contains data that are used to evaluate model's 
performance based on the validation process. It helps to evaluate the model's ability to 
generalise beyond the training data. 
 
The second technique is the k-fold cross-validation procedure. Cross-validation is the most 
widely used data resampling method to estimate the prediction error of the models (Berrar, 
2018). In principle, cross-validation is repeatedly splitting the data into different subsets k and 
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for each subset k, estimating the parameters and evaluating (Emmert-Streib & Dehmer, 2019) 
to prevent overfitting (Simon, 2007). The k-fold cross-validation will be used on dataset 8 
which is portioned into k disjoints where k refers to the number of subsets (Berrar, 2018). The 
models are applied to all subsets of k, and the average performance in all subsets of k is the 
cross-validated performance. Cross-validation can take a considerable amount of time for 
higher values of k. The systematic review of the literature showed varying values for k, but 
since many models must be validated, a < = 3 will be used for computational reasons. 
 
The validated models will then be assessed based on visualisations and performance indicators. 
These methods differ according to prediction technique classification (C) or regression (R). 
Different metrics serve distinct purposes to provide valuable information. The systematic 
review of the literature provided generally used validation metrics. The same validation metrics 
will be used in this research to compare with other articles. In addition, additional performance 
indicators will be provided to allow other researchers to compare to their findings.  For the 
classification task, accuracy is the most common measure used to identify the proportion of 
correctly classified instances among all instances. Precision and recall are additional 
performance indicators that provide more insight. The recall measures the proportion of true 
positive classifications among all positive classifications, whereas the recall measures the 
proportion of true positive classifications among all positive instances. The harmonic balance 
between the two is the F1 score. Evaluation of the model should focus on its ability to identify 
and classify instances of both classes, rather than solely emphasising the majority class. 
Additionally, for the best performing model, the ROC curve will be constructed, and the AUC 
will be calculated per class to provide better insight into the model. The AUC was proven to be 
a better evaluation metric for classification evaluation (Hossin & Sulaiman, 2015) and provides 
information on the performance of different classes. The AUC can be deducted from the ROC 
curve and can be calculated according to Equation 5.  
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Where !2 is the sum of all positive ranked examples while A2 and A*denote the number of 
positive and negative examples respectively (Hossin & Sulaiman, 2015). 
 
For the regression task, three types of performance indicators are used. The R2 score is a 
common metric that measures the proportion of variance in the dependent variables that is 
explained by the independent variables. The R2 score is accompanied by the MSE, which is the 
average of the squared differences. This is a useful parameter for comparing models in their 
performance, but not as insightful for humans. Therefore, MAE is also included. This is the 
mean absolute error, which in this case will indicate the average number of minutes when a 
prediction is off. In addition to the evaluation metrics mentioned above, a visual evaluation will 
also be included. By plotting the true length of stay against the predicted length of stay for 
regression, a graph will show how well the model is performing.  
 

On the basis of the performance indicators, two separate models will be chosen. The 
classification model will be chosen on the basis of the accuracy. The accuracy is the average 
performance of the model and will therefore be the best indicator to indicate the best-performing 
model. For regression machine learning models, the decision will be based on the R2 score. The 
R2score, a statistical measure that indicates the model's ability to explain variability, will be a 
reliable metric to choose the best-performing model. The R2 score will reflect superior 
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predictive abilities to capture underlying patterns and trends related to length of stay. In Table 
9, an overview of the performance indicators for classification and regression will be presented.  
 
Table 9. Overview of Performance Indicators for Classification and Regression Models 
Task  Metrics Formula Explanation 
Classification Accuracy TP	 + 	TN

TP	 + 	TN	 + 	FP	 + 	FN Proportion of correctly classified 
instances among all instances 

Precision TP	
TP	 + 	FP	 

Proportion of true positive classifications 
among all positive classifications 

Recall TP	
(TP	 + 	FN	) 

Proportion of true positive classifications 
among all actual positive instances 

F1 score 2 ∗ (Precision	 ∗ 	Recall)(Precision	 + 	Recall) 
Harmonic mean of precision and recall 

Regression 
 
 
 
 
 
  

R2 1 − RSSTSS Coefficient of determination. Proportion 
of variance in the dependent variable that 
is explained by the independent 
variable(s) 

MSE 1
n ∗8(Y( − Y:)) Mean Squared Error. Average of the 

squared differences between the actual 
and predicted values 

MAE 1
n ∗8|Y( − Y:| 

Mean Absolute Error.  

Note: In these formulas, TP = True Positives, TN = True Negatives, FP = False Positives, FN = False, RSS stands 
for "Residual Sum of Squares", and TSS stands for "Total Sum of Squares". 
 
3.7 Correction and validation 
The reliability and accuracy of the length-of-stay predictions generated by the machine learning 
algorithms are of utmost importance to ensure effective planning. In Section 3.6, the validation 
of machine learning models was extensively discussed. However, for individual predictions, it 
is essential to implement additional precautions measures to prevent underestimation.  
 
For individual predictions, it is necessary to assess the quality. In case of a correct prediction 
or an overestimation, no problem would occur as the patient is discharged before the next 
patient is scheduled. Underestimations can impose a significant logistical problem since there 
is no bed available for the newly arrived patient. In both systematic literature reviews, no 
literature was found that addresses this exact problem. In the systematic review of the length-
of-stay literature, the length-of-stay predictions are not actively implemented in planning 
systems. In the systematic review of planning literature, only probability distributions on the 
length of stay are used to plan patients.  
 
To account for the uncertainty in extended length of stay, two layers of validation are 
implemented. The first layer entails that the output of the two models must agree. For example, 
if the classification model predicts class 0-2 hours and the regression model predicts 90 minutes, 
the patient will be included as a candidate for the patient planning model. If the output of the 
two models does not agree for a certain patient, the patient will be excluded from the scheduling 
as the risk of an extended length of stay is too high. By implementing this strategy, the goal is 
to reduce the probability of an underestimation and therefore prevent logistical problems. The 
novel approach of combining two independent operating models needs to be tested in depth to 
assess the performance.  
 
The second layer of validation is related to the classification model. The output of the 
classification model is given by the probability that a patient belongs to a specific class. The 
certainty of a class must exceed the accuracy of a patient being in a class with 90%. The 90% 
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is conservatively chosen, as this novel technique is unverified by the literature and is not 
physically evaluated in this research. When the envisioned system is implemented or is 
simulated, the 90% can be adjusted accordingly to a different accuracy score to include more 
patients within the pool of schedulable patients. The exclusion of patients by these two layers 
of validation induces the risk that the patient is not planned at all. Therefore, the proposed model 
schedules can only serve as a guide for human planners to increase bed occupancy in places 
where possible. 
 
3.8 Patient scheduling  
The previous section elaborated on the prediction methodologies, validation, and evaluation of 
models. The output of the prediction methods, discussed in Section 3.5, is validated and 
corrected, as explained in Section 3.7. The output of these models serves as an input for patient 
scheduling. A systematic review of the literature revealed the prevalence of (mixed) integer 
linear programming algorithms for patient planning. In this research, the same methodology is 
used as in the reviews. The patient scheduling ILP formulation consists of parameters, decision 
variables, an objective function, and constraints.  
 
Integer linear programming is a mathematical optimisation technique that solves problems with 
linear objective functions and constraints (Vielma, 2015). ILPs formulate the problem with 
decision variables, an objective function, and constraints. It uses specialised algorithms, such 
as branch- and bound or cutting-plane methods, to find optimal integer values by exploring the 
search space in a systematic manner. ILP is useful for complex optimisation problems that 
involve discrete decisions in various real-world applications.  
 
The objective of ILP in this research to maximise the number of patients planned, in line with 
the main objective of this study. There are several inputs to the ILP. The first input is the number 
of beds available to plan patients. The number of beds limits the outcome of the ILP. The second 
input concerns the available time that the model can use to plan patients. The opening and 
closing times can be adjusted by the planners according to the available time in the hospital. 
The third input comprises the output set of plannable patients from the waiting list, 
accompanied by their corresponding length of stay predictions. 
 
ILP is subject to practical constraints, including the requirement that each bed can accommodate 
only one patient at a time and that a new patient can only be planned once the previous patient 
has been discharged. Additionally, patients can only be planned within the hospital opening 
hours. The planning horizon is determined by the specified start and end time of the model, 
typically encompassing a few hours set by the availability on the department. Solving the ILP 
results in a schedule with patients that can be scheduled consecutively to increase bed 
occupancy. 
 
3.9 Software and Tools  
Accomplishing the envisioned system requires programming. In this study, the Python 
programming language was used in combination with R. In this section, the various libraries 
used will be explained. 
 
For data pre-processing and analysis in R, the following libraries are used: data.table (Wickham 
et al., 2020), dplyr (Wickham et al., 2020), and ggplot2 (Wickham, n.d.). These libraries 
provided functionalities for data manipulation, filtering, summarization, and visualisation. 
Machine learning tasks were performed using various libraries in Python. Scikit-learn 
(Pedregosa et al., 2011) provided a wide range of machine learning algorithms and evaluation 
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metrics. Matplotlib (Hunter, 2007) was used for generating data visualisations. The Keras 
library (Chollet et al., 2015) was used to construct and train neural networks. The hiplot library 
(Haziza et al., n.d.) allowed interactive visualisation and analysis of high-dimensional data. The 
Keras_tuner library (O'Malley et al., 2019) facilitated hyperparameter tuning for Keras models. 
XGBoost (Chen & Guestrin, 2016) was used for gradient boosting. The scikit-optimise library 
(Skopt Contributors, 2020) provided tools for Bayesian optimisation. For ILP scheduling, the 
literature review revealed that CPLEX was the commonly preferred methodology; however, 
due to the researcher's proficiency in Python programming, the PuLP library developed by 
Mitchell and Stuart (2011) is used to solve the ILP. Pandas (McKinney, 2010) was used for 
data manipulation and analysis. NumPy (Harris et al., 2020) provided support for numerical 
computations. The TKinter library (Python Software Foundation, n.d.) was used to create a 
graphical user interface for the system. The PIL library (Pillow Contributors, 2022) facilitated 
image processing and display in the graphical user interface. The selection of libraries is based 
on their functionalities and the researcher's personal preference, ensuring compatibility with the 
research objectives and requirements. 
 
3.10 Conclusions  
Based on the comprehensive methodology employed, this research aims to increase bed 
occupancy at the small regional hospital by accurately predicting patient length of stay and 
efficient patient scheduling. The methodology used in this study encompasses the key steps in 
achieving the objective. The methodology involves steps such as data collection, preprocessing, 
exploratory data analysis, feature selection, and the development and evaluation of state-of-the-
art machine learning models. The two-layer validation and correction process ensure the 
reliability of the predictions. Patient scheduling will be accomplished using an ILP algorithm 
to increase bed occupancy and resource allocation. The next chapter will dive into the results 
achieved by following the methodology.  
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4 Results 
 
The results section of this study presents the findings and results of the research, highlighting 
important discoveries, analyses, and conclusions. It provides a detailed overview of the research 
process, including exploring and analysing data, evaluating machine learning models, and 
developing a patient scheduling tool.  
 
4.1 Exploratory data analysis  
The exploratory data analysis can be divided into two sections. In Section 4.1.1, the population 
at hand will be evaluated on their statistics. The distributions over specialisations and over the 
different time phases will be evaluated. In Section 4.1.2, correlations are explored among 
various factors that relate to patient stay, shedding light on possible associations and underlying 
patterns.  
 
The dataset at hand is pre-processed. The removal of duplicates and outliers resulted in the data 
set that will be used. The dataset contains 21,545 patient records collected for 21,421 unique 
patients (mean age 50.7 ± 17.05 years, with 51.12% females) are collected from the A2X 
department between 2018 and 2022. In the next section, the dataset will be studied in depth.  
 

 Patient exploration  
Understanding the distribution of the length of stay in different medical specialities is vital for 
understanding the patient population in the hospital. This analysis allows for an assessment of 
the impact of each specialisation on the overall flow of patients within the department. To 
provide a visual overview of this distribution, boxplots are utilised as a powerful tool. The box 
plots offer a clear depiction of the distribution of stay durations for each medical speciality. 
This enables the identification of variations in length of stay and the detection of potential 
patterns or outliers. Figure 9 shows the box plots that show the length of stay distribution for 
each specialisation. 
 

 
Figure 9. The time on the department per specialisation 
 
Examination of the boxplot reveals significant variations in the median and interquartile range 
(IQR). In particular, the mean of the length of stay for each specialty ranges from μ=60.3 to 



 

 44 

μ=402.2, indicating a wide and diverse distribution of the duration of stay. A remarkable 
observation is the specialisation in pain. Pain specialisation has a very low median and a small 
interquartile range, which may suggest easier predictability. A remarkable observation is found 
in the pain specialisation, where a notably low median and a small interquartile range are 
observed. This suggests a potential for easier predictability in length of stay for patients in this 
specialisation. This information is valuable as patients with short length of stay of can be 
scheduled consecutively, enabling more efficient planning processes. 
 
Figure 10 presents an analysis of the frequency of the thirty medical procedures that occur 
according to their medical procedure code (COTG). There is a significant difference in the 
amount a specific procedure is conducted at the hospital. The number of patients with a specific 
COTG procedure performed influences the prediction capabilities of the models. The 
availability of a larger volume of data for a specific procedure allows for more extensive 
information and enhances the predictive capabilities of the model for those particular 
procedures.    
 

 
Figure 10. Frequency histogram of most COTG codes 
 
 
As an example, COTG 030555 exhibits an annual frequency of approximately 1200 
occurrences, while other procedures have only a few instances per year. The availability of the 
amount of data for specific procedures plays a crucial role in the predictive accuracy of the 
model. Insufficient support for certain procedures within the training set may lead to reduced 
information availability. As a consequence, the quality of the predictions for these specific 
procedures can be negatively affected.  
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The objective of this research is to increase bed occupancy at small regional hospital. Therefore, 
it becomes essential to examine the current state of bed occupancy. To gain insight into the 
present state, the data from 2022 was utilised to calculate the average occupancy of beds. 
Equation 2 described in Section 3.3 was used to calculate the bed occupancy. The bed 
occupancy is calculated on daily and montly basis together with the mean. Figure 11and Figure 
12 present bed occupancy per day and per month, respectively, providing visual representations 
of bed occupancy. 
 

           Bed occupancy per day 
             Average bed occupancy per day of the week 

 
Figure 11. Bed occupancy per week 

           Bed occupancy per month 
           Average bed occupancy per month of the year 

 
Figure 12. Bed occupancy per month 

 
 
In 2022, the mean occupancy of the bed was found to be µ = 1.47. It should be noted that the 
occupancy of the bed of 1.47 is highly influenced by the pain department. The pain department 
has already achieved a remarkable level of advancement in efficiently scheduling patients 
consecutively. The efficient scheduling can be attributed to the relatively short length of stay 
for patients in this specialised field. By analysing weekly bed occupancy, no significant trend 
is observed. However, when examining the monthly bed occupancy, a slight trend towards 
higher bed occupancy becomes apparent. This trend can be attributed to the efforts of the 
hospital to improve bed occupancy through improved planning and efficiency measures. 
Understanding the distribution of the length of stay is crucial to see whether there are patients 
that can be planned sequentially. The length of stay is presented as a histogram in Figure 13. 
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           Distribution of length of stay 

  
Figure 13. Probability distribution of length of stay 

 
An interesting observation found in the distribution of time within the total time is the existence 
of two distinct peaks. The first peak represents patients who are discharged from the hospital in 
a few hours. The second peak represents a substantial group of patients who experience a 
considerably longer stay. The two different peaks can be attributed to the type of procedure in 
combination with the anaesthesia technique used. Patients under general anaesthesia have a 
longer stay in the daycare department due to the medication used. Variation in length of stay 
highlights an interesting pattern that can be used to improve bed occupancy. Especially patients 
at the first peak can be used to increase bed occupancy due to the short length of stay.  
 

 Feature selection 
Continuing from Section 4.1.1, the focus now shifts toward exploring correlations among 
factors associated with length of stay. The objective is to uncover valuable information on the 
associations and patterns that influence length of stay. In this section, rigorous analysis and 
statistical techniques are used to find the correlation between variables and length of stay. The 
data set contains two types of variables, numerical and categorical. The influence of numerical 
variables on the length of stay can be deducted via a correlation map. In case of the categorical 
variables, only permutation techniques are utilized to identify significant contributing variables. 
Figure 14 depicts a correlation map of the available numerical data. 
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Figure 14. Correlation map of numerical data 
  
The constructed correlation plot provides a visual representation of the correlations among the 
variables. Upon analysing the correlation plot, it becomes evident that the correlations involving 
the variable length of stay are insignificant, as indicated by the crosse. As expected, there is a 
significant correlation between weight and height. These results suggest that there is no direct 
correlation between these variables and the length of stay. Although there is no direct influence 
on stay length, indirect correlations cannot be evaluated using this method. To evaluate the 
indirect influence of numerical variables and the influence of categorical variables, the 
permutation technique as described in Section 3.4, is used. A temporary neural network was 
constructed and the permutation technique was executed. Figure 15 presents the result of this 
technique.  
 

 
Figure 15. Feature importance calculated by the permutation technique 
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The results of Figure 15 show that all variables except 'priority' negatively influence the 
performance of the model when the data in the column are randomised. As opposed to the 
results of the correlation plot, the results of the permutation technique from Figure 14, display 
that the numerical values are correlated with the length of stay. No significant direct correlation 
was found in Figure 14, but it can now be concluded that they indirectly influence the 
performance of the model. For this reason, all variables will be included in the data set to be 
used during the model development phase. Table 10 shows all included features.  
 
Table 10. Features included in the LOS prediction model 
Features   
Sex Physician 
Weight Second physician 
Length Physical status patient (ASA) 
Age Procedure code (COTG) 
Specialisation Anaesthesia technique (AT) 

 
4.2 Results of the models 
The methodology of Chapter 3, the machine learning models to be tested, are outlined. This 
section presents the results obtained from the evaluation of these models, which are shown in 
Table 11. The table presents the performance metrics for both classification and regression 
tasks. These include accuracy, precision, recall, R1 score, R2 score, mean squared error, and 
mean absolute error.     
 
Table 11. Overview of the results of machine learning models 
 Methods Classification Regression  

Accuracy Precision Recall R1 R2 MSE MAE 
Random forest 0,772 0,714 0,657 0,672 0,780 5696 55,789 
Gradient Boosting 0,762 0,705 0,681 0,686 0,790 5679 56,069 
Support Vector Machines 0,757 0,696 0,664 0,673 0,770 5954 56,169 
Decision tree 0,756 0,706 0,649 0,662 0,750 6472 59,491 
KNN 0,750 0,689 0,641 0,654 0,757 6280 58,203 
XGBoost 0,772 0,719 0,686 0,697 0,784 5588 55,864 
Linear Regression 0,765 0,708 0,673 0,682 0,744 5737 55,873 
Ridge regression 0,759 0,698 0,654 0,653 0,776 5798 56,023 
Neural Networks 0,769 0,710 0,663 0,653 0,788 5656 55,597 

 
Based on the results presented in Table 11, several conclusions can be drawn. In terms of 
classification tasks, the models were evaluated on the basis of accuracy. The Random Forest 
outperformed the other models with an accuracy score of 0.772. This indicates that the Random 
Forest model is well suited to accurately predict the target variable in the classification task.  
 
In the context of regression tasks, models were evaluated based on their performance using the 
R2 score. In particular, the neural network model demonstrated decent performance, with an R2 

score of 0.788. This score indicates a robust predictive capacity of the neural network to predict 
the length of stay. A noteworthy metric is the mean average error associated with the regression 
task. For the neural network, the MAE was calculated to be 55.597. The value represents the 
average deviation, measured in minutes, between the predicted and actual stay. The relatively 
low MAE underscores the model’s capacity to provide reliable estimations.  
 
Another remark is that all models show similar performance. One plausible explanation for the 
comparable performance of these models could be that the data set used lacks distinct patterns 
or relationships that can be effectively captured by any of the models. Another explanation 
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could be that the data set is too small, limiting the ability of the models to demonstrate their full 
potential. 
 

 Classification 
The previous section highlighted the two best performing models for the classification and the 
regression task based on accuracy and the R2 score. In this section, the performance of the 
classification model will be evaluated in depth. 
 
The best-performing classification model is, as stated, Random Forest with an accuracy of 
0.772. The accuracy score is in this case not the only important factor; it is also important to 
look at the precision per class. The results of the precision per class can be found in Appendix 
D. Table 12, presents the findings for the Random Forest model per class. 
 
Table 12.Precision, recall, and F1 score per class for Random Forest 
Class Precision Recall F1 score N 
A 0,9286899 0,9807356 0,9540034 571 
B 0,544 0,3541667 0,4290221 192 
C 0,6027944 0,3719212 0,4600152 812 
D 0,7802632 0,9198552 0,8443284 1934 
     
Accuracy 0,7720148 0,7720148 0,7720148 0,7720148 
Macro avg 0,7139369 0,6566697 0,6718423 3509 
Weighted avg 0,7504212 0,7720148 0,7505192 3509 

 
Analysis reveals that precision scores vary between different classes. Class A exhibits a high 
precision score and extremely high recall, which is advantageous because it indicates that these 
procedures can be planned consecutively with high reliability. On the contrary, the remaining 
classes exhibit lower precision scores, indicating that the predictions for these classes are poor. 
The knowledge obtained suggests that prioritising the planning of individuals of class A is 
advisable. Class A consists primarily of patients with shorter stays and demonstrates a higher 
level of reliability in the predictions.  
 
In addition to evaluating precision scores for different classes, the performance of the 
classification model can be further assessed using the ROC curve.  ROC curves provide 
information on the model’s ability to classify patients correctly across different thresholds. By 
plotting the true positive rate against the false positive rate, the ROC curve visualises the trade-
off between sensitivity and specificity. The constructed ROC curve in 18 shows the 
performance of the model in all four classes, as well as macro and micro averages. The macro-
average calculates the average performance across all classes, treating each class equally. The 
micro-average aggregates the total true positives, false positives, and false negatives across all 
classes to calculate the overall performance.  
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Figure 16. ROC curve for random forest with classes separated 
 
Analysing the ROC curve for the classification model reveals the individual area under the 
curve (AUC) scores. Class A demonstrates a high AUC of 0.99, indicating a strong 
discriminative ability to accurately classify instances within this class. Class B exhibits an AUC 
of 0.9, suggesting a good level of discriminatory power. Class C and D show AUC values of 
0.85 and 0.91, respectively, indicating moderate discriminative abilities. In addition to the class-
specific AUC scores, the macro-average AUC is found to be 0.91. This score represents the 
overall discriminative power of the model across all classes. The micro-average AUC of 0.95 
indicates a strong overall performance of the classification model in accurately classifying 
instance scores across the entire dataset. 
 

 Regression 
Having completed the evaluation of the classification model, the attention now turns towards 
the regression task. Among the regression models, the neural network achieved the highest R2 

score = 0.788 and the lowest MSE = 5656 with MAE = 55,59. The R2 score means that the 
model was able to explain 78.8% of the variance in the duration of stay predictions. The training 
history of the neural network is shown in Figure 17. 
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Figure 17. Training History Neural Network 
 
The training history of the neural network is depicted through a visualisation. The figure shows 
the MSE values plotted against the number of training epochs. Initially, the MSE exhibits 
relatively high values, indicating the initial difficulty of the model in making accurate 
predictions. However, as training progresses, a gradual decrease in MSE is observed. This 
decline signifies the learning process of the model. The convergence of the MSE further 
suggests the effective capture of underlying patterns and relationships by the model. A 
remarkable finding illustrated in Figure 17 is that MSE training and MSE validation are closely 
related. This observation implies that the model is not overfitting, as the validation MSE closely 
mirrors the observed training MSE. Furthermore, the training history demonstrates a smooth 
trajectory without significant fluctuations, indicating an appropriate learning rate. The accuracy 
of the predictions can be assessed by visually comparing the predicted values against the true 
values of the length of stay. Figure 18 shows the plot that illustrates this relationship. 
 

 
Figure 18. Predicted LOS plotted against true LOS per specialisation 
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In this plot, the closer the points align with the diagonal dotted line, the more accurate the 
prediction. A closer proximity to the actual value signifies better prediction performance. In 
general, the model shows reasonable performance, which is also confirmed by the R2 score. It 
must be stated that there are also many predictions that differ significantly from the true length 
of stay. Predictions that are underestimated are a significant issue when planning patients. 
Section 4.2.3, dives into the validation and correction methods.   
 
A remarkable observation can be found within the pain (PYN) specialisation, specifically in the 
pain department. Section 4.1.1 suggested accurate predictions as the specialisation has a small 
IQR. Figure 18 contradicts these assumptions. The model always predicts the same length of 
stay for each patient. When diving into this, it happens that the data from patients in the pain 
specialisation are all similar. There is only one physician and only a few procedures conducted 
in the small regional hospital. This affects prediction capabilities as the model cannot 
distinguish between patients.   
 
The model is unable to always produce a perfect prediction of the length of stays of patients. 
The findings in Figure 18 underscore the importance of further validation and corrections. In 
the next section, the correction and validation methods are implemented and evaluated.   
 

 Correction and validation 
In the hospital, ensuring the accuracy or avoidance of overestimation in the model's predictions 
is crucial. To avoid overlap and streamline operations, hospital physicians schedule one patient 
in the morning and another in the afternoon. This careful scheduling approach ensures that no 
logistical conflicts occur. The developed tool needs to take into account additional correction 
and validation to achieve the same level of safety. If the system underestimates, it could lead to 
a situation in which the next patient arrives before the current patient sharing the same bed is 
discharged. This overlap between patients can cause several problems. First, the operation of 
the second scheduled patient must be delayed due to the inaccessibility of a prepared bed. 
Second, the extended waiting time leads to patient dissatisfaction. Lastly, delayed patients can 
exceed hospital operating hours, resulting in undesirable overtime for nurses. Therefore, it is 
imperative to incorporate additional safety measures before building the schedule. The research 
aims to increase the occupancy of the beds in the hospital, focussing on short-stay patients with 
a high probability of having a short stay. These patients are patients classified as class A, 
indicating a predicted stay duration of 0-2. The prediction capabilities of the RF model have an 
accuracy of 0.90 percent. Therefore, these predictions will not be corrected if the neural network 
outputs a length-of-stay prediction under 120 minutes.  
 
In addition to patients of class A, patients of class B will also be considered. These patients 
have a short stay of 2-4 hours; however, since the prediction accuracy within this class is 
significantly lower, 0.54, a correction will be implemented. Correction involves adding extra 
minutes to the regression method to account for uncertainty. The extra number of minutes added 
to the expected length of stay contributes to a higher rate of correct/overestimated predictions. 
Figure 19 shows the relationship between the minutes added and the percentage 
correct/overestimated. 
  



 

 53 

 
Figure 19. Percentage correct/overestimated against minutes added to the prediction 
 
 
Adding 50 minutes to the regression prediction yields an impressive 90.4% accuracy for correct 
predictions or overestimations. This high percentage ensures a reasonable margin to avoid any 
potential overlap between patients. Figure 20 presents a scatterplot that illustrates the number 
of correct predictions or overestimations for adding 50 minutes.  
 
 

 
Figure 20: Adding minutes to the predictions results in conservative predictions. 
 
Classes C and B are not used in this research for two reasons. The first reason is the relatively 
low predictability of these classes, specifically 0.602 and 0.780, respectively, which hinders 
accurate planning. The second reason pertains to the research objective of increasing bed 
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occupancy, in which patients with longer stays do not contribute to this goal. Although the 
results and predictions of these patients may still be useful, they are not relevant for this study. 
 
Patient scheduling relies on the output of the prediction models. Patients in class A are 
scheduled for 120 minutes as a security measure, irrespective of the output of the regression 
model. Class B patients are included only if their RF output falls within the Class B range. 
Additionally, a safety buffer of 50 minutes is added to prevent the occurrence of aforementioned 
issues. Patients whose regression and classification outputs do not align will be excluded from 
the scheduling method. The average occupancy of beds in 2022 was 1.47 patients per bed per 
day. The developed system operates dynamically, scheduling short-term patients in real time. 
Consequently, comparing the system's impact becomes challenging, as it relies on the specific 
circumstances of the current waiting list. Therefore, based on the current waiting list, all patients 
will be included in the system to assess its capacity to schedule patients beyond the average 
occupancy of 1.47. 
 
4.3 Patient scheduling  
To optimise patient scheduling based on length of stay information, an integer linear 
programming (ILP) model has been formulated. The ILP model efficiently assigns patients to 
available beds, using the predictions generated by the length-of-stay prediction models. This 
section will begin with the formulation of the ILP that contains the indices, parameters, decision 
variables, and the objective function. The formulation will be followed by a detailed description 
of the ILP.  
 
Sets of indices: 

• +: Number of beds available in the hospital. 
• G: Set of patients to be scheduled. 

 
Sets of parameters: 

• H): The length of stay for patient I. 
• ,): opening time of the block. 
• @: closing time of the block. 

 
 
Decision variables: 
 

7),= = J
1, I.	L#MI%AM	I	IN	#NNIOA%&	MP	Q%&	R

0, PMℎ%UVIN%
 

 
!) = NM#UMIAO	MI6%	P.	L#MI%AM	I 

 
 
 
 
 
Objective Function:  

Maximize:  ∑  )∈> ∑  =∈? 7),=            
 

Where x@,A is the binary decision variable for patient i on bed j. 
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Subject to: 
 

!) − !B − HB +\(1 − ])B) ≥ 0
!B − !) − H) +\(1 − ])B) ≥ 0
7),= + 7B,= − 1 ≤ \(1 − ])B)

         (1-3) 

 
   ∑  ):;*D.E;*FG* 7),= ≤ 1,			∀R ∈ +                          (4)              	

      
!9 ≥ ,	                                  (5) 

 
!) + H) ≤ @,			∀I ∈ G                            (6) 

 
 
The ILP formulation starts with sets of indices. The first set described is set B, which contains 
the available beds in the hospital in the form of (bed 1, bed 2, bed 3, etc). The second set P, 
which all the patients accompanied by their length-of-stay prediction. The length of set P is 
equal to the length of the waiting list. The parameters exhibited by the ILP are H), and	!).The 
first parameter is H) where H is the predicted length-of-stay for patient I. The last parameter that 
can be set is @ which is the closing time of the department. The decision variable 7),= equals 1 
if patient I on bed R, 0 otherwise. The objective function ∑7),= 	, ∀I, R aims to maximise the 
number of patients being scheduled within the set constraints. !) is the starting time of the 
patient, which can be chosen within the openings hours.  
 
There are six constraints to the ILP to ensure its feasibility. Constraint 1-3 ensures that only one 
patient is assigned to each bed at a given time, preventing double occupancy. There are three 
components. The equation !) − !B − HB +\(1 − ])B) ≥ 0 is essentially saying: if patient I 
starts after patient < concludes, then ])B should be 0 . If this isn't the case, the \(1 − ])B) term 
will make the constraint always true, effectively making it non-binding. 
Similarly, !B − !) − H) +\(1 − ])B) ≥ 0 establishes that if patient < begins after patient I 
finishes, then ])B should also be 0. If not, the big-M term neutralizes the constraint. Lastly, the 
third equation 7),= + 7B,= − 1 ≤ \(1 − ])B) serves as a gatekeeper. If ])B is 1 (indicating 
overlap), then either 7),= or 7B,= must be 0, preventing both patients from being scheduled on 
bed R at overlapping times. Constraint 4 monitors the active bed occupancy at any given time t. 
For every moment, it checks the aggregate of patients occupying a bed and mandates that this 
number must not transcend the total available beds in set B. 
 
Furthermore, Constraints 5-6 ensure that the first patient's starting time is within the operating 
hours and that the last patient does not exceed the closing time.  for each patient falls within 
hospital operating hours. When implementing the formulated ILP in all its aspects, an optimal 
patient scheduling solution can be obtained, taking into account time sequencing, operational 
constraints, and resource limitations. To illustrate the practical application of the approach, an 
example of the scheduling process will be presented in Section 4.4. 
 
4.4 Patient Planning Tool 
Integration of the prediction models, correction, and validation tools, along with the Patient 
scheduling ILP, is required to increase bed occupancy. Due to the lack of coding proficiency 
among planners, a custom tool has been developed to address this limitation. Known as the 
Patient Planning Tool, the tool provides a graphical user interface to meet the needs of hospital 
planners. In this section, the functionalities, workings, and usability will be elucidated.   
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As shown in Figure 5, the only input to the system is the current waiting list. The system 
automatically predicts the length of stay for all patients and applies the validation and correction 
methods described in Section 11.5. Sequentially, the system plans patients with short-term stay 
predictions consecutively. The output is a patient schedule that planners can use as a guide to 
see which patients can be planned on the same day.  
 
In Figure 21, the workflow for using the Patient Planning Tool is illustrated. The initial step 
involves exporting the waiting list, which can be performed by the planners themselves through 
the HiX. Subsequently, the tool can be launched and, using the button ‘Upload waiting list’, the 
file can be selected and uploaded to the software. The planner is then required to provide the 
following information: 
 

• Available beds: The number of beds available on the specific day for which the schedule 
is created. 

• Opening time of the block: The initiation time, expressed as an integer, indicating the 
earliest possible scheduling time for the first patient. 

• Closing time of block: The termination time, represented as an integer, indicating the 
latest time the last patient must have left the hospital. 

• Choose the specialisation: The specialisation for which the planner is formulating the 
schedule. Each planner plans a distinct specialisation. 
 

The subsequent step involves pressing the "Schedule Patients" button, triggering the 
automated patient planning process based on their respective length-of-stay predictions. 
 
 

 
 
Figure 21. Visualisation of the workflow of the Patient Planning Tool. 
 
The software produces a schedule showing patients arranged sequentially, considering opening 
and closing times. It is crucial to note that the schedule should be regarded as a guide, as 
additional constraints may need to be considered during the planning process. In Figure 22, the 
graphical user interface of the software is shown. In Section 4.5, a scenario is given based on 
the current waiting list to provide insight into achievable improvements in bed occupancy.  
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Figure 22. Graphical user interface of the Patient Planning Tool 
 
4.5 Practical improvement 
In the dynamic environment of the Red Cross Hospital, the constantly evolving waiting list 
poses challenges in accurately assessing the achievable increase in bed occupancy. In this 
section, the performance of the system will be evaluated using a simulated waiting list generated 
from historical data. 
 
To create the synthetic waiting list, a random sample of patients will be selected from 2022. 
The fictional waiting list comprises 700 patients, reflecting the current size of the waiting list 
at the small regional. The distribution of the length of stay of the patients is depicted in Figure 
23.  
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Figure 23. Length of stay distribution fictional waiting list 
 
The length of stay distribution in the generated waiting list closely resembles the actual 
distribution observed in the small regional hospital, as shown in Figure 13. The data set provides 
a reliable representation of the waiting list at the hospital. Therefore, the data set will be used 
to accurately calculate the potential increase in bed occupancy. 
 
To assess potential improvements, a one-day planning horizon will be utilised. To obtain a 
representative overview of the potential increase in bed occupancy per bed per day, the number 
of beds will be set at one. The department timings will be set from 08:00 to 21:00, aligning with 
the actual department opening hours. The dataset includes the following medical 
specialisations, which will be utilised for scheduling patients to evaluate the potential increase 
in bed occupancy: ORT, PLA, CHI, PYN, KNO, URO, CAR, DER. Due to validation and 
correction, 51% of patients are considered unplannable due to uncertainty in their prediction. 
By running the scheduling software, the schedules and bed occupancy per specialisation can be 
deducted. The statistical results are shown in Table 13. An example schedule is presented in 
Appendix E. 
 
Table 13. Achievable bed occcupancy rates based on synthetic waiting list 

Specialisation Bed occupancy 
ORT 3.0 
PLA 3.0 
CHI 3.0 
PYN 26.0 
KNO 3.0 
URO 3.0 
CAR 4.0 
DER 4.0 

 
The data presented in Table 13 indicates the following occupancy rates: ORT, PLA, and CHI 
all have an occupancy of 3.0. CAR and DER exhibit a bed occupancy of 4.0, while PYN 
demonstrates a significantly higher occupancy rate of 26.0. The high occupancy rate in the PYN 
department can be attributed to the short stay of patients with this specialisation. It is important 
to note that the current bed occupancy rate attained may not accurately reflect the potential 
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achievable rates. Various practical constraints, such as personnel availability and medical 
resources, impose limitations on the maximum bed occupancy that can realistically be achieved.  
 
The mean bed occupancy rate equals 6.125 and without the PYN specialisation, a mean bed 
occupancy of 3.333 is achieved. Another noteworthy point to mention is that on average there 
are still 109.62 minutes left before the department closes. This extra time allows for possible 
underestimations by the system or patients who may need to stay longer. Both bed occupancy 
rates exceed the average bed occupancy rate of 1.47 found in Section 4.1. The results clearly 
indicate that the implementation of this tool leads to a substantial increase in bed occupancy in 
the small regional hospital. 
 
4.6 Conclusions 
In this section, the findings of Chapter 4 will be concluded. Section 4.1 focusses on exploratory 
data analysis, which provided valuable information on the study population. Building on the 
knowledge from exploratory data analysis, Section 4.2 delves into the development, tuning, and 
evaluation of various machine learning models.  These models were constructed with 
hyperparameter tuned and evaluated to ensure optimal performance. Subsequently, in Section 
4.3 and Section 4.4 two scheduling ILPs were formulated to be utilised within the tool presented 
in Section 4.4. To evaluate the tool in a practical scenario, Section 4.5 demonstrated achievable 
bed occupancy rates. This tool serves as a valuable resource for planners, providing guidance 
to help increase bed occupancy. The sections are discussed in consecutive order.  
 
The exploratory data analysis revealed significant patterns and correlations within the patient 
population. The correlation graph and the permutation graph provided valuable information on 
the correlated features. Remarkably, all available variables demonstrated varying degrees of 
influence on the length of stay and were therefore included in the models. The most significant 
correlating characteristic was, as expected, the medical procedure. The results align with the 
findings presented in the literature review conducted by Lu et al. (2015). 
 
The model development, tuning, and evaluation process described in Section 4.2 yielded the 
best-performing models. The Random Forest classification model achieved an accuracy of 
0.772 while the regression neural networks resulted in an R2 score of 0.778. Visual 
representations of the performance of the model are illustrated in Figures 18 and 19.  Given that 
these models will be implemented in a practical tool, it is crucial to establish validation and 
correction procedures. An innovative combination of regression and classification techniques 
has been implemented to provide reliability. The validated and corrected output is the input for 
the patient scheduling ILP.  
 
The development of the planner tool focusses solely on the length-of-stay predictions for 
patients who successfully passed the validation check. Subsequently, the length-of-stay 
predictions for included patients were corrected by adding 55 minutes to achieve a 
correct/overestimation rate of 91.8%. The patient scheduling ILP, which is based on length-of-
stay predictions, was incorporated into the tool. The tool was developed with a user-friendly 
graphical interface to facilitate its use by hospital planners. 
 
The practical improvement section featured a scenario based on a synthetic waiting list. The 
results reveal a significant improvement in bed occupancy across all departments, underscoring 
the effectiveness and potential of the tool. 
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The results chapter presents crucial findings on the underlying models and planning systems. 
These findings have culminated in the development of software for hospital planners. The 
results chapter provided important results on all the underlying models and planning systems 
that ended up in the software for hospital planners. It is safe to say that a significant contribution 
can be made to increasing bed occupancy in the small hospital.  
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5 Discussion 
 
This paper presents a comprehensive methodology to increase the occupancy of beds at the 
small regional hospital.  The proposed approach uses length-of-stay predictions and integer 
linear programming techniques. The primary objective of this study is to develop a data-driven 
approach that can improve the work flow of hospital planners, leading to optimised resource 
allocation and improved patient care. Within this chapter, an in-depth discussion will be 
presented, focussing on the findings derived from the research. The strengths and limitations of 
the methodology will be examined and shed light on its effectiveness and potential drawbacks. 
Additionally, the impact of the findings and their implications for practical implementation will 
be worked out.  
 
Furthermore, a discussion will be conducted to explore the strengths and limitations of the 
methodology. In addition, the underlying assumptions made during the study will be examined 
and the potential impact of the results will be evaluated. In the last section, future research 
directions aim to stimulate further scientific research and encourage collaboration among 
researchers to investigate the possibilities of the proposed methodology.  
 
5.1 Results 
The results can be divided into two sections, the length-of-stay predictions and the ILP model. 
First, the results of the length of stay will be discussed, followed by the results of the ILP model. 
The length of stay predictions is divided into two sections, regression and classifications.  
In the case of regression, the neural network approach outperformed the other models, where 
in the case of classification, the Random Forest model outperformed.   
 

 Length of Stay Predictions 
In the case of regression, a R2 score of 0,776 was achieved. The score is compared to other 
studies found in the systematic review of the literature relatively low. The difference can be 
attributed to the fact that these studies are using a retroperspective approach, whereas this 
research is making prospective predictions. Retrospective predictions by definition outperform 
prospective predictions as there are valuable features available to make the predictions. Another 
noteworthy study is that by Siddiqa et al. (2022), who reported an R2 score of 0.92. At first, the 
model seems to outperform the constructed model from this research. Unfortunately, the R2 

score in this study cannot be compared to the found R2 score for several reasons. The first reason 
being that the study population of Siddiga et al. is primarily focused on heart transplant patients. 
A more specific study population narrows the variability within LOS. Another study that 
outperforms the results from this study is the of Zeng X (2022), reporting a R2 of 0.96. The 
study conducted has the same generic population, but the higher R2 can be explained by two 
key differences. The first difference is that the study used a data set containing information 
from more than two million patients, including many more features that are not available at the 
RCH. The second difference is that this study is also retrospective, including the total cost of 
the feature. By including these features, the model can be trained more accurately as total costs 
have a significant correlation with the length of stay of the patient. In addition to R2, an MAE 
of 55.5 minutes was achieved.  
 
The classification case approached the length of stay predictions by categorising the patients 
into different groups. These groups were 0-2 hours, 2-4 hours, 4-6 hours, and more than 6 hours. 
The best performing model is the random forest model with an accuracy of 77.20%. This 
accuracy is directly in line with the studies presented in the systematic review of the literature. 
The lowest reported accuracy was by the study of Arora et al. (2021) with an accuracy of 
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70.30%. They classified the patients into ten different groups, all representing one day. The 
longer the patient's stay, the lower the accuracy of the model. The same can be seen from the 
results of this study. The study by Karnuta et al. (2020) reported an accuracy of up to 91.80%, 
which seems significantly higher than the results from this study. The accuracy values of the 
study by Karnuta et al. (2020) cannot directly be compared with the results of this study. The 
reported 91.80% is the precision for a specific class of patients and should therefore be 
compared with the accuracy achieved in only one class of this research. In class 0-2 hours, this 
research achieved an accuracy of 92.86% and is therefore comparable. Overall, it can be stated 
that the accuracy of the classification model is in line with the results found in the systematic 
review of the literature. One difference is that the model of this research uses a prospective 
approach, whereas other studies use a retrospective approach, which makes the length-of-stay 
predictions considerably more straightforward. An important note for both models is that the 
models are tuned using a predetermined search space during the hyperparameter search. There 
might be a scenario where the optimal parameters of one of the models were located outside 
the search space.  
 
In Section 4.1, the length-of-stay probability distribution is presented. At this point, patients are 
divided into four classes. These classes are selected in consultation with hospital planners. 
Narrower intervals in the classes enable more precise planning, but the certainty within the 
classes decreases. As shown in Figure 13, an alternative option is to create two classes that align 
with the two distinct peaks. Experimentation with two classes achieved a 96.01% accuracy, 
indicating the potential for further research to explore its impact on system performance. 
 

 Patient scheduling  
While the ILP formulation offers numerous advantages in solving the complex optimisation 
problem, it is important to be aware of potential risks. The first risk is that the system cannot 
find an optimal solution. When there are not enough plannable patients on the waiting list, the 
software does not provide a schedule. On the other hand, when there are many plannable 
patients, for example, ten thousand, ILP cannot solve the problem within the given time. In that 
case, the software will not output a schedule or a sub-optimal schedule. At this point, the 
software is not capable of providing information to the planner about what is going wrong.  
 
Furthermore, it is important to note that the patient scheduling ILP formulation may not account 
for all real-world constraints. For example, the algorithm does not consider scenarios where a 
physician is physically unable to treat multiple patients sequentially due to limitations. 
 
An additional important consideration is the desired probability threshold from the 
classification model. Currently, a minimum certainty of 0.9 is set as a requirement for patients 
to be included in the scheduling tool. This conservative threshold is deliberately chosen to avoid 
possible logistical errors. However, a drawback of this option is that a substantial portion of 
patients, approximately 50% based on the current waiting list, are excluded from scheduling. 
During the implementation phase, it is important to fine-tune the certainty threshold of 0.9 to 
strike a balance between minimising exclusions and minimising the risk of logistical errors.  
 
5.2 Validation and correction 
Validation and correction methodologies were not found in the systematic review of the length 
of stay literature nor in the systematic review of the patient planning literature. In the systematic 
review of the planning literature, only probability distributions on the length of stay are used to 
plan patients. Using the probability distributions for length of stay, use statistics to account for 
patients who have an extended length of stay.  
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A statistical assessment on the probability of extended stay duration without the use of 
probability distributions is challenging. The reason is that every patient is unique and therefore 
has no probabilities available that the prediction of length of stay is correct.  Patients who pass 
the two validation layers will be considered plannable patients and will be scheduled by the 
ILP. The fact that they pass the two layers of validation does not ensure a correct prediction of 
the length of stay. As shown in the results section, the average MAE is 55.5 minutes.  55.5 
minutes MAE form a considerable problem in the planning of patients if the actual values of 
the regression model are used. Therefore, two methodologies were proposed to correct for this 
error. The first is a custom loss function as described in the methodology section. Forcing the 
model to penalise underestimations harder than overestimations, shifts towards outputs where 
underestimation is less common. Approaching the correction in this manner requires coding 
knowledge and is therefore not being used. The second methodology used a strategy in which 
additional minutes are added on top of the regression output that is used to plan patients. The 
first methodology is more accurate as it takes into account all features within the data set, but 
requires quite a lot of coding knowledge to change over time, which cannot be done by the 
RCH. The second methodology is less sophisticated but understandable to planners and, 
therefore, implemented in the system.  
 
Validation and correction methods implemented within the system play a crucial role in 
minimising risks and ensuring that the length of stay remains within acceptable limits. By 
incorporating these methods, the system acts with an additional layer of protection against 
potential errors or inaccuracies that could lead to logistical issues. However, it is important to 
note that these validation and correction methods are based on certain assumptions and pre-
defined parameters. Although they have been designed to be robust and effective, it is essential 
to acknowledge that they may not cover every possible scenario, and logistical issues can still 
occur. However, by incorporating these validation and correction methods, the system shows a 
proactive approach in minimising the risk of these logistical problems.  
 
5.3 Usability 
The developed system demonstrates usability in certain aspects, while also presenting 
challenges. This section discusses the usability of the system, addressing specific points related 
to length-of-stay predictions and patient scheduling. 
 
The developed software is directly testable by planners. The software will directly influence 
the workflow of the planners and increase bed occupancy at the RCH. Predictions provide 
planners with information on the expected lengths of stay of patients, and the schedule is a 
guide to plan them. However, it should be noted that the planning tool can only be used as a 
guide. The reason for this is that the software is not validated at this point. More research is 
required to assess the reliability of the tool. In Chapter 6, a strategy for developing an 
implementation strategy is discussed to successfully implement the tool.  
 
An important aspect to note is that the tool only takes into account the total length of stay of the 
patients and the availability in the department. However, the specific timings for the start of the 
operation are not set by the tool. Manually taking into account the exact time stamps of when a 
patient needs to be operated is required. For example, for a specific procedure, the patient is 
required to arrive one hour before the operation. The planner must allocate a dedicated slot in 
the operating room schedule for the patient undergoing the specific procedure. Planners are 
assumed to take into account this limitation.  
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5.4 Limitations 
The findings presented in this research are subject to certain limitations that must be taken into 
account. These limitations include conservative adjustment, limited data availability, and 
retraining in case of changes. Understanding these limitations is crucial when interpreting the 
findings of this research. Each of these limitations will be addressed individually. 
 
Patient planning mode validation and correction: The patient planning model implemented in 
this research is conservatively tuned. The constraints that the regression and classification 
results must align and that the classification model must output a probability greater than 0.9, 
induce results that are not optimal.  
 
Limited data availability: The development of the models is based on data from approximately 
17000 patients. The sample size may not provide sufficient information on infrequent 
procedures or unique patient cases. Acquiring a larger and more diverse dataset, possibly from 
other hospitals, would improve the generalisability of the findings. 
 
Changes within the hospital: The implementation of length-of-stay prediction models in this 
research introduces potential retraining. With the addition of new doctors, existing models no 
longer produce predictions, as the model is trained only on the current situation. Similarly, 
changes in procedures or the participation of new anaesthetists require retraining and 
revaluation of the models to ensure their functioning. Additionally, new policies that have a 
significant impact on the length of stay require retraining of the models.  
 
These limitations provide valuable information on areas that require further attention and 
refinement. Addressing these limitations would enhance the reliability, flexibility, and 
applicability of the system. 
 
5.5 Future research 
The research provided valuable information and has effectively demonstrated the efficacy of 
the methodology. However, several areas can be further investigated to ensure continuous 
progress in the field of hospital resource allocation and patient scheduling. The areas will be 
presented in this chapter as possibilities for advancement and refinement are explored. In the 
following sections, the points will be addressed in a systematic way.  
 
Collaboration with multiple hospitals to enhance predictive capabilities: To further improve the 
predictive capabilities of the models, future research should consider collaborating with 
multiple hospitals. By including data from various hospitals, models can be trained on a more 
diverse and representative dataset. This collaboration would provide a broader understanding 
of patient characteristics, treatments, and results. In the end, this will improve the accuracy and 
generalisability of the predictions. 
 
Multi-objective patient scheduling: Currently, integer linear programming (ILP) for patient 
scheduling is focused solely on planning patients with short-stay predictions to increase bed 
occupancy. However, to establish a more robust planning methodology, future research should 
aim to develop a multi-objective ILP. This advanced approach would seek to strike a balance 
between maximising the number of patients scheduled and optimising the use of the department. 
By considering patients with varying lengths of stay, this multi-objective approach ensures that 
all patients, regardless of their predicted stay duration, are included in the scheduling process. 
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Incorporating specific time stamps: At this point, the system only includes arrival times and 
departure times. An important area of exploration would involve incorporating precise time 
stamps for the start of the operation and the departure of the operating room. By accounting for 
these specific timings, the tool could further enhance its scheduling capabilities and improve 
the workflow of planners. With this version, planners are required to manually estimate the start 
time of each operation. Although this task is feasible, as it relies on predetermined preoperative 
times in most cases.  By incorporating operation start times into the scheduling process, 
planners gain valuable insight into precisely reserving the appropriate slot for each patient. 
Integration of start times enables more accurate scheduling and improves overall efficiency of 
the system.  
 
Real-world implementation and data acquisition: The complete methodology proposed in this 
research, combining various independent components, is relatively novel and has not been 
verified by the existing literature. Future research should focus on implementing the developed 
tool in real-world hospital environments or conducting extensive simulations. This practical 
implementation will facilitate the collection of new data, allowing for a comprehensive 
evaluation of the methodology's performance under real conditions. By acquiring real-world 
data, researchers can further refine the models and validate their effectiveness in optimising 
patient scheduling and resource allocation. 
 
Comprehensive prediction of treatment phases: Although the current focus lies on predicting 
the length of stay, future research should explore the possibility of predicting all phases of 
patient treatment. This involves the prediction of the preoperative time, operation time, 
recovery time, and department time. When the prediction capabilities are extended to 
encompass all treatment phases, a more comprehensive and accurate schedule can be generated. 
The timings can be implemented within the patient scheduling ILP to exactly determine the 
time stamps of the patient. This holistic approach provides a complete overview of patient flow 
and allows more precise resource allocation and efficient scheduling. 
 
Encouraging appropriate discharge practises: Currently, there is no incentive for patients to be 
discharged earlier, as beds are readily available. However, this lack of urgency can affect the 
accuracy of length-of-stay predictions. Future research should emphasise the importance of 
informing hospital personnel, particularly nurses, about the importance of discharge of patients 
as soon as they are physically capable. Encouraging appropriate discharge practises will 
contribute to more accurate data sets and improved predictions.  
 
Simulations to evaluate the planning system: To comprehensively assess the effectiveness of 
the planning system, future research should conduct simulations based on the predictions of 
length of stay. These simulations would provide valuable information on the implications and 
effects of the proposed planning system in the real world. By simulating various scenarios and 
evaluating the results, researchers can fine-tune the system, identify potential bottlenecks, and 
optimise resource allocation strategies. 
 
Incorporating additional features: Although current models use available features related to 
procedure and patient information, future research should explore the inclusion of additional 
relevant features. For example, incorporating drug usage data, comorbidity information, or 
sociodemographic factors could enhance predictive precision. The study by Lu et al. (2015) 
provided an overview of features that influence the length-of-stay. By capturing more of these 
characteristics, the length-of-stay prediction model would gain a broader perspective, resulting 
in more accurate predictions and better patient scheduling. 
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Excluding infrequent procedures for improved accuracy: The current system aims to predict the 
length of stay for each possible combination of patients and procedures. The reason for this is 
that planners can generally use the model. However, due to the infrequency of certain 
procedures, the accuracy of the predictions can be compromised. Future research should 
investigate which procedures can be excluded from the prediction and scheduling process 
without reducing its usability.  
 
Dynamic corrections and adjusted loss functions: Currently, a fixed correction of 55 minutes is 
added to the length of stay predictions to coop with underestimations. However, future research 
should explore the possibility of implementing dynamic corrections, potentially tailored to 
specific procedures or specialisations. When considering the variability and specific 
characteristics of each procedure, more precise adjustments can be made. This can in the end 
result in improved prediction accuracy. Furthermore, researchers should further investigate the 
use of adjusted loss functions in machine learning models. By penalising underestimations more 
severely, the models can be fine-tuned to favour overestimations, enhancing the overall 
reliability of the predictions. 
 
In conclusion, future research should focus on collaborative efforts with multiple hospitals to 
improve the predictive capabilities of the models. Implementing a multi-objective patient 
scheduling ILP, conducting real-world implementations or simulations, and including 
additional features. Conducting future research would lead to the development of a more 
comprehensive and accurate planning system. 
 
5.6 Scientific and Practical Contributions  
This section highlights the scientific and practical contributions of this research. The focus will 
be on the novel combination of patient scheduling and length-of-stay predictions and the 
integration of regression and classification models. For practical implementation, the focus will 
be on the dedicated tool for planners at the RCH. 
 
This research yields two notable scientific contributions. First, it introduces a novel 
methodology that combines patient scheduling and length-of-stay predictions. Through an 
extensive literature review, no other articles were found to have employed such an approach. 
Second, this research integrates regression and classification models within the patient 
scheduling context. It emphasises the cruciality of accurately making length-of-stay 
predictions. The additional validation and correction layers were developed to test the proposed 
methodology in a real-world situation, which is not seen in the literature until now.  
 
In terms of practical contributions, this research offers noteworthy insights. Few studies 
identified in the systematic literature review have actually implemented the findings derived 
from their research. Additionally, the dynamic approach of using patients on the waiting list, as 
demonstrated, is an innovative and practical application. The development of a dedicated tool, 
which can be used directly by OR planners to optimise bed occupancy, further exemplifies the 
contributions made by this research. The scientific and practical applications can be considered 
significant as they are novel and have not been seen in the literature.  
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6 Managerial recommendations 
 
This article presents a comprehensive methodology to increase bed occupancy at the small 
regional hospital. The methodology combines length-of-stay predictions for outpatients with 
dynamic patient scheduling by a technique called integer linear programming. The study offers 
valuable information to optimise the workflow of operating room planners and increase bed 
occupancy at the RCH. In this chapter, the managerial recommendations are given. A short 
description of the challenges and the developed tool are provided, followed by an 
implementation strategy.  
 
The hospital planners complete their task by carefully selecting patients from the waiting list 
and assigning them a designated day and bed for the next medical procedure. During the 
selection and allocation process, planners often face challenges in efficiently allocating 
resources due to limited knowledge about the expected length of stay for patients. As a result, 
planners tend to adopt a conservative approach to planning patients. This approach aims to 
prevent logistical issues that may arise when a consecutive patient arrives before the previous 
patient has left the bed.  
 
To enhance planner workflow, a user-friendly tool has been developed to generate schedules 
with consecutively plannable patients. The intuitive tool simplifies the process by allowing the 
upload of the waiting list, followed by easily fillable parameters that the planning department 
can complete. The generated schedule is based on validated and corrected length-of-stay 
predictions for the patients. In the next section, the steps for integrating and implementing the 
tool to enhance the bed occupancy are described. 
 
6.1 Implementation strategy 
The success of implementing the tool is based on effective participation of stakeholders. 
Hospital management, planning department, physicians, and nursing staff need to participate to 
gain their support and participation in the implementation process. Detailed explanations must 
be provided to explain the functionalities, benefits and implementation process of the tool, 
highlighting how the tool aligns with the hospital’s objective of increasing bed occupancy. In 
addition to stakeholder participation, the tool should be developed alongside its uses according 
to future research presented in Section 5.5. 
 
Before full-scale implementation, a pilot phase will be conducted with a subset of patients and 
planners. The pilot phase will provide an opportunity to evaluate the tool's effectiveness, gather 
feedback from planners, and identify any necessary refinements. Planners' input regarding 
usability and impact on workflow will be collected and analysed to fine-tune the tool for optimal 
performance. Following the successful pilot phase, the tool will be deployed for full-scale 
implementation. Communication and training sessions will be conducted to inform all planners 
about the official adoption of the tool and its incorporation into their routine practises. Clear 
guidelines and support will be provided to ensure a smooth transition and maximise the tool's 
benefits. 
 
To ensure a smooth transition, comprehensive training sessions must be conducted with the 
planning department. It is crucial that users understand the limitations of the system and get 
used to working with the tool. Planners will be familiarised with the features and functionalities 
of the tool and need to understand the output schedules in depth. Additionally, collaboration 
between the planning department and tool developers will be crucial to seamlessly integrate the 
tool into the existing workflow. New processes and guidelines must be defined to incorporate 
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the tool effectively. The involvement of the planning department is required to refine their 
workflows and ensure that the tool becomes an integral part of their daily operations.  
 
After implementation, the tool’s performance must be monitored to gather more information on 
the performance and gather ongoing feedback from the planners. Regular assessments will be 
conducted to evaluate the impact of the tool on bed occupancy. Additionally, the impact on the 
workflow of the planners need to be monitored closely. Based on the findings, continuous 
improvement and refinements must be made to enhance the functionality and usability of the 
tool. At this point, patients are excluded from the scheduling as their prediction certainty is too 
low. As more data is collected, the minimum prediction certainty can slowly be lowered to 
allow more patients to be included in the scheduling. The lowering of the required certainty 
must be discussed between the planning department, management, and the developer. Periodic 
reports from planners and the developer need to be established to inform all stakeholders on the 
implementation of the tool. The reports will highlight the improvements in bed occupancy, 
efficiency, and flaws that can be reported to management. Ongoing technical support and 
assistant need to be available to the planning department to ensure a successful implementation.  
 
Following the steps in this implementation plan, the small regional hospital can successfully 
integrate and utilize the developed tool. The implementation of the tool will lead to optimized 
patient scheduling and result in increased bed occupancy.  
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7 Conclusions 
 
This research developed a complete system to help increase bed occupancy at the small regional 
hospital. Using a combination of state-of-the-art machine learning techniques and integer linear 
programming, patients are efficiently scheduled. In the current situation, hospital planners plan 
patients in a very conservative way. The reason for this is that it is unknown how long patients 
stay in the hospital. The system outputs a schedule that can be used as a guideline, with patients 
that can be be sequentially planned without exceeding the opening times of the department. 
Patient schedules are constructed with additional safety measures in place to avoid logistical 
problems. The safety measures can be slowly relaxed by planners as they observe that the 
system is working as intended.  
 
This research methodology is based on two systematic reviews of the literature on patient 
planning and length-of-stay predictions. Unfortunately, there is no consensus on the ideal 
machine learning model for length-of-stay predictions. Consequently, various state-of-the-art 
machine learning models were developed and evaluated to determine the optimal performer 
using data from the small regional hospital. Ten different machine learning models were 
developed and hyperparameter tuned for both classification and regression tasks. The models 
were subsequently tested, and their evaluation metrics were analysed. Among the classification 
models, the Random Forest model achieved the highest accuracy of 77.20%, outperforming the 
other machine learning models. For the regression task, neural networks proved to be the best 
choice, achieving an R2 score of 0.776. 
 
The classification model serves as a validation for the regression model by providing 
probabilities that patients fall within specific time frames. In addition, a correction was 
implemented to prevent the model from underestimating the length of stay. With these safety 
precautions in place, the model only underestimated 9.6% of the predictions. It can be 
considered an acceptable margin, especially considering that the model overestimates half of 
the patients. In the end, the overestimations and underestimations will cancel each other out, 
and with the extra safety precautions in place, the probability on logistical issues is neglectable. 
The result of the software is a robust schedule that enables sequential patient scheduling, thus 
increasing bed occupancy at the small regional hospital. 
 
Reflecting on the research question in this research, 'How can patient scheduling algorithms 
and optimisation techniques be integrated with length-of-stay predictions to effectively allocate 
resources and maximise bed occupancy?' It can be concluded that a combination of length-of-
stay predictions and ILP patient scheduling can maximise bed occupancy. Equipping planners 
with length of stay predictions, certainty scores, and suggestions for patient schedules 
significantly improves their ability to plan multiple patients with limited resources. Although 
the average bed occupancy in the past year was 1.47, the practical use case showed bed 
occupancy rates of 3.0 and higher. Implementing the system will significantly increase bed 
occupancy in the small regional hospital by consecutively scheduling patients.  
 
This article proposes an elaborate methodology to dynamically schedule patients from the 
waiting list, with the ultimate goal of increasing bed occupancy. A robust framework has been 
developed for direct use hospital planners, to increase bed occupancy and ultimately improving 
overall patient care. 
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Appendix A 
Table 1. Data extraction table Length of stay predictions 

 
Search query Length of Stay predictions 
("length of stay" OR "hospital stay" OR "duration of stay" OR "inpatient stay" OR “Duration”) AND (("prediction" OR "predictive modeling" OR "forecasting" OR "prognostics") OR ("machine learning" OR "statistical models" OR "AI" OR “artificial 
intelligence” OR "predictive analytics")) AND ("hospital patients" OR "medical center patients" OR "inpatient population" OR "admitted individuals")  

Reference Country Study Population Prediction 
Models 

Classification/
Regression N Length of Stay 

Outcomes Missing Data Statistical 
Methods Clinical Utility Predictor Variables Model Evaluation Validation 

Coherts Limitations Best Model Best Result Optimization 
Methods Features Selection 

Arjannikov 
& 
Tzanetakis 
(2021) 

USA Non-specific Positive Unlabed 
Learning Classification 2343569 Long Stay (>4), Short 

Stay (<4) Unspecified Unspecified Not discussed Clinical Characteristics, 
Demographic 

Accuracy, Confusion 
Matrix CV=10 Unspecified PL ACC 0.73 Unspecified Unspecified 

Arora et al. 
(2021) USA 

Age ≥50 with Elective 
Lumbar or 
Thoracolumbar 
Instrumented Fusions 

LR Classification 8866 Extended LOS Unspecified CHI-square, 
Fishers Not discussed 

Comorbidities, 
Demographics, Operative 
Information 

AUC, Sensitivity, 
Specificity 

Hold-out, 
80/20 Unspecified LR 

AUC=0.77, 
Sensitivity=77%, 
Specificity=0.68 

Unspecified Unspecified 

Bacchi et al. 
(2020) Australia Non-specific ANN, CNN, LR, 

RF Classification 313 More than 2 Days, 
Fewer than 2 Days Unspecified Unspecified Not discussed 

Demographic data, 
Patient data 
Hospital data 

AUC, F1 Score, MAE, 
MSE, NPV, PPV, 
Sensitivity, Specificity 

CV=5, Hold-
out 

Single Study, 
Small Sample 
Size 

NN 0.82 Grid Search Unspecified 

Banga  et al. 
(2017) USA Lung Transplantation None None 12647 Prolonged Hospital 

LOS Unspecified 

Cox Proportional 
Hazards Analysis, 
Kaplan-Meier 
Curve, Multivariate 
Logistic for 
Features 

Not discussed Donor, Operative 
Variables, Recipient None Not specified Retrospective None None None Logistic Regression 

Barnes  et al. 
(2016) USA Non-specific, Inpatient 

Medical Unit RF, LR Classification, 
Regression 8000 

Regression for Minutes, 
Classification for Stay 
Categories 

Unspecified McNemar Test and 
Youden's Index 

Demographic and 
Clinical Variables, 
Length of Stay, and 
more 

Demographic data, 
Patient data 
Hospital data 

Accuracy 
Larger Dataset, 
Training on 
Own Data 

Comparison of 
Predictions from 
Model to 
Clinicians 

RF Accuracy Measure (P > 
.10) Unspecified Unspecified 

Barsasella et 
al. (2022) Taiwan Diabetes and 

Hypertension Inpatients 
GBM, LR, SVM, 
XGBOOST 

Classification, 
Regression 58618 LOS in Days, Mortality 

Probability 
Removed 
Missing Data Unspecified Data-driven 

Decision-making,  

Demographic data, 
Patient data 
Hospital data 

AUC, AUPR, CV Score, 
MAE, Precision, Recall, 
RMSE, R2, Test Score 

CV=10, Hold-
out 

Class Imbalance, 
Only One Data 
Source 

RF, XGBOOST 
Random Forest (RF): 
MAE 0.027, RMSE 
0.401, R2 0.591 

Hyperparameter 
Search Unspecified 

Cai X et al. 
(2015) Australia Non-specific Bayesian 

Network 
Classification, 
Regression 32634 Mortality, Readmission, 

and Length of Stay 
In Hospital, at 
Home, Dead Unspecified 

Demographic 
Information, 
Patient History, 
Ward Type, and 
more 

Accuracy, AUROC ACC, AUROC Hold-out Bayesian Model Bayesian Model Accuracy: 0.8 Best-First Search Unspecified 

Chen (2021) USA Non-specific XGBoost Classification 114209 Days Unspecified Non-specified Not discussed Unclear ACC, F1, Kappa, ROC, 
RMSE 

CV=3, Hold-
out, 70/30 Unspecified XGBoost 

ACC=0.822, 
F1=0.8501, 
Kappa=0.8122, 
RMSE=1.823 

Grid-search Unspecified 

Heim et al. 
(2019) Germany Odontogenic Infections 

Semiparametric 
Logistic Discrete 
Hazard Model 

Regression 303 Days Unspecified 
Regression 
Analysis, Time-to-
event Models 

Promote 
Transparency 
Regarding Costs 
and Patients 

Age, Antibiotics, 
Diabetis, Gender, 
Localisation, Spreading of 
Infection 

Not mentioned Not specified Unspecified 
Emiparametric 
Logistic Discrete 
Hazard Model 

States Probability per 
Patient Unspecified Unspecified 

Karnuta et 
al. (2020) USA Shoulder Replacement ANN Classification, 

Regression 111147 
Cost, Days (High, Low, 
Medium), Discharge 
Disposition 

Imputation Non-specified Assist Management 
Making Choices 

Age, Arthoplasty Type, 
Diagnosis, Hospital, 
Income 

AUC, ROC Hold-out 

Potential Bias 
Older Data, 
Single Database, 
Black Box 

ANN Accuracy 70.3-91.8%, 
AUC 0.72-0.89 Unspecified Unspecified 

Koo et al. 
(2019) USA Unruptured Adult 

Cerebral Aneurysms 
Logistic 
Regression Classification 46880 Fewer than 5 Days, 

More than 5 Days Unspecified 

Logistic Regression 
Analysis, 
Multivariate 
Logistic Regression 

Not discussed 

Choice of Procedure 
(Open Surgical vs. 
Endovascular), 
Demographics,  

Not specified Not specified Not specified 

Logistic 
Regression 
Analysis, 
Multivariate 
Logistic 
Regression 

Importance of Variables Unspecified Unspecified 

Ma et al. 
(2020) Multiple ICU Patients 

iForest, JITL-
ELM, K-means 
Clustering, One-
class ELM, PCA 

Classification 4000 More than 10 Days, 
Within 10 Days 

Averaging 
Methods, 
Interpolation 

Isolation Forest 
Algorithm, K-
means Clustering, 
One-class ELM, 
PCA 

Not discussed Physiological Indicators 
of ICU Patient 

AUC, ACC, G-Mean, Lift 
Value, Precision, 
Sensitivity, Specificity, 
Miss Rate 

Not specified Not specified One-class JITL-
ELM 

AUC = 0.8510, 
Accuracy= 0.82, G- Unspecified Unspecified 

Muhlestein 
et al. (2019) USA Craniotomy for Brain 

Tumor 

Linear 
Classifiers, 
Naive Bayes, 
NN, RuleFit,  

Regression 41222 Days 

Imputation, 
Missing 
Categorical as 
'Missing' 

Mann-Whitney U 
Test, Partial 
Dependence Plots, 
Permutation 
Importance,  

Describes Potential 
Use Cases 

Patient data, 
Hospital data RMSLE CV=5, Hold-

out 

Validation Due 
to ML, Missing 
Important 
Predictors 

SVM, Two 
Gradient 
Boosted, 
Combined Using 
a Elastic Net to 
Create Ensemble 
Model 

RMSLE 0.555  Hyperparameter 
Search Unspecified 

Navarro et 
al. (2018) USA Primary Total Knee 

Arthroplasty 
Naive Bayesian 
Model 

Classification, 
Regression 141446 Classification Costs, 

Regression LOS Unspecified Unspecified Not discussed 

Age, Comorbidity Scores 
("Risk of Illness" and 
"Risk of Morbidity"), 
Gender, Race 

ACC, AUC Hold-out Not specified Naive Bayesian 
Model 

AUC 0.7822 for LOS, 
0.7382 for Inpatient 
Costs 

Unspecified Unspecified 

Rahman et 
al. (2022) USA Non-specific 

Lasso 
Regression, 
Linear 
Regression, 
Ridge Regression 

Regression 92753 Days Dropped 
Missing 

Data Visualisation, 
Correlation 
Analysis 

Not discussed Patient data, 
Hospital data MAE, MSE, R2 Hold-out, 

70/30 Not specified Linear MAE 1.389, MSE 
2.0320, R2 0.873 Unspecified All Available 

Siddiqa et al. 
(2022) USA Non-specific 

DT, LR, MLR, 
RF, RR, 
XGBOOST 

Regression 2,3E+07 Days Dropped 
Missing 

Bivariate Analysis, 
Mutual Information 
Regression, 
Univariate Analysis 

Manage Hospital 
Resources 

Patient data, 
Hospital data MSE, R2 CV=10, Hold-

out, 80/20 Unspecified RF MSE 5, R2 0.92 Unspecified Importance Scores 

Zeng (2022) USA Non-specific LR, lGB, RF, 
RR, XGBOOST Regression 2343569 Days Dropped 

Missing 

Correlation 
Analysis, Data 
Visualisation 

Not discussed Not explicitly mentioned MSE, R2 CV=10, Hold-
out, 99/1 Unspecified LightGBM MSE 2.231, R2 0.960 Unspecified Correlation Analysis 
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Appendix B 
 
Table 2. Data extraction table Length of stay predictions 

Reference Country Main Objective Study 
population 

Input Variables Data Intervention/
Approach 

Findings Implementation Discussion/Implications Software 
Used 

Conclusion Validation Future directions 

Hua et al. 
(2023) 

China Optimize 
outpatient service 
scheduling 

Outpatient 
clinic in China 

Scheduling variables, 
doctors, patients, 
appointments, services, 
working time 

Hospital data (M)ILP Increased work efficiency and 
patient flow with outpatient service 
planning 

Unspecified 
implementation 

Unspecified implications CPLEX The proposed method of outpatient service scheduling effectively reduces 
waiting time, improves work efficiency, and enhances the overall quality of 
medical service. 

Unspecified Unspecified 

Dehghani
mohamma
dabadi et 
al. (2023) 

Unspecified Achieve efficient 
schedule 
balancing 

Breast cancer 
patients 

Processing time, no-
shows, unpunctuality, 
emergencies 

Cancer clinic MOPSO, MO-
PASS 

Improved objective functions 
related to system throughput and 
avoiding overtime 

Unspecified 
implementation 

Future research required Matlab The MO-PASS framework is a practical and easy-to-implement solution that 
bridges the gap between existing models and algorithms in appointment 
scheduling, offering a viable solution for improving the level of service and 
considering patient flow and physician availability. 

Simulation Incorporating additional factors, specific 
assignment rules, multi-stage problems, 
evolutionary algorithms 

Feng et al. 
(2023) 

China Achieve efficient 
schedule 
balancing 

Non-specific Consultation times, 
date, holiday indicator, 
gender, cancer 
indicator, distance 

Data from 
Hangu 
clinic, China 

Data analysis, 
regression 

Showed relations between 
indicators and visit count 

Unspecified 
implementation 

Operational challenges, missing 
values, estimated service time 

Python The dataset reveals various patterns and characteristics related to the service 
time of outpatient consultations, highlighting the potential influence of 
variables such as previous visits, medical conditions, gender, appointment time, 
and patient address, providing valuable insights for future research in 
outpatient appointment scheduling. 

Unspecified More research on correlations, appointment 
scheduling 

Kuiper et 
al. (2023) 

The 
Netherlands 

Design efficient 
appointment 
scheduling 

Non-specific Patients, service times, 
variation, no-shows, 
walk-ins 

Unspecified Mathematical 
modelling, ILP 

Outperforms competing 
approaches, offers a general and 
easy-to-use solution 

Webtool that 
produces optimal 
schedules 
instantaneously 

Gap between theory and 
practice, optimization benefits, 
need for further research 

Unspecified 
software 

The proposed approach offers a general, easy-to-use, and superior solution for 
appointment scheduling in healthcare settings. 

Simulation Incorporating additional phenomena, 
heterogeneous patient populations, multi-
stage processes 

 Otten et 
al. (2023) 

The 
Netherlands 

Maximize in-
person 
consultations 

Non-specific Demand, capacity, 
trajectory, waiting area 

Hospitals (M)ILP Improved outpatient scheduling 
with constraints 

Tried with 
several clinics, 
output is a 
schedule 

Lack of validation outcomes, 
deterministic early arrival times 

Unspecified 
software 

The cooperative simulation optimization approach enables outpatient clinics to 
effectively manage waiting room occupancy and deliver required appointments 
during the COVID-19 pandemic, considering capacity restrictions and 
optimizing the appointment mix. 

Simulation Including accompanying persons, evaluating 
interventions, actual scheduled patients, short-
term control 

Bovim et 
al. (2022) 

Germany Maximize 
resource 
utilization, 
minimize waiting 
times 

OC 
consultations 
and surgeries 

Capacity, patient flow, 
surgeon constraints 

Orthopaedic 
Department 
at St. Olav's 
Hospital 

(M)ILP Improved coordination, resource 
utilization, patient throughput, 
decreased queues 

Unspecified 
implementation 

Importance of coordination, 
scheduling policies, flexibility, 
and patient calling lists 

IVE Xpress 
8.6, Simpy 

The developed model provides blueprints for effective scheduling. Simulation Incorporating uncertainty, exploring 
mechanisms, variations in demand 

Gao et al. 
(2022) 

Hong-kong Minimize costs, 
optimize 
appointment 
scheduling 

Non-specific Fixed cost, variable 
cost, capacity, service 
duration 

Unspecified (M)ILP Appointment scheduling system Unspecified 
implementation 

Cost structure, trade-offs, 
effectiveness of proposed model 

Matlab The developed tool aids in decision making. Simulation Not discussed 

Wing & 
Vanberkel 
(2022) 

Canada Balance waiting 
times and 
physician 
overtime 

Emergency 
center 

Priority, length, arrival 
rates 

Nova Scotia 
Health 
Authority 

Simulation Tool to help planners A tool to help 
planners 

Optimization framework, 
challenges, uncertainties 

Python General rules of thumb are presented for scheduling. Simulation Effects on patient behavior 

Khawaled 
et 
al.(2022) 

Jordan Minimize 
waiting times, 
maximize 
utilization 

Outpatients Priority, number of 
patients 

Unspecified Simulated 
annealing 

Efficient appointing system with 
AHP-SA algorithm 

Tool for decision 
makers 

Unspecified 
discussion/implications 

Unspecified 
software 

The developed model assists with scheduling. Simulation Not discussed 

Fan et al. 
(2021) 

China Optimize 
outpatient clinic 
operations 

Dalian City 
Dermatology 
Hospital 

Arrival interval, patient 
flow, waiting patience, 
service times 

Dalian City 
Hospital 

Simulation, 
MOCBA, GA 

Improved efficiency and 
performance of outpatient services 

Unspecified 
implementation 

Unspecified 
discussion/implications 

Combination Optimizing outpatient clinic operations by considering patient preferences and 
implementing joint scheduling schemes significantly improves service 
efficiency and overall system performance. 

Validated with 
real data, 
experiments 

Including behavioral patterns of doctors 

Fu & 
Banerjee 
(2021) 

USA Optimize same-
day assignment 
in a clinic 

Non-specific Same-day requests, 
patient types, block 
length, throughput, 
arrival and service 
times 

Unspecified SIP Improved cost and efficiency in 
optimizing same-day requests 
assignment 

Can be 
implemented, 
uncertain how 

Comparison, method 
application, sensitivity analysis, 
future research 

CPLEX The output of the SIP model provides sufficient information for the clinic 
manager to arrange appointments based on optimal values, accommodating 
patient requests and allowing earlier request senders more choices. 

Sensitivity 
analysis 

Not discussed 

Tohidi et 
al. (2021) 

Canada Plan physicians 
in polyclinics 
under uncertainty 

Physicians Work schedules, arrival 
process, capacity, 
treatment times 

Hospital (M)ILP Optimal solutions provided by 
robust problem solving algorithm 

Discussed as a 
possibility 

Effectiveness of proposed 
framework, impact of 
uncertainty, trade-offs, 
additional constraints 

Unspecified 
software 

The proposed physician scheduling framework, which incorporates uncertainty 
and corrective actions, results in lower costs and improved efficiency compared 
to a deterministic approach. 

Simulation Incorporating additional constraints and 
preferences, patient waiting time, other clinic 
dynamics 

Aslani et 
al. (2021) 

Canada Develop robust 
capacity planning 
model 

Unspecified Uncertain demand, 
budget, uncertainty set 

Seng 
Hospital 
Singapore 

(M)ILP Robust capacity planning model 
for outpatient clinics, addressing 
uncertainty 

Unspecified 
implementation 

Identification of critical time 
periods 

Unspecified 
software 

The proposed robust model provides a feasible capacity plan while minimizing 
costs and accommodating uncertainty in demand, and future research directions 
include multi-objective models and application in outpatient settings with 
multiple appointment types. 

Simulation Extending the model, multi-objective 
optimization, different clinic goals 

Srinivas & 
Ravindran 
(2020) 

USA Balance 
performance 
measures, 
minimize waiting 
times 

Family 
medicine clinic 
patients 

No-show rate, service 
time variation, cost 
ratios, scenarios 

Family 
medicine 
clinic in 
Pennsylvani
a 

(M)ILP Schedule configuration minimizing 
cost, balancing capacity and 
demand 

Unspecified 
implementation 

Impact of factors, importance of 
patient flow stages, limitations 
and future research 

Combination The proposed approach and insights drawn from the analysis provide valuable 
guidance for healthcare practitioners in designing effective appointment 
systems and minimizing costs in a clinic setting. 

Sensitivity 
analysis 

Incorporating patient availability and 
preferences, impact of walk-ins, clinics with 
three or more stages 

Anvaryazd
i et al. 
(2020) 

USA Minimize wait 
time, maintain 
efficient patient 
flow 

Women's 
OBGYN 
clinics 

Patient categories, 
providers, slots, new 
categories, service 
duration, targets, 
penalties, capacity 
restrictions 

Unspecified SIP Reduced patients' indirect wait 
time, improved appointment 
scheduling efficiency 

Clinic managers 
use the tool 

Effectiveness of proposed 
model, integration of scheduling 
template, comparison, future 
research 

CPLEX The proposed two-stage stochastic programming and simulation models, along 
with the scheduling template, can improve appointment scheduling efficiency 
and reduce patient appointment delays in outpatient clinics. 

Simulation Not discussed 

Shehadeh 
et al. 
(2019) 

USA Develop 
stochastic 
scheduling model 
for outpatient 
procedures 

Non-specific Waiting time, idle time, 
overtime cost 

Unspecified (M)ILP Outperforms existing models for 
Stochastic Outpatient Procedure 
Scheduling 

Unspecified 
implementation 

Comparison, performance 
analysis, implementability, 
advantages 

CPLEX The proposed model demonstrates improved performance and implementability 
compared to existing models for the Stochastic Outpatient Procedure 
Scheduling Problem. 

Comparing 
models 

Including uncertainty, trade-offs between 
metrics, dynamic scheduling 
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Search query patient scheduling 
("Integer Linear Programming" OR "optimization" OR "Mathematical Optimization" OR "Integer Programming" OR "Integer Optimization" OR "ILP" OR "Optimization Models" OR "Optimization Techniques" OR "Mathematical Models" OR "Operations 
Research" OR "Combinatorial Optimization" OR "Decision Optimization" OR "Heuristic Optimization" OR "Metaheuristic Optimization" OR "Constraint Programming") AND 
("Patient Scheduling" OR "Appointment Scheduling" OR "Planning" OR "Scheduling Optimization" OR "Scheduling" OR "Patient Planning" OR "Patient Appointment" OR "Patient Booking" OR "Scheduling Efficiency" OR "Scheduling Algorithms" OR 
"Scheduling Models" OR "Scheduling Systems" OR "Scheduling Strategies" OR "Scheduling Policies") AND 
("Daycare Department" OR "Daycare" OR "Day Care" OR "Day Treatment" OR "Day-care" OR "Outpatient Department" OR "Ambulatory Care Center" OR "Outpatient Care" OR "Outpatient Clinic" OR "Clinic" OR "Outpatient Treatment" OR "Same-Day 
Care" OR "Same-Day Treatment" OR "One-Day Care" OR "One-Day Treatment" OR "Single-Day Care" OR "Single-Day Treatment" OR "Short Stay" OR "Minor Procedures" OR "Non-Admitted Patients" OR "Brief Intervention" OR "Transitional Care" OR 
"Ambulatory Services" OR "Same-Day Surgery" OR "Walk-In Clinic") 

Schäfer et 
al. (2019) 

Germany Optimize patient-
bed assignments 

Cardiology and 
gastroenterolog
y patients 

Time stamps, 
department, age, 
gender, care level 

German 
hospital 

Greedy 
heuristic 

Improved patient-bed allocations, 
reduced overflow, optimized 
objectives 

Applicable to 
large hospitals 
worldwide, not 
limited to 
German setting 

Trade-offs, sensitivity analyses 
for objectives 

Gurobi The proposed decision model for hospital bed allocation, considering multiple 
stakeholders and addressing aspects not covered in previous research, 
outperforms other methods and improves stakeholder objectives. 

Sensitivity 
analysis 

Other heuristics, uncertainty modeling, 
additional stakeholders 

Leeftink et 
al. (2019) 

The 
Netherlands 

Optimize 
scheduling for 
multi-
disciplinary 
cancer clinics 

Cancer patients Population distribution, 
referral probabilities, 
performance measures, 
clinic capacity 

UMCU SAA Improved efficiency and 
performance of multi-disciplinary 
clinics 

Implemented in 
real-life 
situations in HPB 
clinic of UMCU 

Impact of weight settings, trade-
off, need for dynamic 
scheduling, incorporation of 
variability 

Combination The integrated optimization approach can help hospitals efficiently organize 
multi-disciplinary care systems and improve clinic performance. 

Validated with 
real data, 
experiments 

Additional sources of variability, impact of 
priority rules 

Zhu et al. 
(2018) 

Canada Evaluate 
appointment 
scheduling 
systems 

Non-specific Arrival distributions, 
no-shows, punctuality 

Unspecified Heuristic Heuristic policy outperforms 
currently adopted policy in 
reducing waiting costs 

Unspecified 
implementation 

Impact of patient unpunctuality 
on scheduling systems 

Unspecified 
software 

Implementing a heuristic policy that smoothes patient arrival flows and reduces 
appointment intervals can significantly improve efficiency and reduce waiting 
costs in appointment scheduling systems in healthcare settings. 

Simulation Incorporating additional factors, effective 
operation rules 

Bakker & 
Tsui 
(2017) 

The 
Netherlands 

Develop resource 
allocation model 
for patient 
scheduling 

Hospital 
patients 

Resource allocation, 
specialist availability, 
durations, arrival 
patterns 

Unspecified Simulation Improved service level, reduced 
wait times, higher resource 
utilization 

Unspecified 
implementation 

Generalizability challenges, 
customization, staff support 

Unspecified 
software 

The dynamic data-driven approach to specialist allocation shows promise in 
improving patient appointment scheduling and resource utilization, but further 
customization and validation are required for different hospital settings. 

Simulation More sophisticated models, synergies 
between surgery and appointment scheduling 

Lin et al. 
(2017) 

Hong-kong Analyze 
integrated 
resource 
allocation and 
scheduling 

Ophthalmolog
y clinic 

Appointments, patient 
classes, visitors, 
punctuality, procedure 
durations, schedule, 
parameters 

Unspecified Heuristic, 
Simulation 

Improved system performance in 
terms of patient waiting time, 
resource overtime, congestion 

Unspecified 
implementation 

Impact of resource flexibility, 
choice of objectives and weights, 
applications and limitations 

Microsoft 
Visual Basic 

Integrated strategies can effectively improve system performance in healthcare 
clinics by optimizing resource allocation and appointment scheduling. 

Unspecified Exploring application in other clinics or 
environments 

Srinivas & 
Khasawne
h (2017) 

USA Propose hybrid 
appointment 
system for 
scheduling 

Non-specific OA ratio, no-show rate, 
CV of service time, 
patient calls 

Unspecified (M)ILP Effective handling of system 
variations without impacting 
rejection rate and overtime rate 

Unspecified 
implementation 

Impact of system parameters, 
flexibility, need for further 
research 

Unspecified 
software 

The Hybrid Appointment System (HAS) can handle variations in system 
parameters and provide a balanced schedule that minimizes total loss for a 
clinic. 

Sensitivity 
analysis 

Arrival of walk-in patients, multi-objective 
optimization, computer simulation model 

Lin (2015) Hong-kong Improve 
performance with 
adaptive 
appointment 
scheduling 

Outpatient 
clinics in 
public 
hospitals 

Patient class, waiting 
time, quota, staffing, 
distribution 

Unspecified Heuristic, MIP Adaptive heuristic algorithm 
outperforms other methods in 
appointment scheduling 

Unspecified 
implementation 

Importance of patient class and 
waiting time information, 
balance between objectives 

Combination An adaptive heuristic approach effectively improves service performance in 
specialist outpatient clinics by reducing waiting times and congestion 
compared to traditional scheduling rules and mathematical formulations. 

Sensitivity 
analysis 

Appointment booking decisions, adaptive 
heuristic algorithm 

Alrefaei & 
Diabat 
(2015) 

Jordan Optimal 
appointment 
system for 
outpatient 
department 

Non-specific Clinic hours, doctor 
hours, resources, 
patients, waiting time, 
doctor utilization 

Unspecified Simulation Identification of appointment 
systems with good performance 
across multiple objectives 

Unspecified 
implementation 

Classification of appointment 
systems, ranking, application to 
outpatient scheduling 

Arena A systematic framework for selecting an appointment system that balances 
multiple objectives in an outpatient department clinic is presented. 

Unspecified Unspecified 

Wang & 
Fung 
(2015) 

Hong-kong Develop adaptive 
algorithms for 
outpatient 
appointment 
scheduling 

Non-specific Patient preferences, 
revenue, mismatch, 
offer acceptance 

Unspecified MDP Adaptive algorithms improve 
appointment systems, consider 
patient preferences and revenue 

Unspecified 
implementation 

Initialization, exploration vs. 
exploitation trade-off, effects of 
preferences, advantages 

Matlab The proposed adaptive algorithms provide effective approaches for sequential 
appointment scheduling, considering patient preferences and maximizing 
expected revenue. 

Validated with 
real data, 
experiments 

Exploring dependencies, optimizing revenue, 
exploration probabilities, enhancing 
algorithms 

Luo et al. 
(2012) 

USA Develop 
framework for 
scheduling 
models 
considering 
interruptions 

Non-specific Interruption rate, patient 
arrival, service times, 
waiting costs, 
appointments 

Unspecified Mathematical 
modelling, ILP 

Considering interruptions in 
appointment scheduling improves 
effectiveness 

Unspecified 
implementation 

Impact of interruptions, 
performance differences, 
benefits of flexibility 

Unspecified 
software 

Understanding interruptions in appointment scheduling is important for 
improving performance, and the developed framework provides insights into 
effective scheduling policies. 

Unspecified Analyzing interruptions, appointment 
scheduling policies 

Y.-L. 
Huang et 
al. (2012) 

USA Reduce wait 
times and 
improve patient 
flow 

Non-specific Treatment time, patient 
arrival, no-shows, 
lateness, conflicts, 
overwriting 

Unspecified Simulation Reduced patient wait time without 
significantly increasing physician 
idle time 

Implemented in 
three clinics 

Impact of treatment time 
estimates, importance of wait 
ratio, need for scheduling 
templates 

Unspecified 
software 

The patient scheduling approach effectively reduces patient wait time and 
improves patient flow without significantly increasing physician idle time, and 
it can be implemented successfully in clinics without additional workload on 
medical staff. 

Simulation Addressing patient no-shows, exploring cost-
effectiveness, different specialties, ancillary 
services 

Jerbi & 
Kamoun 
(2011) 

Tunisia Optimize 
appointment 
scheduling for 
outpatient 
department 

Nephrology 
outpatient 
department 

Scheduling rules, 
appointment rules, 
waiting times, doctor 
utilization 

Appointment 
systems, 
rules, no-
shows, walk-
ins 

Simulation, 
ILP 

Optimal appointment schedule 
with specific scheduling and 
appointment rules 

Unspecified 
implementation 

Multi-objective approach, 
decision maker's preferences, 
potential extension 

Arena Management preferences through linear satisfaction functions resulted in the 
selection of an optimized appointment schedule that balances resource 
utilization and waiting times. 

Simulation More research resources in outpatient 
departments 

Yean et al. 
(2010) 

South-korea Examine 
appointment 
scheduling for 
outpatient units 

Department of 
ophthalmology 

Service time 
distribution, walk-in 
patients, punctuality, 
no-show rate, ratios, 
resource capacity 

EMR 
system, 
observations, 
interviews 
with doctors 
and nurses 

Mathematical 
model 

Appointment scheduling should be 
approached as a system problem 

Unspecified 
implementation 

Interdependency between patient 
flows, study limitations, 
practical considerations 

Arena Appointment scheduling for outpatient units with multiple doctors and shared 
resources should be derived as a system problem, considering the 
interdependency among patient flows, rather than relying on individually 
favored rules for each doctor. 

Unspecified Not discussed 

Liu & Liu 
(1998) 

Hong-kong Implement block 
appointment 
system 

Outpatient 
clinics 
involving 
multiple 
doctors 

Number of doctors, 
service times, arrival 
times, no-shows 

Consultation 
times, 
doctors' 
arrival 
pattern 

Simulation Identification of properties shared 
by best appointment schedules, 
development of simulation search 
scheme and suboptimal 
appointment rule 

Unspecified 
implementation 

Efficient frontier, myotic 
scheduling rule, application in 
public clinics 

Unspecified 
software 

The simulation-based appointment system, along with the myotic scheduling 
rule, can offer effective solutions for clinic operations, with further potential 
for improvement and application. 

Unspecified Impact of doctors' arrival patterns, making the 
system simpler 





Appendix C 
 
Model Hyperparameter Type Range 
Gradient Boosting n_estimators Integer [100, 500] 
 learning_rate Real [0.01, 0.3] (log-uniform) 
 max_depth Integer [3, 10] 
 min_samples_split Integer [2, 10] 
 min_samples_leaf Integer [1, 4] 
  max_features Categorical {auto, sqrt, log2}3 
svm svr__C Real [0.1, 10] (log-uniform) 
  svr__kernel Categorical {linear1, rbf2} 
Decision tree max_depth Integer [10, 50] 
 min_samples_split Integer [2, 10] 
 min_samples_leaf Integer [1, 4] 
  max_features Categorical {auto, sqrt, log2}3 
KNN n_neighbors Integer [1, 20] 
 weights Categorical {uniform, distance}4 
  p Integer [1, 5] 
XGBoost n_estimators Integer [10, 300] 
 learning_rate Real [0.001, 0.2] (log-uniform) 
 max_depth Integer [1, 10] 
 min_child_weight Integer [1, 10] 
 gamma Real [0, 0.5] 
 subsample Real [0.1, 1.0] 
  colsample_bytree Real [0.1, 1.0] 
Ridge regression ridge__alpha Real [0.001, 10] (log-uniform) 
  ridge__solver Categorical {svd5, cholesky6, lsqr7, sparse_cg8, sag9, saga10} 
Neural network batch_size Integer [32, 512] (step 32) 
 units_input Integer [32, 512] (step 32) 
 activation_input Categorical {relu11, elu12, selu13} 
 l2_input Float [1e-5, 1e-2] (sampling='log') 
 dropout_input Float [0.1, 0.8] (step 0.1) 
 num_layers Integer [1, 4] 
 units_{i} Integer [16, 512] (step 16) 
 activation_{i} Categorical {relu11, elu12, selu13} 
 l2_{i} Float [1e-5, 1e-2] (sampling='log') 
 dropout_{i} Float [0.1, 0.8] (step 0.1) 
 learning_rate Float [1e-5, 1e-2] (sampling='log') 
  decay Float [1e-8, 1e-4] (sampling='log') 
Random Forest Number of estimators Integer [10,200] 
 Maximum features Categorical {auto, sqrt, log2}3 
 Maximum depth Integer [10,100] 
 Minimum sample split Integer [2,10] 
 Minimum sample leaf Integer [1,4] 
  Bootstrap Categorical {True, False} 

 
 
(1) 'Linear' signifies that the SVM's kernel utilizes a linear function to create a decision boundary. (2) 'RBF' or 
Radial Basis Function is a non-linear kernel for SVM, projecting data to higher dimensions for class 
separability. (3) 'Auto', 'sqrt', and 'log2' are options for the maximum features parameter in tree-based models, 
where 'auto' uses all features and 'sqrt' and 'log2' use the square root or log base 2 of the feature number, 
respectively. (4) 'Uniform' and 'distance' are choices for the 'weights' parameter in KNN models. In the 'uniform' 
case, all points in each neighbourhood are weighted equally, whereas 'distance' weights points by the inverse of 
their distance, giving closer neighbours more influence. (5) 'SVD', or Singular Value Decomposition, and (6) 
'Cholesky' are solvers for Ridge Regression that are particularly efficient for symmetric positive-definite 
matrices. (7) 'LSQR' or Least Squares QR is an iterative solver for Ridge Regression. (8) 'Sparse_CG' or Sparse 
Conjugate Gradient is an effective solver for large sparse linear systems. (9) 'SAG', or Stochastic Average 
Gradient, and (10) 'SAGA', or Stochastic Average Gradient Augmented, are optimization algorithms with 
particular benefits for large-scale machine learning problems, the latter offering improved support for non-
smooth penalty functions. Furthermore, (11) 'relu', (12) 'elu', and (13) 'selu' are activation functions in the 
neural network. 'Relu' or Rectified Linear Unit introduces non-linearity without affecting the receptive fields of 
convolutions. 'Elu' or Exponential Linear Unit helps to mitigate the vanishing gradient problem, and 'selu' or 
Scaled Exponential Linear Unit modifies 'elu' to have self-normalizing properties in neural networks. 
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Appendix D 
Precision, recall and accuracy per class for classification with RF. 

Model Class precision. Recall f1-score support 
Random Forest A 0,9286899 0,9807356 0,9540034 571 

B 0,544 0,3541667 0,4290221 192 
C 0,6027944 0,3719212 0,4600152 812 
E 0,7802632 0,9198552 0,8443284 1934 

accuracy 0,7720148 0,7720148 0,7720148 0,7720148 
macro avg 0,7139369 0,6566697 0,6718423 3509 
weighted 

avg 0,7504212 0,7720148 0,7505192 3509 
Gradient Boosting A 0,9245902 0,9877408 0,9551228 571 

B 0,560241 0,484375 0,5195531 192 
C 0,5534351 0,3571429 0,4341317 812 
E 0,7818017 0,8929679 0,8336954 1934 

accuracy 0,7620405 0,7620405 0,7620405 0,7620405 
macro avg 0,705017 0,6805567 0,6856257 3509 
weighted 

avg 0,7400687 0,7620405 0,7438048 3509 
SVM A 0,9259868 0,9859895 0,9550466 571 

B 0,5310345 0,4010417 0,4569733 192 
C 0,5470383 0,3866995 0,4531025 812 
E 0,7804766 0,8805584 0,8275024 1934 

accuracy 0,7571958 0,7571958 0,7571958 0,7571958 
macro avg 0,6961341 0,6635723 0,6731562 3509 
weighted 

avg 0,7364873 0,7571958 0,7413449 3509 
Decision Tree A 0,9296482 0,971979 0,9503425 571 

B 0,5895522 0,4114583 0,4846626 192 
C 0,5458716 0,2931034 0,3814103 812 
E 0,7608881 0,9214064 0,8334892 1934 

accuracy 0,7563408 0,7563408 0,7563408 0,7563408 
macro avg 0,70649 0,6494868 0,6624761 3509 
weighted 

avg 0,7292187 0,7563408 0,7288042 3509 
KNN A 0,9039088 0,971979 0,9367089 571 

B 0,5423729 0,3333333 0,4129032 192 
C 0,5392857 0,3719212 0,4402332 812 
E 0,7722147 0,885212 0,8248615 1934 

accuracy 0,7503562 0,7503562 0,7503562 0,7503562 
macro avg 0,6894455 0,6406114 0,6536767 3509 
weighted 

avg 0,7271675 0,7503562 0,731516 3509 
XGBoost A 0,9278689 0,9912434 0,9585097 571 

B 0,5869565 0,421875 0,4909091 192 
C 0,5555556 0,455665 0,5006766 812 
E 0,8071599 0,8743537 0,8394142 1934 

accuracy 0,7717298 0,7717298 0,7717298 0,7717298 
macro avg 0,7193852 0,6857843 0,6973774 3509 
weighted 

avg 0,756531 0,7717298 0,7613395 3509 
Logistic Regression A 0,9262295 0,9894921 0,9568163 571 

B 0,56 0,4375 0,4912281 192 
C 0,5646388 0,3657635 0,4439462 812 
E 0,7822762 0,8991727 0,8366611 1934 

accuracy 0,7651753 0,7651753 0,7651753 0,7651753 
macro avg 0,7082861 0,6729821 0,6821629 3509 
weighted 

avg 0,7431764 0,7651753 0,7464362 3509 
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Appendix E 
 
Patient schedules based on synthethic waitinglist 
Patient ID Specialisation Starting Time Leaving Time Bed Expected LOS 

470 ORT 08:00 10:39 1 159 
27 ORT 10:39 15:26 1 287 

411 ORT 15:26 20:13 1 287 
280 PLA 08:00 10:42 1 162 
344 PLA 10:42 14:51 1 249 
423 PLA 14:51 19:10 1 259 
485 CHI 08:00 09:46 1 106 
382 CHI 09:46 13:49 1 243 
444 CHI 13:49 17:57 1 248 
375 PYN 08:10 08:22 1 12 
149 PYN 08:22 08:34 1 12 
72 PYN 08:34 09:00 1 26 
6 PYN 09:00 09:28 1 28 

243 PYN 09:28 09:59 1 31 
36 PYN 09:59 10:34 1 35 

262 PYN 10:34 11:09 1 35 
479 PYN 11:09 11:46 1 37 
468 PYN 11:46 12:24 1 38 
163 PYN 12:24 13:03 1 39 
460 PYN 13:03 13:43 1 40 
173 PYN 13:43 14:23 1 40 
128 PYN 14:23 15:08 1 45 
169 PYN 15:08 15:57 1 49 
67 PYN 15:57 16:49 1 52 

207 PYN 16:49 17:42 1 53 
187 PYN 17:42 18:36 1 54 
156 PYN 18:36 19:31 1 55 
14 PYN 19:31 20:26 1 55 
2 KNO 08:00 10:32 1 152 

319 KNO 10:32 13:28 1 176 
39 KNO 13:28 17:54 1 266 

236 URO 08:00 10:52 1 172 
410 URO 10:52 14:38 1 226 
162 URO 14:38 18:26 1 228 
421 CAR 08:00 10:12 1 132 
400 CAR 10:12 12:44 1 152 
40 CAR 12:44 15:53 1 189 

323 CAR 15:53 19:27 1 214 
155 DER 08:00 10:15 1 135 
182 DER 10:15 13:17 1 182 
57 DER 13:17 16:24 1 187 
81 DER 16:24 19:50 1 206 

 
 
 


