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Abstract- Generalized Periodic Discharges (GPDs) occur in 20% of postanoxic comatose patients.
The underlying pathophysiology of GPDs is far from understood. In a previous study, a cortical
meanfield model has been used to explain the pathophysiology of GPDs. In another study, source
reconstruction revealed that GPDs originate in subcortical structures, mainly the thalamus.
However in both cases, no distinction was made between GPDs on a continuous background and
GPDs on a suppressed background. GPDs on a continuous background are associated with a good
outcome, whilst GPDs on a suppressed background are associated with a poor outcome. Why this
difference in outcome occurs remains unclear. In this study, we used source reconstruction, and
parameter estimation on a corticothalamic meanfield model to investigate whether a difference in
anatomical source and / or pathophysiological mechanisms could explain the difference in outcome
between the two types of GPDs, and in the process elucidate the underlying pathophysiology of
GPDs.

From an existing dataset of continuous electroencephalograms (EEGs) of 47 patients with
GPDs, we identified 26 patients with GPDs on a continuous background and 19 patients with
GPDs on a suppressed background. We also included 50 EEGs from healthy controls for the
estimation of reference values for the parameters of the corticothalamic meanfield model.

Source reconstruction results revealed that the anatomical source of both types of GPDs was
located predominantly in the subcortical regions. We found no significant difference between
the two types of GPDs. Parameter estimation revealed significant differences in the cortical and
corticothalamic loop variables between both GPD groups and healthy controls. Both GPD groups
exhibited significantly lower cortical loop values and predominantly negative corticothalamic loop
values compared to mostly positive values in healthy controls. The corticothalamic delay was
also significantly higher in the GPD groups. There were no significant differences between the
two types of GPDs, except for the decay rate.

We concluded that the difference in prognosis between the two types of GPDs could not be
explained by a difference in anatomical source or pathophysiological variables of the corticothalamic
meanfield model, despite the significant difference in decay rate. We hypothesize that the
difference in prognosis could be attributed to the continuous background, yet further research is
needed. Next, our results indicate that both the cortical and corticothalamic loop are involved in
the spread or generation of GPDs. In both cases the strength of the inhibitory neurons increased
relative to the strength of the excitatory neurons.

Index Terms- Generalized Periodic Discharges, Postanoxic Encephalopathy, Source Reconstruction,
Parameter Estimation, Electroencephalography

1. Introduction

Coma as a result of postanoxic encephalopathy occurs in 75% of all survivors of out-of-hospital cardiac
arrest. The mortality rate in these patients is 50%, making postanoxic encephalopathy the most important
cause of death in the hospital [1]. Electroencephalography (EEG) is used for the prognosis of the neurological
outcome in these comatose patients [2]. Specific EEG patterns are associated with a poor prognosis that are
indicative of severe brain damage, and the patient is likely not to survive or will be severely disabled. Some
examples of these patterns are burst suppression, generalized suppression, and generalized periodic discharges
(GPDs) on a suppressed background [3, 4, 5].

Generalized periodic discharges are defined in the latest guideline on standardized EEG terminology by the
American Clinical Neurophysiology Society [6] as: ”any bilaterally synchronous and symmetric repetition of
a waveform with relatively uniform morphology and duration with a clearly discernible interdischarge interval
between consecutive waveforms and recurrence of the waveform at nearly regular intervals.” These waveforms
are characterized by a duration of 0.5 s or less or limited to 3 phases. Although there is a clear definition of what
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can be considered as a GPD, there is still little understanding as to where in the brain these GPDs originate or
what the underlying pathophysiology is.

An explanation of the underlying pathophysiology has been proposed in [7]. They used a meanfield model
of the cortex and suggested that GPDs are generated due to a disruption of the balance between the excitatory
and inhibitory inputs of pyramid cells, resulting in a disinhibition of excitatory pyramid cells. This disruption
is caused by anoxia due to cardiac arrest, creating metabolic derangements that, in turn, disrupt synaptic
transmissions. Synaptic transmissions of excitatory pyramidal cells and inhibitory interneurons are especially
affected due to their relative sensitivity to hypoxia. Their choice of a cortical meanfield model was based on the
assumption that GPDs originate in the cortex. A later paper discovered, using EEG source reconstruction, that
the thalamus, hippocampus, and amygdala are likely the source from which GPDs originate [3]. This result
motivates to investigate the underlying pathophysiology of GPDs using a corticothalamic meanfield model.

Both research studies [3, 7] do not differentiate between GPDs on a suppressed or continuous background.
However, a paper by Ruijter et al. [5] showed that there is a difference in recovery from postanoxic encephalopathy
between patients with GPDs on a continuous background and patients with GPDs on a suppressed background.
In this study, none of the patients who developed GPDs on a suppressed background (38% of the study
population) survived. However, all patients who recovered with a Cerebral Performance Category (CPC) of
1-2, considered a complete recovery or recovery with mild cerebral dysfunction, had a continuous background
prior to the occurrence of GPDs (10% of the study population). They concluded that GPDs on a suppressed
background are associated with a poor outcome (CPC 3-5), which corresponds to severe cerebral dysfunction,
vegetative state, or death, and patients who experience GPDs on a continuous background have a greater
chance of a good outcome (CPC 1-2). The difference in outcome between patients with GPDs on a suppressed
background and patients with GPDs on a continuous background could suggest a difference in the underlying
pathophysiology and / or in the anatomical source of both types of GPDs.

In this paper, we investigated the anatomical source and underlying pathophysiology of GPDs on a suppressed
background and of GPDs on a continuous background, by means of EEG source reconstruction, and parameter
estimation on a corticothalamic meanfield model. Based on previous research, we hypothesized that for both
types of GPDs the anatomical source lies in the subcortical regions: around the thalamus, hippocampus, and
amygdala. Our objective was to identify whether the difference in prognosis between the two types of GPD
could be explained by a difference in anatomical source and / or pathophysiological mechanisms, and in the
process, elucidate the underlying pathophysiology of GPDs.

2. Background

In this section, we describe the pathophysiology of postanoxic encephalopathy. Additionally, we provide
a more detailed description of the methods used in this thesis. This includes explaining the mathematical
principles underlying source reconstruction and parameter estimation, as well as providing a substantiation for
our choice of inverse solution.

2.1. Postanoxic Encephalopathy

Postanoxic encephalopathy refers to an altered brain function and / or structure (encephalopathy) due to
a lack of oxygen (anoxia) [8]. In our case, cardiac arrest causes the anoxia and encephalopathy is presented
as a comatose state. After resuscitation, the eventual outcome of comatose patients (or the extent of their
encephalopathy) is characterized by the transition from reversible to irreversible brain damage. This transition
occurs in minutes, hours or days depending on the level of the remaining blood flow, duration of the ischaemia,
and the extent of reperfusion [9]. The paragraphs below describe this transition in more detail and are primarily
based on the research conducted in [9] supported by additional sources.

The brain contributes only 2% to the total body weight, yet it is responsible for 20% of the total body
oxygen consumption and 25% of the total body glucose utilization [10]. This high metabolism, in combination
with the lack of any glucose reserves, makes it highly susceptible to any blood flow interruption. Insufficient
blood flow (ischaemia) and oxygen delivery (hypoxia) results in loss of neuronal function within 60 seconds [11].
On this time scale, loss of neuronal function is reversible, however if the ischaemia persists for merely minutes,
the brain could be irreversibly damaged [12].

In the first minute of ischaemia, synaptic activity disappears as a result of synaptic failure [13]. Lack of
oxygen and steady depletion of glucose levels starts to impair the release of presynaptic neurotransmitters [14].
In turn, this inhibits propagation of action potentials between neurons. A persistence of synaptic failure leads,
after a few minutes, to massive cortical synaptic failure which is reflected in a suppressed EEG pattern. If
the suppressed EEG pattern persists over 6-24 hours it is associated with transitions towards permanent brain
damage [15].

Depending on the remaining perfusion levels, within minutes to a few hours, cerebral glucose and ATP stores
are depleted [10]. This results in the dysfunction of ATP-depended ion pumps, especially sodium-potassium
pumps. The dysfunction of the pumps leads to the loss of ion gradients across the plasma membrane, which
causes the inability to generate action potentials [10]. Furthermore, the loss of ion gradients causes a net flow of
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ions to the intracellular space. This increase in osmolality causing an inflow of water leading to cell swelling [16].
In the early stages, this can be reversed by reperfusion. In the absence of reperfusion, necrotic cell death will
occur.

ATP-dependent calcium channels also start to dysfunction due to lack of cerebral glucose, causing an influx
of calcium into the intracellular space [10]. In a time span of up to 72 hours, the increase of calcium levels in
the intracellular space leads to the release of cytochrome C and mediates the release of glutamate, both cause
a cascade leading towards apoptosis [17, 18].

Even the reperfusion may cause additional brain damage. Reperfusion is often unevenly distributed due to
vasospasms, increased blood viscosity and platelett aggregation causing local hypoperfusion [19]. Furthermore,
it causes an inflamma-
tory response and microvascular damage, and radical and reactive oxygen species present may cause lipid and
protein degradation [10].

Based on the paragraphs above, the transition from reversible to irreversible damage lies between hours to
days. The longer it takes for reperfusion to occur, the greater the chance of irreversible brain damage. The
largest opportunity to reverse the damage is in the first few hours.

2.2. Source Reconstruction

Source reconstruction is a technique ”to model and estimate the spatiotemporal dynamics of neuronal
currents throughout the brain that generate the electric potentials and magnetic fields measured with noninvasive
or invasive electromagnetic recording technologies [20].” Source reconstruction has three parts: a forward
solution which includes the anatomical information, the functional data, and the inverse solution (figure 1).

Figure 1: Schematic diagram of source reconstruction [21].

The forward solution determines how much a given electrical source in the brain will influence the potential
on each electrode on the scalp [22]. The impact of all electrical sources on each electrode in the scalp is captured
in a leadfield matrix. To create a leadfield matrix you need: a description of the geometrical and conductivity
properties of the head (a headmodel), a set of electrical point sources spread out in a source space (a source
model), and the positions of the scalp electrodes [20, 22].

The inverse solution uses the leadfield matrix and EEG data to give an approximation of the source location
of the electrical potentials measured with the EEG [20]. In this thesis we chose eLORETA (exact low resolution
brain electromagnetic tomography) for the inverse solution. A justification of this choice is provided later in
this section. eLORETA is an inverse solution which provides exact, zero error localization in the presence of
measurement and biological noise (mathematical proof is presented in [23]) and uses depth weighting to focus
on deep sources in the brain [23, 24]. It translates mathematically to

ĵi = W−1
i KT

i (KW−1KT + αH)+Φ (1)

in which: ĵ is the current density at voxel i (in Am2), W is the weight matrix, K the leadfield matrix, Φ the
EEG data, α the regularization parameter, H the average reference operator, and + denotes a Moore-Penrose
inverse. α factors in EEG noise and enforces a level of smoothness [22]. H makes sure that any inverse solution
will not depend on the reference electrode [23]. Simplified, the current density is obtained by a multiplication of
the leadfields and the EEG data, in which the current density over all voxels reveals the source activity. Peaks
in the source activity reveal the source location(s).
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2.2.1. Choice for eLORETA

There are many ways to calculate the inverse solution [25]. The choice of eLORETA was based on a
few assumptions. First, it was assumed that GPDs could have multiple sources. This eliminates the use of
dipole fitting and beamformers, because they are mainly used to localise one source. Second, the source was
expected to be present in the subcortical structures. Third, we decided to use the Fieldtrip toolbox due to its
MATLAB compatibility and extensive amount of tutorials [21]. The first assumption limits the inverse solutions
to those based on minimum norm estimation. The second assumption brings us to the LORETA (low resolution
brain electromagnetic tomography) or LAURA (local auto-regressive average) inverse solution. Both of these
methods outperformed other methods in depth resolution [26, 27, 28]. However, due to the third assumption we
could not use LAURA or LORETA. FieldTrip does however include eLORETA and sLORETA (standardized
low resolution brain electromagnetic tomography). Both inverse solutions are also capable of detecting deep
sources, with eLORETA outperforming sLORETA in depth resolution [24, 28].

2.2.2. Sensitivity

The feasibility of detecting subcortical signals with EEG is up for debate [29]. It is therefore a valid concern
whether the sensitivity of source reconstruction is adequate enough to detect subcortical sources based on these
signals. In this section, we want to address this concern by providing literary proof that source reconstruction
is sensitive enough to resolve subcortical sources.

Strong evidence that subcortical signals can be sensed by a scalp EEG, and therefore can be used to
reconstruct subcortical activity, is provided in [29]. They measured high-density scalp EEG simultaneously
with intracranial electrodes in the central medial thalamus and nucleus accumbens in DBS-patients. During the
measurements, the patients were in rest with their eyes closed. They found a significant correlation between
the alpha envelopes derived from intracranial electrodes and EEG source reconstructed signals. For the source
reconstruction they used a Locally Spherical Model with Anatomical Constraints (LSMAC) as a headmodel
and LAURA for the inverse solution. The highest correlation was found for source signals in close proximity to
the actual recording sites, given by the DBS electrode locations. This provides direct evidence that scalp EEG
can sense subcortical signals and that these signals are contributed to the correct source. Other studies support
the claim that subcortical signals can be correctly reconstructed by means of source reconstruction [30, 31].

In [29] they used high-density EEG to prove that subcortical sources can be reconstructed correctly. Our
data consists of low-density EEG recordings. However, previous studies have shown that in cases of high signal
to noise ratio (SNR), such as GPDs, low-density electrical source imaging is reliable enough to localise these
sources [32, 33]. Furthermore, previous studies have shown that our intended method for source reconstruction,
with low-density EEG recordings, can correctly identify subcortical sources [33, 34, 35].

2.3. Parameter Estimation

Parameter estimation is a method for determining the values of the parameters of a model based on
measured data. In this thesis, we employed a corticothalamic meanfield model to investigate the underlying
pathophysiology of GPDs. This model represents the corticothalamic system in which the parameters correspond
to physiological variables in this system. We explored the parameter space of this model with the use of the
Metropolis-Hastings algorithm to find the best parameter fit that explains the onset of GPDs. Both the
model and the use of Metropolis-Hastings for parameter estimation are based on papers by Abeysuriya and
Robinson [36, 37]. We will provide a detailed explanation of both in subsequent sections.

2.3.1. Corticothalamic meanfield model

The corticothalamic meanfield model consists of four neural populations, excitatory(e) and inhibitory (i)
cortical neurons, thalamic relay neurons (s), thalamic reticular neurons (r) and an external sensory input(n),
making up the corticothalamic system (figure 2).

Six equations form the mathematical corner stone of this model. These six equations describe the interdepen-
dent connections and dynamics of the four neural populations. The first equation is a sigmoid function, S, which
relates the mean firing rate Qa, of population a with spatial vector r and temporal vector t, to the corresponding
mean soma potential Va relative to resting

Qa(r, t) = S(Va(r, t)) =
Qmax

1 + exp[−(Va(r, t)− θ)/σ′]
(2)

In this equation Qmax is the maximum firing rate, θ expresses the mean threshold voltage and σ′ is the standard
deviation of the threshold distribution equal to π√

3
.

Equation 3-5 describe the potential Va and its dependency on the contributions of the firing rate from the
presynaptic populations ϕb, the strength of the connections to populations a from b νab, and the smoothing
effects arising from synaptodendritic dynamics and soma capacitance 1

α ,
1
β , τab. They represent respectively

the decay and rise time of the response at the cell body and a time delay due to discrete anatomical separations
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between the populations.

Va(r, t) =
∑
b

Vab(r, t) (3)

Dα(t)Vab(r, t) = νabϕb(r, t− τab) (4)

Dα =
1

αβ

d2

dt2
+ (

1

α
+

1

β
)
d

dt
+ 1 (5)

νab is further defined as νab = sabNab where Nab is the mean number of synapses per neuron a from neurons
of type b and sab is the mean time-integrated strength of soma response per incoming spike. 1

α ,
1
β are the same

for every connection between populations and only τes = τis = τse = τre = t0/2 are nonzero with t0 as the total
time delay for the corticothalamic feedback loop.

The last two equations describe the propagation of the outgoing firing rate ϕa(r, t), with γ2
a = va/ra as the

temporal damping rate, va as the propagation velocity, and ra as the mean distance.

Da(r, t)ϕa(r, t) = Qa (6)

Da(r, t) =
1

γ2
a

∂2

∂t2
+

2

γa

∂

∂t
+ 1− r2a∇2 (7)

Figure 2: Schematic diagram of the corticathalamic model of Abeysuriya and Robinson [37, 36].The neural
populations shown are cortical excitatory e and inhibitory i, thalamic reticular r and thalamic relay nuclei s.
The parameter νab quantifies the connection from population b to population a. Excitatory connections are
shown with pointed arrowheads, and inhibitory connections are shown with with round arrowheads. ϕb is the
firing rate.

EEG power spectrum The model outputs an EEG power spectrum based on the previous six equations. It
takes the following series of steps and assumptions into account to arrive at this power spectrum.

First, equation 2 is linearized. This is based on previous work which has revealed that most brain states

occur in the linear regime of the model [37, 38], with ρa = S′(V
(0)
a ) and S′ the derivative of the sigmoid function

at the steady state value V
(0)
a .

Qa(r, t) = ρaVa(r, t) (8)

Next, the Fourier transform is taken of equation 3-8, which results in an expression for ϕe in terms of ϕn.
In this expression Gab = ρaνab = ρaNabSab is the response in neurons a to unit input from neurons b and
Gese = GesGse, Gesre = GesGsrGre and Gsrs = GsrGrs correspond to the overall gains of the excitatory
corticothalamic, inhibitory corticothalamic and intrathalamic loops, respectively.

ϕe(k, ω)

ϕn(k, ω)
=

GesGsnL
2exp(iωt0/2)

(1−GsrsL2)(1−GeiL)(k2r2e + q2r2e)
(9)

q2r2e =
(
1− iω

γe

)2

− 1

1−GeiL

{
LGee +

[L2Gese + L3Gesre]e
iωt0

1− L2Gsrs

}
(10)

L(ω) = (1− iω/α)−1(1− iω/β)−1 (11)

Page 5 of 17



Slingerland et al.: Source reconstruction and parameter estimation of generalized periodic discharges

To calculate the EEG power spectrum P (ω), ϕe(k, ω) is integrated over k, with k being the wave vector
with magnitude k = 2π/λ and the input stimulus ϕn is taken to be white noise. The cortex is approximated
by a rectangular sheet given by LxXLy and F (k) approximates the low-pass spatial filtering due to volume

conduction of the cerebrospinal fluid, skull and scalp, which can be approximated by: F (k) = e−k2/k2
0

P (ω) =

∞∑
m=−∞

∞∑
n=−∞

|ϕe(kx, ky, ω)|2F (k)∆kx∆ky (12)

kx =
2πm

Lx
, ky =

2πn

Ly
, k =

√
k2x + k2y (13)

2.3.2. MCMC-MH

In this section, we will first explain the underlying principles of the Metropolis-Hastings algorithm, and then
discuss its application in parameter estimation.

Monte Carlo is an algorithm which draws random samples from a target distribution to come to a probability
distribution. With enough random samples drawn from the target distribution any value can be approximated
by the probability distribution based on a specific set of constraints. An easy illustration of the property is the
following relation:

θ ∼ N(µ, σ) (14)

In this relation we have a target distribution, N(µ, σ), which is a normal distribution and a constraint µ, which
is the mean. With Monte Carlo a probability distribution will be created, based on a lot of random samples,
that in time will give an approximation of θ. In this case the probability distribution will be the same as the
normal distribution with θ ≈ µ. [39, 40]

A Markov Chain generates a sequence, or chain, of variables where the current variable is based upon the
prior variable and a variance. Putting those two together we get the Markov Chain Monte Carlo (MCMC)
in which samples are drawn from a target distribution which depends on the prior value. To expand on the
previous example, the relation will become:

θt ∼ N(θt−1, σ) (15)

The current iteration of θ is based on the normal distribution where the mean is equal to that of the previous
iteration of θ. This creates a so called random walk around the parameter space. The chain will not converge.
However, putting a restraint on this chain, for instance an acceptance criterion, would cause the chain to
converge towards the approximation of a parameter. This is where Metropolis-Hastings comes in. [39, 40]

Metropolis-Hastings Metropolis-Hastings uses a accept-reject type of adjustment to let the Markov chain
converge towards a stationary distribution approximating parameter θ. First it is good to state that we would
like to draw the samples from a target distribution p(θ) but only know it is proportional to g(θ). Furthermore,
the proposal distribution q(θi−1|θ∗) is initially a normal distribution, but eventually q will switch to an adaptive
proposal distribution based on the knowledge gathered about the distribution of g. Metropolis-Hastings follows
the following steps:

1. Select the initial value θ0

2. for i = 1, ...,m repeat:

(a) Draw candidate θ∗ from a proposal distribution: q(θ∗|θi−1)

(b) Compute the acceptance ratio:

α =
g(θ∗)q(θi−1|θ∗)
g(θi−1)q(θ∗|θi−1)

(16)

(c) If α ≥ 1 accept θ∗ and set θi = θ∗

If 0 < α < 1 accept θ∗ and set θi = θ∗ with probability α or
reject θ∗ and set θi = θi−1 with probability 1− α

The eventual acceptance of a stationary chain and therefore a good approximation of the parameter, will
depend on the statistics of the first half of the chain in comparison with the second half of the chain. If these
overlap, stationarity has been reached. One important note is that the first 10% of the chain will not be
taken into account when checking these statistics to limit the effect the initial choice has on the outcome. The
elimination of the first, in this case, 10% is called the burn in period. Using these steps for m number of repeats
will eventually result in an approximation for parameter θ. [39, 41]
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Application in parameter estimation In this method, the Metropolis-Hastings algorithm determines the
most likely parameter values x, making up the modeled EEG power spectrum P (x), that give rise to the
experimental power spectrum P exp. Specifically, it evaluates the posterior distribution of the parameters
P (x|P exp) at a single point in x-space. The posterior distribution is maximal when the model generates
an optimal fit to the data.

The quality of the fit, χ2(x), will be determined by a weighted squared fractional difference between P (x)
and pexp given in the formula

χ2(x) =
∑
j

Wj(
Pj(x)− P exp

j

P exp
j

)2 (17)

j stands for the frequency components of the fast Fourier transform (FFT) of the experimental data and W is
the weight, which ensures that every frequency from 1 till 45 Hz is weighed equally. The weight is defined as
Wj ∝ f−1

j

The quality of fit is minimized when the best fit has been reached. To link the quality of fit to the posterior
distribution, they defined the likelihood function

L(x) = exp[
−χ2(x)

2
] (18)

and set the posterior distribution proportional to the likelihood function

p(x|pexp) ∝ L(x) (19)

The likelihood function is maximized when χ2(x) is minimized, satisfying that p(x|P exp) is maximal at the
most likely parameter values. One constraint to consider is that unphysiological parameter values will not be
accepted.

3. Methods

3.1. Data acquisition and epoch selection

We acquired data from the clinical neurophysiology group of the University of Twente. These data were
originally collected in Ruijter et al. [5]. Between July 2010 and September 2014, they collected EEG recordings
of comatose patients admitted to the intensive care unit (ICU) after cardiac arrest, from two university hospitals
in the Netherlands. Out of all the EEG recordings in their study they identified 47 patients with GPDs by
means of a detection algorithm [42]. We performed an additional visual inspection and included 45 out of the 47
patients in our study. The two patients we excluded showed spike-wave discharges. We divided the 45 patients,
by means of visual analysis, into patients with GPDs on a continuous background and patients with GPDs
on a suppressed background. We also included 50 EEG recordings from healthy subjects showing a dominant
occipital alpha rhythm, acquired from the clinical neurophysiology group of the university of Twente. These
recordings were used as a control group for the parameter estimation.

3.1.1. EEG recordings

The EEG recordings were started as soon as possible within 24 hours after a patients’ admission to the
ICU. They continued until the patients were awake or the decision was made to withdraw treatment, with a
maximum of 5 days. Twenty-one silver/silver chloride cup electrodes were placed on the scalp according to the
international 10–20 system and quantitative EEG analysis was performed offline. The same setup was used for
the control group.

3.1.2. Selection of EEG epochs

A five minute epoch was selected per EEG recording, for both comatose patients and healthy subjects. The
five minute epochs of the comatose patients were already preselected in the study of Ruijter et al. [5]. They
selected 5 minute epochs in the hour corresponding to the onset of the GPDs and subjected them to a computer
algorithm used in a previous quantitative EEG study, to only select epochs free of artifacts [43]. The five minute
epochs in the EEG recordings of healthy subjects were selected out of a longer EEG recording of up to one
hour. We selected these epochs based on a visual inspection for a dominant occipital alpha rhythm and with
the least amount of artefacts.

3.2. Data analysis

EEG analysis, source reconstruction and accompanying statistical analysis, and parameter estimation were
performed with MATLAB(MathWorks Inc.; version r2022b) [44]. Fieldtrip toolbox(Donders Institute; version
20230118) and OpenMEEG(INRIA Sophia Antipolis; version 2.4.1) were used for source reconstruction and
leadfield generation [21, 45, 46]. The Braintrak toolbox (BrainDynamics USYD; version Apr 18,2018) was
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used for parameter estimation [37]. Statistical analysis of parameter estimates was performed with SPSS(IBM;
version 28.0.1.0).

3.3. Source reconstruction

We performed source reconstruction on the EEG recordings of GPD patients using our own constructed
pipeline based on the functions of the Fieldtrip toolbox [21]. Source reconstruction consists of three parts: the
forward solution including anatomical information, EEG preprocessing, and the inverse solution (figure 1). All
three parts are explained in the respective sections below.

3.3.1. Forward solution

We used the MNI (Montreal Neurological Institute) ICBM 2009c symmetric MRI template [47, 48, 49] as
input to our volume conduction model, as there were no MRIs available for any of the patients. We segmented
the following tissues from the MRI: brain, skull, and scalp, and constructed a 3-layer Boundary Element Method
(BEM) volume conduction model, also known as a head model, using OpenMEEG [45, 46]. The conductivity of
the brain, skull and scalp is set to 0.3300, 0.0042 and 0.3300 S/m respectively. The BEM head model consists of
a mesh, or boundary, for each tissue and describes the current flow through the tissues. The electrode positions
were based upon the standard 10-20 electrode template of Fieldtrip and we adjusted the labels to fit those in
the EEG recordings. No patient specific electrode positions were used because they were not recorded. To
complete the forward solution, we constructed a source space consisting of approximately 4500 source points
equally distributed inside the brain.

3.3.2. EEG preprocessing

We split the EEG epochs into 10 second trials and removed the electrically silent electrodes A1 and A2 from
the data. Additionally, if a single electrode per EEG was silent or experienced high power line interference, we
removed the electrode from the data as well. We removed data from one electrode in 7 of the 45 comatose EEG
recordings.

Afterwards, we subjected the 10 second trials to a jump, muscle and EOG artifact rejection algorithm
in Fieldtrip [21]. This algorithm uses the averaged z-transform over all the channels to identify the above
mentioned artifacts. We visually analyzed these z-transforms and, by means of a threshold, rejected the trials
that exceeded this threshold.

Lastly, we filtered the EEG recordings in the interval 1Hz to 30Hz with a 2nd-order Butterworth filter and
avoided phase distortion by using filtfilt. If needed, we changed the EEG montage to an average montage to
create the correct input for the source analysis algorithm.

3.3.3. Inverse solution

We used eLORETA for the inverse solution. An in depth explanation of eLORETA can be found in section
2.2. After performing the inverse solution for all subjects, we normalized the solution per subject relative to the
maximum power and created a mean source reconstruction plot per subject group. We considered every point
in the source space with a power of more than 0.8 times the maximum power to be part of the same source.

3.3.4. Statistical analysis

To test for a difference in (peak) source location between the two GPD groups, we applied a permutation
test [50]. We used the location parameters (i.e. x, y, z, coordinate) of the maximum power per subject as
response values and the distance in mean of the response values between the groups as test statistic. We
performed 104 random shifts to obtain a null distribution. The p-value was calculated by determining its
position in this distribution. A p-value of ≤ 0.05 was considered statistically significant.

3.4. Parameter estimation

We performed parameter estimation on the EEG recordings of both GPD groups and healthy subjects using
the model and method of Abeysuriya and Robinson [36, 37]. In this section, we provide a brief overview of both
model and method. An extensive explanation of both model and method can be found in section 2.3.

Due to few global instabilities at low frequencies the model, as described in section 2.3, can be reduced to
a three-dimensional representation: X representing the cortical loop, Y representing the corticothalamic loop,
and Z representing the intrathalamic loop. Together, they capture the membrane potential and firing rate of
the different loops (figure 3). This is the representation used in this thesis.
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(a) Cortical loop (b) Corticothalamic loop

(c) Intrathalamic loop

Figure 3: Schematic overview of the three different loops present in the corticothalamic meanfield model. From
top left to bottom right: the cortical loop, corticothalamic loop and intrathalamic loop.

These loops can be mathematically described as:

X =
Gee

1−Gei
(20)

Y =
Gese +Gesre

(1−Gsrs)(1−Gei)
(21)

Z = −Gsrs
αβ

(α+ β)2
(22)

Subsequently, we used Metropolis-Hastings to fit the following parameters: X, Y, Z, α, β, and t0 which is
the delay in the corticothalamic loop.

3.4.1. EEG preprocessing

The method for parameter estimation is based on an experimental power density. To achieve the most
accurate fit for the parameter estimation, as much of the original signal needs to be retained. We submitted
the EEG recordings to as little preprocessing as possible. EEGs were only filtered with a 0.5Hz high pass filter,
using a 2nd-order Butterworth and filtfilt to avoid phase distortion to remove the offset and drift. For the
experimental power density, we used pwelch with a window of 5 seconds and 50% overlap between the windows.

3.4.2. Statistical analysis

To test the differences in the fitted parameters between the three groups, we applied Kruskall-Wallis because
we could not guarantee a normal distribution. If the Kruskal-Wallis test was significant, we applied the
Mann-Whitney U test to test between-group differences. All statistical testing was two-tailed and p-values
≤ 0.05, after a Bonferroni correction, were considered statistically significant.
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4. Results

4.1. Patient groups

Out of the 45 patients included in this study, we visually identified 26 patients with GPDs on a continuous
background(GPDcont) and 19 with GPDs on a suppressed background(GPDsup). Figure 4 shows typical
examples of GPDs on a continuous background and GPDs on a suppressed background.

(a) (b)

(c) (d)

Figure 4: Typical examples of GPDs on a continuous background (a,b) and of GPDs on a suppressed background
(c,d)

4.2. Source reconstruction

Source reconstruction revealed that the maximum power for both GPD groups was predominantly found in
the subcortical regions. This was the case for 15/26 patients with GPDcont and 10/19 patients with GPDsup.
Subcortical regions included the anterior cingulate gyrus, corpus callosum, thalamus, hypothalamus, and
amygdala. Other patients showed maximum power in the occipital lobe (2 patients with GPDcont and 1 patient
with GPDsup), frontal lobe (3 patients with GPDcont and 1 patient with GPDsup) medial-orbitofrontal(1
patients with GPDcont and 3 patient with GPDsup) parietal lobe (2 patients with GPDcont and 2 patient with
GPDsup), and cerebellum (3 patients with GPDcont and 2 patient with GPDsup).

Averaging over all subjects per subject group and including only points in the source space with a value
of ≥ 0.8 ∗max power, shows a maximum power in only the subcortical regions (figure 5). The scatterplot in
figure 6 shows all the points of maximum power per group plotted at their respective brain coordinates. The
scatterplot shows no distinct groups of points, illustrating the lack of signifcant difference between between the
average location with maximum power of both groups (p = 0.58).
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(a) GPDs on a continuous background (b) GPDs on a suppressed background

Figure 5: Average of all subjects per subject group, with a constraint of showing only points in the source space
with a value of ≥ 0.8 ∗max power. Both figures show a maximum power in the subcortical regions including:
anterior cingulate gyrus, corpus callosum, thalamus, hypothalamus and amygdala. There is no significant
difference in average location of the maximum power between the groups.

Figure 6: Scatterplot of all coordinates corresponding to the maximum source power for all subjects in both
groups. Blue points represent GPDsup and the red points represent the GPDcont. There is no significant
difference between both GPD groups.

4.3. Parameter estimation

Parameter estimation revealed significant differences between both GPD groups compared to healthy controls
in the median of the cortical loop (X ), corticothalamic loop (Y ), corticothalamic delay (t0), and rise rate (β).
The intrathalamic loop Z showed only a significant difference between GPDsup and healthy controls (HC) and
α showed a significant difference between GPDcont and GPDsup, and GPDcont and HC (figure 7).
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Figure 7: Violin plots of all the fitted variables of the corticothalamic model [37]. There were significant
differences in median of both GPD groups compared to healthy controls in: X, Y, t0, and β. While Z showed
only a significant difference between GPDsup and healthy controls (HC) and α showed a significant difference
between GPDcont and GPDsup, and GPDcont and HC.*,** and *** signify an increase in significance. They
are associated with p ≤ 0.05 p ≤ 1e− 2, p ≤ 1e− 3 respectively.

Patients with GPDcont and GPDsup had significantly lower X -values than healthy subjects (U(2) =
−33.56, p < 0.001 and U(2) = −29.23, p < 0.001, respectively). There was no significant difference in X -value
in between the GPD groups (U(2) = −4.32, p > 0.05). For the corticothalamic loop, the Y -values of both GPD
groups, lay closer to zero or are negative compared to mostly positive values in the HC (U(2) = −32.74, p < 0.001
and U(2) = −30.27, p < 0.001, for GPDcont and GPDsup respectively). Again, there is no significant difference
between the two GPD groups (U(2) = −2.46, p > 0.05). The same holds for the corticothalamic delay, only t0 is
significantly larger in both GPD groups, compared to HC (U(2) = 44.00, p < 0.001 and U(2) = 43.87, p < 0.001,
for GPDcont and GPDsup respectively), while between the GPD groups there is no significant difference in t0
(U(2) = 0.12, p > 0.05).

The rise rate (β) is significantly higher in median for both GPD groups than the HC, however it is not
as profound as in previous variables (U(2) = 17.02, p = 0.03 and U(2) = 25.86, p = 0.001, for GPDcont and
GPDsup respectively). There is no significant difference in rise rate between the two GPD groups (U(2) =
−8.84, p > 0.05). The decay rate is significantly lower in patients with GPDcont compared to patients with
GPDsup (U(2) = −27.07, p = 0.04) and compared to HC (U(2) = −31.92, p < 0.001). There was no significant
difference in decay rate between patients with GPDsup and HC (U(2) = −4.85, p > 0.05).

The intrathalamic loop variable, Z, was significantly higher in between the HC and patients with GPDsup
(U(2) = −18.75, p = 0.034). No significant difference in Z -value had been found between patients with GPDcont
and HC(U(2) = −11.20, p > 0.05), and in between both GPD groups(U(2) = 7.55, p > 0.05). HC displayed a
greater variance of Z -values with an increase in probability density at lower values, while GPD groups displayed
a low variance around low z -values.

5. Discussion

The mortality rate of comatose patients with postanoxic encephalopathy after an out-of-hospital cardiac
arrest is 50%. Generalized periodic discharges (GPDs) are an EEG pattern that occurs in 20% of these patients
and is associated with a poor outcome [3, 7, 18, 51]. However, a recent study by Ruijter et al. [5] differentiated
GPDs into two types. GPDs on a suppressed background associated with a poor outcome (CPC 3-5), and
GPDs on a continuous background associated with a good outcome (CPC 1-2). Why this difference in outcome
between the two types of GPDs occurs remains unclear. Identification of the anatomical source and underlying
pathophysiology of both types would provide a greater understanding of why this difference occurs and would
further expand our understanding of the underlying pathophysiology of GPDs.

In this study, we applied source reconstruction, and parameter estimation on a corticothalamic meanfield
model to both types of GPDs. We have found no significant differences in the anatomical source between the
two types of GPDs. Parameter estimation revealed no significant differences between the two GPD groups,
except for the decay rate. However, we did find a significant difference in both the cortical and corticothalamic
loop variables between the GPD groups and healthy controls. This suggests the involvement of both the cortex
and the thalamus in the generation of GPDs.
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Based only on significant differences between the GPD groups, our results suggest that the difference in
prognosis between the two GPD groups could be clarified by a significant difference in decay rate alone. Why
we believe this is not the case, is later explained in this section. We hypothesize that the continuous background
itself could cause the difference in prognosis. Ruijter et al. [5] discovered that patients, who recovered with a
CPC of 1-2 (considered a good outcome), had a continuous background prior to onset of GPDs. A continuous
EEG, diffusely slowed or normal, on its own is associated with a good outcome, while GPDs on their own are
associated with a poor outcome [51, 52]. The earlier onset of a continuous background could indicate a sufficient
recovery of the brain. The onset of GPDs in a later stage would therefore have less influence on the eventual
outcome.

A significantly lower and even negative values of the corticothalamic loop variable Y, a significant increase
in the corticothalamic delay t0 and an anatomical source in the subcortical regions strongly suggests the
involvement of the thalamus in the generation or spread of GPDs. Previous studies have shown that the thalamus
is involved in the generation of EEG patterns similar to GPDs, specifically burst suppression and generalized
rhythmic spike-wave discharges [53, 54]. Furthermore, in [3] they concluded, using source reconstruction,
that the thalamus, hippocampus, and amygdala are the main drivers of GPDs. These reports strengthen
our suggestion that the thalamus is involved in the generation or spread of GPDs.

The negative values of Y and the increase in t0 illustrate the underlying mechanisms of GPDs. A negative
value for the corticothalamic loop, Y, compared to healthy controls could be explained by an increase in the
inhibitory gain Gesre compared to the excitatory gain Gese. A relative increase of Gesre means a relative
increase in the excitation of the inhibitory reticular neurons compared to excitatory neurons. This is in contrast
with previous research, which revealed that inhibitory reticular neurons are especially sensitive to hypoxia and
that injury to these neurons results in an increased spontaneous and evoked firing rates among thalamocortical
neurons [55]. Further research is needed. The increase in total time delay for the corticothalamic loop, t0,
could be explained by an overall decrease in the number of synapses between the cortex and thalamus due to
ischaemia.

The significant decrease in the cortical loop, X, between both GPD groups and healthy controls suggests
the involvement of the cortex in the generation or spread of GPDs as well. The significant decrease could be
explained by an increase of Gei compared to Gee. An increase in the inhibitory gain can only be explained by
an increase in excitation of the inhibitory neurons. While an increase in the number of synapses is not likely due
to the ischaemia, an increase in strength of the soma response Sab could explain the increase in inhibitory gain.
This is also in line with the findings in [56], who concluded that the loss of excitation of cortical interneurons
due to selective ischemia-induced synaptic failure leads to disinhibition of pyramidal neurons and therefore to
higher excitation of interneurons.

The parameter variable of the intrathalamic loop Z revealed only a significant difference between the healthy
controls and patients with GPDs on a suppressed background. Visually, there is a difference between the GPD
groups and healthy controls, in which healthy controls show a greater variance in the value Z. To understand
the Z value we also have to take into account the variables α, the decay rate, and β, the rise rate. The decrease
in variance in Z in the GPD groups is most likely due to a decrease in Gsrs, which in turn is caused by a
decrease in the number of synapses due to ischaemia. This assumption is reinforced by the fact that a large
variance in α and β in the patient group with GPDs on a suppressed background still results in a significantly
low Z value compared to healthy controls. In other words, the influence of α and β is less than that of Gsrs on
the Z value, in the case of the GPD groups. The high variance in α and β in the patient group with GPDs on a
suppressed background could be explained by the variance in morphology of the GPDs, which exhibit different
rise and decay rates (figure 4).

We did not expect the Z in the healthy controls to have a greater variance than the GPD groups. Gsrs, the
number of synapses, and the strength of the soma potential should not differ much in healthy controls. Z is
expected to be significantly different from both GPD groups, yet due to the high variance this is not the case.
We do not know why the high variance occurs in Z. We were also not able to determine why the α value has a
significantly lower median in the patient group with GPDs on a continuous background compared to the other
groups. It could be pathological, yet if it was pathological it should have been more present in the other GPD
group. It could also be due to the morphology of the EEG in which the continuous background interferes with
GPDs causing a decrease in decay rate. However, further research is needed.

5.1. Limitations

This study has limitations. First, a larger sample size of both types of GPDs would give a more clear
result in both source reconstruction and parameter estimation. It would provide a higher resolution for the
source location and could resolve the unanswered questions around the Z and α values. The resolution of
the source reconstruction would also benefit from adding patient specific: MRI data, conductivity parameters,
and electrode positions. Second, our data consisted of low-density EEG recording, which limit the accuracy
of the source reconstruction as well. The accuracy was specific enough to identify the involvement of the
subcortical region in the onset of GPDs, but insufficient enough to identify specific brain structures by means
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of an anatomical atlas. Third, we classified the types of GPDs by means of visual analysis. It would have been
an improvement if we had automated the distinction between GPDs on a continuous or suppressed background
by using the background continuity parameter developed by Ruijter et al. [5]. This parameter gives a ratio
between 0 and 1 based on the amount of time the EEG is ≥ 10µV , in which a value of 0.9 or higher indicates
a continuous background. This quantitative method is a more robust way of classifying the GPDs into the two
different types. Last, we were unable to fully explain the influence of the intrathalamic loop on the generation
of GPDs, because we were unable to clarify the variance of the Z value of healthy controls and the significantly
lower α value of the patient group with GPDs on a continuous background.

6. Conclusion and Recommendations

We conclude that a difference in prognosis between both types of GPDs cannot be explained by a difference in
anatomical source or pathophysiological variables of the corticothalamic meanfield model, despite the significant
difference in the decay rate. Instead we hypothesize that the difference in prognosis could be attributed to the
difference in background, continuous or suppressed. Further, we found a strong suggestion that both the
cortical and corticothalamic loop are involved in the spread or generation of GPDs. In both cases the gain of
the inhibiting neurons increased relative to the gain of the excitatory neurons. Although still a lot of research
has to be done to fully understand the underlying pathophysiological mechanisms of GPDs, our research has
added to our general understanding of generalized periodic discharges.

6.1. Future recommendations

We highly recommend to further investigate the underlying pathophysiology of GPDs as there is still a
lot of research to be done to fully understand these underlying mechanisms. For instance, although we found
strong evidence of the involvement of the thalamus in the spread or generation of GPDs, we do not know if
the thalamus is the actual generator or just a gateway for these GPDs. Furthermore, we hypothesize that
our results only reflect the anatomical source and pathophysiology of the GPDs itself and do not reflect the
anatomical source and pathophysiology of the background they occur on. We highly recommend to investigate
the effect of the continuous background on the prognosis of patients with GPDs this background. For instance,
by separately investigating the GPDs and the continuous background using source reconstruction and parameter
estimation. Lastly, our results only reflect one moment in time and do not show the time evolution of GPDs.
We highly recommend to investigate the time evolution of GPDs, as this could reveal more about the onset and
pathophysiological evolution of GPDs.
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