
 
 

 

 

 

Estimation of Transplanting and 

Harvest Dates of Rice Crops in the 

Philippines Using Sentinel-1 Data 
 

 

 

 

 

ARTURO G. CAUBA JR. 

June 2023 
 

 

 

 

SUPERVISORS: 

Dr. Roshanak Darvishzadeh 

Dr. Michael Schlund  
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Estimation of Transplanting and 

Harvest Dates of Rice Crops in the 

Philippines Using Sentinel-1 Data 
 

 

 

 

 

ARTURO G. CAUBA JR. 
     Enschede, The Netherlands, June 2023 

 

      

Thesis submitted to the Faculty of Geo-Information Science and Earth Observation of 

the University of Twente in partial fulfilment of the requirements for the degree of 

Master of Science in Geo-information Science and Earth Observation. 

Specialization: Natural Resources Management 
 

 

SUPERVISORS: 

Dr. Roshanak Darvishzadeh 

Dr. Michael Schlund  
 

 
 
 

THESIS ASSESSMENT BOARD: 

Prof. Dr. Andy Nelson (Chair) 

Dr. Alice Laborte (External Examiner, International Rice Research Institute)  
 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

DISCLAIMER 
 

This document describes work undertaken as part of a programme of study at the Faculty of Geo-Information Science and Earth 

Observation of the University of Twente. All views and opinions expressed therein remain the sole responsibility of the author, and do not 

necessarily represent those of the Faculty. 



 

 
i 

 

ABSTRACT  
 

Rice is an important staple crop in the Philippines; hence, accurate estimation of its transplanting and 

harvest dates is essential for efficient crop management and resource allocation. Remote sensing data, such 

as Sentinel-1 Synthetic Aperture Radar (SAR) data, offer valuable information for monitoring agricultural 

activities and predicting crop phenology. This study focused on utilizing Sentinel-1 SAR data to estimate 

the transplanting and harvest dates of rice crops in two distinct seasons, namely the dry and the wet seasons, 

in the provinces of Agusan del Sur, Cagayan, and Leyte. Transplanting and harvest dates of rice fields were 

obtained through farmer interviews conducted by the International Rice Research Institute (IRRI). A total 

of 99 rice fields were further considered (19 in Agusan del Sur, 38 in Cagayan and 42 in Leyte) in this study. 

Time series data from Sentinel-1A (obtained from IRRI) and Sentinel-1B (extracted from Google Earth 

Engine) were merged, and the mean backscatter coefficients in VV, VH, and VH/VV polarizations were 

extracted at the rice field level to create time series curves. The locally weighted scatterplot smoothing 

(LOWESS) method was applied to smoothen the time series data, and the R2 values were used to assess 

the goodness of fit between the original and smoothed curves. Periodogram analysis and the Breusch-

Godfrey test were employed to identify repetitive patterns and their statistical significance. Local extrema 

and corresponding dates were identified to indicate transplanting and harvest dates. The detected dates 

were then compared with those from the field survey data provided by the IRRI.  

The evaluation of the goodness of fit revealed the variability of the time series data. VV polarization data 

during the wet season exhibited the lowest R2 values (median R2 < 0.4), with Agusan del Sur and Leyte 

provinces demonstrating higher variability than the Cagayan province. Conversely, VH data consistently 

displayed the highest R2 values across all three provinces (median R2 > 0.59), indicating stronger linear 

relationships between the original and LOWESS-smoothed time series curves. Around the transplanting 

period, the backscatter coefficients decreased, resulting in minimal backscatter. We observed some 

discrepancies between the transplanting dates reported by farmers and our detected dates. During the dry 

season, the lowest root mean squared differences (RMSD) for transplanting dates were 9.2, 16, and 13.6 

days and during the wet season, were 14, 29, and 27 days in Agusan del Sur, Cagayan, and Leyte, respectively. 

When estimating the harvest dates, VH and VH/VV polarization consistently corresponded to the local 

maximum immediately after the first local minimum. In contrast, VV polarization dates were associated 

with either the first or second local maximum after the first local minimum. During the dry season, the 

lowest RMSD for harvest dates were 17.5, 16, and 16 days and during the wet season were 8, 14, and 22 

days in Agusan del Sur, Cagayan, and Leyte, respectively. In a nutshell, our results revealed the potential of 

VH and VV polarizations for estimating transplanting and harvest dates during the dry season, while 

VH/VV polarization showed promising results for estimating these dates mainly during the wet season. 

This research has significant implications for the agricultural sector, providing opportunities to optimize 

crop management practices, allocate resources effectively, and support sustainable rice production. 

Keywords: Rice, crop management, transplanting, harvest, Sentinel-1, SAR, time series, LOWESS, R2, 

backscatter coefficient, RMSD, local minimum, local maximum 
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1. INTRODUCTION 

1.1. Background 

 
The human population is expected to reach over 9 billion in 2050 (United Nations, 2019). This high 
population projection is alarming as it entails more demand for food, shelter, and energy resources to sustain 
human existence. In 2020, nearly one in three, around 2.37 billion people, had insufficient food (FAO, 
2021). Besides, healthy diets appeared out of reach due to the soaring price of nutritious food paired with 
persistently high levels of income inequality (FAO, 2021). This problem has intensified since the Covid-19 
pandemic started. Thus, the goal of ending food insecurity remains exceptionally challenging. The number 
of people affected by hunger may stay the same or continue to rise if concrete actions such as sustainable 
production of crops are not taken to accelerate progress and deal with the drivers of food insecurity. 
Another concern is that the resources consumed for human survival have been overexploited and utilized 
unsustainably due to the competing demands that lead to the degradation of the environment and 
continuous scarcity of natural resources (FAO, 2017). With the degradation of the environment and 
growing population, producing more crops turns out to be a challenge and food shortage has become 
prevalent. Hence, understanding the condition of the environment to optimize crop production is vital to 
solving the concern of food security. 

Crop production is crucial for sustaining the global population by providing essential food crops like 
cassava, maize, potatoes, rice, soybeans, sweet potatoes, and wheat. These crops play a vital role in meeting 
the dietary needs of individuals and communities worldwide. Similarly, crop production provides income 
to local farmers (Steffany et al., 2017) and generates employment in numerous rural communities (Schwarcz 
et al., 2012). Rice is considered the most valuable food crop in several countries and is the staple food of a 
considerable part of the world’s population (Seck et al., 2012). The Philippines is one of the largest rice 
consumers globally, with 14.85 million metric tons of rice consumption in 2021/2022 (Statista, 2022). 
Hence, with the vast number of rice consumption, the Philippines imports rice regularly to resolve the 
country’s rice deficits (Davidson, 2016). The value of rice in the country is apparent; thus, rice production 
must be improved to meet the food demand. However, yield-limiting and yield-reducing factors challenge 
the goal of increasing rice production sustainably. The viable approach is to provide accurate temporal 
information on crop and water management practices and optimizing the use of the limited environment 
and socio-economic resources (Fikriyah et al., 2019). The temporal information on rice status is also 
essential to simulate rice growth models used to support agronomic management to evaluate production. 
Furthermore, the information on when the rice crops are being planted and harvested can help deliver 
production inputs and provide suggestions on the suitable crop calendar to manage the impact of the 
changing climatic conditions (Imran et al., 2018). 

The choice of planting method plays a vital role in agricultural practices, influencing crop establishment, 
growth, and overall productivity. Two commonly employed methods are direct seeding and transplanting. 
Transplanting involves raising seedlings in a separate nursery and later transferring them to the desired 
location (Hossain et al., 2002). Avoiding asynchronous planting is essential as it can affect crop production. 
A study conducted for some provinces of the Philippines revealed that high disease incidence in rice crops 
was linked to asynchronous planting, while synchronous planting was associated with low disease incidence 
(Cabunagan et al., 2001). Knowing the harvest date of rice crops can significantly impact the farmer’s profit. 
In recent years, the market price of rice in the Philippines has fluctuated with its highest price in 2018 
(Philippine Statistics Authority, 2021). This market price instability may be avoided when the government 
knows how much and when the rice will be harvested. Moreover, Turner et al. (2021) showed that 
prolonged harvest delays led to increased lodging incidence, significantly reducing the estimated yield by up 
to 42.5%. By considering these factors, farmers and policymakers can make informed decisions to optimize 
planting methods, promote synchronous planting, and effectively manage harvest timing, improving crop 
productivity and economic outcomes in the agricultural sector. 

Examining the crop phenological stages of rice crops may help detect the transplanting and harvest dates. 
Monitoring rice phenology on the ground is accurate when appropriately executed but is expensive, time-
consuming, and impractical on a large scale (Corcione et al., 2016). Satellite observation is suitable for 
studying efficiently huge rice field areas. Several spaceborne optical and microwave sensors have been 



ESTIMATION OF TRANSPLANTING AND HARVEST DATES OF RICE CROPS IN THE PHILIPPINES USING SENTINEL-1 DATA 

 

2 

 

launched over the past decades, and various methods have been developed, which paved the way to a more 
convenient and inexpensive way of investigating the development of rice crops. Estimating of rice 
phenology dates has been done through the time-series data of vegetation indices derived from Landsat 
(Wang et al., 2015) and Moderate Resolution Imaging Spectroradiometer (MODIS) (Sakamoto et al., 2005). 
In the study of Suwannachatkul et al. (2014), MODIS time-series data was used to estimate rice cultivation 
and harvest dates. Similarly, a research work by Chumkesornkulkit et al. (2013) aimed to estimate rain-fed 
rice cultivation dates using MODIS NDVI data and found that the accuracy of estimating rice cultivation 
and harvest dates was degraded due to weather conditions in the rainy season. The NDVI data can be 
affected by clouds, mainly in the rainy season. Hence, the drawback of optical sensors is the inability to 
observe the ground surface and capture information for areas covered with clouds, as clouds typically block 
visible-to-near infrared sunlight. In addition, it is sensitive to varying climatic conditions (Thies & Bendix, 
2011). Microwave sensors like Synthetic Aperture Radar (SAR) offer advantages over optical sensors. SAR 
can penetrate clouds, making it less affected by the atmosphere and weather (He et al., 2018). Being an 
active sensor, SAR is not dependent on sunlight and can acquire data day and night (Walls et al., 2014). 
Hence, this continuous imaging capability increases the likelihood of obtaining usable acquisitions.  

Various studies have shown the capability of SAR data to capture information related to the morphology 
and phenological stages of rice crops as well as the standing water underneath the vegetation (Lopez-
Sanchez et al., 2012; Vicente-Guijalba et al., 2014). Lasko et al. (2018) implemented a random forest 
classifier to compare the different Sentinel-1 SAR datasets at varying spatial scales and polarizations for 
mapping double and single paddy rice and estimate the start of the season, end of the season, and length 
of the rice crop season at the commune level. The result highlighted the efficiency of Sentinel-1 in mapping 
rice paddy and showed that VVVH10m is the most accurate dataset for rice mapping with 93.5% overall 
accuracy. An earlier study in the Philippines indicated that multi-temporal SAR data could detect the rice 
area and the start of season dates (Gutierrez et al., 2019). Similar studies were also performed by Cota et al. 
(2015), who investigated rice phenology based on statistical models for time-series RADARSAT-2 SAR 
data and Li et al. (2016), who explored the use of RADARSAT-2 full-polarimetric SAR data in rice 
monitoring and retrieval of rice phenology. The previous studies generally focused on mapping rice fields 
and estimating the rice crop season and the different phenological stages such as vegetative, reproductive 
and maturity phases, while detecting transplanting and harvesting periods using Sentinel-1 SAR data has 
not been studied yet.  

SAR data has been free and accessible to the communities of researchers since the launch of the Sentinel-
1 satellite in 2014, and its potential has been demonstrated for several applications in various fields (Braun, 
2021). With the constellation of Sentinel-1A and 1B, the revisit time has become six days due to acquisition 
overlap, and with SAR sensors, the data acquisition is feasible amidst all atmospheric conditions (Torres et 
al., 2017). The higher revisit period (six days) is limited only to some areas such as European countries. In 
some regions, like the Philippines, image acquisition generally occurs every twelve days in a descending pass 
(ESA, 2021). Nevertheless, Sentinel-1 SAR data is freely available and shows potential for estimating rice 
crop transplanting and harvesting dates. 

In modelling and analyzing RS time series data, the function fitting procedure is a useful tool employed to 
reduce the noise and reconstruct the vegetation index time series. In the study conducted by Gumbricht 
(2016), the locally weighted scatterplot smoothing (LOWESS) method was utilized to effectively smooth 
the MODIS time series and model soil moisture dynamics. By applying this method, the resulting smoothed 
time series demonstrated increased robustness, enhancing the accuracy of identifying wetness phenology. 
A related study by Dai et al. (2022) further demonstrated the effectiveness of the LOWESS smoothing 
method in combination with the Random Forest algorithm's selection of three specific features: daily 
maximum temperature, daily cumulative radiation, and daily minimum temperature. Utilizing the LOWESS 
smoothing method resulted in minimized values for mean squared error, mean absolute difference, and 
mean absolute percentage error. Although the potential of LOWESS in detecting the date of phenological 
stages has been demonstrated in the above mentioned studies using optical remote sensing data, its 
application in time series analysis using SAR data has been relatively underexplored. 

The determination of dates for important phenological stages in rice crops, such as transplanting and 
harvest, can be accomplished through the application of relative or absolute thresholds (Jenkins et al., 2002) 
or the identification of local extrema (Palacios-Orueta et al., 2012). Previous studies have successfully 



ESTIMATION OF TRANSPLANTING AND HARVEST DATES OF RICE CROPS IN THE PHILIPPINES USING SENTINEL-1 DATA 

3 

 

utilized the identification of local extrema, specifically minimum and maximum values, to indicate various 
phenological stages in different crops. For instance, Palacios-Orueta et al. (2012) found that minima derived 
from fitted functions of MODIS time series data coincided with significant crop management dates during 
the growth period of cotton crops. Similarly, Schlund & Erasmi (2020) observed that the local maximum 
of Sentinel-1 time series data in VH polarization occurred after the mil ripeness stage, signifying the time 
of yellow ripeness or even harvest in wheat. In the context of Sentinel-1 SAR data, during the transplanting 
stage, when rice seedlings are transplanted and submerged in flooded fields, the dominant backscatter 
mechanism is the specular reflection on the water surface, resulting in minimal capture of backscatter 
coefficients by Sentinel-1 SAR (Clauss et al., 2018). Consequently, this minimum value can serve as a robust 
indicator of the transplanting date. Similarly, during the harvest stage, when rice plants reach maturity and 
are ready for harvesting, the backscatter coefficients are relatively higher compared to the initial crop 
establishment phase. Additionally, Mandal et al. (2018) noted that the backscatter coefficients were 
comparatively high after rice harvesting. Therefore, the peak of backscatter coefficients captured by a local 
maximum value can signify the harvest dates of rice crops. These local extrema act as reliable indicators of 
important stages in the rice growth cycle. Consequently, this study has thoroughly investigated the 
extraction of local extrema from Sentinel-1 time series by identifying local minimum and maximum values.  

1.2. Problem statement 
 

One of the United Nation’s Sustainable Development Goals (SDGs) is to end hunger, achieve food security 
and improved nutrition and promote sustainable agriculture (United Nations, 2016). To realize this goal, it 
is necessary to ensure that sustainable crop production takes place, producing adequate food for all. Rice 
has been considered the most valuable crop in many countries and the staple food of the Philippines. 
Accurate estimation of transplanting and harvest dates can prevent asynchronous planting, which may be 
associated with a high disease incidence of rice crops, assist in the timely delivery of production inputs and 
guarantee farmers a reasonable market price for rice, promoting sustainable production. The above 
literature review reveals that researchers who investigated the rice crop season and phenological stages, 
such as germination, tillering, flowering and ripening, showed the potential of SAR data in detecting the 
dates of the phenological stages . However, most studies have focused on using SAR data on small-scale 
applications (at the commune level) and within the same season. The potential of Sentinel-1 data to detect 
both the transplanting and harvest dates in study areas with varying climate or rainfall distribution and at 
different seasons has not been examined.  

The Philippines has a diverse climatology categorized into four climate types based on monthly rainfall 
distribution (Basconcillo et al., 2018). Hence, this study aims to explore the potential of multi-temporal 
Sentinel-1 SAR data for estimating the transplanting and harvest dates of rice crops at different seasons 
across regions with varying climates in the Philippines. The LOWESS function fitting procedure was 
employed in this research to extract local extrema, which were then compared with the data obtained from 
farmer surveys. The insights gained from this study can be valuable inputs for rice crop production 
simulations, enabling decision-makers to formulate policies that promote food security and social stability.  

1.3. Objectives, research questions and hypotheses 

 
The aim of this study is to assess the potential of multi-temporal Sentinel-1 SAR data in estimating the 
transplanting and harvest dates of rice crops across different seasons and provinces in the Philippines.  

The specific objectives, research questions and hypotheses are: 

a) To evaluate the performance of the LOWESS function fitting method in modelling the Sentinel-1 
time series for rice crops. 
1. Research Question: To what extent does the LOWESS function fitting method effectively fit 

the original Sentinel-1 time series data for rice crops, ensuring noise reduction while preserving 
essential details? 
Hypothesis: The LOWESS function fitting method effectively reduces noise and preserves 
important details when fitting the original Sentinel-1 time series data for rice crops. 
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b) To determine the SAR metrics and local extrema that can be utilized to derive the transplanting 
and harvest dates of rice crops. 
1. Which SAR metrics and local extrema at various polarizations hold significance in the 

detection of transplanting and harvest dates of rice crops within the study area? 
Hypothesis: The utilization of specific SAR metrics and local extrema at various polarizations 
demonstrates a significant correlation with the accurate detection of transplanting and harvest 
dates of rice crops within the study area. 
 

c) To assess the spatial and temporal transferability of the method used for estimating transplanting 
and harvest dates. 
1. Research Question: How does the method used for estimating transplanting and harvest dates 

demonstrate spatial and temporal transferability? 
Hypothesis: The method for estimating transplanting and harvest dates exhibit spatial and 
temporal transferability, demonstrating consistent accuracy across different spatial locations 
and seasons. 

 

1.4. Conceptual diagram 
 

The conceptual diagram (Figure 1.1) depicts the system boundary and the relationships between elements 
and processes within the system. It encompasses the entire Philippines as the main system. With rapid 
population growth, the country has an increasing demand for rice while agricultural land is diminishing due 
to conversion into residential or urban areas. The characteristics and conditions of crop fields are influenced 
by various factors, including crop types, planting methods, crop calendars, soil types, and water availability. 
Moreover, the weather and climate of the country significantly impact the crop fields. The farmers, 
supported by the Department of Agriculture, play a crucial role in managing the farms. The harvested crops, 
particularly rice, are then sold in the market, and consumers purchase food based on their dietary 
requirement

Figure 1.1 Conceptual diagram 
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2. STUDY AREA AND DATASETS 
 

2.1. The Philippines 

 

The study area encompasses the entire Philippine archipelago in Southeast Asia. It consists of 7,641 islands 
and is divided into three major island groups: Luzon, Visayas and Mindanao (FAO, 2022). The country 
spans between 4°23' north and 21°25' north latitudes, and 116° east and 127° east longitudes, with a total 
land area of 300,000 square kilometers (FAO, 2003). The Philippines is made up of 81 provinces, which 
are grouped into 17 regions. Its terrain is predominantly mountainous, with coastal lowlands. Agriculture 
plays a significant role in the Philippine economy due to the favorable soil conditions throughout the 
country, and many rural Filipinos depend on agricultural activities as their main source of income (Statista 
Research Department, 2021). For this study, three different provinces in the Philippines have been selected 
as the study area for estimating the transplanting and harvest dates of rice crops. These provinces are 
Cagayan (CGY) in Region 2, Leyte (LYT) in Region 8, and Agusan del Sur (ADS) in Region 13. Rice crops 
in the Philippines are typically cultivated during wet and dry seasons. In the country, the Department of 
Agriculture has implemented a crop calendar that defines the planting periods for rice based on two 
semesters. The dry season, referred to as semester 1, spans from September 16 to March 15. On the other 
hand, the wet season, known as semester 2, covers rice planting between March 16 and September 15 
(Gutierrez et al., 2019). The Philippine climatology is characterized by its diversity, and it can be classified 
into four climate types based on the distribution of rainfall throughout the year (Figure 2.1). 

 

Figure 2.1 Location of the study area (Agusan (red), Cagayan (green) and Leyte (purple)) within the Philippines 
(left). Base map source: ESRI. and climate map of the Philippines (right). Source: MapSof.net 
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2.2. Farmers’ interview and field survey data 

 
This study utilized an existing dataset provided by the International Rice Research Institute (IRRI) as part 
of the Pest and Disease Risk Identification and Management (PRIME) project. Field data were collected 
from 99 rice fields in three provinces mentioned in the study area (19 fields in Agusan del Sur, 38 fields in 
Cagayan, and 42 fields in Leyte) were used for analysis. The data covered the period from 2017 to 2018 and 
included information gathered through interviews with farmers between February 17, 2019, and April 17, 
2019. 

The farmers' interviews captured data for two growing seasons: the wet and dry seasons in 2017-2018. 
These interviews gathered information about the rice fields, including crop types, crop establishment 
methods, crop calendars, land preparation, transplanting dates, flowering periods, and harvest dates. The 
specific focus of interest for validation purposes was the transplanting and harvest dates. However, the data 
has a midweek date as the event date instead of exact dates. To determine the appropriate duration of the 
time series to be analyzed, histograms (Figure 2.2 to Figure 2.7) were created for both transplanting and 
harvest dates. The dataset from the three provinces was utilized to test the methodology and evaluate the 
effectiveness of utilizing multi-temporal Sentinel-1 time series data in detecting transplanting and harvest 
dates of rice crops. 

 

Figure 2.2 Distribution of transplanting dates for 19 rice fields in Agusan del Sur 

 

Figure 2.3 Distribution of transplanting dates for 38 rice fields in Cagayan 
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Figure 2.4 Distribution of transplanting dates for 42 rice fields in Leyte 

 

Figure 2.5 Distribution of harvest dates for 19 rice fields in Leyte 

 

Figure 2.6 Distribution of harvest dates for 38 rice fields in Cagayan 
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Figure 2.7 Distribution of harvest dates for 42 rice fields in Leyte 

 

2.3. Sentinel-1 multi-temporal SAR data 

 
The Sentinel-1 mission consists of two polar-orbiting satellites equipped with a C-band Synthetic Aperture 
Radar (SAR) imaging system. It was launched under the framework of the Copernicus programme by the 
European Space Agency (ESA) (Torres et al., 2017). Sentinel-1 SAR data from the ESA’s Copernicus Hub 
was used in the study. The available Sentinel-1 products that are freely accessible include Level-1 data, 
which are provided in two formats: Single Look Complex (SLC) and Ground Range Detected (GRD) 
(Aulard-Macler, 2011). GRD products refer to SAR data, detected, multi-looked, and projected to ground 
range using an Earth ellipsoid model (Stasolla & Neyt, 2018). In addition, Sentinel-1 offers three common 
acquisition modes for GRD products: Interferometric Wide (IW) swath, Extra-Wide (EW) swath, and 
Stripmap (SM). This study specifically utilized the Sentinel-1 GRD SAR products with IW swath mode. 
This particular data has been extensively employed in various agricultural applications due to its suitability 
(Lasko et al., 2018; Torbick et al., 2017; Veloso et al., 2017). As Sentinel-1A data was already available, the 
Sentinel-1B data was pre-processed and extracted from the GEE (Google Earth Engine) platform. Table 
2.1 presents the metadata of the dataset, providing additional information about its characteristics. 

Table 2.1. Specifications of the Sentinel-1 data used in the study 

Characteristic Description 

Satellite Sentinel-1A and Sentinel-1B 

Polarization Dual polarimetry (VH, VV) 

Repeat cycle 12 days per satellite 

Orbit direction Sun-synchronous (descending pass) 

Band (central frequency) C-band (5.405 GHz) 

Azimuth and range resolution 22 m by 20 m 

Pixel spacing 10 m by 10 m 

Sensing mode Interferometric Wide Swath (IW) mode 

Incidence angle 30° to 46° 

 

The backscatter coefficients extracted from Sentinel-1A and 1B are presented in Table 2.2 and Table 2.3, 

respectively. The dry and wet seasons were determined using the field survey data and the crop calendar 

established by the Department of Agriculture. The extracted data were integrated to generate a more 

frequent time series to enhance the temporal resolution. By combining the datasets of Sentinel-1A and 1B, 

the temporal resolution improved from 12 days to 6 days across the three provinces. However, there were 
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instances during the wet season when Sentinel-1B failed to capture backscatter information for certain 

periods. Specifically, in Agusan del Sur and Cagayan, the number of Sentinel-1B images was lower compared 

to Sentinel-1A. In other words, there were several occasions during the wet season when the Sentinel-1B 

backscatter coefficients were unavailable for these two provinces. 

Table 2.2 Number of Sentinel-1A images used for extraction of backscatter coefficients  

 Dry Season Wet Season 

Agusan del Sur 17 21 

Cagayan  18 16 

Leyte 17 18 

 

Table 2.3 Number of Sentinel-1B images used for extraction of backscatter coefficients 

 Dry Season Wet Season 

Agusan del Sur 18 16 

Cagayan  18 10 

Leyte 17 17 
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3. METHODOLOGY 
 

3.1. Research methodology 

 
Figure 3.1 depicts the flowchart of the methodology, comprising three distinct phases: Sentinel-1 SAR data 
processing, SAR metrics processing, and retrieval of transplanting and harvest dates. The first phase, 
Sentinel-1 SAR data processing, involves extracting Sentinel-1B time series data and integrating it with the 
existing Sentinel-1A time series data. IRRI was responsible for downloading and pre-processing Sentinel-
1A data, while the NRS Department of ITC computed the mean backscatter for each field. The Sentinel-
1B mean backscatter for each field was obtained through the GEE platform. The extracted mean 
backscatter coefficient in VV, VH, and the VH/VV polarizations were used as inputs for the time series 
analysis. 

 

Figure 3.1 Methodology flowchart 
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The LOWESS function fitting method was employed in the second phase to smooth the time series data. 
The goodness of fit was evaluated by computing the coefficient of determination (R2) between the original 
and LOWESS-smoothed time series curves. The number of periodic components or repetitive patterns in 
the time series was determined by employing periodogram analysis. To establish the statistical significance 
of the presence of repetitive patterns, the Breusch-Godfrey test was conducted. Subsequently, the SAR 
metrics and local extrema of the function fitted time series in VV, VH, and VH/VV were identified. The 
dates corresponding to the detection of local extrema were retrieved, and these dates were used to 
determine the transplanting and harvest dates of rice crops. Finally, the detected transplanting and harvest 
dates derived from the Sentinel-1 time series were compared to the information obtained from the field. 

3.2. Sentinel-1 SAR data processing 

 
The Sentinel-1A dataset provided by IRRI contains temporal backscatter coefficient values for each rice 
field. Due to the separate preprocessing of data from different seasons and overlapping dates between the 
end and start dates of seasons, the backscatter coefficients exhibited varying values in  some instances. To 
address this issue, a mean value of the backscatter coefficient for each specific date was calculated and 
adopted as the representative value. This approach was implemented to ensure consistency and accuracy in 
cases where conflicting backscatter coefficient values were present. 

The Sentinel-1B data was extracted using the GEE platform after receiving the Sentinel-1A data. The study 
area was defined by creating a subset or boundary using polygons representing the rice fields. The Sentinel-
1B collection was filtered based on properties such as transmitter-receiver polarization, instrument mode, 
and date. The GEE platform automatically executed preprocessing steps to derive the backscatter 
coefficient for each pixel in the study area. 

The Earth Engine 'COPERNICUS/S1_GRD' Sentinel-1 Image Collection showcases imagery obtained 
from Level-1 GRD scenes, which have been processed to represent the backscatter coefficient in decibels 
(dB) (Google Earth Engine Developers, 2022). The scattering behavior is influenced by various factors, 
including the physical characteristics of the terrain, such as the geometry of the terrain elements and their 
electromagnetic properties. To derive the backscatter coefficient for each pixel, Earth Engine employs a 
series of preprocessing steps, following the methodology implemented by the Sentinel-1 Toolbox. These 
steps include applying the orbit file, removal of GRD border noise, elimination of thermal noise, 
radiometric calibration, and terrain correction. These preprocessing techniques ensure the comparability 
and quality of the backscatter coefficient measurements obtained from the Sentinel-1 images in Earth 
Engine.  
 
The backscatter coefficients per rice field were exported as tables. After obtaining the Sentinel-1A and B 
datasets, integration and filtering of the time series data were conducted. The ordering of the time series 
data was based on the acquisition dates. The resulting stacks of calibrated Sentinel-1 time series data were 
then utilized as inputs for extracting the mean backscatter coefficients in VV, VH and VH/VV 
polarizations. 
 

3.3. LOWESS function fitting technique 

 

To reconstruct the Sentinel-1 time-series curves and to make the data smooth, temporal filtering was  
performed through a LOWESS function fitting method, which is commonly employed in some remote 
sensing phenology analyses (Derkacheva et al., 2020; Gumbricht, 2016; Nilsson et al., 1997; Pouliot et al., 
2008). The purpose of this smoothing process was to reveal underlying patterns and reduce noise while 
preserving important details. LOWESS is a non-parametric regression method that combines the benefits 
of scatterplot smoothing and local regression (Cleveland, 1979). It provides a flexible and adaptive method 
for modeling complicated data patterns by giving weights to neighboring data points.  
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3.3.1. Fraction parameter estimation using k-fold cross validation 

 

In LOWESS, the fraction parameter plays a key role in determining the level of smoothing applied to the 

data (Cleveland, 1979). It determines the extent of the neighborhood or window used to calculate the local 

regression for each data point (Figure 3.2.). A larger fraction parameter incorporates more data points in 

the local regression calculation, resulting in a smoother fit (Derkacheva et al., 2020). It corresponds to a 

larger window size, which means a greater number of neighboring data points were considered when 

calculating the local regression. As a result, it yields a smoother curve or estimates of the underlying trend. 

Moreover, a larger fraction parameter assigns more weight to distant points, leading to a more global 

smoothing effect. Conversely, a smaller fraction parameter corresponds to a smaller window size, meaning 

fewer neighboring points were considered in the local regression calculation (Derkacheva et al., 2020). This 

results in a less smoothed curve or estimates that are more sensitive to local fluctuations. A smaller fraction 

parameter assigns more weight to nearby points, leading to a more localized or detailed smoothing effect.  

The dominant optimal values for the fraction parameter in LOWESS smoothing were determined for each 
province, season and polarization through k-fold cross-validation. A standard choice for "k" is often 10, 
balancing computational efficiency and reliable model performance estimation (Fushiki, 2011). The dataset 
was divided into 10 equal-sized folds, allowing for iterative training and evaluation of the model. In each 
iteration, one fold served as the validation set, while the remaining folds were used for training (Wong & 
Yeh, 2020). This approach ensured a fair assessment of the model's performance across all folds. Mean 
squared error (MSE) was computed as a performance metric to evaluate different fraction parameter values 
(Wong & Yeh, 2020). Since the backscatter coefficients from Sentinel-1 were in decibels (dB), a conversion 
to the linear scale was performed using the formula:  
 

Linear value = 10 (dB/10), 
 
where dB represents the backscatter coefficient value in decibels. The MSE was then calculated based on 
the linear-scale data, enabling effective comparison and selection of the optimal fraction parameter for 
LOWESS smoothing. The fraction parameter with the lowest MSE was chosen as the optimal parameter. 
Afterward, the backscatter coefficients were transformed back to dB in order to apply LOWESS smoothing. 
The smoothing process utilized the dominant optimal fraction parameter identified for each season, 
province, and polarization. The iterative process of adjusting the fraction parameter and repeating k-fold 
cross-validation led to the identification of the value that achieved the highest model performance. 

 

Figure 3.2 Principles of LOWESS. Black points are the source data; narrow red lines are the local regression 
solutions; the thick rose line is a final LOWESS solution. The gray area on the sub-panel represents a weight-

defining function. Source: (Derkacheva et al., 2020)  
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3.3.2. Evaluation of the goodness of fit 

 

To assess the effectiveness of the LOWESS temporal function fitting method in modelling the Sentinel-1 
time series for rice crops, the evaluation of the goodness of fit between the original and LOWESS-smoothed 
time series curve involved calculating the coefficient of determination (R2). R2 quantifies the proportion of 
the original time series variance that is explained by the LOWESS-smoothed time series curve. A higher R2 
value indicates a better fit of the model or fitted function to the original data, suggesting a stronger 
relationship between the smoothed curve and the actual observations (Moore & McCabe, 1999). Conversely, 
a lower R2 value indicates a poorer fit, indicating that the fitted function does not accurately capture the 
variability in the original time series (Moore & McCabe, 1999). The calculation of R2 provides a valuable 
metric to assess the performance and suitability of the LOWESS smoothing approach for modelling the 
Sentinel-1 time series of rice crops, providing insights into the accuracy and reliability of the obtained 
smoothed curves. 

3.4. Periodogram analysis and statistical significance test 

 

Periodogram analysis, which identifies periodic patterns in a time series, was employed to determine the 
presence and number of repeated patterns in the data (Palacios-Orueta et al., 2012). By examining the 
periodogram, the general pattern of the fitted function can be understood, and the number of local extrema 
can be identified. This analysis helps to determine whether there is a single or double cycle during the growing 
period in the LOWESS-smoothed time series. A statistical significance test called the Breusch-Godfrey (BG) 
test was conducted to verify the presence of these repetitive patterns. BG test is widely used to examine 
autocorrelation in errors (Breusch, 1978; Godfrey, 1978). It is a popular choice among practitioners due to 
its ease of application and applicability in the presence of lagged dependent variables, allowing for a 
comprehensive assessment of serial correlation in errors (Edgerton & Shukur, 2007; Mahan et al., 2015). 
The purpose of the BG test in this context was to determine whether the observed data variations deviate 
significantly from white noise or random fluctuations that a regression model cannot explain. According to 
Fuller (1996), the confirmation that the backscatter coefficients represent white noise suggests the absence 
of any periodic component. In other words, if the backscatter coefficients exhibit characteristics of white 
noise, it implies that there are no discernible repetitive patterns or periodicity present in the data.  

3.5. Retrieval of transplanting and harvest dates 

 

The LOWESS smoothing process generated a smoothed time series curve, capturing the underlying 
patterns and reducing noise in the Sentinel-1 data for rice crops. From this smoothed curve, various SAR 
metrics and local extrema were extracted, encompassing the local minima and local maxima of the different 
Sentinel-1 polarizations. Identifying and analyzing these local extrema are essential for assessing the overall 
shape and behavior of the function-fitted time series. The presence and count of local maxima and minima 
provide insights into the cyclical nature and growth patterns exhibited by the time series (Palacios-Orueta 
et al., 2012). Specifically, the presence of one local maximum or minimum may indicate that the function-
fitted time series has the shape of a single cycle through a growing period. Point x was identified as the 
local maxima if f(x) ≥ f(x0), while point x was defined as a local minima if (x) ≤ f(x0), where x0 is the point 
next to x (Schlund & Erasmi, 2020).  

To estimate the transplanting and harvest dates of rice crops, the identified local extrema in VV, VH, and 
VH/VV polarizations were associated with specific dates. The dates associated with the detected local 
minima were indicative of the transplanting date, as the rice seedlings are transplanted and submerged in 
flooded fields, resulting in low backscatter coefficients due to specular reflections on the water surface. 
Conversely, the dates associated with the detected local maxima were associated with the harvest date, as 
higher backscatter coefficients are observed due to volume scattering. By leveraging these associations, 
accurate estimates of rice crop transplanting and harvest dates can be obtained. 
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3.6. Field information and detected dates comparison 

 

The reported field information on transplanting and harvest dates from farmers in three provinces was 

compared to the dates of the local extrema identified in the LOWESS-smoothed time series curve of VV, 

VH, and VH/VV polarizations. To assess the temporal disparity between the farmer-reported and detected 

transplanting and harvest dates during the dry season, a histogram was generated. This visualization allowed 

for the identification of potential outliers. The presence of outliers in the results could be attributed to 

factors such as inaccuracies in the reported dates by farmers or the presence of noisy time series data, which 

can hinder the accurate estimation of transplanting and harvest dates. To account for the potential influence 

of outliers, a robust measure known as the median absolute deviation (MAD) was employed. The MAD is 

a scale measure based on the median of the absolute differences between each data point and the median 

of the dataset (Howell, 2005). In univariate statistics, the MAD is widely regarded as a reliable measure of 

dispersion/scale, particularly when dealing with outliers (Elamir, 2012). Choosing an appropriate threshold 

for outlier detection is essential to ensure that the criteria used are not based on randomly selecting degrees 

of freedom. In this study, the median plus or minus 2.5 times the MAD was employed, where a threshold 

value of 2.5 was deemed a reasonable choice (Leys et al., 2013). This approach helped mitigate the impact 

of outliers and enhance the accuracy of estimating transplanting and harvest dates for rice crops. 

The effectiveness of the method used for detecting transplanting and harvest dates was assessed by 
reporting an assessment result. Variations may indicate that the farmer-reported dates may occur before or 
after local extrema. Mean differences, median differences, root mean squared differences (RMSD), and 
mean absolute differences were calculated to quantify the differences between the farmer-reported and 
detected dates. These are commonly used measures to evaluate the performance of methods (Andrade, 
2020; Miralles et al., 2010). The assessment results of the three provinces were compared to evaluate the 
applicability of the method in areas with different climatic conditions. The time series analysis was 
implemented using Python IDLE.  
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4. RESULTS 
 

4.1. LOWESS function fitting technique 

 

4.1.1. Fraction parameter estimation using k-fold cross validation 

 

 The dominant optimal fraction parameters used for smoothing Sentinel-1 time series curve for each 

province, considering the season and polarization are presented in Table 4.1. As can be seen from the table, 

for the VH polarization combination across all images, a fraction parameter of 0.3 was the most optimal. 

However, for VV and VH/VV polarizations, the dominant optimal fraction parameters varies depending 

on the season and study area. Specifically, during the dry season, Agusan del Sur and Leyte predominantly 

have a fraction parameter of 0.3, while Cagayan has a dominant value of 0.5. In contrast, during the wet 

season, Agusan del Sur and Cagayan have a predominant fraction parameter of 0.5, while Leyte has a 

dominant value of 0.3.  

Table 4.1 Optimal fraction parameter per season per province and per polarization 

Fraction Parameter 

Agusan del Sur Dry season  Wet season  
VH 0.3 0.3 
VV 0.3 0.5 
VH/VV 0.3 0.5 

Cagayan Dry season Wet season 
VH 0.3 0.3 
VV 0.5 0.5 
VH/VV 0.5 0.5 

Leyte Dry season Wet season 
VH 0.3 0.3 
VV 0.3 0.5 
VH/VV 0.5 0.3 

 

4.1.2. Evaluation of the goodness of fit 

  

The evaluation of the goodness of fit varied depending on the distribution of data, with low R2 values 

observed for time series data characterized by pronounced fluctuations and variability. The variations in 

backscatter coefficients are evident in the Sentinel-1 original and LOWESS-smoothed time series curves 

for a selected field in Leyte as shown in Figure 4.1, Figure 4.2 and Figure 4.3. Employing the fitted time 

series curve, the noise and fluctuations in the time series have been minimized, revealing a discernable 

pattern. For the selected field in Leyte, a consistent optimal fraction parameter of 0.3 was used for all 

polarizations. The results show that VH and VV polarizations have higher R2 values of 0.61 and 0.63, 

respectively, compared to the VH/VV polarization with an R2 value of 0.17.  
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Figure 4.1 Sentinel-1 original vs fitted time series curves of field 805 in Leyte (VH polarization) 

 

Figure 4.2 Sentinel-1 original vs fitted time series curves of field 805 in Leyte (VV polarization) 

 

Figure 4.3 Sentinel-1 original vs fitted time series curves of field 805 in Leyte (VH/VV polarization) 
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Each province consists of six boxplots representing the R2 values between the Sentinel-1 original and 

LOWESS-smoothed time series curves for three different polarizations in two seasons (Figure 4.4, Figure 

4.5 and Figure 4.6). The analysis indicates that, in general, the VV data during the wet season exhibits the 

lowest R2 values (median R2 < 0.4), indicating weaker linearrelationships between the original and 

LOWESS-smoothed time series curves. Figure 4.7 shows the linear relationship between the original and 

LOWESS-smoothed time series curves of a selected rice field in Leyte for VV polarization during the wet 

season. Additionally, Agusan del Sur and Leyte provinces demonstrate a wider dispersion of R2 values for 

VV polarization during the wet season compared to Cagayan province. On the other hand, the VH data 

predominantly showcases the highest R2 values (median R2 > 0.59), among the three polarizations. This 

implies stronger linear relationships between the original and LOWESS-smoothed time series curves in VH 

polarization across all three provinces. Figure 4.8 shows the linear relationship between the original and 

LOWESS-smoothed time series curves of a selected rice field in Leyte for VH polarization during the dry 

season. 

 

Figure 4.4 R2 values between the original and fitted time series curve for Agusan del Sur rice fields 

 

Figure 4.5 R2 values between the original and fitted time series curve for Cagayan rice fields 
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Figure 4.6 R2 values between the original and fitted time series curve for Leyte rice fields 

 

Figure 4.7 Relationship between the original and LOWESS-smoothed time series curves of field 805 in Leyte for 
VV polarization during the wet season 

 

Figure 4.8 Relationship between the original and LOWESS-smoothed time series curves of field 805 in Leyte for 
VH polarization during the dry season 
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4.2. Periodogram analysis and statistical significance test 

 

The periodogram analysis reveals that the majority of the time series data in all provinces exhibit a 

predominant single period or cycle, while a smaller number displays two or three periods or cycles (Table 

4.2). These findings indicate that the time series curves consistently demonstrate the presence of a unique 

cycle, representing the period from transplanting to harvest of rice crops across all polarizations and 

provinces, regardless of the season. The existence of a single cycle suggests distinct patterns and fluctuations 

in rice growth and development. 

Table 4.2 Periodic components of the time series in different polarizations 

 Dominant Period 

ADS Dry season (Dec 2017 – Jun 2018) Wet season (May – Dec 2018) 
VH 19 (single) 14( single), 5 (double) 
VV 14 (single), 2 (double), 3 (triple) 14 (single), 5 (double) 
VH/VV 17 (single), 2 (double) 16 (single), 3 (double) 

Cagayan Dry season (Nov 2017 – May 2018) Wet season (Jun – Dec 2018) 
VH 27 (single), 11 (double) 29 (single), 9 (double) 
VV 33 (single), 5 (double) 27 (single), 11 (double) 
VH/VV 28 (single), 10 (double) 24 (single), 14 (double) 

Leyte Dry season (Nov 2017 – May 2018) Wet season (May – Nov 2018) 
VH 42 (single) 39 (single), 2 (double), 1 (triple) 
VV 36 (single), 6 (double) 36 (single), 6 (double),  
VH/VV 41 (single), 1 (double) 33 (single), 9 (double) 

 

The results of the Breusch-Godfrey white noise test offer further insights into the nature of the data (Table 

4.3). In the Breusch-Godfrey test, the majority of the data yield statistically significant p-values at a 

significance level of 0.05. Consequently, the null hypothesis, which assumes the absence of any systematic 

patterns, autocorrelation and periodic components in the time series data, is rejected. These significant 

results indicate that most of the analyzed data exhibit non-white noise characteristics, suggesting the 

presence of discernable patterns rather than randomness. Additionally, these results substantiate the 

outcomes of the periodogram analysis, which identifies the number of periodic components in the time 

series. The results from the different analyses, such as the periodogram analysis and Breusch-Godfrey white 

noise test, support each other and indicate consistent patterns and connections in the data. 

Table 4.3 Breusch-Godfrey white noise test results 

 White noise test result 

ADS Dry season (Dec 2017 – Jun 2018) Wet season (May – Dec 2018) 
VH All non-white noise All non-white noise 
VV All non-white noise All non-white noise 
VH/VV All non-white noise All non-white noise 

Cagayan Dry season (Nov 2017 – May 2018) Wet season (Jun – Dec 2018) 
VH All non-white noise 36 non-white noise, 2 white noise 
VV All non-white noise All non-white noise 
VH/VV All non-white noise All non-white noise 

Leyte Dry season (Nov 2017 – May 2018) Wet season (May – Nov 2018) 
VH 41 non-white noise, 1 white noise All non-white noise 
VV 37 non-white noise, 5 white noise All non-white noise 
VH/VV All non-white noise All non-white noise 
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4.3. Retrieval of transplanting and harvest dates 

 

The fitted time series curves exhibit a distinctive temporal pattern, with decreasing backscatter coefficients 

approaching the transplanting period and increasing backscatter coefficients approaching the harvest 

period. This pattern enables the identification of transplanting and harvest dates based on the local 

minimum and maximum values in the time series curves. For instance, in a selected rice field in Leyte during 

the dry season, the VH, VV and VH/VV polarizations indicate transplanting dates of December 23, 2017, 

December 11, 2017, and January 4, 2018, respectively, while the farmer reported a transplanting date of 

December 11, 2017 (Figure 4.9, Figure 4.10 and Figure 4.11). The first local minimum in all three 

polarizations closely aligns with the farmer-reported transplanting date, with VV polarization matching 

exactly. For harvest dates in the same rice field and season, VH, VV and VH/VV polarizations indicate 

harvest dates of March 10, 2018, March 22, 2018, and February 26, 2018, respectively, while the farmer 

reported a harvest date of March 11, 2018 (Figure 4.9, Figure 4.10 and Figure 4.11). Harvest dates are 

estimated using the local maximum following the local minimum in VH and VH/VV polarizations and the 

second local maximum after the first local minimum in VV polarization, except when only one local 

maximum existed, in which case that date is used. 

 

Figure 4.9 SAR VH backscatter coefficients and LOWESS-smoothed time series curve with farmer-reported and 
detected dates for field 805 in Leyte during the dry season 
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Figure 4.10 SAR VV backscatter coefficients and LOWESS-smoothed time series curve with farmer-reported and 
detected dates for field 805 in Leyte during the dry season 

 

Figure 4.11 SAR VH/VV backscatter coefficients and LOWESS-smoothed time series curve with farmer-reported 
and detected dates for field 805 in Leyte during the dry season 

4.4. Field information and detected dates comparison 

 

The histograms in Figure 4.12 to Figure 4.17 demonstrate the temporal difference (in days) between the 

farmer-reported and detected transplanting and harvest dates during the dry season. It can be observed that 

there are some outliers in the data. Hence, a  median absolute deviation (MAD) was employed to address 

this issue and remove the potential outliers from the data.  
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Figure 4.12 Histogram of the difference in days between the farmer-reported and detected transplanting date in 
Agusan del Sur for VH polarization during the dry season 

 

Figure 4.13 Histogram of the difference in days between the farmer-reported and detected harvest date in Agusan 
del Sur for VH polarization during the dry season 

 

Figure 4.14 Histogram of the difference in days between the farmer-reported and detected transplanting date in  
Cagayan for VH/VV polarization during the dry season 
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Figure 4.15 Histogram of the difference in days between the farmer-reported and detected harvest date in Cagayan 
for VH/VV polarization during the dry season 

 

Figure 4.16 Histogram of the difference in days between the farmer-reported and detected transplanting date in 
Leyte for VV polarization during the dry season 

 

Figure 4.17 Histogram of the difference in days between the farmer-reported and detected harvest date in Leyte for 
VV polarization during the dry season 
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After applying the MAD method for outlier removal, a generated assessment report on comparing field 

information and detected dates is presented in Appendix 2. Comparison between field information and 

detected dates). However, it should be noted that some rice fields are excluded from the final assessment. 

These fields are excluded either because they do not exhibit local minimum or local maximum 

characteristics, or because they are considered outliers during the MAD outlier removal process (Table 4.4). 

Table 4.4 Number of rice fields excluded in the final assessment 

  Absence of 
local min. 

Local min considered 
as outlier 

Absence of 
local max. 

Local max considered 
as outlier 

Agusan del 
Sur (dry 
season) 

VH 0 4 1 2 

VV 0 3 0 3 

VHVV 0 0 1 0 

Agusan del 
Sur (wet 
season) 

VH 0 2 0 8 

VV 0 3 2 5 

VH/VV 1 5 2 4 

Cagayan 
(dry season) 

VH 0 5 0 3 

VV 17 2 16 2 

VH/VV 1 7 1 4 

Cagayan 
(wet season) 

VH 0 4 0 6 

VV 3 7 2 8 

VHVV 3 3 1 6 

Leyte  
(dry season) 

VH 2 4 6 5 

VV 5 4 3 5 

VH/VV 2 3 21 1 

Leyte 
(wet season) 

VH 2 1 3 9 

VV 3 5 16 3 

VH/VV 2 7 2 1 

 

For the final assessment, the results are illustrated in boxplots (Figure 4.18 to Figure 4.23) illustrating the 

temporal difference between the farmer-reported and detected transplanting and harvest dates for all 

polarizations in all three provinces during the wet and dry seasons. These boxplots provide insights into 

the distribution and variability of the results. Notably, any outliers have been eliminated from the figures. 

 

Figure 4.18 Boxplots of the temporal difference between the farmer-reported and detected transplanting and harvest 
dates in Agusan del Sur during the dry season  
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Figure 4.19 Boxplots of the temporal difference between the farmer-reported and detected transplanting and harvest 
dates in Agusan del Sur during the wet season 

 

Figure 4.20 Boxplots of the temporal difference between the farmer-reported and detected transplanting and harvest 
dates in Cagayan during the dry season 

 

Figure 4.21 Boxplots of the temporal difference between the farmer-reported and detected transplanting and harvest 
dates in Cagayan during the wet season 
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Figure 4.22 Boxplots of the temporal difference between the farmer-reported and detected transplanting and harvest 
dates in Leyte during the dry season 

 

Figure 4.23 Boxplots of the temporal difference between the farmer-reported and detected transplanting and harvest 
dates in Leyte during the wet season 

 

The maps of the rice fields in Leyte province during the dry season were generated to highlight the temporal 

difference between the farmer-reported and detected dates in VV polarization (Figure 4.24 and Figure 4.25). 
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Figure 4.24 Temporal difference between the farmer-reported and detected transplanting dates in Leyte for VV 
polarization during the dry season 

 

Figure 4.25 Temporal difference between the farmer-reported and detected harvest dates in Leyte for VV 
polarization during the dry season 
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5. DISCUSSION 
 

Estimating transplanting and harvest dates of rice crops in the Philippines using Sentinel-1 data is of utmost 

relevance in enhancing agricultural productivity, food security, and climate resilience. This study aimed to 

leverage multi-temporal Sentinel-1 SAR data to determine the timing of rice crop transplanting and harvest, 

contributing to efficient agricultural planning and effective resource management. Hence, the study utilized 

the LOWESS function fitting technique to smoothen the time series curves, along with statistical techniques 

like periodogram analysis and the Breusch-Godfrey white noise tests for characterizing the temporal 

pattern, and local extrema extraction for detecting the transplanting and harvest dates. The results showed 

that VH and VV polarizations were useful in determining the transplanting and harvest dates of rice crops 

during the dry season, while VH/VV polarization demonstrated potential in estimating these dates mainly 

during the wet season.  

The following sections discuss the integration of Sentinel-1A and Sentinel-1B data, evaluate the 

performance of the LOWESS smoothing technique, describe the significance of periodogram and Breusch-

Godfrey test, emphasize the importance of identifying local extrema, and examine the spatial and temporal 

transferability of the method. Furthermore, limitations, implications and recommendations are also 

discussed. 

5.1. Integration of Sentinel-1A and Sentinel-1B data 

 

The provided Sentinel-1A time series data was validated by comparing the backscatter coefficients extracted 

from GEE to ensure data consistency and coherence when combined with Sentinel-1B data, which was 

also extracted from GEE. Sentinel-1A and Sentinel-1B are part of the same Sentinel-1 mission, designed 

to acquire data with similar imaging characteristics (Gorelick et al., 2017). GEE offers access to pre-

processed Sentinel-1 data that has undergone calibration and standard processing steps to ensure data 

consistency and quality (Google Earth Engine Developers, 2022). These processing steps aim to normalize 

the data and maintain the original imaging geometry (Gorelick et al., 2017). Consequently, when processing 

Sentinel-1A and Sentinel-1B data through GEE, different imaging geometries, such as incidence angles and 

look directions, were expected to be comparable between the two satellites. The presence of a zigzag pattern 

in the time series curve (Figure 4.1) was more likely attributed to temporal differences, which refer to 

changes in the scattering properties of the Earth's surface over time (Ma et al., 2018). Temporal differences 

can introduce variations in the backscatter values, influencing the observed zigzag pattern. 

Sentinel-1B played a critical role in augmenting SAR data alongside Sentinel-1A. However, due to an 

anomaly in its instrument electronics power supply, Sentinel-1B was incapable of transmitting radar data in 

December 2021 and was subsequently decommissioned (European Space Agency, 2022). Consequently, 

the unavailability of Sentinel-1B has resulted in a decreased pool of SAR data for various research 

endeavors. This reduction could have implications for the temporal coverage of analyses, particularly if 

there are gaps or restrictions in the dataset solely from Sentinel-1A. The absence of Sentinel-1B data may 

lead to a shorter time series or restricted observations during specific periods, potentially compromising 

the precision and dependability of the outcomes. 

5.2. Performance of the LOWESS function fitting technique 

 

The results unveiled the dominant optimal fraction parameters for each province, season, and polarization 

in the study (Table 4.1). Among all VH polarizations, a fraction parameter of 0.3 was identified as the most 

optimal. However, for VV and VH/VV polarizations, the dominant optimal fraction parameters varied 

based on the specific season and study area, with values of 0.3 and 0.5 being the primary choices. The 

selected values were optimal for reducing noise and fluctuations, allowing for identifying meaningful 
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patterns while preserving important details within the time series data. These findings are crucial for 

understanding the appropriate smoothing level required for accurately estimating transplanting and harvest 

dates.  

The variability in optimal fraction parameters for different polarizations suggests that different smoothing 

requirements are necessary to capture the unique characteristics of these polarizations in different contexts. 

The choice of specific values as the primary optimal fraction parameters suggests a careful balance between 

achieving smoothness across the data and maintaining the ability to detect and capture local variations 

(Derkacheva et al., 2020). These highlight the importance of considering the specific characteristics of each 

polarization and the context of the study area when determining the optimal fraction parameter. By 

adopting the fraction parameter to the specific conditions, researchers can ensure the most accurate 

estimation of transplanting and harvest dates. These findings provide valuable guidance for practitioners 

and researchers working with Sentinel-1 time series data for rice crops. By understanding the dominant 

optimal fraction parameters for each province, season, and polarization, they can effectively apply 

LOWESS smoothing techniques to improve the accuracy of estimating important agricultural events, 

ultimately contributing to enhanced agricultural planning and management. 

The goodness of fit between the original and LOWESS-smoothed time series curve was evaluated using 

the R2. The analysis of the R2 values revealed interesting trends and patterns. Specifically, it was observed 

that the VV data during the wet season generally exhibited the lowest R2 values. A wider dispersion of R2 

values for VV polarization was observed in Agusan del Sur and Leyte provinces during the wet season, 

indicating greater variability in the goodness of fit compared to the Cagayan province. On the other hand, 

the VH data predominantly showcased the highest R2 values among the three polarizations. This implies 

stronger linear relationships between the original and LOWESS-smoothed time series curve for VH 

polarization across all three provinces.  

The observed trends in the R2 values between the original and fitted time series curves across all 

polarizations during different seasons and provinces can be influenced by several factors, including 

vegetation characteristics, weather conditions, and land cover variability. VV polarization is more sensitive  

to the vertical structure and orientation of the crops at the early stage before the heading stage 

(Nasirzadehdizaji et al., 2019). During the wet season, rice crops may exhibit greater variability due to factors 

like water availability, growth stage, and variations in agricultural practices (Kushwaha et al., 2022). The 

complex arrangement of vegetation and water surfaces in rice fields can lead to increased variability in the 

backscatter response for VV polarization, leading to lower R2 values for VV polarization. On the other 

hand, VH polarization can penetrate the vegetation canopy (Nguyen et al., 2016). This stronger penetration 

capability of VH polarization allows for better capture of the temporal trends and variations in the rice crop 

growth, resulting in higher R2 values. The stronger linear relationships between the original and fitted time 

series curves in VH polarization indicate that the LOWESS smoothing technique effectively captures the 

dominant patterns in VH polarization, leading to higher accuracy in estimating the transplanting and harvest 

dates. Weather conditions also play a role, as the wet season is characterized by higher precipitation, 

humidity, and cloud cover. These environmental factors can impact the backscattered radar signal and 

introduce additional noise or interference in the VV polarization data (Harfenmeister et al., 2019). The 

moisture, vegetation canopies, and atmospheric effects during this season may contribute to a weaker 

correlation between the original and fitted curves, resulting in lower R2 values for VV polarization. 

Regarding land cover variability, it is likely that Agusan del Sur and Leyte provinces exhibit more diverse 

land cover types and agricultural practices compared to the Cagayan province. Variations in soil properties, 

crop types, and cultivation methods can introduce additional complexity and heterogeneity in the VV 

polarization data (Nasirzadehdizaji et al., 2019). This spatial variability in land cover could lead to a wider 

dispersion of R2 values for VV polarization in Agusan del Sur and Leyte provinces during the wet season, 

as the LOWESS smoothing may have varying degrees of accuracy across different land cover types 

(Plotnikov et al., 2022). 
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5.3. Significance of periodogram and Breusch-Godfrey test 

 

The utilization of periodogram analysis has been instrumental in detecting and validating the existence and 

quantity of periodic components within a time series, representing recurring patterns (Hamilton, 2005). In 

this study, the periodogram served as a valuable tool for examining the seasonal patterns or cycles associated 

with the growth of rice crops. Applying the periodogram to the LOWESS-smoothed time series curve, 

prominent frequencies corresponding to the periodicity of rice crop phenology, including transplanting and 

harvest cycles, were identified. This analysis facilitated the determination of whether a single or double cycle 

occurred during the crop's growth period within the LOWESS-smoothed time series. Identifying dominant 

frequencies helped determine the number of local extrema (Palacios-Orueta et al., 2012). For example, a 

time series characterized by a dominant frequency of a single period or cycle exhibited one local minimum 

and one local maximum (Figure 5.1), while a time series with a dominant frequency of a double cycle (Figure 

5.2) displayed at least two identical local extrema (either two local minima or two local maxima). 

The BG test is a statistical procedure employed to assess the presence of autocorrelation within a regression 

model (Breusch, 1978; Godfrey, 1978). This test allows to verify whether a significant correlation exists 

among the residuals at various time lags, indicating the existence of repetitive patterns or cycles in the data 

(Edgerton & Shukur, 2007). Following identifying dominant frequencies or periodic patterns through 

periodogram analysis of the rice crop data, the BG test was implemented to determine the statistical 

significance and autocorrelation of these patterns. If the p-value of the time series data is statistically 

significant at a significance level of 0.05, the null hypothesis, which assumes the absence of systematic 

patterns, autocorrelation, and periodic components in the time series data, is rejected (Fuller, 1996). This 

enhanced the reliability of the findings and provided confirmation regarding the presence of repetitive 

patterns in the data. The time series data in Figure 5.1 and Figure 5.2 yielded statistically significant p-values 

at a significance level of 0.05. Consequently, these significant outcomes indicate that the analyzed data 

exhibited characteristics of non-white noise, suggesting the existence of discernible patterns rather than 

randomness. In cases where the null hypothesis is accepted, indicating a random pattern in the time series, 

the identified local extrema were further away from the farmer-reported dates. 

By combining periodogram analysis for pattern identification and the BG test for confirming their 

significance and autocorrelation, a comprehensive approach is established to validate the presence and 

quantity of local extrema within the time series. These steps are instrumental in the subsequent procedures 

involved in estimating the transplanting and harvest dates of rice crops. 

 

Figure 5.1 Original and LOWESS-smoothed time series curves of rice field 811 in Leyte in VH polarization during 
the dry season 
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Figure 5.2 Original and LOWESS-smoothed time series curves of rice field 822 in Leyte in VV polarization during 
the dry season 

5.4. Relative importance of local extrema 

 

Rice cultivation typically occurs in flooded fields, 

where standing water leads to specular reflection 

and lowers the backscatter coefficients (Chen & 

Mcnairn, 2006). Consequently, a discernable 

temporal pattern was observed in the time series 

curve, reflecting a trend of decreasing backscatter 

coefficients as the transplanting period approaches 

and remains low until the early tillering phase with 

water still present  (Mandal et al., 2018). During the 

transplanting period, the backscatter coefficients 

notably decreased due to the dominant backscatter 

mechanism of specular reflection (Figure 5.3 (A)) 

on the water surface, resulting in minimal 

backscatter. Consequently, most of the low 

backscatter coefficients were observed around the 

transplanting period (Figure 4.9, Figure 4.10 and 

Figure 4.11). Hence, local minimum points in the 

backscatter coefficients corresponded to the lowest 

intensity values, suggesting the transplanting 

period. 

The growth rate of rice crops can vary depending 

on various factors, including weather conditions, 

crop management practices, and rice varieties 

(Boonwichai et al., 2018; Yoshida, 1981). The comparison between the transplanting and harvest dates 

obtained from field information and the detected dates (Figure 4.18 to Figure 4.23) revealed that most local 

minimum values occurred a few days after the farmer-reported transplanting dates. This can be attributed 

to the initial stages after transplanting when the plants are small and have low biomass, resulting in relatively 

low backscatter coefficients (Vreugdenhil et al., 2018). The growth process may also take some time, causing 

the lowest backscatter values to occur after the transplanting date. Additionally, some of the detected 

transplanting dates that do not closely align with the farmer-reported transplanting dates were likely 

impacted by flooding or excessive water during the tillering or early stages of rice growth, leading to low 

backscatter coefficients of water surface on that date (Phan et al., 2021). 

Figure 5.3 Sentinel-1 backscatter mechanisms during 

different growth stages of rice and example of the resulted 

backscatter intensities in C-band. Source: (Arjasakusuma 

et al., 2021) 
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The harvest period for rice crops in the Philippines typically occurs between 100-110 days after 

transplanting, depending on the specific growth duration of the rice variety (IRRI, 2013). In this study, the 

plots for VH and VH/VV polarizations (Figure 4.9 and Figure 4.11) demonstrated that the local maximum 

detected after the local minimum can be associated with the rice crop's harvest dates. Similarly, for VV 

polarization, the second local maximum following the local minimum can be linked to the harvest dates 

(Figure 4.10). However, in cases where there is only one local maximum for VV polarization, the date of 

its occurrence of the local maximum was considered as the detected harvest date. 

As the rice plants grow and become more densely vegetated, there is an increase in backscatter coefficients. 

Following the rice harvest, the backscatter coefficients are anticipated to decrease significantly as the 

contribution from the canopy becomes negligible (Clauss et al., 2018). However, the results indicated that 

the backscatter coefficients remained relatively high and most of the local maxima were observed after the 

farmer-reported harvest dates (Figure 4.18 to Figure 4.23). This indicates that the backscatter coefficients 

continued to rise even after the harvest dates. Mandal et al. (2018) suggested that this phenomenon may be 

attributed to the prevalent use of machine harvesting in the area, where a substantial amount of rice stubble 

and straw is left on the fields. Field survey data confirmed that a considerable proportion of rice fields 

utilized machine harvesters, and the practice of allowing rice stubbles to decompose on the fields was 

widespread in the study area. Consequently, the total backscatter power is influenced by the volume 

scattering component originating from the harvested rice field (Mandal et al., 2018).  

5.5. Spatial and temporal transferability 

 

The method employed in this study demonstrated its capability of performing in different seasons and 

spatial locations. However, the number of extracted Sentinel-1 data varied spatially and temporally due to 

differences in satellite coverage and frequency of passes by the Sentinel-1 mission (Canty et al., 2019). The 

orbital pattern followed by Sentinel-1 satellites affects data availability, with some areas having more 

frequent satellite passes and a larger number of available data. These orbital passes vary across seasons, 

leading to variations in the timing and coverage of captured Sentinel-1 images depending on the specific 

area of interest (Potin et al., 2016). Consequently, there can be variability in the number of available Sentinel-

1 images, as indicated by the difference in the extracted Sentinel-1 data (Table 2.2 and Table 2.3). This 

variation is dependent on the specific province and the season being considered. 

The estimation of transplanting and harvest dates exhibited variations influenced by factors such as 

polarization type, season, and geographic location of rice fields. The backscatter coefficients of rice crops 

are affected by environmental elements like rainfall, soil moisture, and temperature (Veloso et al., 2017). 

The effect of water presence on Sentinel-1 radar polarization varies between VV and VH polarizations, 

with VV polarization being more susceptible (Tsyganskaya et al., 2019). In the wet season, rice fields often 

have standing water due to rainfall or irrigation, which can result in specular reflections in the backscatter 

signal (Arjasakusuma et al., 2021). These reflections from the water surface can introduce additional noise 

and fluctuations in the backscatter time series. The wet season is characterized by higher soil moisture 

content in rice fields due to precipitation and irrigation, which can enhance volume scattering and surface 

roughness, thereby influencing the backscatter signal (Ullmann et al., 2023). Conversely, during the dry 

season, the minimal presence of standing water creates a smoother and more uniform surface, resulting in 

reduced noise and fluctuations in the backscatter signal. Additionally, soil moisture levels tend to be lower 

during the dry season, resulting in reduced volume scattering and a more stable backscatter time series 

(Ullmann et al., 2023). Furthermore, rice crops undergo rapid growth during the wet season, leading to 

increased vegetation density and height (Yang et al., 2008). The dense canopy and taller plants during this 

period contribute to more variability in backscatter due to the presence of multiple scattering mechanisms, 

such as volume scattering from vegetation layers, surface scattering from standing water, and double-

bounce scattering from vegetation and water interactions (Clauss et al., 2018). These multiple scattering 

mechanisms contribute to higher noise levels and fluctuations in the backscatter signal.  
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The application of the MAD technique resulted in varying numbers of outlier rice fields that were not 

considered for final assessment, depending on the season and location (Table 4.4). In some cases, the 

number of rice fields used for comparing the farmer-reported and detected transplanting dates differed 

from those used for comparing the farmer-reported and detected harvest dates. This variation occurred 

due to certain rice fields not exhibiting local minimum or maximum values or being identified as outliers.  

During the dry season in Agusan del Sur, the VH and VV polarizations showed the lowest RMSD values 

of 12.4 and 9.2 days, respectively, for transplanting dates, indicating more accurate results with less 

scattering (Figure 4.18). VH polarization also displayed the lowest RMSD values of 17.5 days for harvest 

dates. However, most of the detected transplanting and harvest dates were later than the farmer-reported 

dates. In the wet season, VH/VV polarization exhibited the lowest RMSD values of 14.7 and 8.8 days for 

transplanting and harvest dates, respectively, and showed less scattered results (Figure 4.19). Similarly, most 

of the detected transplanting dates occurred later than the farmer-reported dates, while the majority of 

detected harvest dates occurred earlier. 

During the dry season in Cagayan province, VH/VV polarization demonstrated the lowest RMSD values 

of 16 and 16.5 days for transplanting and harvest dates, respectively, and showed less scattered data points, 

indicating a higher level of precision (Figure 4.20). However, most of the detected transplanting dates were 

later than the farmer-reported dates, while most harvest dates occurred earlier than the farmer-reported 

dates. In contrast, during the wet season, the detected transplanting dates for all polarizations substantially 

deviated from the farmer-reported dates, with RMSD values exceeding 20 days (Figure 4.21) . Nevertheless, 

VH/VV polarization outperformed other polarizations by exhibiting the lowest RMSD values of 14.4 days 

for harvest dates. 

In Leyte province during the dry season, VH and VV polarizations demonstrated the lowest RMSD values 

of 13.7 and 13.6 days, respectively, for transplanting dates, considering data from over 30 rice fields (Figure 

4.22). The harvest dates showed close RMSD values of 17.5, 17.4, and 16.1 days for VH, VV, and VH/VV 

polarizations, respectively, with similar spread of results across all polarizations. The detected transplanting 

dates tended to be earlier than the farmer-reported dates, while the detected harvest dates tended to be 

later. However, during the wet season, all polarizations exhibited higher RMSD values exceeding 20 days 

for both transplanting and harvest dates, indicating greater variability (Figure 4.23). These findings provide 

valuable insights into the accuracy of detecting transplanting and harvest dates for rice crops using different 

polarizations, emphasizing the seasonal and regional variations involved. 

Generally, the RMSD values for VH and VH/VV polarizations remained consistent within a 30-day range 

across all three provinces and seasons. However, for VV polarization during the wet season, the RMSD 

values varied. Specifically, the RMSD values for Agusan del Sur, Cagayan, and Leyte were 45 days, 61 days, 

and 36 days, respectively. These findings highlight the potential of utilizing different polarizations to 

estimate rice crops’ transplanting and harvest dates in dry and wet seasons. Specifically, the VH and VV 

polarizations have shown to be particularly valuable during the dry season in Agusan del Sur and Leyte 

provinces. Additionally, the VH/VV polarization has demonstrated promising outcomes for estimating 

transplanting and harvest dates during the wet season in these provinces. In the case of Cagayan province, 

the VH/VV polarization has exhibited favorable results for both dry and wet seasons, indicating the 

effectiveness in estimating transplanting and harvest dates throughout the year. 

The variation in the outcomes is associated with the geographical placement of the rice fields, as the diverse 

climate conditions can impact the backscatter coefficients of the rice crops (Veloso et al., 2017). Crop 

growth relies on various factors, including climatic conditions (Pang et al., 2021). The three provinces under 

investigation exhibited distinct climatic conditions, despite their geographical proximity within the same 

country (Figure 2.1). Agusan del Sur predominantly has a type II climate, while Cagayan experiences a mix 

of types III and IV climates, and Leyte has a dominant type IV climate (Basconcillo et al., 2018). 
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This study emphasized the importance of considering seasonal and regional variations when utilizing 

different polarizations to detect transplanting and harvest dates for rice crops. These insights can inform 

decision-making processes in agriculture and help optimize resource allocation in rice-growing regions. 

5.6. Limitations 

 

The study has showcased the promising capability of Sentinel-1 time series SAR data in estimating rice 

crops’ transplanting and harvest dates. However, it is important to acknowledge certain limitations observed 

during the study, which may restrict the generalizability of the findings beyond the specific study conditions. 

One such limitation was the limited number of samples available for the analysis. Specifically, the analysis 

included 19 rice fields for Agusan del Sur, 38 rice fields for Cagayan and 42 rice fields for Leyte. The size 

of the dataset or the number of samples can impact the generalizability and statistical robustness of the 

findings (Schloss, 2018). A small sample size may introduce bias and limit the representativeness of the 

results, potentially affecting the accuracy and reliability of the transplanting and harvest date estimations. 

Another limitation of this study was that the provided transplanting and harvest dates were indicated by 

the respective week of the month instead of the exact dates. Consequently, the farmer-reported 

transplanting and harvest dates were assumed to take place in the middle of the week, specifically on the 

4th, 11th, 18th or 25th day of the month. This assumption affects the accuracy of the estimation since the 

actual dates could vary on other days within the week. Furthermore, variations arise from the presence or 

absence of information regarding different management practices in various rice fields, making it 

challenging to identify the underlying reasons for the observed discrepancies. Future field survey data for 

this type of study should ideally include exact dates for the actual transplanting and harvest events, as well 

as other relevant information such as management practices. 

Considering the limitations of remote sensing data such as Sentinel-1 SAR data is crucial. Like other remote 

sensing data, Sentinel-1 SAR data have their own limitations, such as data gaps, spatial and temporal 

resolution, and environmental factors (Fernández et al., 2022). In this study, the time interval of the 

Sentinel-1 data was set at six days. However, it is important to note that there were instances where the 

interval was inconsistent due to missing data on specific dates, especially during the wet season. This 

inconsistency in the data availability can introduce uncertainties and limitations in the analysis of 

transplanting and harvest dates. Furthermore, the acquisition dates of Sentinel-1 data varied across the 

different provinces. This variation applied to both Sentinel-1A and Sentinel-1B data. The temporal offset 

between the data acquisition dates can potentially impact the accuracy and reliability of the estimations, as 

the conditions of the rice crops may vary between acquisition dates. To mitigate these limitations, it is 

important to carefully consider the availability and consistency of the data when interpreting the results. 

Additionally, future studies could explore strategies to address the temporal inconsistencies, such as data 

interpolation or gap-filling techniques, to ensure a more continuous and consistent dataset for estimating 

transplanting and harvest dates. 

5.7. Implications 

 

The estimation of transplanting and harvest dates of rice crops in the Philippines has significant implications 

for agricultural planning and management. Farmers and policymakers can make informed decisions to 

optimize crop production and improve agricultural practices by accurately determining these critical dates. 

Some specific implications of this research are: 

1. Improved crop planning: Accurate estimation of transplanting and harvest dates allows farmers to 

plan their cultivation activities more effectively. They can align their planting schedules, irrigation 

management, and pest control strategies based on the estimated dates, leading to better crop yields 

and resource utilization. 
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2. Efficient resource allocation: Knowing the transplanting and harvest dates helps optimize the 

allocation of resources such as fertilizers, water, labor, and machinery. Farmers can adjust their 

resource inputs based on the crop’s growth stage, ensuring efficient resource utilization and 

minimizing waste. 

3. Improved risk management: Estimating transplanting and harvest dates can contribute to better 

risk management in agriculture. Farmers can anticipate and mitigate potential risks associated with 

weather events, pests, diseases, or market fluctuations by aligning their management practices and 

decision-making with the detected crop growth stages. 

4. Policy and government support: The findings of this study can inform agricultural policies and 

government support programs. Accurate estimation of transplanting and harvest dates can aid in 

the formulation of policies related to crop insurance, subsidies, and market interventions. It 

provides a scientific basis for decision-makers to support and promote sustainable agricultural 

practices. 

5. Future research could explore the possibilities of utilizing Sentinel-1 SAR data alongside recent 

field survey data to forecast transplanting and harvest dates. The current findings support the use 

of Sentinel-1 SAR data in estimating these critical dates. With adequate historical Sentinel-1 SAR 

data and up-to-date field survey information, it may be feasible to develop forecasting models for 

transplanting and harvest dates. 

Overall, the implications of this study contribute to the advancement of agricultural planning, resource 

management, and decision-making processes. The accurate estimation of transplanting and harvest dates 

for rice crops can lead to improved productivity, profitability, and sustainability in the agricultural sector of 

the Philippines. 

5.8. Recommendations 

 

Based on the findings of this study, the following recommendations are proposed further to enhance the 

application and impact of the research: 

1. Integration of additional data sources: To enhance the accuracy and reliability of transplanting and 

harvest date estimations, consider integrating additional data sources such as weather data, soil 

information, or satellite imagery. This can provide valuable insights into environmental conditions 

and crop growth stages, contributing to more robust and precise estimations. Furthermore, a 

greater amount of historical time series data is required to predict transplanting and harvest dates. 

The availability of extensive data records enhances the overall reliability of the estimations.  

2. Enhance field survey data: In future studies, it is advisable to collect field survey data that includes 

exact dates for the actual transplanting and harvest events and other relevant information like 

specific management practices employed by farmers. Collaborating with farmers, agricultural 

experts, and local stakeholders will facilitate the collection of ground truth data, enabling a more 

comprehensive validation of the estimated dates and enhancing the reliability of the results. 

3. Expansion to Different Provinces: Consider extending the research to other provinces in the 

Philippines, especially those with distinct climate types - not covered in this study. This would allow 

for a broader understanding of the applicability and effectiveness of the methodology across 

different regions, enhancing its generalizability and practical utility. 
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6. CONCLUSION 
 

This research has explored the use of Sentinel-1 SAR data to estimate the transplanting and harvest dates 

of rice crops in the Philippines. The analysis focused on two distinct seasons, the dry season and the wet 

season, in three provinces of the Philippines: Agusan del Sur, Cagayan, and Leyte.  

The coefficient of determination (R2) was used to evaluate the agreement between the original and 

LOWESS-smoothed time series curve, revealing interesting trends and patterns. Notably, VV data during 

the wet season consistently displayed the lowest R2 values. A wider range of R2 values for VV polarization 

was observed in the Agusan del Sur and Leyte provinces, indicating greater variability in the goodness of 

fit compared to the Cagayan province. Conversely, the VH data consistently exhibited the highest R2 values 

among the three polarizations, indicating stronger linear relationships between the original and fitted time 

series curves for VH polarization across all three provinces.  

During the transplanting period of rice crops, there is a significant decrease in backscatter coefficients due 

to the dominant backscatter mechanism of specular reflection on the water surface. This results in minimal 

backscatter, as observed in the low backscatter coefficients around the transplanting period. The growth 

rate of rice crops is influenced by various factors, such as weather conditions, crop management practices, 

and rice varieties. Comparing the farmer-reported dates of transplanting and harvest obtained from field 

information with the detected dates revealed that most of the local minimum values occurred a few days 

after the transplanting period. This delay can be attributed to the initial stages after transplanting when the 

plants are small and have low biomass, leading to low backscatter coefficients. 

The analysis revealed that for VV polarization, some harvest dates were linked to the first local maximum 

after the first local minimum, while others were linked to the second local maximum following the first 

local minimum. In contrast, for VH and VH/VV polarizations, the harvest dates consistently corresponded 

to the local maximum immediately after the first local minimum. It is worth noting that certain rice fields 

may not display a local maximum due to factors such as retaining rice stubbles or implementing ratooning 

techniques. The number of rice fields used for comparing farmer-reported and detected transplanting dates 

differed from those used for comparing harvest dates. This variation was due to rice fields not exhibiting 

local minimum or maximum values or being identified as outliers. The evaluation of the RMSD values 

indicated the potential of using different polarizations for estimating transplanting and harvest dates in both 

dry and wet seasons. VH and VV polarizations were particularly valuable during the dry season in Agusan 

del Sur and Leyte provinces, while VH/VV polarization showed promising outcomes for estimating dates 

in wet seasons. In Cagayan province, VH/VV polarization demonstrated effectiveness throughout the year. 

The variations in outcomes can be attributed to the geographical placement of rice fields and the diverse 

climate conditions that impact the backscatter intensities of rice crops. The different climatic conditions 

experienced by Agusan del Sur, Cagayan, and Leyte provinces contributed to the variations in results. 

Overall, this research has significant implications for the agricultural sector in the Philippines. Leveraging 

remote sensing and data-driven approaches presents opportunities to optimize crop management practices, 

allocate resources effectively, and support sustainable rice production. Implementing the recommendations 

and addressing the challenges highlighted in this study can maximize its impact, fostering the advancement 

of precision agriculture and promoting socio-economic development in agricultural communities of the 

Philippines. 
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8. APPENDICES 
Appendix 1. Breusch-Godfrey test p-values for Leyte rice fields during the dry season 

Field number VH (p-values) VV p-values VH/VV p-values 

801 

802 

804 

805 

806 

808 

809 

810 

811 

812 

813 

814 

815 

816 

817 

821 

822 

823 

825 

826 

827 

828 

829 

830 

832 

835 

837 

842 

843 

844 

845 

846 

847 

848 

849 

850 

851 

852 

853 

855 

856 

857 
  

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

>0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 
 

<0.05 

<0.05 

<0.05 

>0.05 

<0.05 

>0.05 

<0.05 

>0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

>0.05 

<0.05 

<0.05 

>0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 
 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 

<0.05 
 



 

44 

 

Appendix 2. Comparison between field information and detected dates 
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Mean absolute difference: 59 days 
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Appendix 3. Maps showing the temporal difference between the farmer-reported and detected dates in 

Agusan del Sur for VH polarization during the dry season 
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Appendix 4. Maps showing the temporal difference between the farmer-reported and detected dates in 

Cagayan for VH/VV polarization during the dry season 

 

 


