
TGO MODULE 12 2023

THE CORRELATION BETWEEN OUTCOME MEASURES OF

SMARTWATCH DATA AND MDS-UPDRS PART-III SCORES IN

PARKINSON’S DISEASE PATIENTS

A research which analyses the outcome measures of smartwatch data and MDS-UPDRS Part-III

scores such as tremor and dyskinesia. Including a literature search of Parkinson’s disease and an

update of useful upcoming techniques who can improve the current treatment.

June 26, 2023

Technical Medicine Bachelor.

TGO group 8: Job Meuwese (s2464624),

Loet Schoenmakers (s2506327) and Stef Berendsen (s2507781).

University of Twente.

Amsterdam UMC, Department of Neurology.

Under the guidance of: M.Beudel, M.G.J. de Neeling,

Dr.ir. T. Heida, MSc. B.J.C.C. Sweep and T.F. Ruuls.

TGO group 8 University of Twente

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease, and the number

of Parkinson’s patients is expected to double in the coming years [1]. The increase in the number of

patients could cause problems with the current treatment method. Parkinson’s disease cannot be cured,

the symptoms can only be reduced. This can be done through medication or deep brain stimulation

(DBS). The Amsterdam UMC is working on a study that should ensure that deep brain stimulation

becomes adaptive (aDBS). So that the patient and/or doctor can immediately change the strength and

amount of DBS. The study uses smartwatches to detect tremor and dyskinesia and an MDS-UPDRS

scoresheet to consider current status.

This research provides a first set-up for processing and analysing the smartwatch and MDS-UPDRS

data. In addition, research has been conducted into whether there is a correlation between the

smartwatch data and the MDS-UPDRS score list. This eventually led to the following research question:

What is the correlation between outcome measures of the smartwatch data and MDS-UPDRS scores of

patients with Parkinson’s disease?

With the help of a literature search, the researchers have formed a basis about Parkinson’s disease.

But also about current techniques such as machine learning and artificial intelligence to see whether

they can be combined with current and future treatment methods. After this, scripts were written using

Python to process, analyse and correlate the available data from smartwatches and MDS-UPDRS.

Using 3 iterations of a Random Forest (RF) algorithm, the RF had average accuracies ranging from

48,9% to 52,7%. Accuracies for values within one of the correct value ranged from 80,9% to 84,8%. Next

to this, data on probabilities of tremor and dyskinesia, MDS-UPDRS Part-III scores and time availability

were plotted. With this retrieved data and algorithms, we concluded there to not be a correlation

between smartwatch data and MDS-UPDRS Part-III scores.

2

TGO group 8 University of Twente

Contents

1 List of abbreviations 6

2 Introduction 7

3 Theoretical background 8

3.1 Parkinsons disease . 8

3.1.1 Introduction . 8

3.1.2 Cerebrum . 8

3.1.3 Basal Ganglia . 8

3.1.4 Neurotransmitters . 10

3.1.5 Brain’s bio-electrical activity . 11

3.1.6 Pathophysiology of Parkinson’s disease . 11

3.2 Therapy . 12

3.2.1 Medical therapy . 12

3.2.2 Deep Brain Stimulation (DBS) . 13

3.2.2.1 Introduction . 13

3.2.2.2 Continuous DBS . 13

3.2.2.3 STN DBS . 13

3.2.2.4 Side effects DBS . 13

3.2.2.5 Adaptive DBS . 14

3.3 Movement Disorder Society- Unified Parkinson’s Disease Rating Scale 15

3.3.1 The origin of UPDRS . 15

3.3.2 MDS-UPDRS . 15

3.3.3 Limitations of MDS-UPDRS . 16

3.4 Optimizing diagnostic methods . 16

3.5 Technology background . 17

3.5.1 Introduction . 17

3.5.2 Wearables . 17

3.5.3 Machine learning . 18

3.5.3.1 Introduction . 18

3.5.3.2 Common Parkinson’s disease-data algorithms 18

3.5.3.3 Applications of machine learning . 20

3

TGO group 8 University of Twente

4 Method 21

4.1 Study design . 21

4.2 Selection of participants . 21

4.3 Data collection . 21

4.4 Data analysis . 22

5 Results 23

5.1 RF-algoritm and iterations . 23

5.2 Smartwatch data per ten minutes . 25

5.3 Comparison of visits for MDS-UPDRS and smartwatch data . 25

6 Discussion 27

6.1 Literature . 27

6.2 Data & coding . 27

6.3 ML-performance . 28

6.4 Implication for patient . 28

7 Conclusion 29

References 30

8 Appendix 36

8.1 Tables . 36

8.2 Python scripts . 38

8.2.1 Readme . 38

8.2.2 00_main_script . 40

8.2.3 01_merge_trem_sev_dys_all . 46

8.2.4 01b_merge_all_watches . 47

8.2.5 02_avail_events_combi . 48

8.2.6 03_merge_avail_events_to_rest . 51

8.2.7 04_UPDRS_Loadr . 51

8.2.8 05_pre_algorithm . 68

8.2.9 06_merge_UPDRS_loadr_data_and_smartwatch_data 70

8.2.10 07_1_algorithm01 . 74

4

TGO group 8 University of Twente

8.2.11 07_2_algorithm02 . 75

8.2.12 07_3_algorithm03.py . 78

8.2.13 08_Analyse_complete_data_tabel . 82

8.2.14 09_graphics_10minutes . 90

5

TGO group 8 University of Twente

1 List of abbreviations

Abbreviation Definition

aDBS Adaptive deep brain stimulation

AI Artificial intelligence

Amsterdam UMC Amsterdam University medical centre

DBS Deep brain stimulation

DT Decision tree

D1 receptors Dopamine receptor subtype-1

D2 receptors Dopamine receptor subtype-2

EEG Electroencephalography

EMG Electromyography

GABA Gamma-aminobutyric acid

GPe Globus pallidus externus

GPi Globus pallidus internus

IMU Inertial measurement unit

MDS-UPDRS Movement Disorder Society- Unified Parkinson’s Disease Rating Scale

ML Machine learning

MM4PD Motor fluctuations Monitor for Parkinson’s Disease

MSN Medium spiny neurons

NN’s Neural networks

PD Parkinson’s disease

QoL Quality of life

RF Random forest

SNc Substantia nigra pars compacta

SNr Substantia nigra pars reticulata

SNR Signal to noise ratio

STN Subthalamic nucleus

SVM’s Support vector machines

vGLUT2 Glutamate transporter isoform 2

6

TGO group 8 University of Twente

2 Introduction

Parkinson’s disease is the second most common neurodegenerative disease, and the number of Parkinson’s

patients is expected to double in the coming years [1]. Parkinson’s is a progressive disease in which motor

and non-motor complaints are experienced. The status of the disease is determined by a scoring list called

Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). Current treatments

exist of different types of medication and in a later stadium deep brain stimulation (DBS). In the hospital,

the strength of the stimulation can be adjusted based on the symptoms the patient experienced in the

prior weeks. But would it not be easier to adjust the stimulation based on the symptoms and patients

experiences at that moment? And how can you determine the right moment to apply this adjustment?

The origin of the place where Parkinson’s arises is well investigated including the complaints and treatment

method [2, 3, 4]. However, the question of how it arises is still unknown. This paper also discusses the

current and future expectations of DBS [5]. It appears that care for Parkinson’s disease focuses on the use

of DBS in combination with artificial intelligence and machine learning. This should ensure that care

becomes more patient specific.

A study is being held at Amsterdam University medical centre (Amsterdam UMC) that specifically inves-

tigates adaptive deep brain stimulation (aDBS). The study has seven measurement points in the study

where an MDS-UPDRS score sheet is taken. Two weeks after the surgery, the first measurement point is

registered and then the assessment is taken every two months for up to half a year. During this time, the

patient wears a smartwatch that uses the gyroscope and accelerometer to measure the percentage of time

that tremor and dyskinesia are present (interval is one minute). aDBS must become an improvement of

deep brain stimulation that ensures that an algorithm will sense when a patient needs a certain amount

of stimulation. This algorithm will base this on the patient’s specific profile, which consists of patient

information and smartwatch movement data, and neural activity. The study itself consists of several parts

such as classification of MDS-UPDRS, classification of smartwatch data and the correlation between the

MDS-UPDRS and smartwatch data. The importance of this is that the data can be directly compared, so

that the doctor and patient can see whether an adjustment of the adaptive deep brain stimulation system

is necessary. These parts of the study are outsourced to us. Our research question is therefore:

What is the correlation between outcome measures of the smartwatch data and MDS-UPDRS scores of

patients with Parkinson’s disease?

To answer this research question, a literature study was first performed. To then compare and visualize

the smartwatch-and-MDS-UPDRS data separately. Afterwards, these sets of data are compared with each

other to find a correlation between them. The aim of this research is therefore to supply the basis for

analysing smartwatch data and MDS-UPDRS scores. And provide insight into how they correlate.

The next chapter of this scientific report provides an overview of the current knowledge about the disease

and technology. Subsequently, chapter 4 discusses the method of this study. In chapter 5 the results will be

reflected upon and in chapter 6 we will discuss which factors had an influence and how the research could

have been even better. Finally, in chapter 7 the conclusion will be discussed.

7

TGO group 8 University of Twente

3 Theoretical background

3.1 Parkinsons disease

3.1.1 Introduction

The musculoskeletal system is a collaboration of multiple organs and tissue types. A disruption of this

mechanism can have a major impact on the quality of life (QoL) of the patient. Due to several types

of pathologies, disruptions can occur in the functioning of the musculoskeletal system. A common

neurological disorder is Parkinson’s disease (PD). Due to a disturbed signal transduction, the patient

has less control over the contraction and relaxation of the muscles. This section will elaborate on which

parts of the brain are involved with PD, how normal transduction proceeds and how PD influences these

pathways.

3.1.2 Cerebrum

To get a better understanding of the motor neuron pathway, it is important to know which parts of the

brain are involved. To start, the brain consists of four lobes: the frontal, parietal, temporal and occipital

lobe. To focus on the part of the brain that controls the movement, we have to zoom in to the frontal

lobe. The pathway starts in the motor cortex, this area can be subdivided in the primary and non-primary

motor cortex [6]. This non-primary part of the brain region is made up of the premotor cortex and the

supplementary motor area. The premotor cortex plays a key role in planning movements, based on sensory

stimuli. This brain area will help to perform an accurate movement, when a sensory stimulus is received.

In conclusion this brain region thus helps to combine the sensory stimulus and perform an adequate

reaction. For patients in whom the premotor cortex functions less, the coordination between senses is

lessened. For example, it will be more difficult for these patients to catch a ball. While observing the ball

and lifting the arm (separately) is on the same level as healthy subjects. [7]

The supplementary motor area helps planning movements, like the premotor cortex. The difference

between the functionality of these two, is the sensory input. While the premotor cortex is focused on

recieving information from outside (senses), the supplementary motor area is primarily based on move-

ments that have been performed during similar events.[8] In the frontal lobe against the central sulcus lies

the primary motor cortex. This part of the brain is responsible for conscious movements. Each body part

has its own area on the sagittal axis of the primary motor cortex. The neurons for controlling the facial

muscles are located laterally, while the control of the hands and feet takes place medially. [9]

3.1.3 Basal Ganglia

The basal ganglia consists of several parts, including the caudate nucleus, the putamen and the accumbens

nucleus. Together, these structures form the input nuclei. As output nuclei there are the globus pallidus in

and externus (GPi and GPe) and the substantia nigra pars reticulata (SNr)[2]. The feedback loop consists

8

TGO group 8 University of Twente

of three pathways: the direct, indirect and hyperdirect pathway, the hyperdirect pahtway does not use

dopamine receptors and therefore plays little to no part in PD. Because while the direct pathway promotes

movement, the indirect pathway inhibits movement. In the next paragraph we will give more detailed

information about their working mechanisms, see figure 1 [2, 3]. These pathways consist of two types of

neurons: the medium spiny neurons (MSN) and interneurons. The MSN make up 90 percent of all neurons

in the striatum and are GABAergic inhibitory neurons of efferents. While the interneurons comprise 10

percent of all neurons in the striatum, they are mainly smooth dendrites and mainly use acetylcholine as a

neurotransmitter. [2, 3]

The direct pathway consists of the following parts: the striatum, GPi and SNr. In this pathway, the

striatal MSN’s project directly to the GPi and SNr. They do this using dopamine receptor subtype-1 (D1

receptors)[3]. The subthalamic nucleus (STN) stimulates the cortex with signals to move. However, the GPi

brakes this movement and ensures that unwanted movements are not made [3]. When we want to make a

movement, the cortex sends stimulating signals to the striatum. The cortex does this through glutamate

transporter isoform 2 (vGLUT2). The striatum consists mainly of GABAergic neurons that inhibit the action

of GPi. Inhibiting GPi ensures that STN is less inhibited and can therefore deliver its excitation signals for

movement. [3, 4]

The indirect pathway consists of the striatum, GPe, STN, GPi and SNr. This pathway utilizes the dopamine

receptor subtype-2 (D2 receptors) [3]. The GPe consists mainly of GABAergic neurons and inhibits the

action of STN. When the indirect pathway is activated, the cortex, as in the direct pathway, ensures that

the striatum is stimulated by vGLUT2. The striatum then subsequently inhibits GPe through GABAergic

neurons [4]. The GPe, like GPi in the direct pathway, inhibits the stimulation of STN excitatory signals.

Only now does the cortex also directly stimulate the STN. This causes the STN to stimulate the SNr and

GPi. The GPi and SNr ensure that inhibitory signals are delivered to the thalamus. So that the thalamus

does not send excitatory signals to the cortex. However, the substantia nigra pars compacta (SNc) can

now produce dopamine. An increase in dopamine in the striatum ensures that the effect of the indirect

pathway is inhibited and that movement does take place. [3, 4]

The hyperdirect pathway is the fastest feedback loop of the three [10]. The cortex projects directly onto

the STN. Which then activates the SNr and GPi. The striatum is thus skipped. The hyperdirect pathway is

assumed to have the same effect as the indirect pathway. It incites movement. Research by C. Bingham et

al.[10] shows that both the function and existence of the hyperdirect pathway are not yet clear.

Lanciego et al.[2] shows that in Parkinson’s disease, the feedback loop of the basal ganglia changes. The

SNc produces too little dopamine. This causes the STN to show more activity. Overactivity of the STN, in

turn, causes the GPi and SNr to be overstimulated, leading to inhibition of the thalamus. This inhibits the

projection of cortical neurons associated with inciting movement. [2]

Alfa-synuclein is a protein that appears to play an important role in neurotransmitter release and presy-

naptic function [12]. The protein is mainly located at the presynaptic terminal. In several diseases such as

PD there are accumulations of this protein in different places in the body, these accumulations are also

called Lewy bodies [12, 13]. How much and where these Lewy bodies are depends on a balance between

9

TGO group 8 University of Twente

Figure 1: The direct and indirect pathway of the basal ganglia.
Note. Reprinted from “Mechanisms of deep brain stimulation” by T.M. Herrington, J. J. Cheng and E. N. Eskander,

2016, Journal of Neurophysiology. Copyright 2016 the American Physiological Society. [11]

clearance, synthesis and aggregation. Any changes in this balance can cause the amount of alfa-synuclein

to increase. An increase in alfa-synuclein causes more (toxic) oligomers and fibrils to be produced [12].

The resulting fibrils change the permeability of nerve cells. This results in a greater influx of calcium ions,

which in turn leads to cell death [12, 14]. The oligomers are harmful by damaging mitochondria or causing

leakage into lysosomes. In Parkinson’s disease, these Lewy bodies are found in the substantia nigra. The

death of neurons in this place therefore ensures that too little dopamine is produced.

After the neurons have passed the Basal Ganglia, the nerve pulse passes through the cerebellum. In the

cerebellum, there are sensory nerves that perceive the feedback of movement. This information eventually

returns to the motor and sensory cortex. Damage to the cerebellum will impair a patient’s fine motor skills.

Due to the limited feedback, the signal strength can be adjusted less quickly in the motor cortex. [15, 16]

3.1.4 Neurotransmitters

To understand the pathology of Parkinson’s disease, it is important to investigate the role of neurotrans-

mitters in the disease process. Especially the imbalance in the presence of these signalling substances

is important for research into possible therapies. The main neurotransmitters in Parkinson’s disease are

dopamine and gamma-aminobutyric acid (GABA) . Both neurotransmitters are decreased in quantity in

the disease [17]. Dopamine decreases due to decreased activation of the D2 receptor. This receptor is

responsible for the synthesis, release and uptake of dopamine [18]. At a later stage of the disease process,

the D1 receptor also shows loss of function [17]. Medications that increase dopamine levels show good

results because they partially take over the production of dopamine. The expression of GABA is reduced in

this condition, the function of this neurotransmitter is to inhibit movements. If the concentration is too

low, the patient will suffer from tremor and stiffness. [17]

10

TGO group 8 University of Twente

3.1.5 Brain’s bio-electrical activity

The activity of brain waves can be used to explain the physiology behind the symptoms. These brain

waves can be divided in five groups. Firstly, the Delta rhythm has a frequency range of 0-4 Hz and can be

measured during deep sleep when the brain has very low activity. The theta rhythm comes second in terms

of frequency (4-7 Hz) and is also measured during sleep or when someone is drowsy. The third category is

called the alpha rhythm (7-13 Hz) and is active when the brain is awake but in a state of relaxation. From

the Beta rhythm (13-31 Hz) and further the brain is actively processing a task, this can be a physical task or

a mental assignment. It’s important to note that closing the eyes will suppress the beta frequency. The last

domain is the Gamma range, this range starts at 32 Hz and can have a bigger amplitude when two sensory

signals are processed, for example sound and sight. [19]

For patients suffering from PD, the amplitude of Beta frequencies are increased. This mechanism is

responsible for the bradykinesia. Because higher amplitudes of Beta frequencies inhibit motion. In healthy

individuals these range of frequencies are suppressed during movement to improve the mobility. To

measure these brain waves physicians can perform an electroencephalogram (EEG) on the skull of the

patient.

Patients with DBS have metal leads implanted, these have both a stimulating function as a sensory function.

Thus with the implants, the brain activity close to the STN can be detected. The physician can use this

information to evaluate the effectiveness of the DBS. Overstimulation or the combination of DBS with

medication can cause dyskinesia. During dyskinesia the Beta frequencies are suppressed too much, which

causes over-movement. To minimalize this side-effect, the DBS has to be turned down temporally after

the patient has taken medication.

In the same study from E. Florin et al.[20], the researchers found an increase in the Gamma activity by

patients with PD. This confirmed their hypothesis, as an increased amplitude of Gamma waves correlates

with prokinetic activation and has to compensate the inhibitory features of the increased beta oscillation.

[20]

3.1.6 Pathophysiology of Parkinson’s disease

In Parkinson’s disease, the production of dopamine is disrupted. The substantia nigra is responsible

for the production of this neurotransmitter [21]. The substantia nigra and striatum together form the

nigrostriatal system and have a crucial influence on controlled movement [22]. In patients with PD, the

disease manifests itself in different ways. First, the complaints can be divided into motor and non-motor

abnormalities. Motor problems can be tremors, rigidity and bradykinesia. The non-motor abnormalities

are part of the prodromal phase of the disease, the main symptoms of this phase are REM sleep problems

and anxiety or depression [23]. Also, a person’s cognition may decline early on in PD. These omens can

start up to 20 years before the onset of motor abnormalities. However, these complaints can also be caused

by other diseases [23].

11

TGO group 8 University of Twente

No blood tests or other imaging tests are available for diagnosis. Currently, doctors make the diagnosis

based on medical history, symptoms, and neurological exams. These characteristics are compared with

atypical symptoms of PD in order to conclude whether the diagnosis is correct or whether there is another

(neuro)pathophysiology underlying the complaints [24].

One of the neurological examinations consists of taking scores. The most well-known are the MDS-UPDRS

[25] and Parkinson’s disease questionnaire (PDQ-39)[26]. A clinical expert will review this list with the

patient. The patient can indicate how much he is bothered by certain complaints. These complaints are

both non-motor and motor complaints. With these scores, the doctor can determine the severity of the PD

and the current state of the complaints during the doctor’s visit.

The prodromal complaints are insufficiently specific for a diagnosis of PD. Prodromal complaints are

non-specific complaints but may indicate a pre-stage of PD [23]. The presence of prodromal complaints

can be used in combination with knowledge about exposure to risk factors for the patient. Examples

of these factors are genetic abnormalities or environmental factors. Certain environmental polluting

factors influence the development of neural damage, as is the case in PD. Mainly toxic substances such

as pesticides and other chemicals are risk factors, researchers also see a correlation between economic

growth (more industry) and the prevalence of PD. [24]

3.2 Therapy

3.2.1 Medical therapy

As discussed earlier, there is a dopamine deficiency in PD and patients with PD can present a wide range of

complaints. Currently, PD is irreversible [27]. Hence why the therapy is aimed at reducing the complaints

of patients. Reducing these complaints can be done in different ways. The presence of complaints without

medication is also called the “off period”. While if there are no complaints during medication it is called

the "on period" [28]. The most commonly used drug for PD is levodopa: a dopamine precursor [28, 29].

Levodopa crosses the blood-brain barrier and here it is decarboxylated causing levodopa to become

dopamine [29]. This drug is often used in combination with carbidopa. Carbidopa cannot cross the

blood-brain barrier, so its action is mainly peripheral. Because the effect is peripheral, more levodopa can

be converted into dopamine [28, 29]. Carbidopa thus inhibits the breakdown of levodopa. In addition,

Carbidopa helps to suppress nausea, low blood pressure and restlessness [30]. If these two medicines are

combined, the complaints can be greatly reduced. Nevertheless, levodopa also has side effects. There are

dizziness and gastrointestinal problems.[28]

In addition, dopamine agonists are sometimes also given. These agonists perform the same role as

dopamine once they bind to a dopamine receptor [28]. An advantage of these agonists is that they need to

be administered less frequently than levodopa. Often agonists and levodopa are combined, this ensures

that the effect lasts longer and that the strength of the effect is greater [28]. Another class of medication is

12

TGO group 8 University of Twente

inhibitors. This class of medication inhibits/decreases the metabolism of levodopa. The agent is therefore

broken down less quickly and then has a longer effect.[28]

An alternative treatment option is physiotherapy, more specifically physical exercise (Spinning) [24]. To

investigate effectiveness, van der Kolk et al.[31] randomly divided patients into two groups; a group

that did high-intensity spinning on an exercise bike three times a week and a control group that only

stretched. After 6 months, these patients were asked to complete the MDS-UPDRS score list together with

the neurologist. The results showed a statistically significant difference between both groups, in favor of

the intervention group. [31]

3.2.2 Deep Brain Stimulation (DBS)

3.2.2.1 Introduction

50% Of PD patients develop new complaints after 5 years of medication [32]. An example of this is

dyskinesia. Often when this happens, doctors consider using DBS. DBS should ensure that motor functions

continue to function as well as improvement of the memory. [32]

3.2.2.2 Continuous DBS

When applying DBS, the doctors stimulate the STN and GPi (see figure 2). They do this using electrical

signals. These electrical signals reach those area’s through needles, which have a contact length of 1.5

mm. The needles are then spaced 0.5 to 1.5 mm apart [4, 33]. Between 4 and 8 needles are used. The

tips of these needles go to a pacemaker, which is located in the chest [33]. According to Hariz et al.[4]

typical DBS uses a pulse amplitude of 1 to 4 mA and a frequency of 130Hz, with a pulse width of 60ms

[4]. Introducing electrical signals to the brain areas should ensure that the overactivity of the STN or GPi

decreases. As a result, the thalamo-cortical projections are less blocked. And so that at least the motor

complaints decrease [4]. Once DBS has been applied, medication is still used.

3.2.2.3 STN DBS

This form of DBS is the most researched and therefore the most effective [4]. PD patients who undergo

this treatment see a strong decrease in complaints and can greatly reduce their medication use [4]. The

patients who receive this treatment are often relatively young. This means that they will (hopefully) get

fewer complaints later on and therefore have a more optimistic future ahead. Besides, it largely resolves

motor complaints [34]. It also ensures that PD patients with this form of DBS can sleep better, have a

higher pain threshold and are less anxious. [4, 34]

3.2.2.4 Side effects DBS

13

TGO group 8 University of Twente

Figure 2: The working of DBS.
Note. Reprinted from “Deep brain stimulation for Parkinson’s disease” by M. Hariz, P. Blomstedt, 2022, Journal of

Internal medicine. Copyright 2022 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on
behalf of Association for Publication of The Journal of Internal Medicine.[4]

Side effects can occur with all treatments, including DBS. During an operation, something can always go

wrong, such as an infection. One of the most common side effects after successful surgery is dysarthria

[32]. This can be caused by the fact that the STN is more active and that certain muscles are inhibited

as a result. STN-DBS can cause mood swings, but can also changes the behavior of patients. Another

disadvantage of DBS is that it does not dynamically adapt to the patient [32, 35]. Once programmed in, the

DBS will have a continuous activation. This is independent of the patient’s situation. Furthermore, the

battery does not always last long [34]. This ensures that patients can unintentionally get complaints again.

[4]

3.2.2.5 Adaptive DBS

With the current treatment, DBS is always on. aDBS should eventually replace this. Instead of being on all

the time, like now. aDBS should only work when the patient notices that the complaints are getting worse

or the patient should turn it down if he notices that he has no complaints. A normal DBS is an open loop

[35, 36]. This means that adjustments have to be made from time to time. This is only possible if the DBS

is switched off and patients therefore experience complaints. This is different with aDBS. This is a closed

loop system [35, 36]. This means that the device adjusts automatically based on the feedback from the

sensor. The closed-loop system consists of three parts. Those are the sensor, controller, and stimulator.

[36]

The sensor measures whether there is a change. This change is different for brand. The different signal

changes are local field potentials, electrocorticography, signals from wearables and neurochemicals [34, 36].

Any of these signals can be used. One of these signals is then forwarded to the controller. The controller

14

TGO group 8 University of Twente

processes this signal. After it has been processed, it is calculated how much mA must be delivered and

where. When the calculation is complete, the stimulator outputs the result. [34, 36]

3.3 Movement Disorder Society- Unified Parkinson’s Disease Rating Scale

3.3.1 The origin of UPDRS

Due to the lack of blood tests or other imaging tools, clinicians use scales to help diagnose and measure the

severity of Parkinson’s Disease. The most used scale is the Movement Disorder Society- Unified Parkinson’s

Disease Rating Scale (MDS-UPDRS) to analytically investigate the severity of PD [37, 38].The UPDRS

score list was approved in 1980, twenty-eight years later in 2008, this scale was updated and scientifically

approved after the validity was researched. This study from 2008 was performed by the Movement Disorder

Society giving its name to it: MDS-UPDRS [38]. To better understand the difference between those two

scales, it’s important to have some background information about the original scale. It consists of 55

questions divided in two categories, 7 of them are yes/no questions and the other 48 are in the form of a

5 point scale from 0 to 4. Were 0 means that the symptom is not present and a value of 4 states that the

symptom is severe. Furthermore the test is divided in four parts. Part 1 focuses on non-motor symptoms;

part 2 on the continuation of daily activities; part 3 is performed by a clinician and is mainly focused on

symptoms of Parkinson’s Disease; part 4 includes questions about motor complications. [37, 38]

With this test, clinicians can classify patients with more certainty and measure the progression of Parkin-

son’s Disease. However, PD patients experience symptoms differently. A patient that has painting as a

hobby feels more discomfort of having tremor than someone that likes to ride a bicycle [37]. This score

lists gives room for different interpretations and different outcomes while the questions are the same.

Another limitation is how patients memorise certain events. Some people remember the times they had

trouble with the activity better than the times everything went well [37]. For example, the days they didn’t

succeed changing their clothes will be memorized better then the days they succeeded.

The different parts of the test are a strong aspect of the test. For the clinician it is easier to understand

which symptoms have the most influence on the quality of life. If a patient is sombre and is close to a

depression but experience few limitations in daily life, the physician can adjust the treatment plan to

improve the mood of the patient [38]. Moreover, the comparison of each part individually gives a better

understanding in which categories the patient experience worsening of symptoms and for which parts the

progression of PD is limited [38].

3.3.2 MDS-UPDRS

As mentioned earlier, in 2008 the UPDRS score list was renewed. This renewal consists 65 questions:

10 more then before, of which 9 new items are not related to the original scale. These new questions

were focused on both physical and mental abnormalities. The mental questions had as subjects the

anxious mood and dopamine dysregulation syndrome. The physical part consists of way more questions:

15

TGO group 8 University of Twente

urinary problems, constipation, fatigue, doing hobbies, getting in and out of bed, toe tapping, and freezing.

Moreover the scale was adjusted: the UPDRS the scale goes from none (0), mild (1), moderate (2), severe (3)

to marked (4). There is clinically not a relevant difference between severe and marked, and for physicians

an extra category in the not-severe range has more relevance to detect and diagnose early stages of PD.

For this reason, the MDS-UPDRS starts the same at none (0) then has a new category: slight (1). In this

category the activity is impacted little and with low frequency. After slight comes mild (2), in this case the

impact is more clear or the symptoms occur more frequently. By moderate (3), the impact on the daily

activity has to be clear and occur more frequently. The last rating severe (4) has become a combination of

the previous categories (severe and marked). If the question is rated with a four, the activity is impacted

heavily and there is serious function loss. [38]

Lastly, some questions are rewritten so that the patient or caregiver can answer them without a supervisor.

Some questions (mostly from part 3 of the MDS-UPDRS test) still require a specialist to give a result. In

total, the examination time for physicians is shorter in comparison to the original UPDRS score list. [38]

3.3.3 Limitations of MDS-UPDRS

Even with the use of MDS-UPDRS score lists, there are still some limitations to this approach. Especially

how the results should be interpreted: two patients with in total the same amount of points can experience

PD very different. For this reason, it is for clinicians hard to compare the disease between multiple

patients[37]. In equal sizes this is even the case for individual patients, given that for part 1 (non-motor

experiences of daily living) there are multiple ways to come to a total score. Part 1 consists of thirteen

questions, thus the maximum amount of points one can get for this, is 52. Picture that a patient scored

26 points for this test. For one instance, the clinician will expect that the patient experiences some

discomfort during daily life but not that many problems. This is mostly true if the patient rated each

individual question with the value 2 (mild). However, this is not always the case, the patient can for

example experience lots of problems with sleep. And no problems with cognitive disorders or obstipation.

This aspect can have a big impact on the best treatment for the patient: for this patient, it will be more

helpful to get sleep medication than to have laxative tablets. In the score sheet at the end of each part

of the test, each question is shown separate from each other. But if the scores from separate parts are

summed up, information regarding where the most problems for that patient are present is lost. [37]

3.4 Optimizing diagnostic methods

The MDS-UPDRS score lists still collect a broader range of information compared to smartwatch data.

The limitation of these devices is that they can not be used to detect most non-motor symptoms such as

depression or anxiety. Similarly, they only measure the motion of one arm while some patients experience

more dyskinesia in their legs. These heavier forms of dyskinesia will be harder to detect. When using a

smartwatch in comparison to a neurological test performed by an expert, the smartwatch has one big

advantage and that is the continuous collection of data. The result is that this data gives a more detailed

16

TGO group 8 University of Twente

view of how the motor symptoms change over time. A possibility to improve the usage of the smartwatch

is that the patient can use an app to give information about how they felt during the day and at which

moments they had severe symptoms.

3.5 Technology background

3.5.1 Introduction

Research regarding the technological applications on Parkinson’s disease (PD) have been increasing

exponentially [39]. Within this increase, there is a large focus on the motor symptoms and diagnostics of

PD [39]. In addition to this, wearable smart devices ("wearables"), like smartwatches and smartphones,

have seen a soar in popularity: over 40% of all articles published in regards to technology and PD, involved

a wearable [39]. This continuous data stream can help the neurologist with making a diagnosis, monitoring,

or adjustment of treatment [5, 39, 40]. Technology can also help the patient with the treatment of PD

symptoms [41] and rehabilitation [42].

Due to advances in computing power and the internet, it is now possible for wearables to transmit their

data to an artificial intelligence (AI) or a machine learning (ML) algorithm [43, 44]. This interconnectivity

between devices also allows wearables to potentially influence treatments such as deep brain stimulation

(DBS) or a duodopa pump [40]. In this literature study, we will explore the current state and future of

wearables, and see how they interact with AI and ML algorithms and how they can help support the

treatment of PD patients. In addition to this, in the methods section of this article, we will explore the

study by Powers et al. [5] in particular due to our close affiliation with this study.

3.5.2 Wearables

Wearables, or wearable sensors, are worn, portable electronic devices used to measure data from a

patient [45]. Because of the ubiquity of wearable technologies in the population, a lot of research is

being done to see how it can be best utilised [46]. The inertial measurement unit (IMU, consisting of

gyroscopes, accelerometers and magnetometers) present in almost all consumer wearables [47] enables

measurement of bradykinesia [45, 46], tremors [5, 45, 46], dyskinesia [5], freezing of gait [45], sleep

parameters [45] and rigidity [48]. More specialised designs of wearables have also showed promise with

EEG and electromyography (EMG) measurement, using this data to analyse tremor or rapid eye movement

[39]. All of this data could be used to support a diagnosis or to monitor a patient in the home setting [45].

Next to the monitoring of symptoms, this data could also be used to support treatments [39, 40, 41]. Laar

et al. [41] explores the possibilities of wearables for cueing for patients with freezing of gait. Next to this, a

common parameter to monitor in responses to treatment is bradykinesia and dyskinesia [39].

However, there are some shortcomings with the current wearables. Espay et al. [40] explores some caveats

to watch out for with the development of wearables, like the abundance of data measured, whether or not

it is relevant for the patient to measure certain data types and the discrepancies between the objective

17

TGO group 8 University of Twente

sensor data and the subjective clinical scores. Deb et al. [39] highlights the importance to use multiple

sensors, something that few studies have used.

Another shortcoming is the the lack of wearables on non-motor symptoms from PD in papers [39, 40, 49].

This means that it is difficult to truly get a complete picture of the patient from just wearables alone. Some

studies have explored the possibilities on monitoring these non-motor symptoms, like orthostatic hyper-

tension, impulsive control disorder and sleep problems. But due to the inherent difficulty of measuring

these non-motor symptoms or the inability of the equipment to give an accurate measurement, it is with

limited success. However, if more research is done towards the measurement of non-motor symptoms

using wearables, it may show more promise than it is now. [49]

3.5.3 Machine learning

3.5.3.1 Introduction

Artificial intelligence (AI) is a field of computer science that occupies itself with intelligent algorithms [47].

Machine learning (ML) is a subset of AI, where the algorithm "learns" by reflecting the outcome of the

algorithm on itself [44, 47]. ML is a relatively new field, which has seen integration with the analysis of

PD since the late 2000’s [50]. At first, most ML algorithms used were supervised algorithms: the data was

labeled on whether or not the patient had PD or not [50, 44]. As time progressed, unsupervised algorithms

(algorithms that do not need their data labeled, instead finding patterns in their data to make conclusions

from [44]) became more prevalent [50].

3.5.3.2 Common Parkinson’s disease-data algorithms

The algorithms that have seen the most success with IMU data from PD patients are support vector

machines (SVM’s), neural networks (NN’s) with its derivatives, and decision trees (DT’s) with its derivatives

[47]. All these algorithms are supervised [44].

SVM’s try to find a complex boundary between data-points, separating them in different clusters, each

with their own classification, like PD or no PD [44]. To visualize, picture a map of a continent, but without

country borders. A SVM would try to draw new borders for each country based on, for instance, the names

and location of the towns and cities on the map, or whether or not a town belongs to a specific country.

NN’s are another common algorithm used for PD data. NN’s have a similar structure to neurons in

biological neural networks, where the inputs (dendrites) are weighed, passed through an activation

function, and that outcome is then passed onto the outputs (axons). These algorithms learn by influencing

the importance (weight) of an input. Multiple of these "neurons", which are called nodes in artifical NN’s,

form a neural network. NN’s can be made of one node, which is called a perceptron, but can also contain

more nodes and more layers of nodes interconnected with each other. Because of this, neural networks

tend to be quite complex, but also very versatile: many variants of NN’s exist, with some common ones,

like the convolutional neural network and recurrent neural networks, being popular tools to work with.

[51]

18

TGO group 8 University of Twente

DT’s ask questions about the proposed data to classify it into subsets of itself. For example, if you let a

DT play a game of Guess who?, it will ask itself questions to narrow down the possibilities of who it can

be using a tree-like structure. The way a DT asks itself these "questions", is by checking if a variable or

a combination of variables is larger than or equal to a value determined by the DT. For example, we can

convert the Guess Who? question: "Does your character wear glasses?" by labeling all people without

glasses with "glasses = 0", and all people with glasses with "glasses = 1" in our data set. Then, the DT can

split the data set into people with glasses by checking if glasses = 1, for instance. From here on out, these

statements that split the dataset into smaller subsets will be referred to as questions, for ease of reading.

[52]

But how does the DT know what a "good" question is? There are multiple ways for a DT to do this. One

of which is called the Gini index, which is the one that we will be using for our algorithm later on. Gini

indexing checks if the data after the question is asked only contains as few classes per category as possible.

To illustrate what we mean with this, picture the previous example of the Guess Who? example with

glasses. The category "glasses" in this case contains only two classes: without glasses and with glasses.

This splitting of data is beneficial for the DT, as its goal is to make sure that each class per category can be

described as precise as possible. The Gini index is a number between 1 and 0. If the Gini index of a node is

1, than the question does not help with splitting the data at all. If the Gini index of a node is 0, the data has

been split by that question in such a way, it only contains one class per category. [52]

As stated previously, a DT builds itself into a tree-like structure. The first node with a question is called

the "root" of the DT, and continues up the nodes of the DT with more detailed questions. This continues

until a node is made that already concludes something from the data, or no more questions can be asked

to further split the data. These nodes, where no new question is given is called a "leaf" (in other words:

the Gini index of this node is 0)(see figure 3). Each leaf will give the probability of what is the most likely

outcome of that set of questions to get from the root to that leaf. Continuing with the Guess who? example,

you can imagine that the order and the structuring of the questions matter a lot for the shape and size of

the tree. For instance, if the DT starts with questions regarding the person’s name, it will either be done

directly (if it guessed correctly on the first try) or require a lot more questions to find the correct answer. In

order to find the best possible DT, a technique called random forests (RF) can be deployed. RF’s generate

multiple trees and bases its outcome on the most common outcome of all trees. In order to do this, it splits

the data into a random subset of itself and also limits itself to a select amount of questions per node. [52]

19

TGO group 8 University of Twente

Figure 3: Example of a DT structure. The top white node in this case would be the root of the DT, and the dark,
orange nodes world be the leafs.

3.5.3.3 Applications of machine learning

There are many different applications of ML in regards to PD. ML can be found in the aspects of diagnostics,

the management of disease, the monitoring of disease progression and outcome prediction [53]. With

regards to diagnostics, ML has found a place in analysing IMU data of the upper and lower extremities

[5, 53]. Next to this, ML can also be used for analysing images, such as MRI-scans [54], or handwriting [55].

ML can possibly classify PD in different stages [56].

Monitoring and management of PD has also seen a substantial amount of publications in recent years.

Many different sensor arrangements have been tried, but the most prominent one remains the IMU.

Other options include: imaging and depth, audio, and pressure sensors. All of these sensors seem to have

relatively the same amount of success when it comes to monitoring PD, with some senor types having

more success than others. But due to the limited number of studies in some fields and with certain sensors,

it is possible that this might change when more data arrives. [47]

20

TGO group 8 University of Twente

4 Method

4.1 Study design

For our bachelor thesis we have the goal to compare MDS-UPDRS (part III) score lists with smartwatch

data and find out if there is a correlation between those two. Because the smartwatch and MDS-UPDRS

are quite different based on how the data is collected, we have chosen to implement an algorithm that

will do the analysis.We also want to visualise the available smartwatch data by separating it in steps of ten

minutes over a time span of 24 hours. This will give the physician a better understanding at which time

of the day tremor or dyskinesia is more present. The second sub-goal is to compare two visits with each

other based on multiple categories of the MDS-UPDRS and smartwatch data.

4.2 Selection of participants

The patients we received data from, are participants in the adaptive DBS study performed by clinicians

from Amsterdam UMC. Researchers of the adaptive DBS study have selected participants based on their

therapy. If they are eligible for DBS and want to participate, they will be included and receive an Apple

Watch that collects the probabilities of tremor and dyskinesia.

4.3 Data collection

The smartwatch data is collected by Runelabs, an American company that is primarily focused on develop-

ing tools to improve neurological treatment. We received the MDS-UPDRS data from physicians at the

Amsterdam UMC.

To perform the analysis on the smartwatch data, we first had to load these files. For us, this meant that we

were able to adapt some templates offered by Runelabs to extract the data from the files. It is also possible

to use the raw data for analysis, but considering the time we had for this project and the sizes (in terms of

storage) of the raw data, we used pre-processed data instead.

To get a better understanding of how the pre-processing of the raw data is done, we read the Powers et

al.[5] paper, as the system they developed to analyse smartwatch data from patients is very similar to our

source of patient data. Mainly we are interested in the method they used to convert the raw data into

probabilities. This is why we wish to discuss the strengths and limitations of this study here.

Powers et al.[5] developed a system to analyse smartwatch data to identify dyskinesia and tremors from

accelerometer and gyroscope data. This system, called the Motor fluctuations Monitor for Parkinson’s

Disease (MM4PD), was first created and trained by analysing raw sensor data to identify episodes of

dyskinesia and tremors in PD patients. Afterwards, their findings were validated by a test group.

The team determined the strength of the tremor by estimating the displacement in the frequency domain

and discussed why they did this. However, some methods used patterns to determine whether tremor is

present, but this method was not backed up using formulas or other scientifically based arguments.

21

TGO group 8 University of Twente

Next to tremors, Powers et al.[5] also identified dyskinesia using the MM4PD algorithm. The team did this

by first identifying when no tremor was present in 107 patients. Afterwards, using motion strength and

spectral entropy as their inputs, they used a supervised ML-algorithm called "K-nearest neighbour" to use

the inputs to assign data to a score. They also tested the algorithm on non-PD patients to further validate

the algorithm and eliminate false-positives. Despite these flaws, everything else is explained well and

thoroughly throughout the paper and supplementary materials. Powers et al.[5] explains their findings

and progress in an open and sincere manner, using illustrations and video recordings where needed to

illustrate their findings.

Back to our methods, we used these probabilities for our analysis and we wrote scripts to make the data

accessible for others. For if other researchers or students want to use the smartwatch data later on for

their own project. We think it would be helpful to write scripts that are easy in usage (partially automated),

that help with storing the data in a systematic manner. After the data was extracted from the cloud and

saved offline. We made a script (01) that is able to merge all the different categories (tremor probability,

tremor severity and dyskinesia probability) to one Excel-file that contains all this data. Most patients have

received more than one watch because of software-issues. We also made an script that is able to combine

all these watches and store them in a map with the data from all other patients. This map with all the

patients data together makes it very accessible for physicians to perform analyses.

For the MDS-UPDRS scorelists we got an overview containing the data from each patient for each visit. We

loaded this data into Python to be able to analyse this data later on.

4.4 Data analysis

It is not possible to compare MDS-UPDRS-scores (specifically part III) with smartwatch data using statisti-

cal tests. This is because of the following reasons: firstly, the smartwatch data is collected over a period of

time while the MDS-UPDRS is a crosssectional test. Secondly, both measure different types of information.

Hence why we wanted to implement an algorithm to help interpret the results. For the algorithm, we used

a Random Forest (RF) algorithm to give results. The reason for an RF is because the algorithm seems to

perform well in many different scenarios of PD measurements and analysis [47]. To train the RF, we used

both the smartwatch data and a large part of the MDS-UPDRS-scores Part III as input to train the algorithm.

To test the accuracy of the system, only the smartwatch data is given and the system has to predict the

corresponding MDS-UPDRS scores. The smartwatch data is processed slightly before implemented in the

system. In a selected time window, around an hour in width (30 minutes before, 30 minutes after), the

mean is taken from each category and used as input. The scripts also give the opportunity to visualize

the data sets but this is not our main goal for this project. In order to comprehend the significance of the

algorithm, statistical tests, like the Student’s t-test, will be used to measure the difference between the

predicted values of the RF and the test set of the RF. The advantage of using Python for performing the

statistical analyses is that the library scipy.stats has plenty of different statistical functions.

As mentioned in the study design, we also set some subgoals using our pre-processed data. The first

subgoal is plotting all available smartwatch data from one patient in time windows of ten minutes over a

22

TGO group 8 University of Twente

total of 24 hours. We used the merged data from all watches that is stored in the overview map. All data

points are then categorized in subsets of 10 minutes starting at night (0:00 to 0:10; 0:10 to 0:20; and so on).

This plot will give the physician a better understanding of when during the day, specific symptoms are

mostly present. This can be helpful for adjusting DBS or medication intake. If the physician wants to know

how the most recent settings work with respect to previous settings, the physician can select a date frame

of interest. For example, all data points between two visits.

5 Results

5.1 RF-algoritm and iterations

The RF-algorithm was first trained with a set of 26 MDS-UPDRS-Part-III-scores, linked to corresponding

smartwatch data. We decided on using 100 estimators for this RF due to the complexity of the to be

predicted data. In addition, we used 20% (n = 6) of the available data for testing, and the other 80% (n =

20) for training. The test and prediction results of one iteration can be seen in the table 1. Around half

of the predicted data overlaps with the test data ("one-on-one" data), but a large amount of the data

is within one increment of the correct value ("within-one" data). The accuracy was determined by the

percentage of one-on-one data in the total matched data set. We measured this accuracy over 50 runs and

averaged this (see appendix, table 1), to give a more global scope of the capabilities of the RF. This gives

us an average accuracy of 48,9% for one-on one data and 80,9% for the within-one data. The accuracy of

one-on-one data ranged from 39,1% to 63,5%, and the within-one data accuracy ranged from 71,2% up to

90,4% (see figure 3A). Using a related Student’s t-test per MDS-UPDRS-score category over 50 runs of the

algorithm, we concluded that most of the test and the predicted data is similar (see figure 3B and table 1).

This algorithm had a sensitivity and positive predictive value of 43.6%.

a b c d e f g h i j k l m n o p q r s t u v w x y z
set 1 3 2 2 2 2 3 2 2 3 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 0
set 2 2 2 2 2 2 1 1 2 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
set 3 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
set 4 2 2 2 3 1 3 2 3 3 1 0 1 1 0 3 2 0 1 1 1 2 1 0 1 1 0
set 5 2 2 1 2 1 1 1 1 1 1 0 0 0 2 1 2 0 0 0 0 0 0 0 0 0 0
set 1 1 2 1 3 3 1 2 1 3 3 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
set 2 1 1 1 0 0 1 1 1 2 2 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
set 3 1 2 1 0 0 1 1 1 0 3 0 1 0 3 1 1 0 0 0 0 0 0 0 0 0 0
set 4 1 1 1 0 1 3 3 1 2 2 0 1 1 1 4 0 0 1 0 0 0 0 1 0 0 0
set 5 1 1 1 0 1 1 2 1 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 1: Test data (top) and the predictions of the first RF (bottom). Right limbs (a: finger tap, b: hand movement, c:
pronation/supination, d: toe tap, e: leg movement q: postural tremor, r: kinetic tremor, s: rest tremor amplitude
arm, t: rest tremor amplitude leg, u: rest tremor constancy), Left limbs (f: finger tap, g: hand movement, h:
pronation/supination v: postural tremor, w: kinetic tremor, x: rest tremor amplitude arm, y: rest tremor amplitude
leg, z: rest tremor constancy), i: toe tap, j: leg movement, k: raise chair, l: gait, m: freezing, n: postural reflex, o:
posture, p: spontaneous movements.

23

TGO group 8 University of Twente

Figure 4: A: The one-on-one and within-one accuracies of the first and second RF. A(continued): The one-on-one
and within-one accuracies of the third RF, before and after adjusting the hyperparameter tuning. B: The number
of significant deviations per category that the first and third RF try to predict. As can be seen, over 50 runs, the
third RF seems to get almost double the significant deviations, yet it maintains a higher overall accuracy. In both
algorithms,the left-hand-movement UPDRS-score was the most common outlier.

With the same set of MDS-UPDRS-Part-III-scores and smartwatch data, we decided to train an RF for

each category of the MDS-UPDRS-Part-III-score to be predicted. This amounted to 26 RF’s, each with

100 estimators. Again, a 20%/80% test/train split was done to fit the RF-models. Each RF was run 50

times to test the accuracy of the algorithm. Results for test and prediction results can be seen in the table

below. The average accuracy is 49,0% for the one-on-one category and 81,6% for the within-one category.

Accuracy ranges ranged from 39,7% up to 55,8% for the one-on-one measurements, and the within-one

accuracies ranged from 74,4% up to 86,5% (see figure 3A). The 26 separate algorithms show a narrower

spread of the accuracies over these 50 runs when compared to the one RF (see figure 4A). However, there

seems to be no increase in overall accuracy, which is what we hoped for.

Because both of these algorithms got lackluster results, we decided to try and increase the accuracy by

using a process called "hyperparameter tuning" to find the best values for parameters used in the RF. This

process loops through all possible combinations of variables that you enter for the parameters, picks

24

TGO group 8 University of Twente

out the best value for that parameter, and uses it to fit the RF. We used hyperparameter on the following

parameters of the RF: Number of estimators (the number of DT’s per RF), the number of samples needed

for a split and to determine a leaf node, bootstrapping (whether or not the RF should use all samples

to train per RF), the maximum depth of the RF and if the RF should warm-start (to re-use settings of a

previous RF). This process gives an one-on-one accuracy of 52,7% and a within-one accuracy of 84,8%, but

training times for a set of 50 RF’s went from mere seconds to around half a hour (see figure and Appendix:

table 3). The one-on-one accuracy ranged from 39,7% up to 61,5% and the within-one accuracy ranged

from 73,1% up to 92,3% (see figure 4). The accuracies seen in these plots are higher than that of the other

algorithms, but the performance is lackluster: it takes up to 360x longer to compute 50 RF’s of the new

algorithm than it takes to compute 50 RF’s of the old algorithm.

Although the third RF obtained higher overall accuracies, when checking for significant deviations, it shows

that the third RF gets more than double the significant deviations than the first RF (see figure 4B). This

means that the third RF places more emphasis on certain variables, whilst leaving others not accounted

for. In order to maximize accuracy without significant increases in time, we have looked at the parameters

that gave the highest accuracy in the hyperparameter tuning, and limit the tuning to a smaller margin

around those values. In addition, we will enable the RF to use multiple cores from the central processing

unit (CPU) in your PC. These decisions made the RF do 50 runs in about 10 minutes, whilst not lowering

the accuracy of the RF. This was about the limit of what could be produced from the RF, without requiring

more data.

5.2 Smartwatch data per ten minutes

After the pre-processing of the data was done and the algorithm was working. We set some sub-goals

to further perform analyses on the available smartwatch data. In figure 5 we plotted the mean tremor

and dyskinesia for each 10 minutes over a time span of 24 hours to get a better understanding of which

symptoms are more present in the morning and which occur more often in the afternoon. The input data

was the probability data, from all Apple Watches worn by the patient and separated and categorized in

time windows of 10 minutes. Below this graphic is shown how much data points are available for each

time window. This tells something about the preciseness of the result. If there are only a few data points

available the impact of outliers increases.

5.3 Comparison of visits for MDS-UPDRS and smartwatch data

To get a better understanding of the differences in symptoms between two visits. It can be helpful to

have a visual overview of how parts of the MDS-UPDRS have different scores between two visits. More

interestingly is the change between visit two and three because between these two visits the DBS has been

activated. The results of the MDS-UPDRS can be matched with the smartwatch data at the moment the

MDS-UPDRS test was taken. For this case, we chose a time window of fifteen minutes prior and sixty

minutes after MDS-UPDRS. As shown in figure 6 both the mean tremor from the Apple Watch as the scores

from the tremor category of the MDS-UPDRS dropped.

25

TGO group 8 University of Twente

Figure 5: This figure shows the tremor and dyskinesia for each hour based on all probability data collected by the
Apple Watch. The second image shows the available data points for each hour given that less data points mean that
the results will be less precise

Figure 6: Comparison of the MDS-UPDRS and smartwatch data between two visits.

26

TGO group 8 University of Twente

6 Discussion

6.1 Literature

In the theoretical background their is less focus on the specific symptoms of how they arise. This has been

done because the researchers wanted to focus on the bigger picture. Instead of focusing on the specific

details of symptoms. In addition, a small piece has been written about the non-motor complaints. It is

important to realize that these complaints are certainly no less important and, just like motor complaints,

can have a major impact on someone’s life. But due to the focus on motor complaints, this is less extensive.

However, the two points mentioned above are interesting for possible follow-up studies. How can the

non-motor complaints be measured and how do the specific symptoms of a patient relate to the anatomy?

Any other research could be aimed at the further use of AI, ML and DL aimed at PD.

6.2 Data & coding

Data acquisition was relatively difficult due to infrequent measures of the MDS-UPDRS-scorelist. Because

of this, it was at times difficult to find data that matched the measurement date ("visit") of the MDS-

UPDRS-score. This had us resort to either omitting the data from the ML-algorithm or using data that was

(at most) hours away from the visit. This could mean that the ML has been trained with improper data,

which may give selection bias on the performance of the RF.

For our algorithm we used two different time windows around the visits. The time of visit was based on the

moment the neural data was read out. This read-out can only be done in the hospital. The first window

was –15 minutes and + 60 minutes compared to the read-out time. The second window was –45 minutes

and + 15 minutes. There was no significant difference between the time windows for the accuracy of the

algorithm 52.7% accuracy for the first window and 51.4% for the second window.

Next to this, the MDS-UPDRS-scorelist was, for some patients and visits, irretrievable due to improper

syntax in the documentation. As it was very difficult to compensate for this directly, it was decided to not

include visits at which this improper documentation took place. As this improper documentation mainly

happened to MDS-UPDRS-score that amounted to 0 (in other words: little to no motor symptoms of PD),

the ML-algorithm could be biased to patients that have little to none motor hinder from PD.

Another thing of note was a lack of variability in the submitted MDS-UPDRS-scores. categories, such as the

tremor scores for both right and left, were often filled with the same value, commonly 0. This means that

there was little data to train with when these categories did have a value above 0. This means that there is

a high likelihood that the RF has a difficulty identifying tremors. Other categories like these include: rising

from chair, freezing, and gait.

Besides these negative points, there were also positive points. The various written scripts are almost all

automated, only patient number, patient ID and smartwatch number need to be changed. Specifically,

processing large amounts of data is fully automatic, such as loading MDS-UPDRS scores and bringing both

smartwatch data and MDS-UPDRS into an Excel-file. This ensures that people who are not specialized

27

TGO group 8 University of Twente

in programming can also retrieve and analyze the data. In addition, the scripts also display graphs.

Visualization can help people enormously to process things. The graph can also help in choosing the

moment to administer medication or to adjust aDBS. The time interval can be chosen by the person

himself. This makes it possible to compare current data with data from months ago. It is therefore possible

to see whether progress has been made or whether there has been a regression. And therefore see if

anything needs to be changed in the current treatment plan.

Any further studies could focus on processing other major impacting symptoms and comparing them to

what is now available. But also look at how you can take the data from smartwatches at the same time

as the MDS-UPDRS scores and how to store this data. So that this data can be found more easily. A next

step could also be to create a (better) interface. This should make it even easier for patient and doctor to

analyse the data.

6.3 ML-performance

Considering the limited data availability and the inherent subjectiveness of the MDS-UPDRS-score data

that we did have, and in some cases the limited data variability, we think the RF worked well. Especially

the third RF-algorithm gave quite promising results with the available data. We do think the RF can be

improved by using additional, and more varied training- and testing data. This way, the RF can explore

more scenario’s which will give less outliers and thus give a more accurate outcome.

In addition to this, exploring more types of ML may lead to one that gives better accuracy with the given

data. Lastly, reusing the RF to train from the accellerometer- and gyroscope data instead of the probability

of tremor, tremor severity and dyskinesia may also give more reliable results due to the objectiveness of

that data.

The big advantage that ML brings is that the data is compared by an independent person/thing. Provided

that it is well trained. It has little to no bias and is less time consuming than if one person tried to analyse

it. Currently, our ML gives a higher predictive value for an MDS-UPDRS score than if a person were to

gamble. This is an important point when one realizes that our data only had 26 patients.

Interesting follow-up studies focusing on ML may involve using other forms of ML to analyse this data.

Other studies may be aimed at improving the current ML type. The use of ML in combination with AI and

DL could also be considered.

6.4 Implication for patient

Patients participating in our part of the Amsterdam UMC study experience no extra burden. After all

the smart watch data is already automatically collected and the MDS-UPDRS assessments are part of

the standard care. The goal of this study is to give physicians and patients a better overview of when

symptoms are mostly present. With this overview the treatment for each patient can be adjusted based on

their current status. For now, the algorithm is not precise enough to give meaningful predictions. If the

algorithm is properly trained, it can give meaningful predictions of the disease.

28

TGO group 8 University of Twente

7 Conclusion

In the conclusion, we answer our main question. It reads as follows: What is the correlation between

outcome measures of the smartwatch data and MDS-UPDRS scores of patients with Parkinson’s disease?

To answer our sub-questions, we did a thorough literature study regarding PD and ML, which can be read

in the "Theoretical background" section. Furthermore, to answer the technical sub-questions, we made

multiple scripts to read, filter and write data so it can be used by the RF to be analysed. For more details

and the exact content of the scripts used, we refer you to the appendix. Here, a "ReadMe" is given about

the scripts used in this research. Next to this, the "Results" section writes about the end products of these

scripts.

With the current data available, it is not possible to classify or correlate parts of the MDS-UPDRS part-III

scorelist accurately with the smartwatch data. Even though the RF algorithm can get percentages around

86% for scores within one of the correct value, we do not think this is large enough to be able to justify

a correlation between the MDS-UPDRS Part-III scorelist, and the smartwatch data measured by Apple

watches.

29

TGO group 8 University of Twente

References

[1] Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson’s disease.

The Lancet Neurology. 2021 5;20(5):385. Available from: /pmc/articles/PMC8185633//pmc/

articles/PMC8185633/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/

PMC8185633/. doi:10.1016/S1474-4422(21)00030-2.

[2] Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harbor

Perspectives in Medicine. 2012 12;2(12):a009621–a009621. doi:10.1101/cshperspect.a009621.

[3] Fazl A, Fleisher J. Anatomy, Physiology, and Clinical Syndromes of the Basal Gan-

glia: A Brief Review. Seminars in pediatric neurology. 2018 4;25:2. Available from:

/pmc/articles/PMC6039104//pmc/articles/PMC6039104/?report=abstracthttps:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC6039104/. doi:10.1016/J.SPEN.2017.12.005.

[4] Hariz M, Blomstedt P. Deep brain stimulation for Parkinson’s disease. Journal of Internal Medicine.

2022 11;292(5):764–778. Available from: https://onlinelibrary.wiley.com/doi/10.1111/

joim.13541. doi:10.1111/joim.13541.

[5] Powers R, Etezadi-Amoli M, Arnold EM, Kianian S, Mance I, Gibiansky M, et al. Smartwatch iner-

tial sensors continuously monitor real-world motor fluctuations in Parkinson’s disease. Science

Translational Medicine. 2021 2;13(579). Available from: https://www.science.org/doi/10.1126/

scitranslmed.abd7865. doi:10.1126/scitranslmed.abd7865.

[6] Chouinard PA, Paus T. The Primary Motor and Premotor Areas of the Human Cerebral Cortex; 2006.

doi:10.1177/1073858405284255.

[7] Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO, et al. The Premotor

Cortex. vol. 2nd editio; 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK10796/.

[8] Ninomiya T, Inoue Ki, Hoshi E, Takada M. Layer specificity of inputs from supplementary motor area

and dorsal premotor cortex to primary motor cortex in macaque monkeys. Scientific Reports. 2019

12;9(1):18230. doi:10.1038/s41598-019-54220-z.

[9] Ackerman S. Discovering the Brain. Washington, D.C.: National Academies Press; 1992. Available

from: http://www.nap.edu/catalog/1785. doi:10.17226/1785.

[10] Bingham CS, Petersen MV, Parent M, McIntyre CC. Evolving characterization of the human hyperdi-

rect pathway. Brain Structure and Function. 2023 3;228(2):353–365. Available from: https://

link.springer.com/article/10.1007/s00429-023-02610-5. doi:10.1007/S00429-023-02610-

5/FIGURES/8.

[11] Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. Journal of Neuro-

physiology. 2016 1;115(1):19–38. Available from: https://www.physiology.org/doi/10.1152/jn.

00281.2015. doi:10.1152/jn.00281.2015.

30

TGO group 8 University of Twente

[12] Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from struc-

ture and toxicity to therapeutic target. Nature reviews Neuroscience. 2013 1;14(1):38. Available

from: /pmc/articles/PMC4295774//pmc/articles/PMC4295774/?report=abstracthttps://

www.ncbi.nlm.nih.gov/pmc/articles/PMC4295774/. doi:10.1038/NRN3406.

[13] Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou

G. Neurodegeneration and Inflammation—An Interesting Interplay in Parkinson’s Dis-

ease. International Journal of Molecular Sciences. 2020 11;21(22):1–15. Available from:

/pmc/articles/PMC7697354//pmc/articles/PMC7697354/?report=abstracthttps:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC7697354/. doi:10.3390/IJMS21228421.

[14] Han Y, Wu D, Wang Y, Xie J, Zhang Z. Skin alpha-synuclein deposit patterns: A pre-

dictor of Parkinson’s disease subtypes. eBioMedicine. 2022 6;80. Available from:

/pmc/articles/PMC9148991//pmc/articles/PMC9148991/?report=abstracthttps:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC9148991/. doi:10.1016/J.EBIOM.2022.104076.

[15] Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al.. Consensus paper:

The cerebellum’s role in movement and cognition; 2014. doi:10.1007/s12311-013-0511-x.

[16] Proville RD, Spolidoro M, Guyon N, Dugué GP, Selimi F, Isope P, et al. Cerebellum involvement in

cortical sensorimotor circuits for the control of voluntary movements. Nature Neuroscience. 2014

9;17(9):1233–1239. doi:10.1038/nn.3773.

[17] Jamwal S, Kumar P. Insight Into the Emerging Role of Striatal Neurotransmitters in the Pathophysiol-

ogy of Parkinson’s Disease and Huntington’s Disease: A Review. Current Neuropharmacology. 2018

1;17(2):165–175. doi:10.2174/1570159x16666180302115032.

[18] Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neu-

roscience. 2014 12;282:13–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24463000.

doi:10.1016/j.neuroscience.2014.01.025.

[19] Roohi-Azizi M, Azimi L, Heysieattalab S, Aamidfar M. Changes of the brain’s bioelectrical activity in

cognition, consciousness, and some mental disorders. Medical journal of the Islamic Republic of

Iran. 2017;31:53. doi:10.14196/mjiri.31.53.

[20] Florin E, Erasmi R, Reck C, Maarouf M, Schnitzler A, Fink GR, et al. Does increased gamma activity

in patients suffering from Parkinson’s disease counteract the movement inhibiting beta activity?

Neuroscience. 2013 5;237:42–50. doi:10.1016/j.neuroscience.2013.01.051.

[21] Sonne J, Reddy V, Beato MR. Neuroanatomy, Substantia Nigra. StatPearls Publishing; 2023. Avail-

able from: https://pubmed.ncbi.nlm.nih.gov/30725680/https://www.ncbi.nlm.nih.gov/

books/NBK536995/.

31

TGO group 8 University of Twente

[22] Bourdy R, Sánchez-Catalán MJ, Kaufling J, Balcita-Pedicino JJ, Freund-Mercier MJ, Veinante P, et al.

Control of the nigrostriatal dopamine neuron activity and motor function by the tail of the ventral

tegmental area. Neuropsychopharmacology. 2014 11;39(12):2788–2798. doi:10.1038/npp.2014.129.

[23] Roos DS, Klein M, Deeg DJH, Doty RL, Berendse HW. Prevalence of Prodromal Symptoms of Parkin-

son’s Disease in the Late Middle-Aged Population. Journal of Parkinson’s Disease. 2022 4;12(3):967–974.

doi:10.3233/JPD-213007.

[24] Bloem BR, Okun MS, Klein C. Parkinson’s disease. The Lancet. 2021 6;397(10291):2284–

2303. Available from: https://linkinghub.elsevier.com/retrieve/pii/S014067362100218X.

doi:10.1016/S0140-6736(21)00218-X.

[25] Martínez-Martín P, Rodríguez-Blázquez C, Alvarez M, Arakaki T, Arillo VC, Chaná P, et al. Parkinson’s

disease severity levels and MDS-Unified Parkinson’s Disease Rating Scale. Parkinsonism and Related

Disorders. 2015 1;21(1):50–54. Available from: https://linkinghub.elsevier.com/retrieve/

pii/S1353802014004118. doi:10.1016/j.parkreldis.2014.10.026.

[26] Neff C, Wang MC, Martel H. Using the PDQ-39 in routine care for Parkinson’s disease. Parkinsonism

and Related Disorders. 2018 8;53:105–107. Available from: https://linkinghub.elsevier.com/

retrieve/pii/S1353802018302517. doi:10.1016/j.parkreldis.2018.05.019.

[27] Emamzadeh FN, Surguchov A. Parkinson’s Disease: Biomarkers, Treatment, and Risk Factors. Fron-

tiers in Neuroscience. 2018 8;12. doi:10.3389/fnins.2018.00612.

[28] Reich SG, Savitt JM. Parkinson’s Disease. Medical Clinics of North America. 2019 3;103(2):337–350.

doi:10.1016/J.MCNA.2018.10.014.

[29] Wecker L, Taylor DA. Brody ’ s Human Pharmacology. 6th ed. Elsevier; 2018.

[30] Gandhi KR, Saadabadi A. Levodopa (L-Dopa). Treasure Island (FL): StatPearls Publishing; 2023. Avail-

able from: https://pubmed.ncbi.nlm.nih.gov/29489269/https://www.ncbi.nlm.nih.gov/

books/NBK482140/. doi:10.4324/9781315825748-35.

[31] van der Kolk NM, de Vries NM, Kessels RPC, Joosten H, Zwinderman AH, Post B, et al. Effectiveness

of home-based and remotely supervised aerobic exercise in Parkinson’s disease: a double-blind,

randomised controlled trial. The Lancet Neurology. 2019 11;18(11):998–1008. doi:10.1016/S1474-

4422(19)30285-6.

[32] Shah H, Usman O, Ur Rehman H, Jhaveri S, Avanthika C, Hussain K, et al. Deep Brain Stimulation in

the Treatment of Parkinson’s Disease. Cureus. 2022 9. Available from: https://www.cureus.com/

articles/106888-deep-brain-stimulation-in-the-treatment-of-parkinsons-disease.

doi:10.7759/cureus.28760.

[33] Malvea A, Babaei F, Boulay C, Sachs A, Park J. Deep brain stimulation for Parkinson’s Disease: A

Review and Future Outlook. Biomedical Engineering Letters. 2022 8;12(3):303–316. Available from:

https://link.springer.com/10.1007/s13534-022-00226-y. doi:10.1007/s13534-022-00226-y.

32

TGO group 8 University of Twente

[34] Habets JGV, Heijmans M, Kuijf ML, Janssen MLF, Temel Y, Kubben PL. An update on adaptive deep

brain stimulation in Parkinson’s disease. Movement Disorders. 2018 12;33(12):1834–1843. Available

from: https://onlinelibrary.wiley.com/doi/10.1002/mds.115. doi:10.1002/mds.115.

[35] Swann NC, De Hemptinne C, Thompson MC, Miocinovic S, Miller AM, Gilron R, et al. Adaptive

deep brain stimulation for Parkinson’s disease using motor cortex sensing. Journal of Neural Engi-

neering. 2018 8;15(4):046006. Available from: https://iopscience.iop.org/article/10.1088/

1741-2552/aabc9b. doi:10.1088/1741-2552/aabc9b.

[36] Guidetti M, Marceglia S, Loh A, Harmsen IE, Meoni S, Foffani G, et al. Clinical perspectives of

adaptive deep brain stimulation. Brain Stimulation. 2021 9;14(5):1238–1247. Available from: https://

linkinghub.elsevier.com/retrieve/pii/S1935861X21002023. doi:10.1016/j.brs.2021.07.063.

[37] Hendricks RM, Khasawneh MT. An Investigation into the Use and Meaning of Parkinson’s Disease

Clinical Scale Scores. Parkinson’s Disease. 2021 5;2021:1–7. doi:10.1155/2021/1765220.

[38] Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement Dis-

order Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS):

Scale presentation and clinimetric testing results. Movement Disorders. 2008 11;23(15):2129–2170.

doi:10.1002/mds.22340.

[39] Deb R, An S, Bhat G, Shill H, Ogras UY. A Systematic Survey of Research Trends in Technology

Usage for Parkinson’s Disease. Sensors. 2022 7;22(15):5491. Available from: https://www.mdpi.com/

1424-8220/22/15/5491. doi:10.3390/s22155491.

[40] Espay AJ, Bonato P, Nahab FB, Maetzler W, Dean JM, Klucken J, et al. Technology in Parkinson’s

disease: Challenges and opportunities. Movement Disorders. 2016 9;31(9):1272–1282. Available from:

https://onlinelibrary.wiley.com/doi/10.1002/mds.26642. doi:10.1002/mds.26642.

[41] Laar A, Silva de Lima AL, Maas BR, Bloem BR, de Vries NM. Successful implementation of technology

in the management of Parkinson’s disease: Barriers and facilitators. Clinical Parkinsonism and Related

Disorders. 2023;8:100188. Available from: https://linkinghub.elsevier.com/retrieve/pii/

S2590112523000063. doi:10.1016/j.prdoa.2023.100188.

[42] Lau J, Regis C, Burke C, Kaleda MJ, McKenna R, Muratori LM. Immersive Technology for

Cognitive-Motor Training in Parkinson’s Disease. Frontiers in Human Neuroscience. 2022 5;16.

Available from: https://www.frontiersin.org/articles/10.3389/fnhum.2022.863930/full.

doi:10.3389/fnhum.2022.863930.

[43] Godoi BB, Amorim GD, Quiroga DG, Holanda VM, Júlio T, Tournier MB. Parkinson’s disease and

wearable devices, new perspectives for a public health issue: an integrative literature review.

Revista da Associacao Medica Brasileira (1992). 2019 11;65(11):1413–1420. Available from: http://

www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-42302019001101413&tlng=en.

doi:10.1590/1806-9282.65.11.1413.

33

TGO group 8 University of Twente

[44] Kubota KJ, Chen JA, Little MA. Machine learning for large-scale wearable sensor data in Parkinson’s

disease: Concepts, promises, pitfalls, and futures. Movement Disorders. 2016 9;31(9):1314–1326.

Available from: https://movementdisorders-onlinelibrary-wiley-com.ezproxy2.utwente.

nl/doi/full/10.1002/mds.26693?sid=worldcat.org. doi:10.1002/mds.26693.

[45] Lu R, Xu Y, Li X, Fan Y, Zeng W, Tan Y, et al. Evaluation of Wearable Sensor Devices in Parkinson’s Dis-

ease: A Review of Current Status and Future Prospects. Parkinson’s Disease. 2020 9;2020:1–8. Available

from: https://www.hindawi.com/journals/pd/2020/4693019/. doi:10.1155/2020/4693019.

[46] Sánchez-Ferro Elshehabi M, Godinho C, Salkovic D, Hobert MA, Domingos J, et al. New methods

for the assessment of Parkinson’s disease (2005 to 2015): A systematic review. Movement Disorders.

2016 9;31(9):1283–1292. Available from: https://onlinelibrary.wiley.com/doi/10.1002/mds.

26723. doi:10.1002/mds.26723.

[47] Giannakopoulou KM, Roussaki I, Demestichas K. Internet of Things Technologies and Machine

Learning Methods for Parkinson’s Disease Diagnosis, Monitoring and Management: A Systematic

Review. Sensors. 2022 2;22(5):1799. Available from: https://www.mdpi.com/1424-8220/22/5/

1799. doi:10.3390/s22051799.

[48] Wu Z, Jiang X, Zhong M, Shen B, Zhu J, Pan Y, et al. Wearable Sensors Measure Ankle Joint Changes

of Patients with Parkinson’s Disease before and after Acute Levodopa Challenge. Parkinson’s Dis-

ease. 2020 4;2020:1–7. Available from: https://www.hindawi.com/journals/pd/2020/2976535/.

doi:10.1155/2020/2976535.

[49] van Wamelen DJ, Sringean J, Trivedi D, Carroll CB, Schrag AE, Odin P, et al. Digital health technology

for non-motor symptoms in people with Parkinson’s disease: Futile or future? Parkinsonism & Related

Disorders. 2021 8;89:186–194. Available from: https://linkinghub.elsevier.com/retrieve/

pii/S1353802021002819. doi:10.1016/j.parkreldis.2021.07.032.

[50] Chandrabhatla AS, Pomeraniec IJ, Ksendzovsky A. Co-evolution of machine learning and digital tech-

nologies to improve monitoring of Parkinson’s disease motor symptoms. npj Digital Medicine.

2022 3;5(1):32. Available from: https://www.nature.com/articles/s41746-022-00568-y.

doi:10.1038/s41746-022-00568-y.

[51] Aggarwal CC. Neural Networks and Deep Learning. Cham: Springer International Publishing; 2018.

Available from: http://link.springer.com/10.1007/978-3-319-94463-0. doi:10.1007/978-3-

319-94463-0.

[52] Kingsford C, Salzberg SL. What are decision trees? Nature Biotechnology. 2008 9;26(9):1011–1012.

Available from: http://www.nature.com/articles/nbt0908-1011. doi:10.1038/nbt0908-1011.

[53] Belić M, Bobić V, Badža M, Šolaja N, Ðurić Jovičić M, Kostić VS. Artificial intelligence for assist-

ing diagnostics and assessment of Parkinson’s disease—A review. Clinical Neurology and Neuro-

surgery. 2019 9;184:105442. Available from: https://linkinghub.elsevier.com/retrieve/pii/

S0303846719302380. doi:10.1016/j.clineuro.2019.105442.

34

TGO group 8 University of Twente

[54] Xu J, Zhang M. Use of Magnetic Resonance Imaging and Artificial Intelligence in Studies of Diagnosis

of Parkinson’s Disease. ACS Chemical Neuroscience. 2019 6;10(6):2658–2667. Available from: https:

//pubs.acs.org/doi/10.1021/acschemneuro.9b00207. doi:10.1021/acschemneuro.9b00207.

[55] Rana A, Dumka A, Singh R, Panda MK, Priyadarshi N, Twala B. Imperative Role of Machine Learn-

ing Algorithm for Detection of Parkinson’s Disease: Review, Challenges and Recommendations.

Diagnostics. 2022 8;12(8):2003. Available from: https://www.mdpi.com/2075-4418/12/8/2003.

doi:10.3390/diagnostics12082003.

[56] Templeton JM, Poellabauer C, Schneider S. Classification of Parkinson’s disease and its stages using

machine learning. Scientific Reports. 2022 8;12(1):14036. Available from: https://www.nature.

com/articles/s41598-022-18015-z. doi:10.1038/s41598-022-18015-z.

35

TGO group 8 University of Twente

8 Appendix

8.1 Tables

Table 1: Accuracies of 1 RF to predict UPDRS

Run Accuracy (one-on-

one)(%)

Accuracy (Within-

one)(%)

Run Accuracy (one-on-

one)(%)

Accuracy (Within-

one)(%)

1 56,4 80,8 26 55,8 80,8

2 51,9 84,0 27 48,7 78,2

3 61,5 87,2 28 42,9 78,8

4 62,8 87,8 29 50,0 84,0

5 57,1 83,3 30 49,4 75,0

6 44,9 78,8 31 42,9 71,2

7 41,9 76,3 32 48,1 85,3

8 50,6 84,0 33 44,9 73,1

9 53,8 84,0 34 39,7 74,4

10 45,5 80,8 35 46,2 82,1

11 48,1 82,7 36 57,1 85,3

12 45,5 76,9 37 51,9 86,5

13 43,6 76,3 38 53,8 85,3

14 45,5 79,5 39 47,4 78,2

15 46,2 80,1 40 39,1 73,7

16 44,2 76,3 41 54,5 86,5

17 41,0 79,5 42 41,0 79,5

18 55,1 84,0 43 48,7 80,8

19 43,6 80,1 44 63,5 90,4

20 46,8 78,2 45 48,1 86,5

21 41,0 73,1 46 60,9 87,2

22 46,8 79,5 47 48,1 78,8

23 47,4 78,8 48 45,5 80,8

24 57,7 89,7 49 41,0 78,2

25 50,6 82,7 50 45,5 77,6

36

TGO group 8 University of Twente

Table 2: Accuracies of 26 RF’s to predict sepate UPDRS elements

Run Accuracy (one-on-

one)(%)

Accuracy (Within-

one)(%)

Run Accuracy (one-on-

one)(%)

Accuracy (Within-

one)(%)

1 48,7 79,5 26 49,4 80,8

2 53,2 82,7 27 51,9 80,8

3 51,3 78,8 28 51,3 86,5

4 53,2 80,1 29 52,6 79,5

5 47,4 79,5 30 51,9 83,5

6 51,3 80,8 31 49,4 86,5

7 53,8 84,0 32 50,0 84,0

8 48,7 78,8 33 55,8 84,6

9 50,0 82,7 34 54,5 84,6

10 55,1 84,6 35 39,7 74,4

11 46,2 82,1 36 47,4 80,8

12 46,2 82,1 37 43,6 76,9

13 51,3 82,1 38 41,7 77,6

14 52,6 85,9 39 54,5 84,6

15 50,0 80,8 40 46,1 76,3

16 50,6 81,4 41 48,7 82,7

17 50,0 85,3 42 48,1 79,5

18 50,0 86,5 43 47,4 82,7

19 45,5 81,4 44 50,6 84,6

20 48,1 80,1 45 52,6 85,3

21 42,9 78,2 46 48,7 83,3

22 47,4 78,4 47 42,3 79,5

23 48,7 79,5 48 49,4 80,8

24 47,4 81,4 49 47,4 82,1

25 44,9 82,1 50 48,1 81,4

37

TGO group 8 University of Twente

Table 3: Accuracies of the third algorithm’s RF to predict seperate UPDRS values

Run Accuracy (one-on-

one)(%)

Accuracy (Within-

one)(%)

Run Accuracy (one-on-

one)(%)

Accuracy (Within-

one)(%)

1 51,9 84,6 26 51,3 79,5

2 60,9 87,8 27 51,9 87,8

3 56,4 90,4 28 48,1 78,8

4 44,9 75,0 29 52,6 85,9

5 57,1 89,1 30 60,9 89,1

6 51,9 85,3 31 46,2 86,5

7 39,7 74,4 32 55,8 88,5

8 55,8 91,0 33 45,5 77,6

9 52,6 84,6 34 55,8 87,8

10 55,1 85,3 35 50,6 84,0

11 53,8 84,0 36 53,8 84,6

12 59,6 91,7 37 45,5 73,1

13 50,6 83,3 38 56,4 80,1

14 41,7 77,6 39 48,1 82,1

15 53,2 85,9 40 53,2 85,9

16 52,6 85,9 41 58,3 86,5

17 49,4 85,3 42 46,8 85,3

18 60,9 85,9 43 59,0 87,2

19 50,6 82,1 44 56,4 91,0

20 51,3 82,7 45 57,7 88,5

21 52,6 88,5 46 47,4 84,6

22 49,4 81,4 47 45,5 81,4

23 49,4 77,6 48 51,3 80,8

24 57,7 91,0 49 61,5 91,0

25 56,4 87,8 50 61,5 91,3

8.2 Python scripts

Note these scripts are for viewing not coding. Check Github owned by j.meuwese@student.utwente.nl.

8.2.1 Readme

00_main_script (essential)

This script will take data from the Runelabs platform (cloud) and stores it in a CSV-file. The load in of the

accelerometer and gyro meter are currently disabled but can be activated by uncommenting the lines of

target script. It is important to give the information in which map the data has to be stored (this has to be

38

TGO group 8 University of Twente

done before the script is running). If the user has access to ‘Apple aparatuur Runelabs’ the Watch_id, start

time and endtime will be filled in automatically. The patient_id has to be given separately this is a safety

measure. At the end the data will be plotted, this is to verify that there is data available in the period of

interest.

01_merge_trem_sev_dys_all (essential)

This script takes the csv-files created using previous script, and combines these to one big file in excel

format. This procedure is done automatically by calling a for loop that will run trough every patient and

smartwatch it is important that all maps and files are in the same format as given for the first 25 patients.

Otherwise it will be impossible to find the maps containing the datafiles.

02_avail_events_to_rest (non-essential)

If the events and availability are needer for the analyses this script can be helpful. But for the availability

the regular datasets are automatically set to available thus calling for this information only shows at which

the times the data was registered and when not. For the events this script can be useful to identify when

the patient experiences tremor, dyskinesia or other symptoms. The disadvantage of this script is that due

to the Pandas stopped supporting the ‘append’ function. Concat needs to be used instead. This only works

when sys.exit is called in the function otherwise Python will create a dataframe of three dimensions.

03_merge_avail_events_to_rest (non-essential) Merges the events and availability with the merged dataset

of script (01). This is done for each watch separately. Some patients have multiple watches.

04_UPDRS_Loadr.py (essential)

This script takes the UPDRS overview as input and stores all data in variables in Python. This script

automatically registers of the patient is on or off during the test. The data of the patient from all visits can

be used as input for other analyses. Or can be plotted at the end of this script.

05_merge_UPDRS_loadr_data_and_smartwatch_data (essential)

To compare the UPDRS and the smartwatch data around the given time of the test. Both need to be stored

in the same file in the right format, This script combines these two different inputs and stores these in a

new file called:’data_complete’. To train our algorithm these steps are crucial if you are only working with

one of them (UPDRS or smartwatch data) this script will be less helpful. This script is written to work fully

automatically.

06_pre_algorithm

This script takes the watch data as input and can be used to find the averages of the tremor and dyskinesia

around the time of interest (when the UPDRS where taken). At the end it is possible to automatically save

the averages in an Excel file but this can also be done manually. It only gives the tremor and dyskinesia as

a result and not the patient or visit. Note: sometimes the columns change it is important that in df8 the

first column equals time and the last column equals ‘probability dyskinesia’.

07_x_algorithm (essential)

This script takes data_complete as input and is an algorithm that predicts the UPDRS score based on

the smartwatch data. Currently not many datapoints are available, thus the accuracy of the algorithm

is not that great but over time when more data points are available the accuracy will increase. The used

39

TGO group 8 University of Twente

algorithm is a supervised machine learning function, called Randomforest (RF). It is based on a decision

tree (DT) but takes the average of multiple DT’s.

There are currently 3 scripts that have the 07 tag: 07_1, 07_2 and 07_3. These scripts are all algorithms

developed by us, ordered from first consieved to last consieved. 07_1 Uses a single RF to calculate the

UPDRS-scores. 07_2 uses a seperate RF per score (which amounts to 26 RF’s) to calculate the MDS-UPDRS-

scores. There is no significant difference between these two version, excet that 07_2 gives a narrower band

of accuracies, but the mean accuracies are the same. 07_3 Uses hyperparameter tuning to first identify

the best hyperparameters before training, but is otherwise nearly identical to 07_1. This increased the

accuracy of the algorithm, but also increased the training times. We reccommend using 07_03 for analysing

data in the future, as this algorithm will most likely give the best results for accuracy.

08_Analyse_complete_data_tabel (essential)

Gives a graphic interface of the results from a patient of a certain visit compared to another visit (user can

choose visit of interest). And shows the difference between these two. The input is data_complete. And

contains both UPDRS and smartwatch data.

09_graphics (essential)

This script takes the merged data from a patient of all watches and shows the mean tremor and dyskinesia

for each hour. This can be helpful to get a better understanding of when the patient experiences certain

symptoms.

8.2.2 00_main_script

Main_script

"""

TGO code voor het automatisch inladen van pt-data a.d.h.v. excel-sheet en cloud voor pandas 2.x

Door: Loet Schoenmakers, Job Meuwese & Stef Berendsen

Maakt gebruik van:

Pandas v. 2.0.1.

matplotlib v. 3.7.0

runeq v. 0.11.0

openpyxl 3.1.2

op basis van open-source code van rune-labs:

URL: https://github.com/rune-labs/opensource/tree/master/jupyter-notebook-template

"""

#%%

import io

import os

40

TGO group 8 University of Twente

from datetime import datetime as dt

import pandas as pd

import matplotlib.pyplot as plt

import openpyxl

from runeq import Config, stream

from datetime import date

#defineer hieronder waar je de data wilt exporteren (BASE_PATH) & onder welke naam het

opgeslagen moet worden (PT_FILENAME)

BASE_PATH = ’E:\Datasets\ptxx_wtxx’

PT_FILENAME = ’ptxx_wtxx’

def make_full_df(accessor): #deze functie zorgt ervoor dat er een dataframe wordt aangemaakt

"""Loop through pages of API calls and append to a single dataframe"""

df=pd.DataFrame()

for page in accessor.iter_csv_text():

page_df = pd.read_csv(io.StringIO(page))

df = pd.DataFrame(page_df)

df=pd.concat([df], ignore_index=True)

return df

def get_watch_data(client, params, field, save_filepath=None):#deze functie zorgt eroor dat de

data eruit gehaald wordt

"""Makes API calls for watch data, saves to CSV and outputs dataframe"""

fields = {

#’accel’: client.Accel(**params),

#’rotation’: client.Rotation(**params),

#’heart rate’: client.HeartRate(**params),

’tremor’: client.ProbabilitySymptom(

symptom=’tremor’,

**params),

’tremor severity’: client.ProbabilitySymptom(

symptom=’tremor’,

severity=’*’,

**params),

’dyskinesia’: client.ProbabilitySymptom(

symptom=’dyskinesia’,

**params)

}

41

TGO group 8 University of Twente

if field not in fields:

raise ValueError(’Please choose an existing field’)

accessor = fields[field]

df = make_full_df(accessor)

if save_filepath:

df.to_csv(save_filepath, index=False)

return df

#%% haal start- en eindtijden en de watch ID uit excel

pt_data = pd.read_excel(’E:\Apple apparatuur in RuneLabs.xlsx’) #laad excel bestand in

#noteer hieronder:

interesting_row = pt_data[pt_data[’Study number’] == ’subxxx’] #de rij (pt) waaruit je het

wilt halen

number_of_watch = ’x’ #van welke horloge je het wilt pakken

#verder haalt hij de watch ID, en start- en eindtijden uit het excelbestand. indien de

eindtijd nu is, pakt hij de tijd van je computer

watch_id_string = ’Watch ID’ + number_of_watch

start_time = ’Start Time’ + number_of_watch

end_time = ’End Time’ + number_of_watch

watch_ID = interesting_row[watch_id_string]

watch_ID = watch_ID.to_string()

watch_ID = watch_ID[-8:]

start_time_date = interesting_row[start_time]

start_time_date = start_time_date.to_string()

start_time_date = start_time_date[-10:]

start_time_date = dt.strptime(start_time_date, ’%Y-%m-%d’) #%Y-M-D-H_Min

end_time_date = interesting_row[end_time]

end_time_date = end_time_date.to_string()

if 10< len(end_time_date) < 16:

end_time_date = end_time_date[-10:]

end_time_date = dt.strptime(end_time_date, ’%Y-%m-%d’)

42

TGO group 8 University of Twente

else:

end_time_date = end_time_date[-1:0]

end_time_date = dt.today() #%Y-M-D-H_Min

end_time_date = end_time_date.strftime(’%Y-%m-%d’)

end_time_date = dt.strptime(end_time_date, ’%Y-%m-%d’) #%Y-M-D-H_Min

end_time_date = end_time_date[-1:0]

end_time_date = dt.today() #%Y-M-D-H_Min

end_time_date = end_time_date.strftime(’%Y-%m-%d’)

end_time_date = dt.strptime(end_time_date, ’%Y-%m-%d’) #%Y-M-D-H_Min

#%%

set up client: haal de data van de cloud af en zet het in bestanden op de eerder aangewezen

plek

cfg = Config()

client = stream.V1Client(cfg)

params = {

’patient_id’: "", #pt ID van runelabs

’device_id’: watch_ID, # an Apple Watch

Use datetime to get timestamps from human-readable dates/times

’start_time’: start_time_date.timestamp(),

’end_time’: end_time_date.timestamp()

}

#we pakken alleen tremor probabilty, tremor severety en dyskinesia probability

#Retrieve data

accel = get_watch_data(

client,

params,

’accel’,

os.path.join(BASE_PATH, ’nb02_ex01_accel.csv’)

)

rotation = get_watch_data(

client,

params,

’rotation’,

os.path.join(BASE_PATH, ’nb02_ex01_rotation.csv’)

43

TGO group 8 University of Twente

)

heartrate = get_watch_data(

client,

params,

’heart rate’,

os.path.join(BASE_PATH, ’nb02_ex01_heartrate.csv’)

)

tremor_prob = get_watch_data(

client,

params,

’tremor’,

os.path.join(BASE_PATH, PT_FILENAME + "_tremor.csv")

)

tremor_severity = get_watch_data(

client,

params,

’tremor severity’,

os.path.join(BASE_PATH, PT_FILENAME + "_tremor_severity.csv")

)

dyskinesia = get_watch_data(

client,

params,

’dyskinesia’,

os.path.join(BASE_PATH, PT_FILENAME + "_dyskinesia.csv")

)

def check_prob_data_availability(client, params):

"""

Finds data availability of the (tremor and dyskinesia) probabilities within

some time frame

Outputs: dataframe with 0’s and 1’s for data availability per timestamp

"""

accessor = client.ProbabilitySymptom(expression=’availability(probability)’,

symptom=’tremor’, **params)

for page in accessor.iter_json_availability():

df_page = pd.DataFrame(page[’availability(probability)’])

df_page.insert(0, ’time’, page[’time’])

44

TGO group 8 University of Twente

df=pd.DataFrame(df_page)

df = pd.concat([df], ignore_index=True)

return df

availability = check_prob_data_availability(

client,

params,

)

df = pd.DataFrame(availability)

df.to_csv("E:\\Datasets\\pt09_wt03_availability.csv")

#%%

#Whole period

#xmin=start_time_date, # the one that doesn’t change

#xmax=end_time_date, # the latest datetime in your dataset

#Or time of your choice

xmin=dt(2022, 11, 26, hour=12), # the one that doesn’t change

xmax=dt(2022, 11, 26, hour=17) # the latest datetime in your dataset

#plotjes

fig, ax = plt.subplots(3, figsize=(14, 22))

#plot van termor probability, getal geeft aan hoeveel procent van de tijd de patient last had

van tremor

ax[0].plot(pd.to_datetime(tremor_prob.time, unit=’s’), tremor_prob.probability,

drawstyle=’steps-post’)

ax[0].set_title(’Tremor Probability’)

ax[0].set_xlim([xmin,xmax])

#plot geeft aan hoe erg de tremor was tijdens de periode dat het aanwezig was

ax[1].stackplot(pd.to_datetime(tremor_severity.time, unit=’s’),

tremor_severity.none,

tremor_severity.slight,

tremor_severity.mild,

tremor_severity.moderate,

tremor_severity.strong,

tremor_severity.unknown,

labels=[’none’, ’slight’, ’mild’, ’moderate’, ’strong’, ’unknown’],

colors=[’#C8DEE0’,’#7FE0C4’, ’#DFE07F’, ’#ECB607’, ’#F42207’, ’#EFEBE7’]

)

ax[1].legend(bbox_to_anchor=(0.5, -.25), loc=’lower center’, ncol=6)

ax[1].set_title(’Tremor Probability by Severity’)

ax[1].set_xlim([xmin,xmax])

45

TGO group 8 University of Twente

#plot geeft aan hoeveel procent van de tijd dyskinesia aanwezig was

ax[2].plot(pd.to_datetime(dyskinesia.time, unit=’s’), dyskinesia.probability,

drawstyle=’steps-post’)

ax[2].set_title(’Dyskinesia Probability’)

ax[2].set_xlim([xmin,xmax])

fig.tight_layout(pad=2)

8.2.3 01_merge_trem_sev_dys_all

-*- coding: utf-8 -*-

"""

Created on Wed May 24 20:01:35 2023

@author: jobme & stefbe

"""

import os

import pandas as pd

#this script puts the smartwachtdata in columns according to each patient and watch_id

BASE_PATH = ’F:\Datasets’

PT_FILENAME = [’\ptxx’, ’\ptxx’, ’\ptxx’, ’\ptxx’, ’\ptxx’, ’\ptxx’, ’\ptxx’, ’\ptxx’,

’\ptxx’, ’\ptxx’, ’\ptxx’, ’\ptxx’, ’\ptxx’, ’\ptxx’, ’\ptxx’, ’\ptxx’, ’\ptxx’, ’\ptxx’,

’\ptxx’, ’\ptxx’]

WATCH = ["_wtxx","_wtxx","_wtxx","_wtxx"]

PT_FILENAME = ’\ptxx_wtxx’

for a in range(len(PT_FILENAME)):

for b in range(len(WATCH)):

recieve= BASE_PATH+PT_FILENAME[a]+WATCH[b]+PT_FILENAME[a]+WATCH[b]

recieve_lite = BASE_PATH+PT_FILENAME[a]+WATCH[b]

store = recieve

if os.path.exists(recieve_lite) == True:

df1 = pd.read_csv(recieve+’_tremor.csv’)

df2 = pd.read_csv(recieve+’_tremor_severity.csv’)

df3 = pd.read_csv(recieve+’_dyskinesia.csv’)

df_merged = df1.merge(df2, on="time", how=’outer’)

df_merged = df_merged.merge(df3, on="time", how=’outer’)

df_merged = df_merged.rename(columns={’probability_x’: ’probability_tremor’,

46

TGO group 8 University of Twente

’probability_y’: ’probability_dyskinesia’})

mdf = pd.DataFrame(df_merged) #merge done, data is now in a dataframe

mdf = mdf[mdf["mild"].notnull()]#all columns who equal zero or dont exist are

deleted

#

avg_columns = [0,1,2,3,4,5,6,7]# new columns where average can be seen

val = mdf.drop(columns="time")#from here the averages of each parameter is

calculated

col = val.columns

col = col.to_list()

for x in range(len(col)):

avg_columns[x] = sum(val[col[x]]) / len(val[col[x]])

avg_columns.insert(0, "average")# adding the averages to the columns

mdf.loc[len(mdf)] = avg_columns

mdf.to_excel(store+’_merged.xlsx’)

8.2.4 01b_merge_all_watches

import os

import pandas as pd

#this script puts the smartwachtdata in columns according to each patient and watch_id

BASE_PATH = ’G:\Datasets’

PT_FILENAME = ’\ptxx’

WATCH = ["_wtxx","_wtxx","_wtxx","_wtxx"]

watch_1="_wt01"

watch_2="_wt02"

watch_3="_wt03"

watch_4="_wt04"

merged="_merged.xlsx"

PT_FILENAME = ’\ptxx_wtxx’

store = ’G:\Datasets\overview’+PT_FILENAME+’_merged_all.xlsx’

number_of_watches = input("number_of_watches:")

if number_of_watches==’1’:

df1= pd.read_excel(BASE_PATH+PT_FILENAME+watch_1+PT_FILENAME+watch_1+merged)

df_merged=df1

print(’one watch’)

elif number_of_watches==’2’:

47

TGO group 8 University of Twente

df1= pd.read_excel(BASE_PATH+PT_FILENAME+watch_1+PT_FILENAME+watch_1+merged)

df2= pd.read_excel(BASE_PATH+PT_FILENAME+watch_2+PT_FILENAME+watch_2+merged)

df_merged= pd.concat([df1,df2])

print(’two watches’)

elif number_of_watches==’3’:

df1= pd.read_excel(BASE_PATH+PT_FILENAME+watch_1+PT_FILENAME+watch_1+merged)

df2= pd.read_excel(BASE_PATH+PT_FILENAME+watch_2+PT_FILENAME+watch_2+merged)

df3= pd.read_excel(BASE_PATH+PT_FILENAME+watch_3+PT_FILENAME+watch_3+merged)

df_merged= pd.concat([df1,df2,df3])

print (’three watches’)

elif number_of_watches==’4’:

df1= pd.read_excel(BASE_PATH+PT_FILENAME+watch_1+PT_FILENAME+watch_1+merged)

df2= pd.read_excel(BASE_PATH+PT_FILENAME+watch_2+PT_FILENAME+watch_2+merged)

df3= pd.read_excel(BASE_PATH+PT_FILENAME+watch_3+PT_FILENAME+watch_3+merged)

df4= pd.read_excel(BASE_PATH+PT_FILENAME+watch_4+PT_FILENAME+watch_4+merged)

df_merged= pd.concat([df1,df2,df3,df4])#,ignore_index:=True)

print(’four watches’)

else:

print(’kies zelf welke dataframes je wilt mergen, zet comments voor ongebruikte datframes’)

df1= pd.read_excel("")

df2= pd.read_excel("")

df3= pd.read_excel("")

df4= pd.read_excel("")

df_merged= pd.concat([df1,df2,df3,df4])

mdf = pd.DataFrame(df_merged) #merge done, data is now in a dataframe

#%%

mdf.to_excel(store)

8.2.5 02_avail_events_combi

-*- coding: utf-8 -*-

"""

Created on Fri May 26 09:53:45 2023

@author: loet-

"""

#for each cell: shift+return

import os

48

TGO group 8 University of Twente

import datetime as dt

import pandas as pd

from runeq import Config, stream

import numpy as np

import sys

import io

import matplotlib.pyplot as plt

def get_events(client, params):

"""Makes API calls for events, outputs dataframe"""

accessor = client.Event(**params)

df=pd.DataFrame()

for page in accessor.iter_json_data():

df_page = pd.DataFrame(page[’event’])

global df_events

df_events=df_page

sys.exit()

df = pd.concat([pd.DataFrame([df])], ignore_index=True)

return df

cfg = Config()

client = stream.V1Client(cfg)

d=2

params = {

’patient_id’: ’patient_id’,

’device_id’: ’watch_id’,

’start_time’: dt.datetime(2022, 11, 23, hour=0, minute=30).timestamp(),

’end_time’: dt.datetime(2022, 11, 26, hour=2, minute=0).timestamp()

}

events = get_events(client, params)

#%%

def check_prob_data_availability(client, params):

"""

Finds data availability of the (tremor and dyskinesia) probabilities within

some time frame

Outputs: dataframe with 0’s and 1’s for data availability per timestamp

49

TGO group 8 University of Twente

"""

accessor = client.ProbabilitySymptom(expression=’availability(probability)’,

symptom=’tremor’, **params)

df = pd.DataFrame()

for page in accessor.iter_json_availability():

global df_page

df_page = list(page[’availability(probability)’])

global df_avail

df_avail = pd.DataFrame(df_page, columns=[’probability’])

df_avail.insert(0, ’time’, page[’time’])

sys.exit()

df = pd.concat(df_avail, ignore_index=True)

return df

cfg = Config()

client = stream.V1Client(cfg)

params = {

’patient_id’: ’’,

’device_id’: ’’, # an Apple Watch

Use datetime to get timestamps from human-readable dates/times

’start_time’: dt.datetime(2022, 11, 23, hour=0, minute=30).timestamp(),

’end_time’: dt.datetime(2022, 11, 25, hour=2, minute=0).timestamp()

}

BASE_PATH = ’G:\Datasets\pt09_wt03’

availability = check_prob_data_availability(

client,

params,

)

#%%export to excel

BASE_PATH = ’E:\Datasets’

PT_FILENAME = ’\ptxx_wtxx’

recieve= BASE_PATH+PT_FILENAME+PT_FILENAME

store = BASE_PATH+PT_FILENAME+PT_FILENAME

df_events.to_excel(store+’events.xlsx’)

df_avail.to_excel(store+’availability.xlsx’)

50

TGO group 8 University of Twente

8.2.6 03_merge_avail_events_to_rest

-*- coding: utf-8 -*-

"""

Created on Fri May 26 11:19:10 2023

@author: jobme

"""

import pandas as pd

BASE_PATH = ’G:\Datasets’

PT_FILENAME = ’\ptxx_wtxx’

recieve= BASE_PATH+PT_FILENAME+PT_FILENAME

store = BASE_PATH+PT_FILENAME+PT_FILENAME

#%%

df4 = pd.read_excel(recieve+’merged.xlsx’)

df5 = pd.read_excel(recieve+’events.xlsx’)

df6 = pd.read_excel(recieve+’availability.xlsx’)

df5[’time’]= df5[’time’].astype(’int’)

df5[’time’]= (df5[’time’]//60 * 60)

df6[’time’]= df6[’time’].astype(’int’)

df6[’time’]= (df6[’time’]//60 * 60)

df7_merged = df4.merge(df5, on="time", how=’outer’)

df7_merged = df7_merged.merge(df6, on="time", how=’outer’)

#df7_merged = df_merged.rename(columns={’probability_x’: ’probability_tremor’,

’probability_y’: ’probability_dyskinesia’})

#%%

mmdf = pd.DataFrame(df7_merged)

mmdf.to_excel(store+’_merged_avail_events.xlsx’)

8.2.7 04_UPDRS_Loadr

-*- coding: utf-8 -*-

"""

Created on Wed May 17 14:53:15 2023

51

TGO group 8 University of Twente

@author: Job Meuwese, Loet Schoenmakers & Stef Berendsen

Purpose: read out the UPDRS-III overview.xlsx-file and place all data in a more structured

way, then export this data.

Uses the following libraries:

pandas v: 2.0.1

numpy v: 1.24.3

matplotlib v: 3.7.1

"""

#import necessary scripts

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

#%% upload and loading MDS-UPDRS overview

num_of_pt = xx #Define the amount of sheets in excell-1

pt_mds = pd.ExcelFile("F:/UPDRS-III overview.xlsx", engine=’openpyxl’) #load complete excel

file

Huge_data = {} #prepare dict, in which loose sheets of excell are placed

for x in range(num_of_pt): #per loose excell sheet:

name="pt"+str(x) #create a name for dict

Huge_data[name] = pd.read_excel(pt_mds, sheet_name=x) #read the corresponding excell table

and puts it in Huge_data dict

#if you want individual table of a patient, uncomment:

#value = pd.read_excel(pt_mds, sheet_name=x)

#globals()[f"pt{x}"] = value

#%% create UPDRS-dict

UPDRS = {} #define the UPDRS-dict

for x in range(num_of_pt): #per pt (en dus ook per excell sheet:)

name="pt"+str(x) #define the name

temp = Huge_data[name] #temporary gets dataframe out the Huge_data Dict

size_temp = temp.shape #temp gets format [length, width] from acquired dataframe

if size_temp[0] == 0: #shows in UPDRS table that there is no data of this patient

52

TGO group 8 University of Twente

UPDRS[name, "notes"] = "this scorelist is empty"

elif size_temp[0] >= 31: #visit 2

if pd.isnull(temp.iloc[3, 5]) == True: #check whether the ON or OFF table has been

completed. this is done by looking at an empty field (rigidity head) in the ON

table, if it is empty it will read OFF, otherwise ON

a = 4

else:

a = 0

UPDRS[name, "v2_rig_head"] = temp.iloc[3,5-a]

UPDRS[name, "v2_rig_right_arm"] = temp.iloc[4,5-a]

UPDRS[name, "v2_rig_right_leg"] = temp.iloc[5,5-a]

UPDRS[name, "v2_rig_left_arm"] = temp.iloc[4,7-a]

UPDRS[name, "v2_rig_left_leg"] = temp.iloc[5,7-a]

UPDRS[name, "v2_speech"] = temp.iloc[7,5-a]

UPDRS[name, "v2_facial_expression"] = temp.iloc[8,5-a]

UPDRS[name, "v2_right_finger_tap"] = temp.iloc[10,5-a]

UPDRS[name, "v2_right_hand_movement"] = temp.iloc[11,5-a]

UPDRS[name, "v2_right_pro_supination"] = temp.iloc[12,5-a]

UPDRS[name, "v2_right_toe_tap"] = temp.iloc[13,5-a]

UPDRS[name, "v2_right_leg_movement"] = temp.iloc[14,5-a]

UPDRS[name, "v2_left_finger_tap"] = temp.iloc[10,7-a]

UPDRS[name, "v2_left_hand_movement"] = temp.iloc[11,7-a]

UPDRS[name, "v2_left_pro_supination"] = temp.iloc[12,7-a]

UPDRS[name, "v2_left_toe_tap"] = temp.iloc[13,7-a]

UPDRS[name, "v2_left_leg_movement"] = temp.iloc[14,7-a]

UPDRS[name, "v2_raise_chair"] = temp.iloc[16,5-a]

UPDRS[name, "v2_gait"] = temp.iloc[17,5-a]

UPDRS[name, "v2_freezing"] = temp.iloc[18,5-a]

UPDRS[name, "v2_postural_reflex"] = temp.iloc[19,5-a]

UPDRS[name, "v2_posture"] = temp.iloc[20,5-a]

UPDRS[name, "v2_spontaneous_move"] = temp.iloc[21,5-a]

53

TGO group 8 University of Twente

UPDRS[name, "v2_right_postural_tremor"] = temp.iloc[24,5-a]

UPDRS[name, "v2_right_kinetic_tremor"] = temp.iloc[25,5-a]

UPDRS[name, "v2_right_rest_tremor_amplitude_arm"] = temp.iloc[26,5-a]

UPDRS[name, "v2_right_rest_tremor_amplitude_leg"] = temp.iloc[27,5-a]

UPDRS[name, "v2_right_rest_tremor_constancy"] = temp.iloc[28,5-a]

UPDRS[name, "v2_left_postural_tremor"] = temp.iloc[24,7-a]

UPDRS[name, "v2_left_kinetic_tremor"] = temp.iloc[25,7-a]

UPDRS[name, "v2_left_rest_tremor_amplitude_arm"] = temp.iloc[26,7-a]

UPDRS[name, "v2_left_rest_tremor_amplitude_leg"] = temp.iloc[27,7-a]

UPDRS[name, "v2_left_rest_tremor_constancy"] = temp.iloc[28,7-a]

UPDRS[name, "v2_list_rig_tot"] =

(temp.iloc[3,5-a],temp.iloc[4,5-a],temp.iloc[5,5-a],temp.iloc[4,7-a],temp.iloc[5,7-

a])

UPDRS[name, "v2_list_speech_facial"] = (temp.iloc[7,5-a],temp.iloc[8,5-a])

UPDRS[name, "v2_list_brady_kin_right"] = (temp.iloc[10,5-a], temp.iloc[11,5-a],

temp.iloc[12,5-a], temp.iloc[13,5-a], temp.iloc[14,5-a])

UPDRS[name, "v2_list_brady_kin_left"] = (temp.iloc[10,7-a], temp.iloc[11,7-a],

temp.iloc[12,7-a], temp.iloc[13,7-a], temp.iloc[14,7-a])

UPDRS[name, "v2_list_brady_kin_tot"] = (UPDRS[name, "v2_list_brady_kin_left"] +

UPDRS[name, "v2_list_brady_kin_right"])

UPDRS[name, "v2_list_gait_balance"] = (temp.iloc[16,5-a], temp.iloc[17,5-a],

temp.iloc[18,5-a], temp.iloc[19,5-a], temp.iloc[20,5-a], temp.iloc[21,5-a])

UPDRS[name, "v2_list_tremor_right"]= (temp.iloc[24,5-a], temp.iloc[25,5-a],

temp.iloc[26,5-a], temp.iloc[27,5-a], temp.iloc[28,5-a])

UPDRS[name, "v2_list_tremor_left"]= (temp.iloc[24,7-a], temp.iloc[25,7-a],

temp.iloc[26,7-a], temp.iloc[27,7-a], temp.iloc[28,7-a])

UPDRS[name, "v2_list_tremor_tot"]= (UPDRS[name, "v2_list_tremor_right"] +

UPDRS[name, "v2_list_tremor_left"])

UPDRS[name, "v2_list_globaal"] = (UPDRS[name, "v2_list_rig_tot"] + UPDRS[name,

"v2_list_speech_facial"] + UPDRS[name, "v2_list_brady_kin_tot"] + UPDRS[name,

"v2_list_gait_balance"] + UPDRS[name, "v2_list_tremor_tot"])

if size_temp[0] >= 64: #visit 3

if pd.isnull(temp.iloc[36, 5]) == True: #check whether the ON or OFF table has

been completed. this is done by looking at an empty field (rigidity head) in

the ON table, if it is empty it will read OFF, otherwise ON

54

TGO group 8 University of Twente

a = 4

else:

a = 0

UPDRS[name, "v3_rig_head"] = temp.iloc[36,5-a]

UPDRS[name, "v3_rig_right_arm"] = temp.iloc[37,5-a]

UPDRS[name, "v3_rig_right_leg"] = temp.iloc[38,5-a]

UPDRS[name, "v3_rig_left_arm"] = temp.iloc[37,7-a]

UPDRS[name, "v3_rig_left_leg"] = temp.iloc[38,7-a]

UPDRS[name, "v3_speech"] = temp.iloc[40,5-a]

UPDRS[name, "v3_facial_expression"] = temp.iloc[41,5-a]

UPDRS[name, "v3_right_finger_tap"] = temp.iloc[43,5-a]

UPDRS[name, "v3_right_hand_movement"] = temp.iloc[44,5-a]

UPDRS[name, "v3_right_pro_supination"] = temp.iloc[45,5-a]

UPDRS[name, "v3_right_toe_tap"] = temp.iloc[46,5-a]

UPDRS[name, "v3_right_leg_movement"] = temp.iloc[47,5-a]

UPDRS[name, "v3_left_finger_tap"] = temp.iloc[43,7-a]

UPDRS[name, "v3_left_hand_movement"] = temp.iloc[44,7-a]

UPDRS[name, "v3_left_pro_supination"] = temp.iloc[45,7-a]

UPDRS[name, "v3_left_toe_tap"] = temp.iloc[46,7-a]

UPDRS[name, "v3_left_leg_movement"] = temp.iloc[47,7-a]

UPDRS[name, "v3_raise_chair"] = temp.iloc[49,5-a]

UPDRS[name, "v3_gait"] = temp.iloc[50,5-a]

UPDRS[name, "v3_freezing"] = temp.iloc[51,5-a]

UPDRS[name, "v3_postural_reflex"] = temp.iloc[52,5-a]

UPDRS[name, "v3_posture"] = temp.iloc[53,5-a]

UPDRS[name, "v3_spontaneous_move"] = temp.iloc[54,5-a]

UPDRS[name, "v3_right_postural_tremor"] = temp.iloc[57,5-a]

UPDRS[name, "v3_right_kinetic_tremor"] = temp.iloc[58,5-a]

UPDRS[name, "v3_right_rest_tremor_amplitude_arm"] = temp.iloc[59,5-a]

UPDRS[name, "v3_right_rest_tremor_amplitude_leg"] = temp.iloc[60,5-a]

UPDRS[name, "v3_right_rest_tremor_constancy"] = temp.iloc[61,5-a]

UPDRS[name, "v3_left_postural_tremor"] = temp.iloc[57,7-a]

55

TGO group 8 University of Twente

UPDRS[name, "v3_left_kinetic_tremor"] = temp.iloc[58,7-a]

UPDRS[name, "v3_left_rest_tremor_amplitude_arm"] = temp.iloc[59,7-a]

UPDRS[name, "v3_left_rest_tremor_amplitude_leg"] = temp.iloc[60,7-a]

UPDRS[name, "v3_left_rest_tremor_constancy"] = temp.iloc[61,7-a]

UPDRS[name, "v3_list_rig_tot"] =

(temp.iloc[36,5-a],temp.iloc[37,5-a],temp.iloc[38,5-a],temp.iloc[37,7-a],temp.i

loc[38,7-a])

UPDRS[name, "v3_list_speech_facial"] = (temp.iloc[40,5-a],temp.iloc[41,5-a])

UPDRS[name, "v3_list_brady_kin_right"] = (temp.iloc[43,5-a],

temp.iloc[44,5-a], temp.iloc[45,5-a], temp.iloc[46,5-a], temp.iloc[47,5-a])

UPDRS[name, "v3_list_brady_kin_left"] = (temp.iloc[43,7-a], temp.iloc[44,7-a],

temp.iloc[45,7-a], temp.iloc[46,7-a], temp.iloc[47,7-a])

UPDRS[name, "v3_list_brady_kin_tot"] = (UPDRS[name, "v3_list_brady_kin_left"]

+ UPDRS[name, "v3_list_brady_kin_right"])

UPDRS[name, "v3_list_gait_balance"] = (temp.iloc[49,5-a], temp.iloc[50,5-a],

temp.iloc[51,5-a], temp.iloc[52,5-a], temp.iloc[53,5-a], temp.iloc[54,5-a])

UPDRS[name, "v3_list_tremor_right"]= (temp.iloc[57,5-a], temp.iloc[58,5-a],

temp.iloc[59,5-a], temp.iloc[60,5-a], temp.iloc[61,5-a])

UPDRS[name, "v3_list_tremor_left"]= (temp.iloc[57,7-a], temp.iloc[58,7-a],

temp.iloc[59,7-a], temp.iloc[60,7-a], temp.iloc[61,7-a])

UPDRS[name, "v3_list_tremor_tot"]= (UPDRS[name, "v3_list_tremor_right"] +

UPDRS[name, "v3_list_tremor_left"])

UPDRS[name, "v3_list_globaal"] = (UPDRS[name, "v3_list_rig_tot"] + UPDRS[name,

"v3_list_speech_facial"] + UPDRS[name, "v3_list_brady_kin_tot"] + UPDRS[name,

"v3_list_gait_balance"] + UPDRS[name, "v3_list_tremor_tot"])

if size_temp[0] >= 97: #visit 4

if pd.isnull(temp.iloc[69, 5]) == True: #check whether the ON or OFF table

has been completed. this is done by looking at an empty field (rigidity

head) in the ON table, if it is empty it will read OFF, otherwise ON

a = 4

else:

a = 0

UPDRS[name, "v4_rig_head"] = temp.iloc[69,5-a]

UPDRS[name, "v4_rig_right_arm"] = temp.iloc[70,5-a]

UPDRS[name, "v4_rig_right_leg"] = temp.iloc[71,5-a]

UPDRS[name, "v4_rig_left_arm"] = temp.iloc[70,7-a]

56

TGO group 8 University of Twente

UPDRS[name, "v4_rig_left_leg"] = temp.iloc[71,7-a]

UPDRS[name, "v4_speech"] = temp.iloc[73,5-a]

UPDRS[name, "v4_facial_expression"] = temp.iloc[74,5-a]

UPDRS[name, "v4_right_finger_tap"] = temp.iloc[76,5-a]

UPDRS[name, "v4_right_hand_movement"] = temp.iloc[77,5-a]

UPDRS[name, "v4_right_pro_supination"] = temp.iloc[78,5-a]

UPDRS[name, "v4_right_toe_tap"] = temp.iloc[79,5-a]

UPDRS[name, "v4_right_leg_movement"] = temp.iloc[80,5-a]

UPDRS[name, "v4_left_finger_tap"] = temp.iloc[76,7-a]

UPDRS[name, "v4_left_hand_movement"] = temp.iloc[77,7-a]

UPDRS[name, "v4_left_pro_supination"] = temp.iloc[78,7-a]

UPDRS[name, "v4_left_toe_tap"] = temp.iloc[79,7-a]

UPDRS[name, "v4_left_leg_movement"] = temp.iloc[80,7-a]

UPDRS[name, "v4_raise_chair"] = temp.iloc[82,5-a]

UPDRS[name, "v4_gait"] = temp.iloc[83,5-a]

UPDRS[name, "v4_freezing"] = temp.iloc[84,5-a]

UPDRS[name, "v4_postural_reflex"] = temp.iloc[85,5-a]

UPDRS[name, "v4_posture"] = temp.iloc[86,5-a]

UPDRS[name, "v4_spontaneous_move"] = temp.iloc[87,5-a]

UPDRS[name, "v4_right_postural_tremor"] = temp.iloc[90,5-a]

UPDRS[name, "v4_right_kinetic_tremor"] = temp.iloc[91,5-a]

UPDRS[name, "v4_right_rest_tremor_amplitude_arm"] = temp.iloc[92,5-a]

UPDRS[name, "v4_right_rest_tremor_amplitude_leg"] = temp.iloc[93,5-a]

UPDRS[name, "v4_right_rest_tremor_constancy"] = temp.iloc[94,5-a]

UPDRS[name, "v4_left_postural_tremor"] = temp.iloc[90,7-a]

UPDRS[name, "v4_left_kinetic_tremor"] = temp.iloc[91,7-a]

UPDRS[name, "v4_left_rest_tremor_amplitude_arm"] = temp.iloc[92,7-a]

UPDRS[name, "v4_left_rest_tremor_amplitude_leg"] = temp.iloc[93,7-a]

UPDRS[name, "v4_left_rest_tremor_constancy"] = temp.iloc[94,7-a]

UPDRS[name, "v4_list_rig_tot"] =

(temp.iloc[69,5-a],temp.iloc[70,5-a],temp.iloc[71,5-a],temp.iloc[70,7-a],te

mp.iloc[71,7-a])

57

TGO group 8 University of Twente

UPDRS[name, "v4_list_speech_facial"] =

(temp.iloc[73,5-a],temp.iloc[74,5-a])

UPDRS[name, "v4_list_brady_kin_right"] = (temp.iloc[76,5-a],

temp.iloc[77,5-a], temp.iloc[78,5-a], temp.iloc[79,5-a], temp.iloc[80,5-a])

UPDRS[name, "v4_list_brady_kin_left"] = (temp.iloc[76,7-a],

temp.iloc[77,7-a], temp.iloc[78,7-a], temp.iloc[79,7-a], temp.iloc[80,7-a])

UPDRS[name, "v4_list_brady_kin_tot"] = (UPDRS[name,

"v4_list_brady_kin_left"] + UPDRS[name, "v4_list_brady_kin_right"])

UPDRS[name, "v4_list_gait_balance"] = (temp.iloc[82,5-a],

temp.iloc[83,5-a], temp.iloc[84,5-a], temp.iloc[85,5-a],

temp.iloc[86,5-a], temp.iloc[87,5-a])

UPDRS[name, "v4_list_tremor_right"]= (temp.iloc[90,5-a],

temp.iloc[91,5-a], temp.iloc[92,5-a], temp.iloc[93,5-a], temp.iloc[94,5-a])

UPDRS[name, "v4_list_tremor_left"]= (temp.iloc[90,7-a], temp.iloc[91,7-a],

temp.iloc[92,7-a], temp.iloc[93,7-a], temp.iloc[94,7-a])

UPDRS[name, "v4_list_tremor_tot"]= (UPDRS[name, "v4_list_tremor_right"] +

UPDRS[name, "v4_list_tremor_left"])

UPDRS[name, "v4_list_globaal"] = (UPDRS[name, "v4_list_rig_tot"] +

UPDRS[name, "v4_list_speech_facial"] + UPDRS[name,

"v4_list_brady_kin_tot"] + UPDRS[name, "v4_list_gait_balance"] +

UPDRS[name, "v4_list_tremor_tot"])

if size_temp[0] >= 229: #haal alle data op van de 5de visit, met al zijn

meetmomenten

visit 5_1

if pd.isnull(temp.iloc[102, 5]) == True: #check whether the ON or OFF

table has been completed. this is done by looking at an empty field

(rigidity head) in the ON table, if it is empty it will read OFF,

otherwise ON

a = 4

else:

a = 0

UPDRS[name, "v5_1_rig_head"] = temp.iloc[102,5-a]

UPDRS[name, "v5_1_rig_right_arm"] = temp.iloc[103,5-a]

UPDRS[name, "v5_1_rig_right_leg"] = temp.iloc[104,5-a]

UPDRS[name, "v5_1_rig_left_arm"] = temp.iloc[103,7-a]

UPDRS[name, "v5_1_rig_left_leg"] = temp.iloc[104,7-a]

58

TGO group 8 University of Twente

UPDRS[name, "v5_1_speech"] = temp.iloc[106,5-a]

UPDRS[name, "v5_1_facial_expression"] = temp.iloc[107,5-a]

UPDRS[name, "v5_1_right_finger_tap"] = temp.iloc[109,5-a]

UPDRS[name, "v5_1_right_hand_movement"] = temp.iloc[110,5-a]

UPDRS[name, "v5_1_right_pro_supination"] = temp.iloc[111,5-a]

UPDRS[name, "v5_1_right_toe_tap"] = temp.iloc[112,5-a]

UPDRS[name, "v5_1_right_leg_movement"] = temp.iloc[113,5-a]

UPDRS[name, "v5_1_left_finger_tap"] = temp.iloc[109,7-a]

UPDRS[name, "v5_1_left_hand_movement"] = temp.iloc[110,7-a]

UPDRS[name, "v5_1_left_pro_supination"] = temp.iloc[111,7-a]

UPDRS[name, "v5_1_left_toe_tap"] = temp.iloc[112,7-a]

UPDRS[name, "v5_1_left_leg_movement"] = temp.iloc[113,7-a]

UPDRS[name, "v5_1_raise_chair"] = temp.iloc[115,5-a]

UPDRS[name, "v5_1_gait"] = temp.iloc[116,5-a]

UPDRS[name, "v5_1_freezing"] = temp.iloc[117,5-a]

UPDRS[name, "v5_1_postural_reflex"] = temp.iloc[118,5-a]

UPDRS[name, "v5_1_posture"] = temp.iloc[119,5-a]

UPDRS[name, "v5_1_spontaneous_move"] = temp.iloc[120,5-a]

UPDRS[name, "v5_1_right_postural_tremor"] = temp.iloc[123,5-a]

UPDRS[name, "v5_1_right_kinetic_tremor"] = temp.iloc[124,5-a]

UPDRS[name, "v5_1_right_rest_tremor_amplitude_arm"] =

temp.iloc[125,5-a]

UPDRS[name, "v5_1_right_rest_tremor_amplitude_leg"] =

temp.iloc[126,5-a]

UPDRS[name, "v5_1_right_rest_tremor_constancy"] = temp.iloc[127,5-a]

UPDRS[name, "v5_1_left_postural_tremor"] = temp.iloc[123,7-a]

UPDRS[name, "v5_1_left_kinetic_tremor"] = temp.iloc[124,7-a]

UPDRS[name, "v5_1_left_rest_tremor_amplitude_arm"] = temp.iloc[125,7-a]

UPDRS[name, "v5_1_left_rest_tremor_amplitude_leg"] = temp.iloc[126,7-a]

UPDRS[name, "v5_1_left_rest_tremor_constancy"] = temp.iloc[127,7-a]

UPDRS[name, "v5_1_list_rig_tot"] =

(temp.iloc[102,5-a],temp.iloc[103,5-a],temp.iloc[104,5-a],temp.iloc[103

,7-a],temp.iloc[104,7-a])

59

TGO group 8 University of Twente

UPDRS[name, "v5_1_list_speech_facial"] =

(temp.iloc[106,5-a],temp.iloc[107,5-a])

UPDRS[name, "v5_1_list_brady_kin_right"] = (temp.iloc[109,5-a],

temp.iloc[110,5-a], temp.iloc[111,5-a], temp.iloc[112,5-a],

temp.iloc[113,5-a])

UPDRS[name, "v5_1_list_brady_kin_left"] = (temp.iloc[109,7-a],

temp.iloc[110,7-a], temp.iloc[111,7-a], temp.iloc[112,7-a],

temp.iloc[113,7-a])

UPDRS[name, "v5_1_list_brady_kin_tot"] = (UPDRS[name,

"v5_1_list_brady_kin_left"] + UPDRS[name, "v5_1_list_brady_kin_right"])

UPDRS[name, "v5_1_list_gait_balance"] = (temp.iloc[115,5-a],

temp.iloc[116,5-a], temp.iloc[117,5-a], temp.iloc[118,5-a],

temp.iloc[119,5-a], temp.iloc[120,5-a])

UPDRS[name, "v5_1_list_tremor_right"]= (temp.iloc[123,5-a],

temp.iloc[124,5-a], temp.iloc[125,5-a], temp.iloc[126,5-a],

temp.iloc[127,5-a])

UPDRS[name, "v5_1_list_tremor_left"]= (temp.iloc[123,7-a],

temp.iloc[124,7-a], temp.iloc[125,7-a], temp.iloc[126,7-a],

temp.iloc[127,7-a])

UPDRS[name, "v5_1_list_tremor_tot"]= (UPDRS[name,

"v5_1_list_tremor_right"] + UPDRS[name, "v5_1_list_tremor_left"])

UPDRS[name, "v5_1_list_globaal"] = (UPDRS[name, "v5_1_list_rig_tot"] +

UPDRS[name, "v5_1_list_speech_facial"] + UPDRS[name,

"v5_1_list_brady_kin_tot"] + UPDRS[name, "v5_1_list_gait_balance"] +

UPDRS[name, "v5_1_list_tremor_tot"])

visit 5_2

if pd.isnull(temp.iloc[135, 5]) == True: #check whether the ON or OFF

table has been completed. this is done by looking at an empty field

(rigidity head) in the ON table, if it is empty it will read OFF,

otherwise ON

a = 4

else:

a = 0

UPDRS[name, "v5_2_rig_head"] = temp.iloc[135,5-a]

UPDRS[name, "v5_2_rig_right_arm"] = temp.iloc[136,5-a]

UPDRS[name, "v5_2_rig_right_leg"] = temp.iloc[137,5-a]

60

TGO group 8 University of Twente

UPDRS[name, "v5_2_rig_left_arm"] = temp.iloc[136,7-a]

UPDRS[name, "v5_2_rig_left_leg"] = temp.iloc[137,7-a]

UPDRS[name, "v5_2_speech"] = temp.iloc[139,5-a]

UPDRS[name, "v5_2_facial_expression"] = temp.iloc[140,5-a]

UPDRS[name, "v5_2_right_finger_tap"] = temp.iloc[142,5-a]

UPDRS[name, "v5_2_right_hand_movement"] = temp.iloc[143,5-a]

UPDRS[name, "v5_2_right_pro_supination"] = temp.iloc[144,5-a]

UPDRS[name, "v5_2_right_toe_tap"] = temp.iloc[145,5-a]

UPDRS[name, "v5_2_right_leg_movement"] = temp.iloc[146,5-a]

UPDRS[name, "v5_2_left_finger_tap"] = temp.iloc[142,7-a]

UPDRS[name, "v5_2_left_hand_movement"] = temp.iloc[143,7-a]

UPDRS[name, "v5_2_left_pro_supination"] = temp.iloc[144,7-a]

UPDRS[name, "v5_2_left_toe_tap"] = temp.iloc[145,7-a]

UPDRS[name, "v5_2_left_leg_movement"] = temp.iloc[146,7-a]

UPDRS[name, "v5_2_raise_chair"] = temp.iloc[148,5-a]

UPDRS[name, "v5_2_gait"] = temp.iloc[149,5-a]

UPDRS[name, "v5_2_freezing"] = temp.iloc[150,5-a]

UPDRS[name, "v5_2_postural_reflex"] = temp.iloc[151,5-a]

UPDRS[name, "v5_2_posture"] = temp.iloc[152,5-a]

UPDRS[name, "v5_2_spontaneous_move"] = temp.iloc[153,5-a]

UPDRS[name, "v5_2_right_postural_tremor"] = temp.iloc[156,5-a]

UPDRS[name, "v5_2_right_kinetic_tremor"] = temp.iloc[157,5-a]

UPDRS[name, "v5_2_right_rest_tremor_amplitude_arm"] =

temp.iloc[158,5-a]

UPDRS[name, "v5_2_right_rest_tremor_amplitude_leg"] =

temp.iloc[159,5-a]

UPDRS[name, "v5_2_right_rest_tremor_constancy"] = temp.iloc[160,5-a]

UPDRS[name, "v5_2_left_postural_tremor"] = temp.iloc[156,7-a]

UPDRS[name, "v5_2_left_kinetic_tremor"] = temp.iloc[157,7-a]

UPDRS[name, "v5_2_left_rest_tremor_amplitude_arm"] = temp.iloc[158,7-a]

UPDRS[name, "v5_2_left_rest_tremor_amplitude_leg"] = temp.iloc[159,7-a]

UPDRS[name, "v5_2_left_rest_tremor_constancy"] = temp.iloc[160,7-a]

61

TGO group 8 University of Twente

UPDRS[name, "v5_2_list_rig_tot"] =

(temp.iloc[135,5-a],temp.iloc[136,5-a],temp.iloc[137,5-a],temp.iloc[136

,7-a],temp.iloc[137,7-a])

UPDRS[name, "v5_2_list_speech_facial"] =

(temp.iloc[139,5-a],temp.iloc[140,5-a])

UPDRS[name, "v5_2_list_brady_kin_right"] = (temp.iloc[142,5-a],

temp.iloc[143,5-a], temp.iloc[144,5-a], temp.iloc[145,5-a],

temp.iloc[146,5-a])

UPDRS[name, "v5_2_list_brady_kin_left"] = (temp.iloc[142,7-a],

temp.iloc[143,7-a], temp.iloc[144,7-a], temp.iloc[145,7-a],

temp.iloc[146,7-a])

UPDRS[name, "v5_2_list_brady_kin_tot"] = (UPDRS[name,

"v5_2_list_brady_kin_left"] + UPDRS[name, "v5_2_list_brady_kin_right"])

UPDRS[name, "v5_2_list_gait_balance"] = (temp.iloc[148,5-a],

temp.iloc[149,5-a], temp.iloc[150,5-a], temp.iloc[151,5-a],

temp.iloc[152,5-a], temp.iloc[153,5-a])

UPDRS[name, "v5_2_list_tremor_right"]= (temp.iloc[156,5-a],

temp.iloc[157,5-a], temp.iloc[158,5-a], temp.iloc[159,5-a],

temp.iloc[160,5-a])

UPDRS[name, "v5_2_list_tremor_left"]= (temp.iloc[156,7-a],

temp.iloc[157,7-a], temp.iloc[158,7-a], temp.iloc[159,7-a],

temp.iloc[160,7-a])

UPDRS[name, "v5_2_list_tremor_tot"]= (UPDRS[name,

"v5_2_list_tremor_right"] + UPDRS[name, "v5_2_list_tremor_left"])

UPDRS[name, "v5_2_list_globaal"] = (UPDRS[name, "v5_2_list_rig_tot"] +

UPDRS[name, "v5_2_list_speech_facial"] + UPDRS[name,

"v5_2_list_brady_kin_tot"] + UPDRS[name, "v5_2_list_gait_balance"] +

UPDRS[name, "v5_2_list_tremor_tot"])

visit 5_3

if pd.isnull(temp.iloc[168, 5]) == True: #check whether the ON or OFF

table has been completed. this is done by looking at an empty field

(rigidity head) in the ON table, if it is empty it will read OFF,

otherwise ON

a = 4

else:

a = 0

UPDRS[name, "v5_3_rig_head"] = temp.iloc[168,5-a]

62

TGO group 8 University of Twente

UPDRS[name, "v5_3_rig_right_arm"] = temp.iloc[169,5-a]

UPDRS[name, "v5_3_rig_right_leg"] = temp.iloc[170,5-a]

UPDRS[name, "v5_3_rig_left_arm"] = temp.iloc[169,7-a]

UPDRS[name, "v5_3_rig_left_leg"] = temp.iloc[170,7-a]

UPDRS[name, "v5_3_speech"] = temp.iloc[172,5-a]

UPDRS[name, "v5_3_facial_expression"] = temp.iloc[173,5-a]

UPDRS[name, "v5_3_right_finger_tap"] = temp.iloc[175,5-a]

UPDRS[name, "v5_3_right_hand_movement"] = temp.iloc[176,5-a]

UPDRS[name, "v5_3_right_pro_supination"] = temp.iloc[177,5-a]

UPDRS[name, "v5_3_right_toe_tap"] = temp.iloc[178,5-a]

UPDRS[name, "v5_3_right_leg_movement"] = temp.iloc[179,5-a]

UPDRS[name, "v5_3_left_finger_tap"] = temp.iloc[175,7-a]

UPDRS[name, "v5_3_left_hand_movement"] = temp.iloc[176,7-a]

UPDRS[name, "v5_3_left_pro_supination"] = temp.iloc[177,7-a]

UPDRS[name, "v5_3_left_toe_tap"] = temp.iloc[178,7-a]

UPDRS[name, "v5_3_left_leg_movement"] = temp.iloc[179,7-a]

UPDRS[name, "v5_3_raise_chair"] = temp.iloc[181,5-a]

UPDRS[name, "v5_3_gait"] = temp.iloc[182,5-a]

UPDRS[name, "v5_3_freezing"] = temp.iloc[183,5-a]

UPDRS[name, "v5_3_postural_reflex"] = temp.iloc[184,5-a]

UPDRS[name, "v5_3_posture"] = temp.iloc[185,5-a]

UPDRS[name, "v5_3_spontaneous_move"] = temp.iloc[186,5-a]

UPDRS[name, "v5_3_right_postural_tremor"] = temp.iloc[189,5-a]

UPDRS[name, "v5_3_right_kinetic_tremor"] = temp.iloc[190,5-a]

UPDRS[name, "v5_3_right_rest_tremor_amplitude_arm"] =

temp.iloc[191,5-a]

UPDRS[name, "v5_3_right_rest_tremor_amplitude_leg"] =

temp.iloc[192,5-a]

UPDRS[name, "v5_3_right_rest_tremor_constancy"] = temp.iloc[193,5-a]

UPDRS[name, "v5_3_left_postural_tremor"] = temp.iloc[189,7-a]

UPDRS[name, "v5_3_left_kinetic_tremor"] = temp.iloc[190,7-a]

UPDRS[name, "v5_3_left_rest_tremor_amplitude_arm"] = temp.iloc[191,7-a]

UPDRS[name, "v5_3_left_rest_tremor_amplitude_leg"] = temp.iloc[192,7-a]

63

TGO group 8 University of Twente

UPDRS[name, "v5_3_left_rest_tremor_constancy"] = temp.iloc[193,7-a]

UPDRS[name, "v5_3_list_rig_tot"] =

(temp.iloc[168,5-a],temp.iloc[169,5-a],temp.iloc[170,5-a],temp.iloc[169

,7-a],temp.iloc[170,7-a])

UPDRS[name, "v5_3_list_speech_facial"] =

(temp.iloc[172,5-a],temp.iloc[173,5-a])

UPDRS[name, "v5_3_list_brady_kin_right"] = (temp.iloc[175,5-a],

temp.iloc[176,5-a], temp.iloc[177,5-a], temp.iloc[178,5-a],

temp.iloc[179,5-a])

UPDRS[name, "v5_3_list_brady_kin_left"] = (temp.iloc[175,7-a],

temp.iloc[176,7-a], temp.iloc[177,7-a], temp.iloc[178,7-a],

temp.iloc[179,7-a])

UPDRS[name, "v5_3_list_brady_kin_tot"] = (UPDRS[name,

"v5_3_list_brady_kin_left"] + UPDRS[name, "v5_3_list_brady_kin_right"])

UPDRS[name, "v5_3_list_gait_balance"] = (temp.iloc[181,5-a],

temp.iloc[182,5-a], temp.iloc[183,5-a], temp.iloc[184,5-a],

temp.iloc[185,5-a], temp.iloc[186,5-a])

UPDRS[name, "v5_3_list_tremor_right"]= (temp.iloc[189,5-a],

temp.iloc[190,5-a], temp.iloc[191,5-a], temp.iloc[192,5-a],

temp.iloc[193,5-a])

UPDRS[name, "v5_3_list_tremor_left"]= (temp.iloc[189,7-a],

temp.iloc[190,7-a], temp.iloc[191,7-a], temp.iloc[192,7-a],

temp.iloc[193,7-a])

UPDRS[name, "v5_3_list_tremor_tot"]= (UPDRS[name,

"v5_3_list_tremor_right"] + UPDRS[name, "v5_3_list_tremor_left"])

UPDRS[name, "v5_3_list_globaal"] = (UPDRS[name, "v5_3_list_rig_tot"] +

UPDRS[name, "v5_3_list_speech_facial"] + UPDRS[name,

"v5_3_list_brady_kin_tot"] + UPDRS[name, "v5_3_list_gait_balance"] +

UPDRS[name, "v5_3_list_tremor_tot"])

visit 5_4

if pd.isnull(temp.iloc[201, 5]) == True: #check whether the ON or OFF

table has been completed. this is done by looking at an empty field

(rigidity head) in the ON table, if it is empty it will read OFF,

otherwise ON

a = 4

else:

a = 0

64

TGO group 8 University of Twente

UPDRS[name, "v5_4_rig_head"] = temp.iloc[201,5-a]

UPDRS[name, "v5_4_rig_right_arm"] = temp.iloc[202,5-a]

UPDRS[name, "v5_4_rig_right_leg"] = temp.iloc[203,5-a]

UPDRS[name, "v5_4_rig_left_arm"] = temp.iloc[202,7-a]

UPDRS[name, "v5_4_rig_left_leg"] = temp.iloc[203,7-a]

UPDRS[name, "v5_4_speech"] = temp.iloc[205,5-a]

UPDRS[name, "v5_4_facial_expression"] = temp.iloc[206,5-a]

UPDRS[name, "v5_4_right_finger_tap"] = temp.iloc[208,5-a]

UPDRS[name, "v5_4_right_hand_movement"] = temp.iloc[209,5-a]

UPDRS[name, "v5_4_right_pro_supination"] = temp.iloc[210,5-a]

UPDRS[name, "v5_4_right_toe_tap"] = temp.iloc[211,5-a]

UPDRS[name, "v5_4_right_leg_movement"] = temp.iloc[212,5-a]

UPDRS[name, "v5_4_left_finger_tap"] = temp.iloc[208,7-a]

UPDRS[name, "v5_4_left_hand_movement"] = temp.iloc[209,7-a]

UPDRS[name, "v5_4_left_pro_supination"] = temp.iloc[210,7-a]

UPDRS[name, "v5_4_left_toe_tap"] = temp.iloc[211,7-a]

UPDRS[name, "v5_4_left_leg_movement"] = temp.iloc[212,7-a]

UPDRS[name, "v5_4_raise_chair"] = temp.iloc[214,5-a]

UPDRS[name, "v5_4_gait"] = temp.iloc[215,5-a]

UPDRS[name, "v5_4_freezing"] = temp.iloc[216,5-a]

UPDRS[name, "v5_4_postural_reflex"] = temp.iloc[217,5-a]

UPDRS[name, "v5_4_posture"] = temp.iloc[218,5-a]

UPDRS[name, "v5_4_spontaneous_move"] = temp.iloc[219,5-a]

UPDRS[name, "v5_4_right_postural_tremor"] = temp.iloc[222,5-a]

UPDRS[name, "v5_4_right_kinetic_tremor"] = temp.iloc[223,5-a]

UPDRS[name, "v5_4_right_rest_tremor_amplitude_arm"] =

temp.iloc[224,5-a]

UPDRS[name, "v5_4_right_rest_tremor_amplitude_leg"] =

temp.iloc[225,5-a]

UPDRS[name, "v5_4_right_rest_tremor_constancy"] = temp.iloc[226,5-a]

UPDRS[name, "v5_4_left_postural_tremor"] = temp.iloc[222,7-a]

UPDRS[name, "v5_4_left_kinetic_tremor"] = temp.iloc[223,7-a]

65

TGO group 8 University of Twente

UPDRS[name, "v5_4_left_rest_tremor_amplitude_arm"] = temp.iloc[224,7-a]

UPDRS[name, "v5_4_left_rest_tremor_amplitude_leg"] = temp.iloc[225,7-a]

UPDRS[name, "v5_4_left_rest_tremor_constancy"] = temp.iloc[226,7-a]

UPDRS[name, "v5_4_list_rig_tot"] =

(temp.iloc[201,5-a],temp.iloc[202,5-a],temp.iloc[203,5-a],temp.iloc[202

,7-a],temp.iloc[203,7-a])

UPDRS[name, "v5_4_list_speech_facial"] =

(temp.iloc[205,5-a],temp.iloc[206,5-a])

UPDRS[name, "v5_4_list_brady_kin_right"] = (temp.iloc[208,5-a],

temp.iloc[209,5-a], temp.iloc[210,5-a], temp.iloc[211,5-a],

temp.iloc[212,5-a])

UPDRS[name, "v5_4_list_brady_kin_left"] = (temp.iloc[208,7-a],

temp.iloc[209,7-a], temp.iloc[210,7-a], temp.iloc[211,7-a],

temp.iloc[212,7-a])

UPDRS[name, "v5_4_list_brady_kin_tot"] = (UPDRS[name,

"v5_4_list_brady_kin_left"] + UPDRS[name, "v5_4_list_brady_kin_right"])

UPDRS[name, "v5_4_list_gait_balance"] = (temp.iloc[214,5-a],

temp.iloc[215,5-a], temp.iloc[216,5-a], temp.iloc[217,5-a],

temp.iloc[218,5-a], temp.iloc[219,5-a])

UPDRS[name, "v5_4_list_tremor_right"]= (temp.iloc[222,5-a],

temp.iloc[223,5-a], temp.iloc[224,5-a], temp.iloc[225,5-a],

temp.iloc[226,5-a])

UPDRS[name, "v5_4_list_tremor_left"]= (temp.iloc[222,7-a],

temp.iloc[223,7-a], temp.iloc[224,7-a], temp.iloc[225,7-a],

temp.iloc[226,7-a])

UPDRS[name, "v5_4_list_tremor_tot"]= (UPDRS[name,

"v5_4_list_tremor_right"] + UPDRS[name, "v5_4_list_tremor_left"])

UPDRS[name, "v5_4_list_globaal"] = (UPDRS[name, "v5_4_list_rig_tot"] +

UPDRS[name, "v5_4_list_speech_facial"] + UPDRS[name,

"v5_4_list_brady_kin_tot"] + UPDRS[name, "v5_4_list_gait_balance"] +

UPDRS[name, "v5_4_list_tremor_tot"])

UPDRS_dataframe = pd.DataFrame.from_dict(UPDRS, orient=’index’)

UPDRS_dataframe.to_excel(r"F:\Datasets\UPDRS_scores_filtered.xlsx")

#%%

list_keys = sorted(UPDRS.keys())

retrieved_data = {}

for x in range(len(list_keys[0:300])): #change the numbers for which values you want to

extract from the UPDRS table

66

TGO group 8 University of Twente

temp2=list_keys[x]

retrieved_data[list_keys[x]] = UPDRS[temp2]

#%% Plot tremor total

fig = plt.figure()

#define the x-labels and the y-labels

Xlabel =

["right_postural_tremor","right_kinetic_tremor","right_rest_tremor_amplitude_arm","right_rest_t

remor_amplitude_leg","right_rest_tremor_constancy","left_postural_tremor","left_kinetic_tremor"

,"left_rest_tremor_amplitude_arm","left_rest_tremor_amplitude_leg","left_rest_tremor_constancy"

]

Blabel = ["Visit 2", "Visit 3", "Visit 4", "Visit 5 analysis 1", "Visit 5 analysis 2", "Visit

5 analysis 3", "Visit 5 analysis 4"]

data_plot = [0,1,2,3,4,5,6,7,8,9] #maak een list die 10 lang is

#fill the aforementioned list with the correct values.

for x in range(len(UPDRS["ptxx", "v2_list_tremor_tot"])):

data_plot[x]=[int(UPDRS["ptxx", "v2_list_tremor_tot"][x]),int(UPDRS["pt0",

"v3_list_tremor_tot"][x]),int(UPDRS["ptxx", "v4_list_tremor_tot"][x]),int(UPDRS["ptxx",

"v5_1_list_tremor_tot"][x]),int(UPDRS["ptxx", "v5_2_list_tremor_tot"][x]),int(UPDRS["ptxx",

"v5_3_list_tremor_tot"][x]),int(UPDRS["ptxx", "v5_4_list_tremor_tot"][x])]

#create the bar charts and the distance between the axes:

x0=np.arange(len(data_plot[0]))

x1=[x+0.1 for x in x0]

x2=[x+0.1 for x in x1]

x3=[x+0.1 for x in x2]

x4=[x+0.1 for x in x3]

x5=[x+0.1 for x in x4]

x6=[x+0.1 for x in x5]

x7=[x+0.1 for x in x6]

x8=[x+0.1 for x in x7]

x9=[x+0.1 for x in x8]

plt.subplots(figsize=[16,9])

plt.bar(x0, data_plot[0], color = ’b’, width = 0.1,label = Xlabel[0])

plt.bar(x1, data_plot[1], color = ’g’, width = 0.1,label = Xlabel[1])

plt.bar(x2, data_plot[2], color = ’r’, width = 0.1,label = Xlabel[2])

plt.bar(x3, data_plot[3], color = ’c’, width = 0.1,label = Xlabel[3])

67

TGO group 8 University of Twente

plt.bar(x4, data_plot[4], color = ’m’, width = 0.1,label = Xlabel[4])

plt.bar(x5, data_plot[5], color = ’y’, width = 0.1,label = Xlabel[5])

plt.bar(x6, data_plot[6], color = ’k’, width = 0.1,label = Xlabel[6])

plt.bar(x7, data_plot[7], color = ’gray’, width = 0.1,label = Xlabel[7])

plt.bar(x8, data_plot[8], color = ’pink’, width = 0.1,label = Xlabel[8])

plt.bar(x9, data_plot[9], color = ’purple’, width = 0.1,label = Xlabel[9])

#adds labels to graphic

plt.xlabel(’Visit & Test’, fontweight =’bold’, fontsize = 20)

plt.ylabel(’UPDRS-score’, fontweight =’bold’, fontsize = 20)

plt.xticks([r + 0.1 for r in range(len(data_plot[0]))], Blabel, fontsize = 12)

plt.title("Patients tremor UPDRS-scores across multiple visits", fontweight = "bold", fontsize

= 30)

plt.legend(fontsize = 8)

plt.show()

8.2.8 05_pre_algorithm

-*- coding: utf-8 -*-

"""

Created on Tue May 30 11:44:18 2023

@author: jobme

"""

import io

import os

import datetime as dt

import time

import pandas as pd

import matplotlib.pyplot as plt

from runeq import Config, stream

from scipy import stats

import numpy

#this script acquires an excell table with smartwatchdata during examination of MDS-UPDRS

#%%

#load file from patient

BASE_PATH = ’G:\Datasets’

PT_FILENAME = ’\ptxx_wtxx’ #sometimes you need to adjust the wt03 higher (wt04) or lower(wt02)

recieve= BASE_PATH+PT_FILENAME+PT_FILENAME

68

TGO group 8 University of Twente

store = BASE_PATH+PT_FILENAME+PT_FILENAME

#%%

df1 = pd.read_excel(recieve+’_merged.xlsx’)

#%%

#choose date and time interval of examination

date_time = ’29.11.2022 10:00:00’

pattern = ’%d.%m.%Y %H:%M:%S’

epoch = int(time.mktime(time.strptime(date_time, pattern)))

#print (epoch)

#%% time window

end_time= epoch + 3600 #hour past measurement

start_time=epoch - 900 #fifteen minutes before measurement

#%%

df5 = df1[(df1[’time’] > start_time) & (df1[’time’] < end_time)]

df6 = numpy.mean(df5) #get the mean value of each parameter during the time interval

#Added

df8=df6[2:9]

#%%

#wb = openpyxl.Workbook()

#ws = wb.active

#in format

("mean_tremor","mild","moderate","none","slight","strong","unknown","mean_dyskinesia"),

#data = (

("mean_tremor","mild","moderate","none","slight","strong","unknown","mean_dyskinesia"),

(df8[0],df8[1],df8[2],df8[3],df8[4],df8[5],df8[6]),

)

#%%

#for i in data:

ws.append(i)

#%%

#ws.append(i)

#wb.save(’G:\data\output.xlsx’) #file is save as

69

TGO group 8 University of Twente

8.2.9 06_merge_UPDRS_loadr_data_and_smartwatch_data

-*- coding: utf-8 -*-

"""

Data_final_conversion

Purpose: combines scripts retrieved from the UPDRS_loadr script and the table with smartwatch

averages to one

table that can be easily incorporated into a ML-algorithm

Uses pandas v. 2.0.1

Created on Tue May 30 12:11 2023, last edit: Thu June 1 14:08 2023

@authors: Loet Schoenmakers, Job Meuwese & Stef Berendsen

"""

#%% import nessecery libraries

import pandas as pd

#%% Paths to specify by the user:

path_UPDRS = r"F:\Datasets\UPDRS_scores_filtered.xlsx" #the location of the UPDRS_loadr

excel-file

path_pt_summary_data = r"F:\Datasets\pre_algorithm.xlsx" #the location of the smartwatch

averages excel-file

path_pt_data_location = r"F:\Datasets\data_complete.xlsx" #the location you wish the new table

to end up at

#%% load UPDRS- and Smartwatch-data (Variables changeable by user)

list_of_pt = [] #specify which pt’s you

wish to include in the table

visits = ["v2_","v3_","v4_","v5_1_","v5_2_","v5_3_","v5_4_"] #specify which visits you wish to

include in the table. DO NOT FORGET THE "_" (LOWER DASH) AT THE END OF THE VISIT NAME!

#below here, specify what labels of the UPDRS_loadr and Smartwatch data scripts you wish to

include in the table. DO NOT INCLUDE ANY TRAILING OR LEADING BLANK SPACES IN THESE LABELS!

list_UPDRS_labels =

["right_finger_tap","right_hand_movement","right_pro_supination","right_toe_tap","right_leg_mov

ement","left_finger_tap","left_hand_movement","left_pro_supination","left_toe_tap","left_leg_mo

70

TGO group 8 University of Twente

vement","raise_chair","gait","freezing","postural_reflex","posture","spontaneous_move","right_p

ostural_tremor",

"right_kinetic_tremor","right_rest_tremor_amplitude_arm","right_rest_tremor_amplitude_leg","rig

ht_rest_tremor_constancy","left_postural_tremor",

"left_kinetic_tremor","left_rest_tremor_amplitude_arm","left_rest_tremor_amplitude_leg","left_r

est_tremor_constancy"]

list_smartwatch_labels =

["mean_tremor","mean_mild","mean_moderate","mean_none","mean_slight","mean_strong","mean_unknow

n","mean_dyskinesia"]

#%% Load UPDRS- and Smartwatch data (unchangeable)

#pre-define needed variables for later on

List_labels_tot = list_UPDRS_labels + list_smartwatch_labels

index_labels = {}

pt_names = list_of_pt

#the next six lines load the UPDRS_loadr script, and remove any trailing and leading spaces

from the labels it may contain.

UPDRS_data = pd.read_excel(path_UPDRS)

UPDRS_data = UPDRS_data.rename({"Unnamed: 0":"names",0:"data"}, axis="columns")

UPDRS_data_labels = UPDRS_data.names

UPDRS_data_labels = UPDRS_data_labels.tolist()

UPDRS_data_labels = [s.strip() for s in UPDRS_data_labels]

#make a list of pt-names in the format "ptXX", where XX are the numbers in the list_of_pt

list. post these labels in the pt_names list. then (after line 52), combine it with the visits

specified in the index_labels dict

for x in range(len(list_of_pt)):

if list_of_pt[x] >=10:

pt_names[x]="pt"+str(list_of_pt[x]).strip() #define the name

else:

pt_names[x]="pt0"+str(list_of_pt[x]).strip()

for y in range(len(visits)):

index_labels[x,y] = pt_names[x]+"_visit"+visits[y][1:-1]

#define the pt_data dataframe, using the rows and colums made earlier.

pt_data = pd.DataFrame(index = index_labels.values(),columns=List_labels_tot)

71

TGO group 8 University of Twente

#load in the smartwatch data, and remove any trailing or l;eading spaces the labels may

contain.

pt_summary_data = pd.read_excel(path_pt_summary_data, usecols="A:K")

pt_summary_data = pt_summary_data.dropna().drop(columns = "time_window").reset_index()

pt_summary_columns = list(pt_summary_data.columns)

pt_summary_columns = pt_summary_columns[3:]

pt_summary_columns = [s.strip() for s in pt_summary_columns]

#make a list of pt-names, combined with visits that are present in the smartwatch-data excel

sheet.

pt_summary_list = [None]*len(pt_summary_data.number_patient)

for z in range(len(pt_summary_data.number_patient)):

pt_summary_list[z] =

str(pt_summary_data.number_patient[z])+"_visit"+str(pt_summary_data.number_of_visit[z]).str

ip()

#%% fill in the patient data DataFrame

"""

from line 78 to 93, the script does the following operations for each row of the empty table

(line 78):

- make 3 temporary variables that are empty (line 79)

- check if the patient (line 80), visit (lines 82 & 86) and UPDRS-score category (lines 84

& 88) are present in the list_of_pt, visits, and list_UPDRS_lables lists defined earlier.

if so, temporarily store these in temp 1, 2, and 3 respectively

- if all 3 labels (pt, visit and UPDRS_score_category) are present (line 90), make the

index-label of the row in the pt_data DataFrame and strip any blank spaces (lines 91 &

92), then place it in the cooresponding field (line 93)

"""

for a in range(len(UPDRS_data_labels)):

temp1 = temp2 = temp3 = None

if UPDRS_data_labels[a][2:6] in pt_names:

temp1 = UPDRS_data_labels[a][2:6]

if UPDRS_data_labels[a][10:13] in visits[:3]:

temp2 = UPDRS_data_labels[a][11:12]

if UPDRS_data_labels[a][13:-2] in list_UPDRS_labels:

temp3 = UPDRS_data_labels[a][13:-2]

elif UPDRS_data_labels[a][10:15] in visits[3:]:

temp2 = UPDRS_data_labels[a][11:14]

72

TGO group 8 University of Twente

if UPDRS_data_labels[a][15:-2] in list_UPDRS_labels:

temp3 = UPDRS_data_labels[a][15:-2]

if temp1 and temp2 and temp3 != None:

temp_label = temp1+"_visit"+temp2

temp_label = temp_label.strip()

pt_data.loc[[temp_label],[temp3]] = UPDRS_data.data[a]

"""

from line 102 to 114, the script does the following operations for each row of the smartwatch

data sheet (line 102):

- make 3 temporary variables that are empty (line 103)

- check if the patient (line 104), visit (line 104) and smartwatch data categories (lines

108 & 109) are present in the list_of_pt, visits, and list_smartwatch_labels lists defined

earlier. if so, temporarily store these in temp 4, 5 and 6 respectively

- if all 3 labels (pt, visit and UPDRS_score_category) are present (line 111), make the

index-label of the row in the pt_data DataFrame and strip any blank spaces (lines 112 &

113), then place it in the cooresponding field (line 114)

"""

for b in range(len(pt_summary_list)):

temp4 = temp5 = temp6 = None

if pt_summary_list[b][:4] in pt_names:

temp4 = pt_summary_list[b][:4]

if pt_summary_list[b][5] + pt_summary_list[b][10:] + "_" in visits:

temp5 = pt_summary_list[b][10:]

for c in range(len(pt_summary_columns)):

if pt_summary_columns[c] in list_smartwatch_labels:

temp6 = pt_summary_columns[c]

if temp4 and temp5 and temp6 != None:

temp_label2 = temp4+"_visit"+temp5

temp_label2 = temp_label2.strip()

pt_data.loc[[temp_label2],[temp6]] = pt_summary_data.at[b,temp6]

#%% Post-processing and export of the complete table: (can be run

optionally)

pt_data = pt_data.dropna() #remove any row, which does not contain a full set of data. Can

optionally be commented.

pt_data.to_excel(path_pt_data_location) #export to specific file location.

73

TGO group 8 University of Twente

8.2.10 07_1_algorithm01

-*- coding: utf-8 -*-

"""

Created on Wed May 31 09:44:56 2023

@author: Stef Berendsen, Loet Schoenmakers en Job Meuwese

Purpose: to create an RF-algorithm for retrieving UPDRS-scores from smartwatch data

Makes use of the following libraries:

scikit-learn v: 1.2.2

pandas v: 2.0.1

matplotlib v: 3.7.1

Also makes use of the following data-set:

data_complete.xlsx

retrievable from the script "06_merge_UPDRS_loadr_data_and_smartwatch_data". This script is

available on the GitHub

"""

#%% Import the nescesary libraries:

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

import pandas as pd

import matplotlib.pyplot as plt

#%% Import the files and define variables:

#please specify within the ’’ the path of the data_complete.xlsx file.

df= pd.read_excel(’E:/data/data_complete.xlsx’,index_col=0)

#df.drop means that these columms will be removed so you only have the ones you desire

X =

df.drop(["right_finger_tap","right_hand_movement","right_pro_supination","right_toe_tap","right

_leg_movement","left_finger_tap","left_hand_movement","left_pro_supination","left_toe_tap","lef

t_leg_movement","raise_chair","gait","freezing","postural_reflex","posture","spontaneous_move",

"right_postural_tremor",

"right_kinetic_tremor","right_rest_tremor_amplitude_arm","right_rest_tremor_amplitude_leg","rig

ht_rest_tremor_constancy","left_postural_tremor",

"left_kinetic_tremor","left_rest_tremor_amplitude_arm","left_rest_tremor_amplitude_leg","left_r

74

TGO group 8 University of Twente

est_tremor_constancy"], axis=1)

y =

df.drop(["mean_tremor","mean_mild","mean_moderate","mean_none","mean_slight","mean_strong","mea

n_unknown","mean_dyskinesia"],axis=1)

#%% Algorithm

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=None)

#train is used the train the system, test is to use the system, test_size 0.2 says that 20%

percent of the values wil be used to test the system and 80% to train

rf_model = RandomForestClassifier(n_estimators=100, max_features="auto", random_state=None)

#n_estimators gives the amount of decision trees,max_features deletes the worst values if it

is contradicted

rf_model.fit(X_train, y_train) #fit the data to the algorithm

predictions = rf_model.predict(X_test)# gives the predicitons for the whole tree, through mean

y_test

propbabilitys=rf_model.predict_proba(X_test) #for each field of columm gives the probabilitys

of y_values if it is 1,2,3,4

importances=rf_model.feature_importances_ #how important the columms in X_test are in

predicting results

#%% Add random person and check it’s predictions.

person_test=[[0.025, 0.5, 0.00345, 0.2655, 0.6902, 0.12345, 0.3874, 0.4999]]

person_result=rf_model.predict(person_test) # gives the predict values of updrs with the

random smartwatchdata

8.2.11 07_2_algorithm02

-*- coding: utf-8 -*-

"""

Created on Mon Jun 5 13:36:45 2023

@author: Stef Berendsen, Loet Schoenmakers en Job Meuwese

Purpose: to create a more optimised RF-algorithm for retrieving UPDRS-scores from smartwatch

data

Makes use of the following libraries:

75

TGO group 8 University of Twente

scikit-learn v: 1.2.2

pandas v: 2.0.1

Also makes use of the following data-set:

data_complete.xlsx

retrievable from the script "06_merge_UPDRS_loadr_data_and_smartwatch_data". This script is

available on the GitHub

"""

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

import pandas as pd

#%%

#specify the data_complete .xlsx path within the ’’.

df= pd.read_excel(’F:/Datasets/data_complete.xlsx’,index_col=0)

#define the labels of the UPDRS- and Smartwatch data

UPDRS_labels =

["right_finger_tap","right_hand_movement","right_pro_supination","right_toe_tap","right_leg_mov

ement","left_finger_tap","left_hand_movement","left_pro_supination","left_toe_tap","left_leg_mo

vement","raise_chair","gait","freezing","postural_reflex","posture","spontaneous_move","right_p

ostural_tremor",

"right_kinetic_tremor","right_rest_tremor_amplitude_arm","right_rest_tremor_amplitude_leg","rig

ht_rest_tremor_constancy","left_postural_tremor",

"left_kinetic_tremor","left_rest_tremor_amplitude_arm","left_rest_tremor_amplitude_leg","left_r

est_tremor_constancy"]

smartwatch_labels =

["mean_tremor","mean_mild","mean_moderate","mean_none","mean_slight","mean_strong","mean_unknow

n","mean_dyskinesia"]

#df.drop means that these columms will be removed so you only have the ones you desire

X = df.drop(UPDRS_labels, axis=1)

y = df.drop(smartwatch_labels,axis=1)

#define the nescerary variables to store data of the RF in

X_train = {}

y_train = {}

X_test = {}

76

TGO group 8 University of Twente

y_test = {}

rf_model = {}

predictions = {}

for a in range(len(UPDRS_labels)): #for each of the UPDRS-labels:

#train is used to train the system, test is to test the system, test_size = 0.2 means that

20% percent of the values wil be used to test the system and 80% to train the system.

X_train[a], X_test[a], y_train[a], y_test[a] = train_test_split(X, y[UPDRS_labels[a]],

test_size=0.2, random_state=None) #train is used the train the system, test is to use the

system, test_size 0.2 says that 20% percent of the values wil be used to test the system

and 80% to train

#create a RF for that UPDRS-score, fit it with the correct data, and make predictions

based from it.

rf_model[a] = RandomForestClassifier(n_estimators=100, max_features="sqrt",

random_state=None) #n_estimators gives the amount of decision trees,max_features deletes

the worst values if it is contradicted

rf_model[a].fit(X_train[a], y_train[a])

predictions[a] = rf_model[a].predict(X_test[a])

#%%

gives the predicitons for the whole tree, through mean y_test, first, define nescesary

variables

accuracy = [None]*len(UPDRS_labels)

accuracy_within_one = [None]*len(UPDRS_labels)

for z in range(len(UPDRS_labels)): #for each UPDRS-label:

#define temporary variables

num_spot_on = 0

num_within_one = 0

total = 0

for b in range(len(y_test[z].index.to_list())): #for each test patient in run z:

if predictions[z][b] == y_test[z][b]: #if the predicted number matches exactly with

the test data:

num_spot_on = num_spot_on + 1

total = total + 1

elif y_test[z][b] - 1 <= predictions[z][b] <= y_test[z][b] + 1: #if the predicted

number is within-one of the test data

77

TGO group 8 University of Twente

num_within_one = num_within_one + 1

total = total + 1

else: #if the predicted number does not match any of the requirements above:

total = total + 1

num_within_one = num_spot_on + num_within_one #add the total of the exact numbers to the

within-one numbers

#calculate the accuracies for run z:

accuracy[z] = num_spot_on/total*100

accuracy_within_one[z] = num_within_one/total*100

#calculate the accuracies over all runs:

accuracy_tot = sum(accuracy) / len(accuracy)

accuracy_within_one_tot = sum(accuracy_within_one) / len(accuracy_within_one)

8.2.12 07_3_algorithm03.py

-*- coding: utf-8 -*-

"""

Created on Fri Jun 9 13:49:50 2023

@author: Stef Berendsen, Loet Schoenmakers en Job Meuwese (B-TG students @ University of

Twente)

Purpose: to create the most optimised RF-algorithm for retrieving UPDRS-scores from smartwatch

data

Makes use of the following libraries:

scikit-learn v: 1.2.2

pandas v: 2.0.1

numpy v: 1.24.3

Also makes use of the following data-set:

data_complete.xlsx

retrievable from the script "06_merge_UPDRS_loadr_data_and_smartwatch_data". This script is

available on the GitHub

"""

#%%Import Libraries

78

TGO group 8 University of Twente

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import RandomizedSearchCV, train_test_split

from sklearn.metrics import precision_score, recall_score

import pandas as pd

import numpy as np

#%% Load in data, filter data in UPDRS and Smartwatch data.

#specify the data_complete .xlsx path within the ’’.

df= pd.read_excel(’F:/Datasets/data_complete.xlsx’,index_col=0)

#define the labels of the UPDRS- and Smartwatch data

UPDRS_labels =

["right_finger_tap","right_hand_movement","right_pro_supination","right_toe_tap","right_leg_mov

ement","left_finger_tap","left_hand_movement","left_pro_supination","left_toe_tap","left_leg_mo

vement","raise_chair","gait","freezing","postural_reflex","posture","spontaneous_move","right_p

ostural_tremor",

"right_kinetic_tremor","right_rest_tremor_amplitude_arm","right_rest_tremor_amplitude_leg","rig

ht_rest_tremor_constancy","left_postural_tremor",

"left_kinetic_tremor","left_rest_tremor_amplitude_arm","left_rest_tremor_amplitude_leg","left_r

est_tremor_constancy"]

smartwatch_labels =

["mean_tremor","mean_mild","mean_moderate","mean_none","mean_slight","mean_strong","mean_unknow

n","mean_dyskinesia"]

#df.drop means that these columms will be removed so you only have the ones you desire

X = df.drop(UPDRS_labels, axis=1) #creates smartwatch-data list

y = df.drop(smartwatch_labels,axis=1) #creates the UPDRS-list

#define the number of RF’s you wish to make in num_of_runs

num_of_runs = 50

#make lists and a dict to store the respective variables in

accuracy = [None]*num_of_runs #the % of predicted points that directly match the test data

("one-on-one accuracy")

accuracy_within_one = [None]*num_of_runs #the % of predicted points that are within one of the

respective test data ("within-one accuracy")

precision = [None]*num_of_runs #average of: tp / (tp + fp) (tp = true positive, fp = false

positive. Dutch: de positieve predictieve waarde)

79

TGO group 8 University of Twente

recall =[None]*num_of_runs #average of: tp / (tp + fn) (tp = true positive, fn = false

negative. Dutch: de sensitiviteit)

rf_model = {}

#%% Runs the RF a number of times equal to num_of_runs

for a in range(num_of_runs):

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=None) #train is used to train the system, test is to test the system,

test_size = 0.2 means that 20% percent of the values wil be used to test the system and

80% to train the system.

param_dict = {’n_estimators’: np.arange(100, 450, 10), # The number of decision trees used

to make a random forest. varies between 100 and 450 with increments of 10

’max_depth’: np.array([1,25,30,35,50,55,60,65,70,75,80,85]), #the most

branches the decision tree will go down before finishing. See the numbers in

the list.

"bootstrap": [True, False], #If bootstrap = true, use random samples from

train set to train individual decision trees. If bootstrap = false, use all

samples instead.

’min_samples_leaf’: [1,2,3,4,5], #the minimum number of samples needed to

cause a node to be a leaf nnode (the last one on that line)

’min_samples_split’: [15, 18, 20, 21, 22, 23, 24, 25, 30], #the minimum

number of samples needed to create a split in the decision tree

"warm_start": [True,False]} #if warm_start = True, it reuses the previous

call to add more samples to the RF. If warm_start = False, create a new RF

instead.

Create a random forest classifier

rf = RandomForestClassifier()

Use random search to find the best hyperparameters in the param_dict variable. choose

n_iter number of variables randomly and use a 5-fold cross-validation (cv = 5) to check

this data.

#For users: n_jobs = -1 makes it so that all CPU cores are used for the RF-algorithm (this

makes for the fastest computing times possible, but also slows down other programs a lot).

if you want a slower RF, but one that does not slow down your PC as much, use n_jobs = 1

or a smaller, whole number than -1 instead.

rf_model[a] = RandomizedSearchCV(rf, param_distributions = param_dict, n_iter=25, cv=5,

n_jobs=-1)

80

TGO group 8 University of Twente

Fit the parameters of the random search to the training data

rf_model[a].fit(X_train, y_train)

gives the predicitons for the whole tree, through mean y_test

y_pred = rf_model[a].predict(X_test)

#prepare labels to make calculating the accuracy easier.

index_predictions = y_test.index

index_predictions2 = y_test.index.to_list()

predictions = pd.DataFrame(y_pred, columns=UPDRS_labels)

predictions = predictions.set_index(index_predictions)

#prepare variables to keep track of the number of exact measures and of the measures

within-one

num_spot_on = 0

num_within_one = 0

total = 0

for c in index_predictions2: #for each patient in the test data:

for d in UPDRS_labels: #for each UPDRS-label

if predictions.at[c,d] == y_test.at[c,d]: #if the predicted data is an exact match

with the test data on the same location:

num_spot_on = num_spot_on + 1

total = total + 1

elif y_test.at[c,d] - 1 <= predictions.at[c,d] <= y_test.at[c,d] + 1: #if the

predicted data is within one of the test data on the same location:

num_within_one = num_within_one + 1

total = total + 1

else: #if the data deviates more than one:

total = total + 1

num_within_one = num_spot_on + num_within_one #add the number of exact matches to the

within-one data

accuracy[a] = num_spot_on/total*100 #calculate the accuracy (one-on-one) of that run

accuracy_within_one[a] = num_within_one/total*100 #calculate the accuracy (within-one) of

that run

#calculate the precision and recall values of the algorithm.

81

TGO group 8 University of Twente

pris_temp = rec_temp = [None]*len(index_predictions2)

for b in range(len(index_predictions2)): #for each patient

pris_temp[b] =

precision_score(y_test.loc[index_predictions2[b]].reset_index(drop=True).to_list(),

predictions.loc[index_predictions2[b]].reset_index(drop=True).to_list(),

average=’macro’, zero_division=1)

rec_temp[b] =

recall_score(y_test.loc[index_predictions2[b]].reset_index(drop=True).to_list(),

predictions.loc[index_predictions2[b]].reset_index(drop=True).to_list(),

average=’macro’, zero_division=1)

precision[a] = sum(pris_temp)/len(pris_temp)

recall[a] = sum(rec_temp)/len(rec_temp)

#propbabilitys=rf_model.predict_proba(X_test) #for each field of columm gives the

probabilitys of y_values if it is 1,2,3,4

#importances=rf_model.feature_importances_ #how important the columms in X_test are in

predicting results

#give the average accuracies over the number of RF’s

accuracy_avg = sum(accuracy)/len(accuracy)

accuracy_within_one_avg = sum(accuracy_within_one)/len(accuracy_within_one)

8.2.13 08_Analyse_complete_data_tabel

-*- coding: utf-8 -*-

"""

Created on Thu Jun 1 11:44:12 2023

@author: Loet Schoenmakers, Stef Berendsen en Job Meuwese

"""

import pandas as pd

import matplotlib.pyplot as plt

import math

from scipy import stats

df = pd.read_excel(’G:/data/data_complete.xlsx’,index_col=0) #output of 06 on github is input

for these analyses

#%% input visit

patient_number=’03’#two digits thus 08 for example

patient_visit=’2’ #single digit for visit 5 ’5_x’

pt_visit = ’pt’+patient_number+’_visit’+patient_visit

82

TGO group 8 University of Twente

#%% input comparison

patient_ctrl_number=’xx’#two digits thus 08 for example

patient_ctrl_visit=’x’ #single digit for visit 5 ’5_x’

pt__crtl_visit = ’pt’+patient_ctrl_number+’_visit’+patient_ctrl_visit

#%% visit UPDRS related sums up each test to a certain category

int_row = df[df.index == pt_visit] #row (pt) of interest

v_brady_right=sum(int_row[’right_finger_tap’]+int_row[’right_hand_movement’]+int_row[’right_pro

_supination’]+int_row[’right_toe_tap’]+int_row[’right_leg_movement’])

v_brady_left=sum(int_row[’left_finger_tap’]+int_row[’left_hand_movement’]+int_row[’left_pro_sup

ination’]+int_row[’left_toe_tap’]+int_row[’left_leg_movement’])

v_trem_right=sum(int_row[’right_postural_tremor’]+int_row[’right_kinetic_tremor’]+int_row[’righ

t_rest_tremor_amplitude_arm’]+int_row[’right_rest_tremor_amplitude_leg’]+int_row[’right_rest_tr

emor_constancy’])

v_trem_left=sum(int_row[’left_postural_tremor’]+int_row[’left_kinetic_tremor’]+int_row[’left_re

st_tremor_amplitude_arm’]+int_row[’left_rest_tremor_amplitude_leg’]+int_row[’left_rest_tremor_c

onstancy’])

v_gait_balance=sum(int_row[’raise_chair’]+int_row[’gait’]+int_row[’freezing’]+int_row[’postural

_reflex’]+int_row[’posture’]+int_row[’spontaneous_move’])

#%% visit smartwatch related

v_mean_tremor=sum(int_row[’mean_tremor’])

v_mean_mild=sum(int_row[’mean_mild’])

v_mean_moderate=sum(int_row[’mean_moderate’])

v_mean_none=sum(int_row[’mean_none’])

v_mean_slight=sum(int_row[’mean_slight’])

v_mean_strong=sum(int_row[’mean_strong’])

v_mean_unknown=sum(int_row[’mean_unknown’])

v_mean_dyskinesia=sum(int_row[’mean_dyskinesia’])

#%% comparison UPDRS related

int_row_c = df[df.index == pt__crtl_visit] #row (pt) of interest

c_brady_right=sum(int_row_c[’right_finger_tap’]+int_row_c[’right_hand_movement’]+int_row_c[’rig

ht_pro_supination’]+int_row_c[’right_toe_tap’]+int_row_c[’right_leg_movement’])

83

TGO group 8 University of Twente

c_brady_left=sum(int_row_c[’left_finger_tap’]+int_row_c[’left_hand_movement’]+int_row_c[’left_p

ro_supination’]+int_row_c[’left_toe_tap’]+int_row_c[’left_leg_movement’])

c_trem_right=sum(int_row_c[’right_postural_tremor’]+int_row_c[’right_kinetic_tremor’]+int_row_c

[’right_rest_tremor_amplitude_arm’]+int_row_c[’right_rest_tremor_amplitude_leg’]+int_row_c[’rig

ht_rest_tremor_constancy’])

c_trem_left=sum(int_row_c[’left_postural_tremor’]+int_row_c[’left_kinetic_tremor’]+int_row_c[’l

eft_rest_tremor_amplitude_arm’]+int_row_c[’left_rest_tremor_amplitude_leg’]+int_row_c[’left_res

t_tremor_constancy’])

c_gait_balance=sum(int_row_c[’raise_chair’]+int_row_c[’gait’]+int_row_c[’freezing’]+int_row_c[’

postural_reflex’]+int_row_c[’posture’]+int_row_c[’spontaneous_move’])

#%% comparisom smartwatch related

c_mean_tremor=sum(int_row_c[’mean_tremor’])

c_mean_mild=sum(int_row_c[’mean_mild’])

c_mean_moderate=sum(int_row_c[’mean_moderate’])

c_mean_none=sum(int_row_c[’mean_none’])

c_mean_slight=sum(int_row_c[’mean_slight’])

c_mean_strong=sum(int_row_c[’mean_strong’])

c_mean_unknown=sum(int_row_c[’mean_unknown’])

c_mean_dyskinesia=sum(int_row_c[’mean_dyskinesia’])

#%% availability check

check=[v_trem_right,c_trem_right,v_mean_tremor,c_mean_tremor] # checks availability of most

important value for each UPDRS-visit or smartwatchdata

for x in check:

check_trem=math.isnan(x)

if check_trem == False:

print(’available’)

if check_trem == True:

check_trem=str(check_trem)

print(’is not available’)

#%% creates storage for input plots

n = 38

84

TGO group 8 University of Twente

len_plot = []

for i in range(0, n+1):

len_plot.append(i)

data_plot = len_plot #maak een list die 10 lang is

#%% fills in plotted info

data_plot[0]= v_trem_right

data_plot[1]= v_trem_left

data_plot[2]= v_brady_right

data_plot[3]= v_brady_left

data_plot[4]= v_gait_balance

data_plot[5]= c_trem_right

data_plot[6]= c_trem_left

data_plot[7]= c_brady_right

data_plot[8]= c_brady_left

data_plot[9]= c_gait_balance

data_plot[10]= v_mean_tremor

data_plot[11]= v_mean_mild

data_plot[12]= v_mean_moderate

data_plot[13]= v_mean_none

data_plot[14]= v_mean_slight

data_plot[15]= v_mean_strong

data_plot[16]= v_mean_unknown

data_plot[17]= v_mean_dyskinesia

data_plot[18]=c_mean_tremor

data_plot[19]=c_mean_mild

data_plot[20]=c_mean_moderate

data_plot[21]=c_mean_none

data_plot[22]=c_mean_slight

data_plot[23]=c_mean_strong

data_plot[24]=c_mean_unknown

data_plot[25]=c_mean_dyskinesia

#%%

data_plot[26]= c_trem_right-v_trem_right

85

TGO group 8 University of Twente

data_plot[27]= c_trem_left - v_trem_left

data_plot[28]= c_brady_right - v_brady_right

data_plot[29]= c_brady_left - v_brady_left

data_plot[30]= c_gait_balance - v_gait_balance

data_plot[31]=c_mean_tremor - v_mean_tremor

data_plot[32]=c_mean_mild - v_mean_mild

data_plot[33]=c_mean_moderate - v_mean_moderate

data_plot[34]=c_mean_none - v_mean_none

data_plot[35]=c_mean_slight - v_mean_slight

data_plot[36]=c_mean_strong - v_mean_strong

data_plot[37]=c_mean_unknown - v_mean_unknown

data_plot[38]=c_mean_dyskinesia - v_mean_dyskinesia

Xlabel = ["v_trem_right","v_trem_left","v_brady_right","v_brady_left","v_gait_balance",

"c_trem_right","c_trem_left","c_brady_right","c_brady_left","c_gait_balance",

"""v_mean_

tremor""","""v_mean_

mild""","""v_mean_

moderate""","""v_mean_

none""",

"""v_mean_

slight""","""v_mean_

strong""","""v_mean_

unknown""","""v_mean_

dyskinesia""",

"""c_mean_

tremor""","""c_mean_

mild""","""c_mean_

moderate""","""c_mean_

none""","""c_mean_

slight""","""c_mean_

strong""","""c_mean_

unknown""","""c_mean_

dyskinesia""",

’dif_trem_right’,’dif_trem_left’,’dif_brady_right’,’dif_brady_left’,’dif_gait_balance

’,

"""dif_mean_

86

TGO group 8 University of Twente

tremor""","""dif_mean_

mild""","""dif_mean_

moderate""","""dif_mean_

none""",

"""dif_mean_

slight""","""dif_mean_

strong""","""dif_mean_

unknown""","""dif_mean_

dyskinesia"""

]

#%% plotting the values

fig, ((ax1,ax2),(ax3,ax4),(ax5,ax6))=plt.subplots(3, 2,figsize=[24,16])

ax1.bar(Xlabel[0], data_plot[0], color = ’#104E8B’)

ax1.bar(Xlabel[1], data_plot[1], color = ’#1E90FF’)

ax1.bar(Xlabel[2], data_plot[2], color = ’#104E8B’)

ax1.bar(Xlabel[3], data_plot[3], color = ’#1E90FF’)

ax1.bar(Xlabel[4], data_plot[4], color = ’#104E8B’)

ax3.bar(Xlabel[5], data_plot[5], color = ’#104E8B’)

ax3.bar(Xlabel[6], data_plot[6], color = ’#1E90FF’)

ax3.bar(Xlabel[7], data_plot[7], color = ’#104E8B’)

ax3.bar(Xlabel[8], data_plot[8], color = ’#1E90FF’)

ax3.bar(Xlabel[9], data_plot[9], color = ’#104E8B’)

ax2.bar(Xlabel[10], data_plot[10], color = ’#104E8B’)

ax2.bar(Xlabel[11], data_plot[11], color = ’#1E90FF’)

ax2.bar(Xlabel[12], data_plot[12], color = ’#104E8B’)

ax2.bar(Xlabel[13], data_plot[13], color = ’#1E90FF’)

ax2.bar(Xlabel[14], data_plot[14], color = ’#104E8B’)

ax2.bar(Xlabel[15], data_plot[15], color = ’#1E90FF’)

ax2.bar(Xlabel[16], data_plot[16], color = ’#104E8B’)

ax2.bar(Xlabel[17], data_plot[17], color = ’#1E90FF’)

ax4.bar(Xlabel[18], data_plot[18], color = ’#104E8B’)

ax4.bar(Xlabel[19], data_plot[19], color = ’#1E90FF’)

ax4.bar(Xlabel[20], data_plot[20], color = ’#104E8B’)

ax4.bar(Xlabel[21], data_plot[21], color = ’#1E90FF’)

ax4.bar(Xlabel[22], data_plot[22], color = ’#104E8B’)

87

TGO group 8 University of Twente

ax4.bar(Xlabel[23], data_plot[23], color = ’#1E90FF’)

ax4.bar(Xlabel[24], data_plot[24], color = ’#104E8B’)

ax4.bar(Xlabel[25], data_plot[25], color = ’#1E90FF’)

ax5.bar(Xlabel[26], data_plot[26], color = ’#104E8B’)

ax5.bar(Xlabel[27], data_plot[27], color = ’#1E90FF’)

ax5.bar(Xlabel[28], data_plot[28], color = ’#104E8B’)

ax5.bar(Xlabel[29], data_plot[29], color = ’#1E90FF’)

ax5.bar(Xlabel[30], data_plot[30], color = ’#104E8B’)

ax6.bar(Xlabel[31], data_plot[31], color = ’#104E8B’)

ax6.bar(Xlabel[32], data_plot[32], color = ’#1E90FF’)

ax6.bar(Xlabel[33], data_plot[33], color = ’#104E8B’)

ax6.bar(Xlabel[34], data_plot[34], color = ’#1E90FF’)

ax6.bar(Xlabel[35], data_plot[35], color = ’#104E8B’)

ax6.bar(Xlabel[36], data_plot[36], color = ’#1E90FF’)

ax6.bar(Xlabel[37], data_plot[37], color = ’#104E8B’)

ax6.bar(Xlabel[38], data_plot[38], color = ’#1E90FF’)

if anonymous

#patient_number= ’xx’

#patient_ctrl_number= ’xx’

#voeg labels toe aan de grafiek en

ax1.set(xlabel=’Visit ’+patient_visit+’ MDS-UPDRS’, ylabel=’MDS-UPDRS-score for subgroeps’)

ax1.set_title("Patient "+patient_number+" MDS-UPDRS-scores during visit "+patient_visit,

fontweight = "bold", fontsize = 15)

ax2.set(ylabel=’probability’)

ax2.set_title("Patient "+patient_number+" smartwatch data during visit "+patient_visit,

fontweight = "bold", fontsize = 15)

ax3.set(xlabel=’Visit ’+patient_ctrl_visit+’ MDS-UPDRS’, ylabel=’MDS-UPDRS-score for

subgroeps’)

ax3.set_title("Patient "+patient_ctrl_number+" MDS-UPDRS-scores during visit

"+patient_ctrl_visit, fontweight = "bold", fontsize = 15)

ax4.set(ylabel=’probability’)

ax4.set_title("Patient "+patient_ctrl_number+" smartwatch data during visit

88

TGO group 8 University of Twente

"+patient_ctrl_visit, fontweight = "bold", fontsize = 15)

ax5.set(xlabel=’difference MDS-UPDRS’, ylabel=’MDS-UPDRS-score for subgroeps’)

ax5.set_title("Difference MDS-UPDRS patient "+patient_ctrl_number+’ visit ’

+patient_ctrl_visit +’ compared to patient ’+patient_number + ’ visit ’+ patient_visit,

fontweight = "bold", fontsize = 15)

ax6.set(ylabel=’probability’)

ax6.set_title("Difference smartwatch data patient "+patient_ctrl_number+’ visit ’

+patient_ctrl_visit +’ compared to patient ’+patient_number + ’ visit ’+ patient_visit,

fontweight = "bold", fontsize = 15)

#plt.legend(fontsize = 8)

plt.show()

#%% statistical test between two visits of the same category

rvs1 = (c_trem_right,c_trem_left,c_brady_right,c_brady_left,c_gait_balance)

rvs2 = (v_trem_right,v_trem_left,v_brady_right,v_brady_left,v_gait_balance)

ttest_updrs = stats.ttest_rel(rvs1, rvs2,alternative=’less’) #considering it is expected that

the second visit ’comparinson’ has a lower UPDRS due to the effectivness of the treatment

rvs3= (c_mean_tremor,c_mean_mild,c_mean_moderate,c_mean_none,c_mean_slight,

c_mean_strong,c_mean_unknown,c_mean_dyskinesia)

rvs4= (v_mean_tremor,v_mean_mild,v_mean_moderate,v_mean_none,v_mean_slight,

v_mean_strong,v_mean_unknown,v_mean_dyskinesia)

ttest_watch= stats.ttest_rel(rvs3, rvs4,alternative=’less’) #considering it is expected that

the second visit ’comparinson’ has a lower UPDRS due to the effectivness of the treatment

#%% statistical test between two visits of different categories

temp1 = sum(rvs1)

rvs1mean=temp1/ len(rvs1)

temp2=sum(rvs2)

rvs2mean=temp2 / len(rvs2)

temp3=sum(rvs3)

rvs3mean=temp3 / len(rvs3)

temp4=sum(rvs4)

89

TGO group 8 University of Twente

rvs4mean=temp4 / len(rvs4)

rvs5=(rvs1mean,rvs2mean)

rvs6=(rvs3mean,rvs4mean)

pearsonr_difference = stats.spearmanr(rvs5,rvs6)

8.2.14 09_graphics_10minutes

-*- coding: utf-8 -*-

"""

Created on Tue Jun 13 11:19:15 2023

@author: loet-

"""

-*- coding: utf-8 -*-

"""

Created on Tue Jun 6 09:46:49 2023

@author: loet-

"""

import io

import os

import datetime as dt

from datetime import datetime as dtt

import pandas as pd

import matplotlib.pyplot as plt

from runeq import Config, stream

from scipy import stats

import numpy as np

BASE_PATH=’G:/Datasets/overview/pt’

pt_number=’10’

merged=’_merged_all.xlsx’

df= pd.read_excel(BASE_PATH+pt_number+merged)

#%%

df=df.drop(["Unnamed: 0","Unnamed: 0.1"],axis=1)

90

TGO group 8 University of Twente

#%%

df[’time’] = pd.to_datetime(df[’time’], unit=’s’)

#%%

hour = pd.to_datetime(df[’time’]).dt.hour

minute = pd.to_datetime(df[’time’]).dt.minute

#%%

time_window=input("select time_window(y/n):")

rest_time =’ 00:00:00’

if time_window==’y’:

start_time = input("pattern; %d/%m/%Y example;29/11/2022:")

start_time= dtt.strptime(start_time+rest_time,’%d/%m/%Y %H:%M:%S’)

end_time = input("pattern; %d/%m/%Y example;30/12/2022:")

end_time= dtt.strptime(end_time+rest_time,’%d/%m/%Y %H:%M:%S’)

#end_time = input("pattern; %d.%m.%Y (example;’29.11.2022’):")

#print (epoch)

df = df[(df[’time’] > start_time) & (df[’time’] < end_time)]

elif time_window == "n":

print(’time_window equals whole period’)

else:

raise ValueError("choose one of the two options")

#%%

n = 23

dict={}

minutes = np.arange(0,61,10)

for i in range(0, n+1):

for m in range(len(minutes)-1):

time_mask = hour.eq(i) & minute.between(minutes[m],minutes[m+1]-1)

dict[i,m]=df.loc[time_mask]

#%%

o=5

for i in range(0, n+1):

for o in range (0, o+1):

dict[i,o]=dict[i,o].drop(["mild","moder

ate","strong","slight","none","unknown"],axis=1)

#%%

nn=143

availability = []

91

TGO group 8 University of Twente

for i in range(0, nn+1):

availability.append(i)

#%%

a=0

dik={}

for i in range(0, n+1):

for o in range(0, o+1):

dik[i,o]=dict[i,o].shape

availability[a]=dik[i,o][0]

a = a+1

#%%

b = 0

dun={}

for i in range(0, n+1):

for o in range(0, o+1):

dun[b]=dict[i,o]

b = b+1

#%%

for i in range(0, nn+1):

dun[i]=np.mean(dun[i])

#%%

len_plot = []

for i in range(0,nn+1):

len_plot.append(i)

data_plot = len_plot

data_plot=[x/6 for x in data_plot]

#%%

my_list= []

for i in dun.values():

my_list.append(i)

#%%

t = []

d = []

for i in range (0, nn+1):

t.append(i)

d.append(i)

t[i]=my_list[i]["probability_tremor"]

d[i]=my_list[i]["probability_dyskinesia"]

92

TGO group 8 University of Twente

global total

total=t[i].__array__

print(total)

#gh=t[i].append([])

#%%

cumsum_vec =

np.cumsum(np.insert(availability, 0, 0))

window_width=6

ma_vec = (cumsum_vec[window_width:] -

cumsum_vec[:-window_width]) / window_width

xpoints=data_plot

xpoints2=data_plot[0:len(ma_vec)]

ypoints=t

y2points=d

fig, (ax1,ax2)=plt.subplots(2,1, figsize=[16,12])

#voeg labels toe aan de grafiek en

ax1.set(xlabel=’Time:hour’,

ylabel=’Mean probability per 10 minutes’)

ax1.set_title("Tremor & dyskinesia

probability for each 10 minutes",

fontweight = "bold", fontsize = 15)

ax1.set_xticks(np.arange(min(data_plot)

,max(data_plot),step=1.0))

ax1.plot(xpoints, ypoints)

ax1.plot(xpoints, y2points)

ax1.legend([’Tremor’,’Dyskinesia’],font

size = 15)

ax2.set_xticks(np.arange(min(data_plot)

,max(data_plot),step=1.0))

ax2.set(xlabel=’Time:hour’, ylabel=’Data availability’)

ax2.set_title("Data availability per

10 minutes", fontweight = "bold",

93

TGO group 8 University of Twente

fontsize = 15)

ax2.plot(xpoints2, ma_vec)

ax2.plot(xpoints, availability)

plt.show()

94

