
Investigating the possibilities of a flexible
manipulator in Amesim to predict reaction forces

Christiaan J. Ven
Master thesis

June 2023

Faculty of Engineering Technology

Supervisors:
Dr. ir. J.P. Schilder

Dr. ir. R. Kampinga

Applied Mechanics and Data Analysis Group
Faculty of Engineering Technology

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands



Contents

1 Summary 4

2 Introduction 5
2.1 IMOCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Digitial Twin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Amesim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Modeling in Abaqus 8
3.1 Abaqus theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Full order modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Model order reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Amesim 11
4.1 Model creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 3D mechanical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 1D mechanical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Slider crank model 19
5.1 Abaqus full order model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Full order verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Model order reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Modeling in Amesim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Results 26
6.1 Comparing reduced order models in Abaqus to full order model . . . . . . . . . . . . . . . 26
6.2 Comparing reduced order models in Amesim to full order model . . . . . . . . . . . . . . 28
6.3 Computational performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Conclusion & Recommendations 36
7.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Bibliography 37

A Eigenmodes slider crank 39
A.1 Free-free mode shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.2 Fixed-fixed mode shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B Abaqus smooth step 46

C Center deflection 48

D Converting an Abaqus substructure to Amesim modal data 50

2



E Center deflection 51

3



1 Summary

Safety is the most important when considering the use of a robotic manipulator. When a robotic
manipulator is intended to perform its tasks in a space also inhabited by humans, great care must be
taken to prevent any injury. Preventing collisions between the manipulator and its enviroment is the best
way to achieve this goal. Since prevention is not always possible, collission detection is also a valuable
tool. Detection can be done using dedicated sensors of the manipulator but it can also be done by
prediction driving forces and comparing the prediction with measured forces. A difference in these forces
might indicate a collision and the control system can then take apropriate actions. For this method to
work the reaction forces must be predicted in realtime. When a manipulator can be assumed to behave
as a rigid body this prediction is realifly straightforward. For manipulators where, due to lower stiffness,
the internal flexibilty contributes significantly to the reaction forces a more complex model is required.
The flexibilty of the manipulator is typically determined using a Finite Element Model. These models
are large and slow to solve. By reducing the number of degrees of freedom in the model an attempt can
be made to implement the flexibilty in realtime. In this research a benchmark problem, a 3D slider crank
mechanism, was modeled in Abaqus. A number of reduced models where derived using the substructure
functionality of Abaqus. Dynamic simulations where performed of the full order model and the reduced
order models. The reduced models where simulated using Abaqus and Amesim. Amesim is a system
modeling tool that can also support realtime applications. Comparing the results of all these simulations
it can be concluded that Abaqus has issues running a dynamic simulation with a small number of nodes
(3 or less). This can be attributed to the choice of computational frame by Abaqus. Amesim requires
less degrees of freedom for an accurate simulation. The process of modeling a flexible body simulation
in Amesim has still some chalenges but the delevopment is still ongoing.

4



2 Introduction

Robotic manipulators are becoming increasingly common outside of product manufacturing and the
desire to allow interaction between manipulators and humans increases[2]. When robotic manipulators
and humans are able to interact great care must be taken to ensure the often powerful actuators do
not injure the people interacting with the robot. This can be done by adding sensors that can detect
obstacles, i.e. humans, and adjust movement to prevent a collision[3]. Alternatively detection can be
done by analyzing the actuation forces, by comparing current actuation forces with predicted actuation
forces large differences can indicate a collission[4]. In this research a method for creating a model that
can accurately predict actuator forces is investigated. When a robotic manipulator is designed is such a
way that the connecting segments, i.e. arms, can be assumed rigid this prediction can be done relatively
straightforward[5]. In the case that this assumption cannot be made, because of relatively low stiffness
and/or actuation speeds near the eigenfrequency of the manipulator, the flexibility of the connecting
elements should be taken into account since this will influence the actuation forces. Flexibility, play and
other (non linear) beheviaour in the joint of a manipulator can also influence the reaction forces during
movement. The system modeling tool Amesim can be used to take all these factors into account, in this
research the focus lies on how such a model should be created and how accurate the results are with
respect to a large Finite Element Method (FEM) model.

2.1 IMOCO

This research is part of the Intelligent Motion Control under Industry4.E (iMOCO4.E) project. This is
a joint effort of various companies, supported by the European Union, to deliver a reference platform
consisting of AI and digital twin toolchains[6]. As part of the IMOCO project the desire to create a
Digital Twin (DT) of a robotic arm supporting an x-ray system for the use in a surgical theater, as
seen in figure 2.1a, was born. The main goal of this DT is to provide a prediction for the required
motor currents needed to maintain or move to a position, by comparing these with the actual motor
currents anomalies, collisions, can be detected without requiring additional sensors. Siemens, as one of
the IMOCO partners had provided Reden with an AMESIM license to investigate the feasibility of using
it for the creation of a Digital Twin.

2.2 Digitial Twin

The Digital Twin (DT) concept is very broad and can have various applications, for a broader view on
the concept Digital Twin the work of Jones et al. [7] is recommended. In this research a DT is the digital
representation of a single, specific, physical device: the Physical Twin (PT). The primary goal of the
DT in this research will be to improve the control algorithm and provide additional safety by trying to
detect collision by predicting actuation forces. Because of the desired application the DT should be able
to perform close to realtime. The DT will initially be created based on a FEM model of the physical
device. This DT will never be correct since a model will never be a 100% accurate description of the
physical reality. By creating the DT in a parameterized way it should be possible to improve the model
during operation: the error of the DT, the difference between expected motor torque and actual, could
be used as an input for a parameter fitting algorithm that updates the DT. In an ideal case the only
moment that the error is non-zero is when there is an external force applied to the PT, i.e. in the case of
a collision. When the error between the DT and the PT is deemed the result of modeling inaccuracy and
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not caused by a real world disturbance this error could be used to update the DT. By constantly tuning
the parameters the model quality should improve over time. This concept is also described by Aivaliotis
et al. [8] where a method of creating a DT is proposed. Examples of parameters that are likely to change
over time and could be a candidate for updating are: joint friction, joint play and joint stiffness in the
constrained directions.

2.3 Amesim

Amesim is system modeling tool that can simulate complex multi-physical systems. One of the toolboxes
available can be used to model 3D mechanical linkages and joints. Modeling a system in Amesim is done
using components from the various libraries. The 3D mechanical library contains a component that can
be used to model a flexible element. One of the advantages of this component is the option to disable the
flexibility, this allows for the creation of the total Amesim model by one team when an other team is still
working on the creation of the Reduced Order Models (ROMs). Components from the 1D mechanical
library can be combined with components from the 3D mechanical library to model non-linear behavior
such as play and friction in joints.

The 3D mechanical part allows for the simulation of flexible bodies and non-linear play and friction
behavior in joints can be modeled easily. In Amesim it is relatively easy to create a rigid model and
enable flexibility on a per-part basis. This allows a team of engineers to parallelize the creation of the
total model. A rigid Amesim model can be created and tested while another team member is working
on model order reduction of the parts. When a suitable ROM is created this can then be imported in
the already functioning model to upgrade it from stiff to flexible.

(a) The robotic X-ray machine from Philips[9] (b) A rigid body model made in Amesim of
the x-ray manipulator with 3D-models for vi-
sualistion. (blue objects are the rigid body
elements and the coloured elements are for
visualistion)

The creation of a model of a flexible multibody manipulator in Amesim is split into three distinct
phases: the creation of a FEM model of each part of the manipulator, the reduction of the large model
to a simpler version and finally the implementation of the reduced model in Amesim. The first two steps
will be performed with Abaqus.

2.4 Outline

The first step of this research is to asses how the software that will be used works, In chapter 3 the
theory and method of creating a FEM model in Abaqus and how a ROM is obtained from this full order
model is discussed. In chapter 4 the process of creating a model in Amesim is described together with
the functionality and limitations of a couple of the available components from the mechanical library. A
slider crank system is one of the most basic mechanical building blocks, see figure 2.2a for a real world
example, therefore it makes sense to use a slider crank as a benchmark problem. The 3D slider crank
system from Ellenbroek and Schilder [10], see figure 2.2b, will be modeled and evaluated. The creation
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(a) A great example on the application of a slider crank mech-
anism

(b) The slider crank mechanism used in this re-
search (image from [10])

Figure 2.2: Slider crank mechanisms

and verification of this benchmark simulation is discussed in chapter 5. The results of the various options
of a ROM for this slider crank are discussed in chapter 6. Finally the conclusions and recomendations
for further research can be found in chapter 7.
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3 Modeling in Abaqus

To determine the reaction forces during movement of a robotic manipulator the manipulator must be
replicated in a virtual environment. For the creation of such a transient model the software package
Abaqus Unified FEA will be used. This finite element analysis program consists of the user interface, to
create the model and inspect the results, Abaqus CAE, and the program that applies the FEM to the
model and performs the time integration, Abaqus/Standard1. Creating the model in Abaqus CAE results
in an input-file, this file fully describes the model and is provided to the solver. The Abaqus/Standard
solver presents the results of the simulation in an output database file which can be viewed using the
Abaqus CAE. In this research Abaqus version 2021 HF6 is used

The relation between bodies in motion and forces applied to these bodies is described by Newtons
second law of motion[1]:

Lex II. Mutationem motis proportionalem esse vi motrici impressae, et fieri secundum lineam
rectam qua vis illa imprimitur.2

Assuming the mass of the body does not change with time, this results in the following equation:

F⃗ =
dp⃗

dt
, with p⃗ = mv⃗ ⇒ (3.1a)

F⃗ = ma⃗ (3.1b)

3.1 Abaqus theory

In Abaqus Newtons second law of motion is implemented by defining the finite element approximation
to equilibrium with equation (3.2).

This differential equation needs to be solved for every timestep to obtain the new configuration of
the system. For this a numeric integration algorithm is needed. Generally speaking a choice between an
explicit and an implicit time integration scheme must be made. An explicit scheme is faster, per timestep,
than a implicit scheme because there is no iteration. However explicit schemes are not conditionally stable
and generally require smaller timesteps to remain stable. In this research the implicit time integration is
used for all Abaqus models since Abaqus does not support explicit dynamic analyses when substructures
are present. In the equations below uN are the nodal variables.

The equations in this section are taken directly from the Abaqus documentation.

MNM üM + IN − PN = 0 (3.2)

MNM =

∫
V0

ρ0N
N ·NMdV0 The consistent mass matrix

IN =

∫
V0

βN : σdV0 The internal force vector

PN =

∫
S

NN · t+
∫
V

NN · F dV The external force vector

(3.3)

1There are more solvers available but the Abaqus/Standard is the one used for this research.
2Law 2: The alteration of motion is ever proportional to the motive force impressed; and is made in the direction of the

right line in which that force is impressed (translated by Andrew Motte, 1846)
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3.1.1 Implicit time integration

When using a numerical integration scheme, it is important to determine if numerical damping is required
and in what way it should be applied. In Abaqus this is controlled by setting the application. The three
options are ’Transient fidelity’, ’Moderate dissipation’ and, ’Quasi-static’. This setting controls various
numerical settings such as damping and time incrementation. Quasi-static application is used if the main
interest is in the final static response. Transient fidelity has the least numerical damping. With this
application small time increments are taken to accurately solve for internal vibrations. The moderate
dissipation application is for a wide range of dynamic simulations where the high-frequency vibrations are
not of interest. For this research the transient fidelity application is chosen because internal vibrations
are relevant for reaction forces.

The Hilber-Hughes-Taylor implicit time integration is used by Abaqus. This results in the transfor-
mation of equation (3.2) into

MNM üM |t+∆t + (1 + α)
(
IN |t+∆t − PN |t+∆t

)
− α

(
IN |t − PN |t

)
+ LN |t+∆t = 0 (3.4)

With LN |t+∆t as the sum of all Lagrange multiplier forces associated with Degree of Freedom (DoF)
N , and − 1

3 ≤ α ≤ 0 parameter to control the numerical damping. When α is zero there is the least
amount of damping and setting α to a more negative value results in the increased damping of higher
frequencies. [11]

u|t+∆t = u|t +∆tu̇|t +∆t2
((1

2
− β

)
ü|t + βü|t+∆t

)
u̇|t+∆t = u̇|t +∆t((1− γ)ü|t + γü|t+∆t)

(3.5)

With

β =
1

4
(1− α)2, γ =

1

2
− α, −1

2
≤ α ≤ 0 (3.6)

3.2 Full order modeling

In this section the general process of creating a transient simulation in Abaqus is discussed. The reaction
forces of a robotic manipulator are highly non-linear with respect to the movement parameters. In a
model of a manipulator large (angular) displacements will take place. By enabling Non-linear geometry
for the Abaqus model these large displacements will be accurately modeled. Although the flexibility of
the parts of the manipulator is taken into account, the deformation of the parts is assumed to be small
enough to justify linear approximation to the deflections.

Creating parts

The first step when creating a part is to define the geometry, this can be done by using the build in
modeling tool or by importing a geometry from a file. Abaqus is unit agnostic, this means that the user
should choose a unit system and consistently input the values accordingly. The unit system [mm, ms,
g & N] is customary because of the reduced amount of decimal places required for most values. In this
research the base SI system of [m, s, kg & N] is used since Amesim uses this system eliminating the need
for unit conversion between both programs.

Material properties

When the geometry is completely defined, the part needs to be assigned material properties. Abaqus
supports a wide range of (mechanical) material properties, but in this research only linear elastic material
behavior is considered. Furthermore, the material properties are considered to be uniform, isotropic and
constant. The uniform and isotropic constraint does not influence the generality of this research but
mainly simplifies the modeling part. By assuming that the material properties are constant there is a
small loss in generality but this assumption will is assumed to hold for most types of robotic manipulators.
The material parameters for this research are: the mass density, the Young’s modulus and the Poisson
ratio.
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Meshing

To allow for simulation, the modeled geometry has to be converted to a finite number of elements. These
elements must be able to accurately describe the phenomena that occur during the movement of the
manipulator. For a large robotic manipulator, such as the one used to support the x-ray machine of
Philips bending will probably be the dominant deformation. Pure bending of a beam results in a linear
strain field over its cross section. To efficiently represent such a strain field the elements need at least a
quadratic interpolation function.

Assembly

In the assembly module of Abaqus multiple bodies can be combined together and the Boundary Condition
(BC) and Initial Condition (IC) can be defined. To aid in the definition of these conditions Reference
Points (RPs) can be defined. These reference nodes have 6 DoF and can be used to couple nodal DoFs
to each other or introduce additional inertia terms.

3.3 Model order reduction

Reducing the model order in Abaqus is done by generating a substructure of the full order model. A
substructure is mainly defined by the degrees of freedom required to connect the substructure to other
parts of an assembly: the retained DoF. Abaqus uses Guyan reduction[12] to determine a mass and
stiffness matrix that only include the retained DoF: the static modes. When the static modes defined
by the DoF needed to connect the substructure to the rest of the system are not sufficient to accurately
describe the dynamic behavior additional DoF can be added. Additionally, adding generalized DoF
associated with the natural modes of the substructure can be added to the system matrices. This
method is generally more effective according to section 2.14.1 of the Abaqus theory guide.[13] To obtain
the natural modes an eigen frequency analysis can be performed with all retained DoF constrained. This
method is called a Craig-Bampton reduction. Both the effect of adding an unconnected interface point
and the addition of dynamic eigen modes are investigated.

When a substructure is subject to large rotations Abaqus will determine a rigid body rotation matrix.
This is done by picking 3 nodes, starting with the stiffest node (largest diagonal value), the second node
will be the one that is furthest away from the first and the third node is the one furthest away from the
line between the first two nodes. In the case that there are less than three nodes in the substructure the
rotation matrix is determined from the nodal rotations of the stiffest node.
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4 Amesim

Simcenter Amesim stands for Advanced Modeling Environment for performing Simulations of engineering
systems. It is a software package by Siemens designed to create multi physical models on a system level.
For this research the 2022.1 version of Amesim is used. Analysing a system with Amesim is divided into
4 phases:

1. Component phase

2. Submodel phase

3. Parameter phase

4. Simulation phase

The component phase is used to add all components of the system to the model. When all components
are added and connected to each other the mathmatical models are assigned to the components in the
submodel phase. In the parameter phase the properties of the components are set, i.e. mass, locations
friction or stiffness. In the parameter phase a study can be created: this allows to simulation to be
performed for a range of values of certain parameters without manually editing these values and rerunning
the simulation. The simulation phase can start the simulation and allows for plotting and analyzing the
results. The assignment of the submodels can be performed automatically if desired.

4.1 Model creation

During the component phase the system is modeled using components available from the various libraries.
Every component represents a physical part of the system. A component has a port for every interaction
that part has with the rest of the system. A port can communicate an applied force, postitions (for the
mechanical library), voltages, pressures or dimensionless values. Amesim prevents the connection of two
components that have incompatible ports.

(a) An Amesim model of an hy-
draulic jack with leakage and end-
stops

(b) An Amesim model of a robot
dog leg with hydraulics

(c) The visualization of a robot
dog leg

Figure 4.1: Examples of Amesim models from the Amesim help library
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4.2 Time integration

According to the Amesim documentation the time integration will be done with either Differential Alge-
braic System Solver (DASSL)[14] or LSODA. If the model contains any implicit variables, the differential
algebraic equation integration DASSL is used, otherwise the ordinary differential equation integration
algorithm LSODA is used. There is currently no way of verifying the solver that is used for a specific sim-
ulation 1. This means that any influence on the results of the solver method cannot be investigated. The
Amesim documentation mentions that the implementation of both algorithms are substantially different
from the original algorithms but does not mention in what way.

4.3 3D mechanical components

The 3D mechanical library contains components to model mechanical system with 6 DoF. The variable
that are communicated over the ports are:

1. absolute position <3> [m]

2. relative position (in local frame) <3> [m]

3. absolute velocity <3> [m s−1]

4. absolute acceleration <3> [m s−2]

5. Euler angle <3> [degree]

6. rotary velocity <3> [degree/s]

7. absolute angular acceleration <3> [rad s−2]

8. frame change matrix (local frame to global frame) <9> [-]

9. force applied <3> [N]

10. torque applied <3> [Nm]

For a component with mass (the rigid body component or the flexible body component) the force and
torque vectors are defined as input variables and the positional information will be returned as outputs.
For the joints the directions are reversed. This means that two bodies cannot be connected directly to
each other but require a joint in between.

To manage the 3D mechanical library the m6dofassembly component can be added to the sketch.
This component can be used to define the gravity vector and to enable or disable the kinematic assembly
process. The kinematic assembly is performed before the start of the transient simulation and it changes
the orientations and positions of the components to assure the initial configuration satisfies the defined
boundary conditions. The m6dofassembly also enables the 3D visualization of the simulated system.
Bodies are automatically represented as rectangular beams and most joints as spheres. The visualization
allows for additional basic geometric shapes to be added to the scene and to change the dimensions, color
and visibly of all components. The positions and orientation of manually added objects can be configured
to follow variables from the simulation. This feature can be used to create an approximate visualization
of flexible bodies since these are not automatically visualized. When a body has complex geometry a
step (.stp) file can be imported to represent the 3D shape of the component in the visualization, as seen
in figure 2.1b. In this section some of the relevant components from the library will be explained.

1Only when the solver encounters issues with stability the used solver is mentioned in the error log.
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(a) m6dofsource (b) dynamic fem3D (c) m6dofrigidjoint (d) m6dofspherical

(e)
m6dofpilotedprismatic

(f) m6dofpilotedpivot (g)
m6dofContactSphereSphere

Figure 4.2: Some of the components present in the 3D Mechanical library of Amesim

4.3.1 Boundary condition component

The m6dofsource (figure 4.2a) component can be used to prescribe boundary conditions. The boundary
conditions can be positions, velocities or accelerations for the three translational and rotational DoF.
The component has a setting to allow for high rotational velocity. When set to high rotation mode the
submodel changes the orientation from quaternions to Euler angles. Euler angles have better computa-
tional performance but can suffer from gimbal lock. The main axis of rotation needs to be defined before
the simulation in this mode, presumably to reduce the change of gimbal lock.

4.3.2 Rigid body component

The dynamic 3Dbody is used to model rigid bodies. The coordinates of the ports, interface points, can
all be defined in the global frame or in the local frame. In the latter case the position of the origin of the
local frame must also be set. The component has inertial parameters (mass, location of Center of Mass
(CoM) and, moment of inertia), and parameters to provide the initial velocities. Like the m6dofsource
component it has a setting for high rotational velocity. The component can be added with two or more
ports.

4.3.3 Flexible body component

The dynamic fem3D (figure 4.2b) component can be used to add flexible bodies to a simulation. The
dynamic response is split into a rigid body part and a flexible (modal) part. The modal part can be
disabled reducing the model to become rigid. This can be very practical from a model debugging per-
spective since the global system does not change but the simulation cost is decreased greatly. According
to the documentation the dynfe component is not suitable for large deformations: ”In case of a flexible
body, the deformation angles must be inferior to 20 deg to be in the domain of validity”2 implying the
use of the Small-angle approximation. The component can be added with any number of ports.

The computation is defined using two local frames: the i frame attached to the node at port i and
the G frame with its origin at the CoM and colinear with the solid frame. The transformation between

2From the Amesim help files on the DYNFE001 component
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the i frame and the G frame is done with

GTi =

[(
iAs

)T
S
(
GPi

)
0

(
iAs

)T
]

(4.1)

with

� Sa the vector operator such that S

a
b
c

 =

 0 −c b
c 0 −a
−b a 0


�

GPi the position vector (3x1) of the port i in the G frame: GPi = −sPG +s Pi + (sDi)1,2,3 with

– sPi the position vector (3x1) of the port i in the solid frame under rigid assumption, defined
by the user.

– sPG the position vector (3x1) of the gravity center in the solid frame, defined by the user.

– (sDi)1,2,3 the deformation vector (3x1) computed at port i

�
iAs the rotation matrix (3x3) between the solid frame and the port frame

iAs =

 1 (sDi)6 − (sDi)5
− (sDi)6 1 (sDi)4
(sDi)5 − (sDi)4 1


When flexibility is not taken into account the transformation matrix becomes

GT′
i =

[
I S

(
GPi

)
0 I

]
(4.2)

Rigid body movement

The large displacement, rigid body movement, of the body is calculated separately from the flexibility.
The rigid body parameters are the same as the rigid body component with the exception that the flexible
body does not have a high rotation mode setting. The equation3 that is used to determine the rigid
body movement is ∑((

GT′
i

)T
.0Fi

)
= Js.ẌG +

[
0

ωs ∧ (Js.ωs)

]
+G (4.3)

with

� T the (rigid) coordinate transformation between global and local (body) coordinates

� ∧ the cross vectorial product

�
0Fi vector of force (6x1) applied at port i in the absolute frame

� Js the inertia matrix (6x6) of the solid at its gravity center J =

[
Ms.I3 0

0 Js

]
with

– Ms mass of the solid

– Js rotary inertia matrix (3x3), Js =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 where the matrix elements are defined

by the parameters of the component

�
0Ẍ, 0Ẋ, 0X the acceleration, velocity and position vectors (6x1) of the gravity center in the
absolute frame

� G gravity vector times mass (6x1): G = (gx.Ms gy.Ms gz.Ms 0 0 0) were the gravity vector
is defined by the user

3Copied verbatim from the Amesim documentation
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The acceleration can be determined with

0ẌG = J−1
s

(∑((
GT′

i

)T
.0Fi

)
−
[

0
ωs ∧ (Js.ωs)

]
−G

)
(4.4)

The velocity vector is obtained by direct integration:

0ẊG =

∫ t

0

0ẌG(u).du (4.5)

The velocity vector is split in a translation part and a rotary part

0ẊG =

(
VG

ωs

)
=


Vx

Yy

Vz

ωx

ωy

ωz

 (4.6)

The position of the gravity center XG is computed from a direct integration

XG =

∫ t

0

VG(u).du (4.7)

The orientation matrix of the solid frame toward the absolute frame
(s
A0

)
is computed using quaternions

computation:


Q̇1

Q̇2

Q̇3

Q̇4

 =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0



Q1

Q2

Q3

Q4


sA0 =

Q2
1 +Q2

2 −Q2
3 −Q2

4 2(Q2Q3 +Q1Q4) 2(Q2Q4 +Q1Q3)
2(Q2Q3 −Q1Q4) Q2

1 −Q2
2 +Q2

3 −Q2
4 2(Q3Q4 +Q1Q2)

2(Q2Q4 +Q1Q3) 2(Q3Q4 −Q1Q2) Q2
1 −Q2

2 −Q2
3 +Q2

4


(4.8)

Modal base

Amesim has an import tool that helps with the setup of the dynfe component. This tool provides two
options: Standard modal base, where all DoF correspond to physical DoF and, Super element, where the
DoF are split between physical DoF and virtual nodes that correspond to normal modes. Both options
allow importing (proprietary) file types but also direct input of the system matrices.

The import assistant produces two files: a list of eigenvalues and a matrix containing the eigenvectors.
These are generated by solving the eigenvalue problem described by the mass and stiffness matrix. The
first 6 eigenvalues are practically zero because they represent the rigid body movements. Since the
rigid body motion is handled separately, the eigenvalues and corresponding eigenvectors are removed.
The entries of the eigenvectors corresponding to these modes are also truncated from the matrix. The
matrix is saved such that each nth row in the file contains the values for the nth eigenvalue. The
inertial properties and the interface coordinates need to be provided separately by the user. The inertial
properties could be extracted from the provide system matrices but this is not done by Amesim. The
conversion between the stiffness and mass matrices as performed by the import tool is duplicated using
python code as described in appendix D.

When the deformation should be taken into account, the following equations4 are added to the System
of Equations (SoE) (

ẋ
ẍ

)
=

[
0 I
−Σ λ

](
x
ẋ

)
+

[
0
T

]
.F +

[
0
U

]
.Hd

ḋ

d̈

 =

 TT 0
0 TT

−TT .Σ TT .λ

(
x
ẋ

)
+

 0
0

TT .T

 .F +

 0
0

TT .U

 .H

(4.9)

4Copied verbatim from the Amesim documentation
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With

� Σ the diagonal matrix containing the eigenvalues (MxM) defined by the user

� T the eigenvector matrix (Mx(6.N)) defined by the user

� λ MxM diagonal matrix containing the eigen damping values λ = 2.diag
(
Dn

√
diag(Σ)

)
� U matrix (Mx9) given modal states dependency toward body accelerations, defined by the user.

� H vector (9x1) containing body acceleration and quadratic rotary velocities in the solid frame

H =
(
ω2
x ω2

y ω2
z ωxωy ωxωz ωyωz

sV̇x
sV̇y

sV̇z

)T  sV̇x
sV̇y
sV̇z

 = sA0.

 V̇x

V̇y

V̇z − g


� x, ẋ, ẍ modal displacement, velocity and acceleration in the solid frame (Mx1)

� d, ḋ, d̈ port deformation amplitude, velocity and acceleration in the solid frame (6Nx1)

� F vertical concatenation of the port forces expressed in the solid frame at the port position (6Nx1)
F =

(
sF1

sF2 · · · sFN

)
with sFi the vector of force (6x1) at port i expressed in the solid

frame sFi =
sR0

0Fi,
sR0

[
sA0 0
0 sA0

]

Modal damping

The dynfe component has support for specific modal damping. The user can supply a file containing
damping ratios for each eigenmode. In this research this functionality is not further investigated. The
default damping ratio (ζ) of 0.02 is applied to all eigenmodes.

Choice of frame by Amesim

According to the Amesim documentation the computation of the deformations are performed in the solid
frame. The solid frame is located in the CoM of the body and colinear to the body frame. The body
frame is used to define the locations of the interface node, its origin is therefore arbitrary.

Found limitations

The flexible body component has a couple relevant limitations that are (not yet) documented in the help
files or indicated by specific error messages. Using the kinematic assembly when a dynfe component is
present in the model, even when set to rigid mode only, results in an incorrect result of the kinematic
assembly. The assembly will report success but the resulting simulation will not perform as expected
even though the initial positions of the interface coordinates will be as expected. This incompatibility
was confirmed by the Amesim support team.

When simulating a model, by default, the optimized solver is enabled. According to the Amesim help
files using this optimized solver commonly increases computational performance by more than 500%.
The documentation does not mention how this optimization operates. However when the optimized
solver is not disabled with a dynfe component present, the simulation will fail to run without a specific
error message. This incompatibility was confirmed by the Amesim support team.

Manual calculation is needed to determine local body deformations. To determine the difference in
orientation of an interface node with respect to the rigid body rotation, a post processing step must
be added to subtract the three euler angles at both points from each other. A sensor measuring the
orientation at an interface node must be added to obtain this orientation. And, even though according
to the help files the local coordinate of an interface node is present on the wire between components, the
translational deformation cannot be extracted and should be calculated from the position and orientation
of the CoM in combination with the local interface coordinates and the actual global coordinates. This
issue was not discussed with the Amesim support.
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4.3.4 Joints

The joint components allow bodies to connect to each other or to the fixed world. A joint has positional
variables as input and outputs a resulting force. The constraints of all joints can be applied with either
an implicit scheme, Baumgarte, or an explicit scheme, spring-damper. In the case of Baumgarte the
parameters α and β can be used to ensure the constraints are satisfied. In the case of the spring-damper
system, a stiffness and a damping term can be set independently for the translation and rotations.

Actuated (piloted) joints have an additional port to accept a input force (or torque) and output the
position and velocity. These ports are compatible with components from the 1D mechanical library to
further model the system. For example, a complete hydraulic system including pumps and valves can be
included in a model, as showcased in figure 4.1.

Rigid joint

The m6dofrigidjoint (figure 4.2c) connects two bodies rigidly and thus has no free DoF. Some issues
with this joint where observed that resulted in simulations crashing or stalling at certain points in
time. Changing the constraint method from the default implicit to explicit can solve the problem of
the simulation crashing. But setting the polar angle to values such as 1, 20, 45 and 89 degrees can also
alleviate these issues, for both schemes. This leads to the hypothesis that these problems are the result
of gimbal lock.

Pivot

The m6dofpivot or m6dofpilotedpivot(figure 4.2f) can be used to model a hinge. For both the actuated
and not actuated component a spring and damper can be enabled on the free rotation.

Spherical

The m6dofspherical joint (figure 4.2d) constraints translation but has all three rotations free. It allows
for a stiffness and a damping to be added to the rotations. A related component, the m6dofconveljoint
(constant velocity), constrains a single rotation. The constant velocity joint does not support stiffness
and damping on the free rotations.

Prismatic

The m6dofprismatic or m6dofpilotedprismatic(figure 4.2e) can be used to model a linear guide. It con-
strains all DoF except for one translation and supports a stiffness and a damping on the free DoF.

Contact

Modeling contact in Amesim can be done in one of four ways: sphere-to-sphere(figure 4.2g), sphere-to-
plane, sphere-to-box, and sphere-to-cilinder. With the exception of the sphere-to-plane the contact can
be modeled internal or external5. For the contact friction four models are available: Coulomb friction
with hyperbolic tangent, reset integrator, Dahl and, LuGre.

4.4 1D mechanical components

Similar to the 3D mechanical library the 1D mechanical library communicates position and force infor-
mation over the ports. For masses also the acceleration can be communicated bringing the maximum
number of variables per port to four. Combining the components from the 1D library with the 3D library
allows for simulation of non-linearities and imperfections of piloted joints. The library is split in com-
ponents modeling translations and in components modeling rotations. Most translational components
have rotational counterparts since the physics are very similar. In this section some relevant components
from the library wil be explained.

5i.e. sphere inside the box or sphere outside the box
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(a)
mass friction endstops (b) rotaryload2ports (c) karnop2mass (d) springdamper01

(e) dblelasticendstop

Figure 4.3: Some of the components present in the 1D Mechanical library of Amesim

4.4.1 Inertia

To model a translating (figure 4.3a) or rotating (figure 4.3b)mass, the inertia components can be used.
Both allow for the addition of Coulomb friction. When more specialistic friction models are desired,
these need to be modeled using a dedicated component. The translational inertia allows for endstops to
be configured directly in the component. There is also the option for a translational inertia with variable
mass.

4.4.2 Friction

Modeling friction can be done in the following ways: friction with a stationary surface or with another
moving surface, with or without mass. The component for two surfaces with mass (and separate normal
force) is depicted in figure 4.3c. To model friction a Karnopp model can be used.

4.4.3 Endstops

The component for linear elastic endstops (figure 4.3e) can be used to model play between two bodies.
To ensure continuity in force at the moment of contact the damping coefficient is modified so that it is
zero at contact beginning and then approaches its full value asymptotically.

4.4.4 Spring damper

Springs and dampers are one of the most basic 1D mechanical elements. Modeling these with the library
can be done separately or combined (figure 4.3d). There are even components with more complex
submodels that allow for simulation of rubber material behavior. These rubber components can be
configured by either a force-displacement curve or with a Berg model.

4.4.5 Transformers

To interconnect linear and rotational 1D components, various transformers are available, including but
not limited to: rack and pinion, cam and follower, slider crack, and a screw-nut component. There are
also transformers to couple linear-linear and rotational-rotational motion: worm gears, levers and, linear
cam-follower components.
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5 Slider crank model

In this chapter the modeling of the slider crank is discussed. The first step is to perform a full order
non-linear dynamic analysis as a basis to compare the reduced models to. The absolute quality of this
full order model is not the topic of this research since the main interest is the loss of accuracy as a result
of the model reduction. Nevertheless, a Floating Frame Formulation (FFF) model of the slider crank
will be used to verify the results of the full order model. This is discussed in section 5.2. Since the FFF
model does not provide reaction forces the verification will be done based on deflection at the center.
The method for model order reduction is described in section 5.3.

In this research the main goal is to determine what the accuracy loss is as a result of reducing the
model order. However, verifying the accuracy of the full order model is also relevant. The verification
was done using data provided by van Voorthuizen et al.[15]. The code used to generate this data was
also used by Ellenbroek and Schilder.

5.1 Abaqus full order model

In this section the full order model of the slider crank is described. In section 5.1.1 the modeling of the
flexible connector is described. This part is then placed in an assembly, as described in section 5.1.2, to
perform the dynamic simulation. This part is also used in the three model order reduction steps.

5.1.1 The part

The flexible connector is modeled as a cylinder extrude along the (local) z-axis, with a radius of 0.003 and
a extrusion length of 0.3. The part is meshed using quadratic hexahedral brick elements with reduced
integration (C3D20R elements). The use of solid elements instead of beam elements is to maintain
generality. The quadratic interpolation is needed to capture the bending. The total part consists of 720
elements: 12 elements in the cross section and 60 along the length of the bar. Three RPs are defined:
along the rotational axis located at both ends and at the center (also the CoM). The RPs are kinematicly
coupled to the nodes located at their respective cross sections. The added stiffness as a result of the
coupling between the nodes at the cross sections is neglected since the shape of the cross section does
not significantly change during bending. Futhermore this added stiffness is present in all Abaqus models
of the slider crank. In the paper by Ellenbroek and Schilder the only material properties mentioned
are the mass density and the Young’s modulus. The python code used to reproduce the results from
the paper uses the Young’s modulus and a shear modulus. To replicate the same model in Abaqus the
Poisson ratio needs to be determined with equation (5.1)[16]. The properties of the part are summarized
in table 5.1

E = 2G(1 + ν) (5.1)

5.1.2 The assembly

The assembly consists of three RPs and the part. The first RP is located at the center of rotation of
the rigid crank, with all DoF constrained or prescribed. The second reference point is rigidly coupled,
by means of eliminating DoFs, to the first RP. Rotating the first RP around the x-axis results in the
circular motion of the second RP in the yz-plane. The third RP is located on the x-axis with only the
displacement along this axis unconstrained. This RP has a mass (half that of the slider) associated with
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Figure 5.1: Full order model of the slider crank assembly in Abaqus

Property value unit
Radius 0.003 m
Length 0.3 m
Young’s modulus 200× 109 Pa
Poisson’s ratio 0.299 -
Mass density 7870 kgm−3

Resultant properties value unit
Mass 0.0668 kg
Moment of inertia around z 3.00× 10−7 kgm2

Moment of inertia around x & y 5.01× 10−4 kgm2

Table 5.1: Properties of the flexible part of the slider crank mechanism
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it. The RPs on the flexible connector are coupled to the RPs of the assembly by constraining only the
translational DoFs.

5.1.3 Boundary conditions

To simulate the rotation of the mechanism the rotational displacement of the first RP is prescribed. At
the start of the simulation the flexible connector has a initial velocity corresponding with a rigid body
rotation of 150 rad s−1. To implement this the velocities in x and z direction where determined and
linearly interpolated to determine nodal initial velocities. Supplying two different functions for the two
different initial velocities is not supported by the Abaqus CAE, so a post-processing step was needed to
generate a correct input file. The flexible connector is free to rotate along its axis. This results in one
negative eigenvalue of the total system. In the python code used to verify the simulation this rotation is
also free.

5.2 Full order verification

The accuracy of the full order model is verified by first reproducing the experiment from [10]: a constant
rotational speed of 150 rad s−1. Simulating this experiment results in large reaction forces in the first
few timesteps. This can be attributed to the implementation of the IC in Abaqus. The simulation code
implementing the FFF to perform this validation was provided by K.L. van Voorthuizen and is discussed
in section 5.2.1. Because of the high initial reaction forces from the Abaqus model only the center
deflection will be compared. To circumvent the issues with this IC a second experiment was introduced
with a gradual increase of rotational speed. This gradual increase is implemented with the smooth step
profile available in Abaqus. In appendix B this smooth step is described and the derivations needed to
setup this smooth step in the FFF code.

5.2.1 Floating frame formulation

The code used to simulate the slider crank mechanism provided by K.L. van Voorthuizen is written in
Python and uses the Assimulo time integration package. In the code the flexible connector is modeled
as two bodies. The system matrices for these bodies are created using a Craig-Bamptom reduction. The
body starts as a beam with 7 nodes that are reduced to 2 nodes. The reason for the use of two bodies is
to allow for the extraction of the location of the center of the flexible connector. The time integration is
done using the Runge Kutta34 schema implemented by the Assimulo package[17]. The IC and BC are
implemented by prescribing accelerations in the nodes.

The simulation code should be able to provide reaction forces at the two end points, however these
reaction force could not be extracted correctly. All verification is thus done based on the deformation of
the flexible connector.

5.2.2 Results

In figure 5.2 the same normalized deflection from [10] is plotted together with three variants of the
Abaqus slider crank. The full order model is the model with 720 elements with a maximal timestep of
0.06ms, the Full order model with finer mesh is the same model but with 6450 elements, and the Full
order model with variable timestep has 720 elements but no maximal timestep-size configured. From the
deflection plot it can be seen that the timesteps as chosen by the Abaqus solver are too large to capture
the deflection. The deflection has a significant phase delay after only a single revolution, as can be seen
in figure 5.2b. The version with the same timestep as the python code also shows a phase delay. The
cause and solution to this phase delay is not further investigated since optimizing the time integration
is not part of this research. Refining the mesh shows no improvement. No further investigation on mesh
reduction is done for the slider crank model since this is not deemed relevant for this research.
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(a) Deflection during first revolution

(b) Visible phase delay of Abaqus models

Figure 5.2: Normalized deflection of the full order model in three variants and the deflection from [10],
with initial rotation BC
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Figure 5.3: Center deflection for full order model and the FFF, with smooth step rotation BC

5.3 Model order reduction

To create the reduced models the full order part is loaded in a separate Abaqus model with a substructure
generation step. In this model RPs are added in the same way as in the full order model. To allow for
the addition of dynamic eigenmodes a Frequency step is created to determine these mode shapes. In this
frequency step the interface nodes are fixed resulting in fixed-fixed mode shapes.

In total three different reduced model are created: a ROM with only the two interface nodes, a ROM
where the centerpoint of the connector is added as a third node, and a ROM that is composed of two
substructures, with each 2 nodes, that are joined in the middle. The ROM consisting of two substructures
is used to test the hypothesis that having multiple frames, one per substructure, can improve the results.

5.3.1 Linear pertubation model

As a first assessment of the ROMs, a linear pertubation model was setup. During such a simulation the
choice of frame has no influence on the results. An eigenfrequency analysis was performed on the full
order model and on the nine different ROMs. The results of these analyses can be seen in tables A.1
and A.2. The mode shapes of the ROMs were matched to the corresponding modes of the full order
model. The free-free mode shapes of the full order model are depicted in figures A.1 to A.11. In general
the ROMs have higher frequencies for the highest modes. The ROM will therefore show an increased
stiffness in these loadcases.

Looking at the ROM with 3 nodes compared to the ROM the system matrices are very similar.
Because the DoFs connecting the two substructures are eliminated the system matrix will be the same
as the 3 node ROM. Adding eight eigenmodes to the two substructure ROM will add the same frequency
information as adding 16 eigenmodes to the 3 node ROM. Because of the fixed-fixed BC during the eigen
analysis every mode occurs at each side of the center node separately. The number of DoF are equal for
a 3 node ROM with 16 eigenmodes and a 2 substructure ROM with 8 eigenmodes.

ROM with 2 nodes

Looking at the eigenvalues of the ROM without any eigenmodes added to the system matrix it can be
seen that the first two bending modes are significantly higher than their full order counterpart. The
first torsional and elongation mode has a higher stiffness than the 6th bending mode of the full order
model. Adding 8 fixed-fixed eigenmodes to the ROM greatly improves the first 8 eigenfrequencies. This
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(a) 3rd bending mode free-free (mode 11 & 12) (b) 3rd bending mode fixed-fixed (mode 5 & 6)

Figure 5.4: A comparison of the 3rd bending mode shapes for free-free and fixed-fixed

matches the expectation since the added eight eigenmodes model the same behaviour as the first eight
eigenmodes of the full order model. Figure 5.4 shows this for the 3rd bending mode of the connector.
The 5th bending mode is now also present in the ROM but with significantly higher stiffness than the
full order 5th mode. The eigenfrequency is even higher than the frequency for the 7th bending mode of
the full order model. The torsion and elongation modes are not affected by the additional eigenmodes.

Adding 16 fixed-fixed eigenmodes to the ROM results in a correct eigenvalue up until the 7th bending
mode. The torsion and elongation modes are not affected.

ROM with 3 nodes

The eigenfrequencies for the ROM with 3 nodes show that just the static modes are enough to describe
the 1st bending mode. The other bending modes are significantly stiffer.

Adding 8 fixed-fixed eigenmodes to the ROM has a similar effect as with the 2 node ROM. The next
four bending modes are now similar to the full order model. The 6th bending mode is now the first with
a higher stiffness.

With 16 fixed-fixed eigenmodes the first eight bending modes are now approximated. The frequencies
are closer than the ROM with 2 nodes (and 16 modes) except for the 7th bending mode.

A simulation with 32 fixed-fixed eigenmodes was also performed confirming the hypothesis that the
results are the same as the ROM with 2 substructures. The resulting frequencies were omitted from the
table.

ROM with 2 substructures

The eigen frequencies of the ROM that consists of two substructures are exactly the same as that of
the 3 node ROM when only the static modes are considered. This is to be expected since the resulting
model has the same number of DoFs at the same locations with the same BCs.

Adding 8 fixed-fixed eigenmodes to the system matrix results in accurate frequencies up to the 4th

bending mode. The higher modes until the 8th bending mode are still close but deviate significantly
more.

The variant with 16 fixed-fixed eigenmodes is the first in this set that better describes the longitudinal
and torsion stiffness. The first four bending modes are accurate within 1Hz and the rest of the modes
are also quite accurate.

5.4 Modeling in Amesim

The Amesim model of the slider crank can be seen in figure 5.5. A custom smooth-step generator was
made to replicate the smooth-step functionality of Abaqus. The rotation is applied using the m6dofsource
component with a rigidly attached body representing the crank. The flexible body is connected to the
crank and the mass with two spherical joints. The joint attached to the mass also constraints the rotation
along the center axis of the connector. The mass is modeled as a rigid body and attached via a prismatic
joint to the fixed world. Since the kinematic assembly functionality is not compatible with the flexible
body component, a dummy model was first created with a rigid connector from which all initial positions
and orientations where copied.
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Figure 5.5: Amesim model of the slider crank (ROM with 2 nodes)

(a) ROM with 2 nodes (b) ROM with 3 nodes (c) ROM with substructures

Figure 5.6: The three different ways of including the ROM in an Amesim model

Updating the model to accommodate the three different ROMs can be done by replacing the flexible
connector with one of the elements shown in figure 5.6.

For the slider crank model the constraints of the joints had to be modeled with an explicit (spring-
damper) scheme. During the simulation of the ROM with 2 substructures, the rigid constraint between
the bodies could be solved using the implicit (Baumgarte) scheme for the versions with no and 16
eigenmodes. For the 8 eigen mode model, the rigid joint needs to be solved with the explicit constraint.
This initially resulted in poor simuation performance. However, rotating the constrained component by
90◦ improved the speed significantly. The hypothesis is that this is caused by gimbal lock.
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6 Results

In this chapter the results of the experiments with the ROMs are discussed. The goal is to improve
the prediction of reaction forces with respect to a rigid body model. In figure 6.1 it can be seen that
adding flexibility to the model changes the reaction forces significantly. It also gives an upper limit on
the error of the model reduction step. If the error introduced by model reduction is in the same order
of magnitude as the difference between rigid and flexible, there is no apparent benefit of simulating the
flexibility.

6.1 Comparing reduced order models in Abaqus to full order
model

In general, the accuracy of the simulations with the ROMs are low. This can be explained by the way
Abaqus determines the computational frame.

6.1.1 Comparing reaction forces

To compare the various ROMs with the full order model (and the FFF code) the different IC from
the paper are chosen. The initial rotation leads to large spikes in the reaction forces from the Abaqus
simulation. To circumvent this issue a stationary slider is accelerated to 150 rad s−1 using the smooth
step profile available in Abaqus. The Abaqus model imposes the BC by setting the rotational velocity
of a RP but the python code requires the acceleration of the point at the end of the rotating crank. The
smooth step profile and the derivation of the accelerations are discussed in appendix B.

By combining the difference between flexible and rigid reaction forces with the difference between full
order and reduced order, a quick evaluation of the usefulness of a ROM can be performed. In figure 6.2
it can be seen that for all five reaction forces the difference between the ROM and the full order model is
similar or larger than the difference with rigid body motion. In figure 6.3 it can be seen that for the most
part the error from model reduction is significantly smaller than the difference with rigid body motion.
It can also be seen that adding eight eigenmodes does not drastically change the quality of the ROM.
Looking at figure 6.5 the use of two substructures leads to high frequency noise in the reaction forces.

Looking at figure 6.4 the errors for the models with eigenmodes are all superimposed. The improve-
ment is mainly gained from adding just eight eigenmodes. Looking at figure 6.6 adding more eigenmodes
reduces the high frequency oscillations but it does not reduce the overall error.

Looking at figure 6.7 there seems to be a big difference in model quality between the 3 node and
the 2 substructure ROMs. Looking at the reaction forces in figure 6.8 the larger error can partially be
explained by a phase difference.

6.1.2 Comparing deformation

Although the prediction of deformations is not the main topic of this research is does provide insight
into the accuracy of the ROMs during a transient simulation.

Comparing center deflection

Figure 5.3 shows that the full order model agrees with the FFF on the deflection of the connector at the
center for the smoothstep motion profile. Figure 6.9 shows the deflection for the ROM with 3 nodes and
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Figure 6.1: Reaction forces at rotation center (X1) and at sliding mass (X2) showing the influence of the
flexibility

Figure 6.2: Difference in reaction force for full order and: rigid motion, ROM with 2 nodes & no
eigenmodes (2n0f) and, ROM with 2 nodes & eight eigenmodes (2n8f)
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Figure 6.3: Difference in reaction force for full order and: rigid motion, ROM with 3 nodes & no
eigenmodes (3n0f) and, ROM with 3 nodes & eight eigenmodes (3n8f)

32 eigenmodes and the ROM with 2 substructures with 16 eigenmodes. In terms of DoF these models
are the same. However the deflection of the ROM with 3 nodes is closer to the full order model. It must
be noted that for the center deflection the influence of adding eigenmodes is negligible. This can be seen
in figure E.1. In the case of the ROM with 2 substructures the addition of eigenmodes seems to decrease
the accuracy of the deflection as seen in figure E.2.

6.2 Comparing reduced order models in Amesim to full order
model

Performing the simulation in Amesim shows promising results. The accuracy is higher but the influence
of the additional modes is lower.

6.2.1 Comparing reaction forces

The ROM with two nodes and no eigenmodes does not contain enough information to accurately deter-
mine the reaction forces as can be seen in figure 6.10. Adding the first eight eigenmodes greatly improves
the quality of the reaction forces. Figure 6.11 shows the ROMs with 8 and 16 eigenmodes following the
full order model quite well. The figure also shows that the accuracy of this ROM is higher in Amesim
than in Abaqus. Plotting the reaction forces for all ROMs1 in figure 6.12 shows a distinct difference
between the ROMs with two substructures and the single substructure ROMs. Looking at figure 6.13
there is negligible improvement by adding more nodes or eigenmodes.

6.2.2 Comparing deformation

Looking at figure 6.14 it can be seen that the Amesim model is a bit stiffer than the full order model.
And there is no significant effect of adding dynamic eigen modes. Figure 6.15 shows that the deflection,
just as the reaction forces, show totally different behavior than the full order model.

1Except the ROM with 2 nodes without eigenmodes
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Figure 6.4: Difference in reaction force for full order and: a ROM with 3 nodes without eigenmodes
(3n0f) and with 8, 16 and 32 eigenmodes (3n8f, 3n16f and 3n32f respectively)

Execution time [s]
Abaqus Amesim

2 nodes 0 modes 80.1 8.1
8 modes 81.8 27.5
16 modes 83.6 161.7

2 substructures 0 modes 98 7.04
8 modes 101 101.2342

16 modes 99 31.0313
3 node 0 modes 75.6 21.21

8 modes 75.39 68.75
16 modes 75.4 344.516

Table 6.1: Total cpu time in seconds for the simulation of 0.06 s slider crank motion

6.3 Computational performance

The duration of all simulations for the various ROMs in Abaqus and Amesim are combined in table 6.1.
When simulating in Abaqus the addition of additional DoF does not significantly increase the execution
time. This implicates a bottleneck independent on the number of DoF. The high frequency noise present
in the results of the 2 substructure ROM is probably the cause of the higher execution time. The 2 node
ROM also shows high frequency noise (see figure 6.2), the 3 node 16 eigenmode ROM had over four
times more DoF than the 2 node 0 eigenmodes ROM but is still faster to simulate.

2this model is slightly different than the 0 and 16 mode variants (as discussed in section 5.4)
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Figure 6.5: Difference in reaction force for full order and: rigid motion, ROM with 2 substructures & no
eigenmodes (2ss0f) and, ROM with 2 substructures & eight eigenmodes (2ss8f)

Figure 6.6: Difference in reaction force for full order and: a ROM with 2 substructures without eigen-
modes (2ss0f), with 8 eigenmodes (2ss8f) and 16 eigenmodes(2ss16f)
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Figure 6.7: Difference in reaction force for full order and: a ROM with 2 substructures with 16 eigenmodes
(2ss16f) and a ROM with 3 nodes and 32 eigenmodes(3n32f)

Figure 6.8: Reaction force for full order, a ROM with 2 substructures with 16 eigenmodes (2ss16f) and
a ROM with 3 nodes and 32 eigenmodes(3n32f)

31



Figure 6.9: Center deflection comparing ROM with 3 nodes and 2 substructures

Figure 6.10: Reaction forces at the top of the crank in X direction for the full order model and for the
ROM with 2 nodes and no eigenmodes
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Figure 6.11: Reaction forces at the top of the crank in X direction for the full order model and for the
ROM with 2 nodes and no eigenmodes

Figure 6.12: Reaction forces at the top of the crank in X direction for all ROMs except the ROM with
2 nodes without eigenmodes in Amesim
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Figure 6.13: Difference in reaction forces as a result of adding eigenmodes in Amesim

Figure 6.14: Deflection for the full order model and ROM with 3 nodes with 0, 8 and 16 eigenmodes
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Figure 6.15: Deflection for the full order model and ROM with 2 substructures with 0, 8 and 16 eigen-
modes
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7 Conclusion & Recommendations

Creating a transient simulation of a ROM has proven more interesting than expected. The way Abaqus
determines the location of the computational frames does not work well when a ROM has few nodes.
There is currently no way to overwrite, or verify, the location of the computational frame. Adding
dynamic eigen modes does improve the accuracy of the results somewhat but has hardly any effect on
the computational performance. This implies that, in this case, the size of the system matrix is not the
limiting factor for the performance of the solver.

Running the same models in Amesim results in better accuracy, even with less dynamic eigen modes.
The computational effect of adding modes is however significant. This seems to indicate that the system
matrix of the flexible body is the main contributor of the computational effort. For both Abaqus and
Amesim the subdivision of the flexible body into two elements did not positively influence the accuracy
of the simulation. When also accounting for the additional work of splitting the original model this
approach is not advised.

Apart from the positive results from the Amesim simulations, there are still some downsides of
using Amesim. The constraint components can, dependent on their spacial orientation, greatly slow
down the simulation. There are incompatibilities that, when encountered, do not result in an (explicit)
error message. This resulted in a lot of trial and error to produce working simulations. However these
downsides could probably be addressed in future versions.

7.1 Recommendations

Now that there is a working example of a 3D flexible body simulation in Amesim it will be interesting
to further explore the system modeling aspects of Amesim. Important is to investigate how the addition
of the 1D mechanical elements to simulate imperfections influence the computational performance.

The realtime functionality of Amesim is also be an interesting topic for further research. Looking at
the difference in performance between Abaqus and Amesim, there might be a lot to gain performance
wise when using a different solver in Amesim.
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A.1 Free-free mode shapes

Figure A.1: 1st bending mode (mode 7 & 8) Figure A.2: 2nd bending mode (mode 9 & 10)

Figure A.3: 3rd bending mode (mode 11 & 12) Figure A.4: 4th bending mode (mode 13 & 14)

Figure A.5: 5th bending mode (mode 15 & 16) Figure A.6: 1st torsion mode (mode 17)
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Figure A.7: 6th bending mode (mode 18 & 19) Figure A.8: 7th bending mode (mode 20 & 21)

Figure A.9: 1st longitudinal mode (mode 22) Figure A.10: 8th bending mode (mode 23 & 24)

Figure A.11: 2nd torsion mode (mode 25)
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A.2 Fixed-fixed mode shapes

Figure A.12: 1st bending mode (mode 1 & 2) Figure A.13: 2nd bending mode (mode 3 & 4)

Figure A.14: 3rd bending mode (mode 5 & 6) Figure A.15: 4th bending mode (mode 7 & 8)

Figure A.16: 5th bending mode (mode 9 & 10) Figure A.17: 1st torsion mode (mode 11)
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Figure A.18: 6th bending mode (mode 12 & 13) Figure A.19: 7th bending mode (mode 14 & 15)

Figure A.20: 1st longitudinal mode (mode 16) Figure A.21: 8th bending mode (mode 17 & 18)

Figure A.22: 2nd torsion mode (mode 19) Figure A.23: 3rd torsion mode (mode 24)

Figure A.24: 2nd longitudinal mode (mode 27)
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B Abaqus smooth step

When prescribing a boundary condition for a dynamic step in Abaqus two parameters are needed: the
value of the BC at the end of the step and a function that describes the behavior of the value in time.
This function of time is called an Amplitude in Abaqus. One of these build-in amplitude functions is
the smooth step profile. The smooth step function is a polynomial (equation (B.1)) where the first and
second derivatives are zero at the start and end of the domain. The smooth step is applied to the angular
displacement of the center point of the slider crank.

To prevent high frequency exitations the build-in Smooth step amplitude of Abaqus was used. A
smooth step between amplitude Ai and Ai+1 is defined by equation (B.1). The smooth step, and its
derivatives are visualized in figure B.1.

a = Ai + (Ai+1 −Ai)ξ
3(10− 15ξ + 6ξ2) for ti ≤ t ≤ ti+1

with ξ(t) =
t− ti

ti+1 − ti

(B.1)

Since the equation for the smooth step is a polynomial determining its derivatives and antiderivatives is,
although lengthy, straightforward. If the smooth step is used to prescribe the angle of a joint, the first and
second derivatives of the smooth step function are required to determine the velocities and acceleration as
functions of the time. The antiderivatives are required when the acceleration (or velocity) was prescribed
with the smooth step function to obtain a function for the angle and the acceleration.

When prescribing the rotational velocity or acceleration multiple smooth step functions are sequen-
tially used to create a motion that is similar to the one when the angle is prescribed. When determining
the profile for angle by integration from a prescribed acceleration profile, the two integration constants
that appear are used to assure continuity of the angle in the domain.

To determine the expressions for the derivatives and antiderivatives the expression for ξ was first
substituted into the expression for the smooth step. The symbolic toolbox from MATLAB was used to
perform the derivation and integration steps. For the step as visualized in figure B.1a the terms Ai & ti
are zero and the derivatives and antiderivatives are given in equation (B.2)1. Since the full expressions
are very lengthy they are not included in this report.

1The integration constants are both zero so they drop out

(a) Amplitude of the smooth step
function

(b) 1st derivative of the smooth step
function

(c) 2nd derivative of the smooth step
function

Figure B.1: The Abaqus smooth step function from 0 to 1 in 1 second
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ä = 60tAi+1

2t2 − 3ti+1t+ t2i+1

t5i+1

ȧ = 30Ai+1t
2 (t− ti+1)

2

t5i+1

a = Ai+1t
3 6t

2 − 15ti+1t+ 10t2i+1

t5i+1∫ t

0

a dt = Ai+1t
4 2t

2 − 6ti+1t+ 5t2i+1

2t5i+1∫ t

0

(∫ t

0

a dt

)
dt = Ai+1t

5 2t
2 − 7ti+1t+ 7t2i+1

14t5i+1

(B.2)
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C Center deflection

The method used by [10] to determine a scalar value for the center deflection is shown in this appendix.
The idea is to construct a rotation matrix to transform the global deformations to deformations local
to the connector. For this a rotation vector and angle are determined. The rotation vector v is chosen
to be perpendicular to the plane defined by the x-axis and the line AB, and is normalized. Assumed is
that there is no rotation along the x-axis. The rotation angle is the angle between these lines (in the
undeformed state). The resulting coordinate transformation can be seen in figure C.1a.
The unit vector n along the (undeformed) flexible connector.

L =

 xB

−yA
−zA

 , n =
L

|L| (C.1)

The rotation vector v becomes

v̄ =

 0
−n3

n2

 , v =
v̄

|v̄|
(C.2)

The expression for the rotation angles

sinϕ = −
√
y2A + z2A
Lrod

, cosϕ =
xB

Lrod
(C.3)

The rotation matrix is calculated using the following formula[18]

R = 1+ ṽ sinϕ+ ṽṽ(1− cosϕ) (C.4)

where

ṽ =

 0 −vz vy
vz 0 −vx
−uy ux 0

 (C.5)

The deflection is determined
d = R⊺(xmid − xmid,undeformed) (C.6)

with

xmid,undeformed =
1

2

xB

yA
zA

 (C.7)

The normalized deflection that can be seen in the various deflection plots is obtained by taking the y
value of the deflection vector and dividing by the length of the rod.

In the scripts provided by Karlijn, the deflection is obtained using equation (C.6). Plotting this
coordinate transformation shows an illogical result. Plotting the coordinate transformation with the
inverse of the rotation matrix seems to provide better results, see figure C.1b. Since the goal of this
deflection is purely to compare the results obtained with Abaqus and Amesim to results from the python
code using the Floating Frame Formulation equation (C.6) is used in this research.
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θ = 50◦

x
yz

x
y

z

A

B

v̄

yzϕ

(a) The coordinate transformation for a rotation angle
of 50° as calculated by the rotation matrix from equa-
tion (C.4)

θ = 50◦

x
yz

x

y
z

A

B

v̄

yzϕ

(b) The coordinate transformation for a rotation an-
gle of 50° as calculated by the inverse of the rotation
matrix from equation (C.4)
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D Converting an Abaqus substruc-
ture to Amesim modal data

By default Abaqus does not export the mass and stiffness matrices during substructure generation in an
open format. There is a way to export these values but it is not supported in the Abaqus CAE so the
input file for the solver must be edited manually. In the substructure generation step the generation of
the mass matrix must also be manually enabled.

*SUBSTRUCTURE MATRIX OUTPUT, file name=systemMatrices, mass=YES, OUTPUT
FILE=USER DEFINED, STIFFNESS=YES

By adding this line a .mtx file is generated containing the order of the nodes and their exported DoF,
the number of nodes corresponding to normal modes, and the sparse representation of the mass and
stiffness matrices. The file extension implies a file formatted according to the Matrix Market Exchange
Format[19], the file does not comply with this format but the matrices are stored according to the
Hermitian format. At Reden a python script was already available to parse the mtx file into a numpy
array.

From the scipy linear algebra toolkit the eigh function can be used to solve the eigenvalue problem
where the stiffness matrix should be the first argument and the mass matrix the second. This function
returns the eigenvectors as columns in the matrix

The final steps are to trim the first 6 eigenvalues and corresponding eigenvectors, removing the
rows corresponding to the normal modes and saving the transpose of the result. Amesim expects the
eigenvectors as rows in the matrix.
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E Center deflection
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Figure E.1: Center deflection for ROM with 3 nodes
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Figure E.2: Center deflection for ROM with 2 substructures
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