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Abstract

On-board Computers are at the centre of space-faring systems. They provide
computational performance to the system, with high availability and dependability.
However, these systems commonly consist of expensive, slow, fault-tolerant
hardware to overcome errors or failures during a mission. Commercial Of The
Shelf (COTS) components provide higher performance but do not provide these
fault-tolerance mechanisms. To tackle this, the DLR utilises a distributed system of
COTS components, called nodes, that run a middleware called ScOSA. ScOSA
manages the nodes in the distributed system and, upon a node failure, mitigates
the effects by reconfiguring the system to a configuration that excludes the failed
node. During a reconfiguration, the tasks on the failed node get scheduled to
another node in the system, depending on a pre-determined configuration. These
configurations are calculated offline and have an exponentially growing memory
usage depending on the number of nodes in the system, limiting the system’s
scalability. An online algorithm is seen as a solution to this scalability problem, as it
does not need pre-determined configurations and can use the real-time state of the
system to make scheduling decisions instead.

Therefore, in this project, an online algorithm was implemented in the
middleware of ScOSA, designed as a combination of the online algorithms
acquired during literature research. After defining specific requirements for the
tailor-made online algorithm, it was tested on the target hardware and by using
virtual nodes for its feasibility and scalability. It was compared with the offline
situation on time and network usage. The design of an online algorithm for ScOSA
proved to be feasible. It was not only capable of creating configuration dynamically
but also proved to be a solution to the scalability problem. Time and network usage
increases were observed for the online algorithm, although none of these violated
any constraints while running the test program. Furthermore, with its fault-tolerance
being an integral part of the online algorithm, it is well-suited for its target
application in space.
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Chapter 1

Introduction

The paradigm of space systems is very diverse, ranging from international space
stations to a wide variety of rockets to an even wider variety of satellites. Ever since
the first artificial satellite to orbit the Earth, called Sputnik 1 satellite (1957), the field
of space-faring systems has expanded drastically. These space-faring systems are
often incredibly complex and designed to survive the challenging environment in
space. The radiation and electromagnetism experienced when being in orbit while
needing to be lightweight, robust and cost-effective to get there in the first place are
just some of the examples of challenges that make this field so demanding. At the
centre of these space-faring systems, the On-Board Computer (OBC) can be
found.

The OBC provides the space-faring system with its computational performance,
often along with features such as trajectory control, data acquisition and
processing, and communication. As space systems became more advanced, the
requirements for the OBC did so as well. Missions themselves became more
complex in an attempt to get the most value out of expensive launches into orbit. To
facilitate this, OBCs became more complex, with higher computational performance
due to improved Integrated Circuit (IC) design and lower power consumption [4].

With the downsizing of the hardware in OBCs, however, new problems arose.
The higher density of processors meant that they become more prone to
environmental effects, such as radiation, which can cause errors or even failures
due to, for example, Single Event Upset (SEU)s and Multiple Bit Upset (MBU)s.
These errors reduce the reliability and thus dependability of the OBC.

To counteract these problems, reliable space-qualified hardware is often used.
This can be through dedicated hardware, such as the proven RAD750 by BAE
Systems [5] or synthesizable VHDL models for a System on Chip (SoC) such as
the LEON processor by Cobham Gaisler [6]. These solutions have built-in low-level
fault-tolerance mechanisms but have the downside that their performance lacks
compared to modern COTS hardware. This led the DLR to investigate alternative
techniques to find a cost-effective solution that is reliable and high-performance for
their next generation of space systems.

9



CHAPTER 1. INTRODUCTION 10

1.1 Background

The DLR has a large number of active projects where OBCs are used. These
OBCs tended to be very expensive due to the specialized radiation-hardened
hardware and their application-specific design. With COTS hardware being
available with much higher computational performance at a significantly lower cost,
the question arose whether the radiation-hardened hardware was still the best
solution for the next generation of OBCs. To investigate this, the DLR started the
On-Board Computer - Next Generation (OBC-NG) project [7] to search for other
means of making a dependable system with a higher computational performance at
a lower price. It is designed as a scalable, distributed parallel computing system to
prevent single points of failure by distributing its computational resources. The
distributed system consists of a network of nodes on which tasks can be executed.
This also enabled alternative error mitigation techniques on the software level
instead of hardware, therefore omitting the need for specialized hardware and
allowing for a more cost-effective solution.

The distributed system proved promising and continued as the Scalable
On-board computing for Space Avionics (ScOSA) project [1]. With the ScOSA
project, the work from the OBC-NG project continued and expanded, with the
addition of heterogeneity and several additional features to aid application
developers [3]. A variety of different nodes are allowed, as ScOSA is abstracted to
a monolithic execution platform by implementing it as a middleware. The
custom-built middleware, written in C++, allows applications to be executed using
the computing resources of all nodes simultaneously while masking the underlying
complexity of the distributed system. As ScOSA can be run on a variety of
platforms, different types of hardware can be mixed, introducing heterogeneity into
the system. This allows the usage of high-performance COTS hardware to be used
alongside space-grade hardware, getting the best of both worlds. Using COTS
components in space is not new and has been shown to have its value [8].
High-performance hardware such as the Xilinx Zynq-7000 [9] provide
computational power that is very desirable for OBCs, and using ScOSA, a
distributed system of these High Performance Node (HPN)s, running Linux, can be
assembled. As the HPNs are not space-grade, they are expected to fail at some
point. To mitigate the failure of a node, ScOSA employs services which implement
Fault Detection, Isolation and Recovery (FDIR), such as Triple Modular
Redundancy (TMR), check-pointing and restoration services, to name a few.

Additionally, to increase the availability of the system even more, the distributed
system also supports Reliable Computing Node (RCN)s, running RTEMS. These
RCNs are mostly used to control the distributed system and as a backup, to ensure
that even if all HPNs would fail simultaneously, there is still a reliable fallback
mechanism to restore the system. In case of a failing node, the tasks which were
running on that node need to be moved to another healthy node according to a
predefined configuration. This configuration has been designed and verified
”offline”, using model-based reconfiguration planning [10]. A configuration defines
exactly how tasks are mapped to nodes at any point in time in case of an event.
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The mapping problem, however, is NP-Complete, making it only feasible for
small systems. As soon as the system starts to scale, the exact solving becomes
unfeasible, and the memory footprint of the configuration becomes too large for the
hardware it intends to run on. Furthermore, the configuration contains situations
that might never occur, occupying memory resources that could have been used
more effectively. This led to the desire to reconfigure ”online” instead. An online
reconfiguration is, compared to an offline one, not predefined. Instead, an online
reconfiguration uses an algorithm to determine at run-time how the nodes have to
be (re)mapped when a node fails. The node to which a task is to be moved, or
scheduled, is thus decided during run-time, not requiring a large set of
memory-intensive configurations. This project specifically focuses on the
development of this online (reconfiguration) algorithm for ScOSA to solve the
shortcomings of the current offline approach.

1.2 Problem definition

Besides the advantages of an online algorithm, there will always be problems that
make implementation challenging. However, there is a common fault model that
both the online and offline reconfiguration approaches have to deal with.

1.2.1 Fault model

As explained, the hardware on which ScOSA is running is susceptible to errors
and failures when operated in space, which is mainly caused by radiation. When
an ionizing particle strikes operational microelectronics, it can cause the sporadic
”flipping” of bits in memory or elsewhere on a chip, depending on the technology.
This can result in data corruption, causing systems to fail and greatly decreasing the
availability of the system. ScOSA has means of detecting and correcting errors due
to sporadic bit flips but cannot do much when the entire node fails to operate. This
is called a node failure, characterised by a node becoming unresponsive, requiring
it to be rebooted. With ScOSA’s focus on COTS components, a way had to be found
to cope with these failures. The idea of ScOSA is not to attempt to get rid of errors
and failures completely but to allow them to occur and deal with the consequences.
In the case of ScOSA, this means that the COTS nodes (HPNs) are expected and
allowed to fail at any point in time. As the network consists of several nodes, the
tasks from the failing node can be moved to another node instead, allowing the
overall network to remain operational.

1.2.2 Fault detection

To move a failing node’s tasks to another node, one first needs to be able to detect
that a failure occurred. To do this, ScOSA has several detection and mitigation
techniques as part of its system management services and through a software
layer on top of SpaceWire, enabling Inter Process Communication (IPC) and the
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communication mechanism between the nodes. This library, called SpaceWireIPC,
is the backbone of ScOSA’s reconfiguration mechanism [11]. SpaceWireIPC is the
first point to detect a failed node through missed message acknowledgements. If a
node continuously fails to respond to messages, it is considered to have failed,
after which a reconfiguration is triggered. The system management services from
ScOSA provide additional detection mechanisms, such as a Monitoring Service,
which monitors nodes for their periodic heartbeat, and a Voter Service, which
implements TMR, to detect and correct errors.

1.2.3 Fault handling

Once a fault is detected, a reconfiguration is triggered. Based on the configuration,
a new path will be created for data to flow through another healthy node. These
data flows are going through a channel. These channels make the connections
between tasks more flexible, as they can be changed during runtime. An example
of a network graph where tasks are interconnected using channels can be seen in
figure 1.1a, where two tasks (T1 & T2) communicate through two channels (CH1 &
CH2) with a receiving task (T3). When one of the nodes on which task T1, T2 or T3
is running fails, the tasks will be moved to another node, determined by the next
configuration it reconfigures to. Which configuration is next is determined by a
decision graph, of which an example can be seen in figure 1.1b. In this graph, each
vertex resembles a configuration, and each edge a transition to the next
configuration due to a failed node. If, for example, the system is in configuration 0
and Node 2 fails, the system reconfigures itself to configuration 9.

(a) Task graph example, containing three
nodes and two channels

(b) Reconfiguration decision graph
example, containing four nodes and
sixteen configurations

Figure 1.1: ScOSA offline configurations

The decision graph of figure 1.1b is what an offline reconfiguration looks like. The
decision graph is created by a tool that can generate and test the configurations for
ScOSA using an offline algorithm [10]. Problems arise when the system scales by
adding more nodes, and the number of configurations starts to grow exponentially.
The exponential growth of the number of configurations has the same effect on the
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program’s memory usage. In fact, memory usage becomes so large that it cannot
be facilitated by the system’s hardware, hindering the ability of the system to scale.

It is hypothesised that an online reconfiguration algorithm is a solution to this
problem as it provides the opportunity to eliminate the need for pre-determined
configurations. Instead of pre-determined configurations, an online algorithm can
make task scheduling decisions based on the real-time state of the system, which
has the additional benefit that it can take run-time effects into account. It is unclear
whether or not implementing an online algorithm is even feasible in ScOSA, not to
mention how its performance would be. An online algorithm is considered feasible
if it is able to replace the functionality of the offline reconfiguration algorithm by
dynamically creating configurations through online scheduling decisions without the
need for any pre-determined configuration.

1.2.4 Questions and objectives

The objective of this thesis is to evaluate whether or not an online algorithm is
feasible in ScOSA. Besides feasibility, it should also be determined how well it
performs by implementing it into ScOSA, while determining whether or not it solves
the offline algorithm’s issue of scalability.

This lead to the following main research question:

• Is an online algorithm feasible in ScOSA?

If an online algorithm is indeed feasible, then add the following sub-questions:

• Does an online algorithm solve the scalability issue of the offline algorithm?

• How well does it perform compared to the offline algorithm?

1.3 Project outline

In the System Overview chapter 2, the existing work of ScOSA is discussed
through an in-depth view of its architecture, software stack and, most important, its
system model. This is followed by the Design methodology chapter 3, where the
methodology for designing the online algorithm is discussed. Chapter 4 presents
the Design of the online algorithm as a combination of what was found during the
literature research and review, followed by the approach to evaluate the design in
the Evaluation chapter 5. The results of the test setup are then present in the
Results chapter 6, as acquired by running tests virtually and on the target
hardware. The results are then discussed in the Discussion chapter 7. Here the
results are interpreted while also discussing their limitations and openings for future
work. Finally, chapter 8 will provide a Conclusion, reflecting on how the project was
executed while providing recommendations for the future.



Chapter 2

System Overview

The ScOSA project was started with the goal of designing a highly reliable onboard
computer for space avionics [12]. As part of ScOSA, middleware has been
developed to provide an abstract layer to the heterogeneous distributed system it
runs on. An example of a system architecture with two RCNs, an N amount of
HPNs and how they are interconnected using SpaceWire or Ethernet can be seen
in Figure 2.1. The RCNs are connected to the HPNs and Telemetry and
Telecommand (TM/TC) units via SpaceWire routers. The Interface (I/F) nodes
connect the system to the sensors and actuators [3].

Figure 2.1: ScOSA System Architecture [3]

14
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Figure 2.2: ScOSA Software Stack [3]

2.1 Software stack

The ScOSA software stack [3] is built as a layered architecture upon three main
components:

• SpaceWire-IPC

• Distributed Tasking Framework

• System Management Services

The OUTPOST library [13] and the operating system1 provide the abstraction to the
hardware. Figure 2.2 shows a layered overview of the software stack.

2.1.1 SpaceWire-IPC

SpaceWire-IPC can be described as the transport layer (Layer 4 in the OSI model)
of ScOSA [3]. It extends the standard SpaceWire protocol with features such as a
reliable communication link, error detection and handling and several node
management features. Besides SpaceWire, the SpaceWire-IPC has been ported to
support Ethernet as well.

1ScOSA is mainly designed to run on Yocto Linux and RTEMS
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2.1.2 Distributed Tasking Framework

The Tasking Framework is an open-source project by the DLR that implements
applications as a graph of tasks and channels [14]. It is designed as an
event-driven multi-threading execution platform for space applications. It is written
in C++ and compatible with several (real-time) operating systems, such as Linux,
RTEMS or FreeRTOS. It consists of an execution platform, which schedules ready
task instances to one of the available executors according to a scheduling policy
through an Application Programming Interface (API). The currently supported
scheduling policies are First In – First Out (FIFO), Last In – First Out (LIFO) and
priority-based. Currently, only the FIFO policy is used by ScOSA.

Each task of the Tasking Framework can have multiple inputs and outputs to
which a task can be connected via a channel. How tasks and channels are
interconnected can be defined manually or via a model-driven tool environment
which automatically generates the required function calls to the Tasking Framework
API. ScOSA implements the Tasking Framework and extends it to work on its
distributed system architecture.

2.1.3 System Management Services

The System Management Services are used to implement FDIR in ScOSA. The
FDIR services are performed in the background and masked from the application
developer. Node failures are detected using the Monitoring Service, which monitors
the state of nodes through a heartbeat mechanism. Nodes have different roles in
this mechanism: either a coordinator, observer or worker. At any time, there is only
one coordinator and a number of observer nodes. The observer nodes keep an eye
on the coordinator. How many observers there are in the system can be
determined by the system designer. Worker nodes do not monitor other nodes but
only execute tasks as their duty. The Voting Service is used to implement TMR,
which can be used to detect and correct soft errors. By processing an operation on
three different nodes and afterwards comparing the results, a final result can be
voted for. The Reintegration Service is used when a node starts up to initialise the
system or reintegrate into an existing one. The Reconfiguration Service
(re)configures the mapping between tasks and channels on a node based on a
pre-determined configuration. The Reconfiguration Manager in the coordinator
node initiates the reconfiguration if a node failure is detected or a node reintegrates
into the system.

2.2 ScOSA system model

ScOSA is modelled as a distributed system, structured as a collection of
communicating periodic tasks running on a network with an arbitrary topology. [10,
15]. The DLR implemented the system design for a mission as a two-stage
process, where first, a task-node mapping is generated on which model checking is
performed. The mapping is then used for system verification in the second stage.
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For the first stage, the offline task-node mapping problem is approached as a
combinatorial optimization problem, where the optimal solution is found from the
bounded task graph. The task-node mapping, referred to as a task graph, is
modeled as a directed graph TG:

TG = (T,C) (2.1)

where:

T = is a set of tasks
C ⊆ T × T = is a set of channels or events

Channels and events C are associated with a pair (t, t′) where the channel is
said to start at task t and end at task t′, as represented by the adjacency matrix
T × T . An event can be connected to a task similar to a self-loop which starts at t
and ends at t. In practice, however, the middleware supports an event to be
attached to multiple tasks.

Tasks and channels are mapped onto a distributed system’s physically (partially)
interconnected nodes. This hardware network is modeled as an undirected graph
HN :

HN = (N,E) (2.2)

where:

N = is a set of nodes
E = is a set of undirected communication links

Knowing the components of the graph, their properties can be defined. Every
task t has a period and an output message size. Also, every task has a Worst
Case Execution Time (WCET), depending on the node n it runs on. For these
properties, we have:

∀t ∈ T : periodt > 0,msgt ≥ 0, wcettn > 0 (2.3)

The utilisation of a task t on a node n is then defined as:

utn = wcettn/periodt (2.4)

The message size of a task is said to be zero if it has no outgoing edges:

∀t ∈ T =

{
msgt > 0 (t, t′) ∈ C

msgt = 0 otherwise
(2.5)

The traffic between two tasks defines how much data task t on node n is sending
to task t′ per time unit. It is defined as:

traffic(t, t′) =

{
msgt/periodt (t, t′) ∈ C

0 otherwise
(2.6)
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Every node n has a load limit lln:

∀n ∈ N : lln ∈ [0, 1] (2.7)

And every link e has a certain bandwidth be:

∀e ∈ E : be > 0 (2.8)

The path from a node n to a destination node n′ is represented as a set of links
through which a message in a channel needs to pass:

path(n, n′) ⊆ E (2.9)

The goal of the optimisation problem is to find a mapping function m which maps the
set of tasks T onto the set of nodes N , to define a configuration:

m : T → N (2.10)

2.2.1 Configurations

The modelling, verification, and generation of configurations for ScOSA have been
implemented into the application engineer’s workflow by incorporating it into a
program called Virtual Satellite. In Virtual Satellite, based on network and task
information provided by the application engineer, the problem of mapping tasks
onto nodes is translated to an Satisfiability Modulo Theory (SMT) problem [15],
which is then solved by an SMT solver Z3 [16], taking into account a set of
constraints. Additionally, Z3 can create mappings that minimise (or maximise) an
objective, such as minimising network traffic or the computational load on nodes.
Constraints, in particular, are required for the reliable functioning of the distributed
system, while the objectives are mainly used to maximise performance.

When the solver finds a solution that meets all constraints, and with all
objectives minimised or maximised, this solution is considered optimal and is
outputted as a configuration. This method is then repeated for different mission
phases, resulting in different configuration sets. Each configuration set has a
starting configuration (configuration 0), where all nodes are healthy, and the system
is fully operational. Then, a separate configuration is generated for every situation
where one or more nodes have failed. This means that depending on the number
of nodes n in the system, per configuration set, there will be around 2n − 1
configurations without compression [10]. A changing topology is therefore handled
by reconfiguring the system to the topology’s corresponding configuration. This
makes the behaviour of the system for any topology fully defined. The resulting
configurations in a configuration set form a reconfiguration graph. The
reconfiguration graph is modelled as a decision graph, as in Figure 1.1b.
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A configuration holds the following information:

• Node configurations (for all nodes)

• Task mappings (for all tasks)

• Network paths (for all interconnections)

A node configuration determines the role of the node in the configuration, which
can be either a coordinator, observer or worker node. Task mappings define to
which node tasks are mapped, while the network paths define how the tasks are
interconnected. The network path is modelled as a sequence of nodes from the
source to the destination.

2.2.2 Existing algorithm requirements

The existing requirements in [3, 10, 12] for an offline algorithm are implemented as
a set of constraints and objectives, using a task graph model (2.1) and a hardware
network model (2.2). The offline configuration generation aims to find an optimal
mapping function (2.10) for mapping tasks onto the hardware network by adhering
to a set of constraints.

Constraints

The first constraint defines that the total utilization on all nodes n should not exceed
their node limit 2.15:

∀n ∈ N : loadn ≤ lln (2.11)

where:
loadn =

∑
t∈T

m(t)=n

utn (2.12)

The second constraint defines that the total traffic on all links e should not exceed
their bandwidth 2.8:

∀e ∈ E : tte ≤ be (2.13)

where:
tte =

∑
s,d∈N

e∈pathsd

∑
t,t′∈T
m(t)=s
m(t′)=d

tt(t, t′) (2.14)

An optional constraint determines that a task t can only be executed on a set of
compatible nodes St, where:

St ⊆ N (2.15)

This is due to the system’s heterogeneity, which means that some specialized tasks
cannot run on the hardware of all nodes. Task t is compatible with the hardware on
node n if:

compatibletn =

{
1 n ∈ St

0 otherwise
(2.16)
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Objectives

An objective can be defined to determine to which respect a mapping is considered
optimal. The following two objectives have been defined:

• Minimise the total amount of traffic in the network =
∑

e∈E traffice

• Minimise the maximum load among all nodes = maxn∈N loadn

Minimising the maximum load among the nodes can effectively be seen as load
balancing while minimising the total amount of traffic as traffic minimisation.

Note that classical scheduling optimization parameters such as task
schedulability or peak loads have not been considered for the generation of offline
configurations.

Assumptions

With the constraints and objectives for the optimal path problem being defined, it is
important to look at some of the assumptions that can be made on the model, as
this will define the bounds of the system. The system is assumed to consist of a
maximum of:

• 128 nodes

• 200 task

• 200 channels and events

The nodes, tasks, channels and events are all identified by their id. Note that the
channels and events share the same id range, resulting in a maximum combination
of 200 channels and events.

Furthermore, as part of the abstraction of the system model, only the tasks as
defined in T are assumed to consume runtime in the system. Processes of the
system management services and other processes running on the HPNs and
RCNs are not considered. Similarly, it is assumed that only tasks in T generate
traffic over the communication links in E. Because of these assumptions, it is
important to pick appropriate values for the load limit and bandwidth when moving
to a physical system. Also, the network of the system is always assumed to work
reliably, meaning that link failures are not considered.

Finally, node failure detection is performed by the System Management
Services. For the reconfiguration to work correctly, the initial detection of failures
should do so as well. The System Management Services is assumed to always
detect failing nodes correctly upon a heartbeat loss, and correctly reintegrate them
as they recover.
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Design methodology

The online algorithm operates fundamentally differently from the offline algorithm.
Although it solves the same problem, unique metrics need to be considered when
making reconfiguration decisions during runtime. The first step is, therefore, to
determine the additional requirements for an online algorithm, followed by literature
research to find works for a similar situation. Finally, using the literature, a design
and evaluation approach can be defined.

3.1 Additional online algorithm requirements

Determining the requirements for the online algorithm is performed in cooperation
with the DLR. When moving towards the online reconfiguration, additional
parameters need to be considered in addition to the existing ones for the offline
reconfiguration. As the decision-making for an online reconfiguration is performed
during runtime, the computation time of the decision-making needs to be
considered. Furthermore, an online reconfiguration must be as good as the offline
reconfiguration, in the sense that all the constraints, objectives and assumptions
still hold for the online reconfiguration algorithm. The definition of decision-making
time is to be defined and bounded during the design phase.

3.2 Literature research

Online algorithms in distributed systems are not new. To determine what work in
this field has already been done and whether or not a similar problem has already
been solved can be determined by performing literature research. Specifically for
the literature research, two literature research questions are proposed:

• What online reconfiguration algorithms exist for task mapping?

• Which of these algorithms would be most applicable to adhere to the
requirements of an online algorithm for ScOSA?

The first question focuses on the reconfiguration algorithms themselves and how
task mapping can be performed on a running distributed system. With the second

21
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question, the algorithms of the first question are evaluated against the requirements
of an online algorithm in ScOSA to determine their relevance through a literature
review. Systematic literature research will be performed to gather information. A
systematic approach was chosen to acquire literature in a structured, reproducible
way to increase the robustness of the literature review.

3.2.1 Search string

A preliminary search was performed to get familiar with the topic and the amount of
literature that is available while also determining the keywords to determine the
search string. It was found that the field of online or dynamic algorithms is quite
broad, as it is used in several types of distributed systems. The search was thus
limited to only include algorithms that focus on task scheduling or allocation for
heterogeneous systems. The Scopus academic database was used for the search.
The search has been limited to include works from 2015 or newer, which, combined
with the keywords, result in the following search string:

TITLE-ABS-KEY(distributed AND system AND heterogeneous AND
(task* AND (schedul* OR allocat*)) AND ((online OR dynamic) AND
algorithm)) AND PUBYEAR >2014

This search resulted in 207 papers in Scopus on the 8 of March 2023 when
searching in the title, abstract and keywords. Most of the results, however, were
found to be irrelevant, requiring an iterative filtering process.

3.2.2 Filtering

First iteration

In the first filtering iteration, the papers were filtered on their eligibility by scanning
the paper titles and abstracts. Additionally, the papers were roughly sorted based
on the type of distributed system they were aimed at, resulting in the following:

• Cloud computing, 17 articles

• Grid computing, 6 articles

• Edge computing, 4 articles

• Cluster computing, 3 articles

• Distributed computing, 36 articles

After the first filtering iteration, a total of 66 papers remained. The distributed
computing type was used as a general term for papers which were not written for a
specific target, thus resulting in the largest group. It’s apparent that cloud
computing is a popular type of distributed system where online algorithms for task
scheduling are used.



CHAPTER 3. DESIGN METHODOLOGY 23

Second iteration

For the second iteration, the paper abstracts and texts are scanned to filter for the
applicability of the papers. Some of the distributed systems, for example, are too
fundamentally different from ScOSA, making their approach largely irrelevant.
Edge computing, for example, with its loosely coupled, dynamic system topology, is
not compatible enough with ScOSA, while for Cloud computing, often monetary
parameters are considered, which do not apply for ScOSA. After the second
filtering iteration, a total of 29 papers remained.

Third iteration

For the third and final iteration of the papers from Scopus, the full paper texts were
used to determine their relevance to the topic. With the remaining papers from
the second iteration stage already being quite relevant, this filtering iteration is more
strict, focusing on the algorithms that were presented. Only online algorithms should
be considered while also filtering based on the capabilities of the algorithms. After
the third filtering iteration, a total of 14 papers remained. Three common references
of the remaining papers with a high impact have been explored and added as well to
ensure that the development of online algorithms is properly captured. This resulted
in a total of 17 papers that strongly relate to the topic of this project in terms of the
algorithms being discussed.
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Design

This chapter presents the design of the online algorithm, starting with the definition
of additional requirements, followed by the literature research finding and a literature
review. After the literature review, the design approach and finally the algorithm
design are presented.

4.1 Defining additional requirements

Additional requirements have been added for the online algorithm to define and
bound its behaviour during execution. Unique for the online algorithm is that for
each task t it should always make a decision to which node n it should be scheduled
within a bounded time (converge), where time is defined as clock c:

decisiontc ∈ R≥0 (4.1)

Where:
c ∈ R≥0 (4.2)

A decision can either be that a task can be successfully scheduled or that the
algorithm did not find a task mapping which meets all constraints within the
bounded period, resulting in a switch to safe mode. Similar to an offline
reconfiguration, tasks can not be scheduled anymore at some point, as the
required runtime is not available anymore in the system when too many nodes have
failed. At this instance, the system switches to safe mode, where it awaits
instructions from the ground. A decision to schedule a task t between start time c0
and time c of the algorithm is defined as:

decisiont =

{
T → N schedulablet ∧ (c− c0) ≤ boundalgo

safemode otherwise
(4.3)

Where a task t is considered schedulable if there exists a task mapping where the
utilization constraint on node n holds, the traffic constraint on link e holds, and the
hardware is compatible:

schedulablet =

{
1 ∃(T → N) : loadn ≤ lln ∧ tte ≤ be ∧ compatibletn

0 otherwise
(4.4)

24
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After a scheduling decision has been made, it should be applied by
reconfiguring the system. The reconfiguration time of the system’s switch to the
next configuration, in terms of clock c 4.2 is defined by:

reconfigurationc ∈ R≥0 (4.5)

The total reconfiguration time is then determined by the sum of the
decision-making time decisiontc and the reconfiguration time reconfigurationc. The
total reconfiguration time trt for a set of tasks tset is defined by:

trt =
∑
tset∈T
t∈tset

decisiontc + reconfigurationc (4.6)

The total reconfiguration time can then be used to specify the maximum time the
system is allowed to be in a ”state of reconfiguration”, in which the online algorithm
should make the scheduling decisions for all tasks in tset and reconfigure at the end.
The maximum reconfiguration time is defined by the trtb bound:

trt ≤ trtb (4.7)

Finally, to be able to analyse and improve the decision-making of the online
algorithms traceability needs to be added. This will improve the understanding of
the states of the system, as decisions are made by the online algorithm.

Additional system objectives

Using the offline algorithm, the system’s load can be optimally balanced as part of
the objectives. The online algorithm, however, will not always be able to do this as it
is bounded by time. Therefore, as the online variant will likely be less balanced
than the offline one, it is expected that the situation where tasks cannot be
scheduled anymore will occur earlier than for the offline algorithm, influencing the
availability of the system. Availability is an important metric on which space
avionics are judged by the DLR. Therefore, keeping the availability high is added as
the availability maximization objective, which means that the trt should be kept as
low as possible.

4.2 Literature research findings

The findings from the literature research method as defined in (3.2) are discussed
with regard to their respective fields. Also, the algorithms are compared in terms of
their unique capabilities.

Cloud scheduling

Starting with cloud computing, which is one of the largest distributed systems fields
nowadays. In the cloud environment, clients can request services or run
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applications, commonly referred to as tasks, while the underlying infrastructure is
being masked. When a client (dynamically) sends a request, a task is scheduled to
one or several nodes (servers) of the distributed system. For this, online scheduling
algorithms are used, for which a flexible approach has been proposed by Zohrati et
al. [17], which focuses on reducing waiting times and makespan while also
supporting load balancing. It is based on a combination of the greedy and min-max
approaches for scheduling. Karmakar et al. [18] proposed another approach for the
cloud, focusing on makespan to reduce monetary cost and heterogeneity by
introducing a dynamic version of the Heterogeneous Earliest Finish Time (HEFT)
algorithm. The tasks are modelled as a Directed Acyclic Graphs (DAG), similar to
the task model of ScOSA.

Priority based scheduling

Zheng et al. [19] also used DAGs to evaluate an online scheduling algorithm but did
not focus on the cloud specifically. A priority-based scheduling scheme is
presented, aimed at maximizing parallelism. Liu et al. [20] also focuses on
parallelism by implementing an algorithm for precedence-constrained tasks on
heterogeneous systems in general, modelled as a DAG. Similar to priority-based
scheduling, a rank is assigned based on priority criteria. This algorithm uniquely
also considers the readiness of successor tasks to improve the makespan. Sahoo
and Padhy [21] implemented an alternative approach to a priority-based scheduling
algorithm by using a neural network for high-performance computing. The
algorithm consists of two phases: phase one assigns a priority to a task, and the
second phase maps the tasks to the processors. The algorithm optimizes for both
makespan and maximizing processor utilization. Hu et al. [22] also uses a
priority-based algorithm for DAG models but focuses on mixed-criticality systems. A
separation is made between high and low-criticality tasks to determine how
important a deadline miss is. The HEFT algorithm is extended by allowing mixed
criticality and the introduction of virtual deadlines. Canon et al. [23] focuses on
(heterogeneous) high-performance computing in general, looking at the
competitiveness of online algorithms compared to offline algorithms.

Multi-objective scheduling

Krishnan and Thiyagarajan [24] focus on a multi-objective algorithm for fog
computing. They propose an algorithm that also consists of two phases, where the
first phase focuses on task ordering using the HEFT algorithms and the second
phase on task assignment. They use a multi-objective ordering algorithm which
ranks tasks based on a ranking equation. Another multi-objective algorithm is
proposed by Chatterjee and Setua [25], which is also based on the HEFT algorithm
and a ranking function. The algorithm also looks at the deadline satisfaction rate
while optimising for the total network execution time and mean load.
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Alternative scheduling techniques

Xu et al. [26] focuses more on hard deadline constraints aimed at volunteer
computer platforms. In volunteer computer platforms, the nodes in the system
themselves volunteer to execute tasks to a master who can decide to allocate tasks
to them. Here, nodes can thus indicate how many resources they have left. The
online algorithm uses a prediction model to predict the completion risk of each task
based on historical data. Based on this risk, tasks are assigned priorities which are
used to assign them to a node. Looking at the time aspect of an online algorithm,
finding an optimal solution according to objectives is challenging within a bounded
time. Therefore, Eskandari et al. [27] proposed an iterative algorithm combined with
DAG partitioning. It aims at making the search for a solution more efficient by not
searching through the entire state space but through smaller partitions to improve
the scheduler’s efficiency. Ahmad et al. [28] proposes a DAG workflow scheduling
algorithm for heterogeneous computing based on a genetic algorithm to pursue a
schedule with an optimal makespan. Genetic algorithms can search larger state
spaces while ultimately converging in a relatively small time span. The genetic
algorithm is combined with HEFT to reach an optimal schedule in fewer
generations than classical genetic algorithms.

Fault-tolerant scheduling

Mei et al. [29] uses a DAG to research the scheduling problem of tasks for
fault-tolerant heterogeneous systems specifically. Their system architecture
resembles ScOSA in the sense that a similar node hierarchy is used, with
coordinators (masters) and workers. The performance of different online
scheduling algorithms is compared with respect to their makespan and guarantee
of successful execution. Dan et al. [30] focuses explicitly on the fault-tolerant
scheduling problem for heterogeneous onboard systems. They adapted it to suit
the resource constraint characteristics of onboard systems while focusing on a
balance between makespan, reliability, and power consumption. Also, the concept
of backup scheduling is proposed, including convergence monitoring in case of
faults during the reconfiguration.

4.3 Literature Review

As a result of the literature research to answer the first literature research question,
several algorithms have been discovered. It’s clear that a wide variety of online
algorithms are available, all designed for particular heterogeneous distributed
systems. The online scheduling algorithms have been split up into cloud
scheduling, priority-base scheduling, multi-objective scheduling, alternative
scheduling approaches, and finally fault-tolerant scheduling. All of these
approaches have unique properties that can be applied in ScOSA. The algorithms
for the cloud feature some interesting path-searching algorithms, while the
priority-based (heuristic) algorithms show how ranking functions can be applied.
Multi-objective scheduling can be used to optimise for a set of objectives instead of
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one, increasing the balance in the system in terms of load and network usage. The
alternative scheduling techniques show that several other scheduling approaches
can also be feasible while being just as good, if not better, in some aspects. The
fault-tolerant scheduling approaches, however, resemble the scheduling problem of
ScOSA the most and provide some interesting insights into the importance of
successful convergence to keep reliability high. The wide range of online
algorithms indicates that no single algorithm will be best for all scheduling
situations. Since ScOSA will operate in different mission phases with varying
expectations of the system, the performance of an algorithm might be different for
each phase. This must be considered when selecting one or more online
algorithms for ScOSA.

The literature indicates the diversity of heterogeneous distributed systems and
their solutions. The field stretches from loosely coupled cloud systems to more
tightly coupled fault-tolerant systems. It is clear that the fault-tolerant systems
share the most similarities with ScOSA, although this does not mean that the other
systems are irrelevant. Looking at the fault-tolerant scheduling algorithms as
proposed by Mei et al. [29] and Dan et al. [30], it is clear that the focus was more on
the reliability and convergence of the algorithms, where optimisation has been
mostly left out. Also, they do not include parallelism in their algorithms to improve
the system’s efficiency. The other algorithms, however, do include these missing
aspects, such as multi-objective scheduling [24] [25] or the focus on
parallelism [19]. Some solutions focus on the nodes in the system working more
closely together by each node volunteering to execute tasks [26] or by operating
them in smaller partitions [27].

4.3.1 Literature research conclusion

To answer the first literature research question, it was found that the existing
literature provides a lot of concepts that could be useful in an online scheduling
algorithm for ScOSA. A clear gap is that no algorithm exists that provides
fault-tolerance, parallelism and the ability to optimise for multiple objectives in one
solution. Therefore, none of the algorithms found during the literature research will
take full advantage of the capabilities of ScOSA. To answer the second literature
research question, fault-tolerance algorithms come out on top as the most
desirable due to their focus on reliability. Especially the work from Mei et al. [29],
which shares the most similarities regarding system architecture with ScOSA.

As was found in the literature, all of the discovered algorithms can find a
schedule which complies with the constraints of a system, but the way optimisation
is performed differs significantly. Most algorithms implement a ranking function to
optimise for one or multiple goals but do not consider parallelism or availability. The
discovered algorithms are thus only partially suitable to adhere to the requirements
of the online algorithm for ScOSA.
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4.4 Design approach

With none of the discovered algorithms being fully compliant with the requirements
for ScOSA, the design approach is proposed. With many of the important features
required by the online algorithm being partially present in the literature, a
combination of the best of these algorithms is proposed. The combination would
form an entirely new, tailor-made algorithm specifically designed for ScOSA. To
implement this design, two design approaches were identified:

• Simulation Approach

• Functional Approach

4.4.1 Simulation approach

The simulation approach is often described in the literature [17, 19, 21, 22, 24, 25,
28–30]. It is a model-based approach based on an abstraction of the target system
to evaluate certain aspects of the system quantitatively. In an abstraction of the
system, one or more algorithms can be evaluated without the effects of other parts
of the system in a completely controlled environment. This makes evaluating
different aspects of individual algorithms easier while allowing multiple algorithms
to be compared in the same controlled environment. Using the simulation
approach, algorithms can be numerically compared one-to-one to provide a solid
argument on which one is more desirable.

The advantage of this approach is that it can be used to test and compare
multiple algorithms in various controlled situations. As a result, a decision can be
made on which algorithm performs best. The disadvantage of this algorithm is that
due to the model’s abstraction, many real-life effects in the distributed system are
ignored. An example is network delays’ effect on the system, as this is expected to
impact the efficiency of decision-making in the algorithm severely. This means that
even though an algorithm is found to be feasible during a simulation, it provides no
guarantee that it will be so as well on the target system.

4.4.2 Functional approach

The functional approach does not rely on an abstract model of the system but on
an implementation on the target system itself. Here, one or more algorithms can be
evaluated on the actual ScOSA system, allowing the algorithms to be evaluated
with all real-life effects taken into account. The real-life, non-deterministic effects of
the system are expected to degrade the performance of the algorithm. It is difficult
to incorporate these non-deterministic effects accurately into a model, meaning that
the evaluation of an algorithm in the presence of non-deterministic system
behaviour can only be accurately evaluated on the target system itself.

The advantage of the functional approach is that the algorithm can be directly
tested for feasibility, by implementing and testing it on the target system. The
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algorithms can even be tweaked based on the non-deterministic behaviour of the
system, which is not as straightforward to do in a simulation. Additionally, the
implementation on the target system will require less time than first making an
abstract model of the system and implementing the algorithm in ScOSA afterwards.
The disadvantage of this approach is that if the algorithm does not work well on the
target system, it is difficult to determine whether this is due to the real-life effects of
the system or due to the insufficient performance of the algorithm. It is, therefore, a
less desirable approach when an extensive comparison between algorithms needs
to be made.

4.4.3 Preferred approach

The functional approach was selected as the most desirable of the two
approaches. Although the simulation approach is better for comparing online
algorithms, one of the goals of this project is to implement an online algorithm on
the ScOSA middleware so it can be used on the real-life system itself. The
simulation approach would have been a good starting point to move to the
functional approach afterwards, but within the limits of this project, only the
functional approach is feasible. The functional approach has the ability to find a
solution for all the objectives while being directly usable within ScOSA. It is likely
that the solution will not be optimal, but it is capable of finding and solving the
difficulties of an online algorithm in a real-life system. Therefore, the functional
approach is said to provide the most value to the project and the DLR.

4.5 Algorithm design

The online algorithm, designed using the functional approach, is implemented in the
existing ScOSA code base as a part of the System Management Services. Four
services are involved in the detection, mitigation and recovery of the system in case
of an error:

• Monitoring Service (detection)

• Reintegration Service (recovery)

• Reconfiguration Service (mitigation)

• Reconfiguration Manager (detection, mitigation, recovery)

The monitoring service monitors the state of other nodes by periodic
heartbeat messages. If the situation occurs where a node does not answer
anymore, the service will notify the reconfiguration manager about the node failure.

The reintegration services is used upon startup or recovery of a node. It
broadcasts a system information request to all (known) nodes in the system to
determine the set of healthy nodes. If it receives a response containing the node id
of the coordinator, it will request the reconfiguration manager of the coordinator to
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be reintegrated into the system. The node will initialise the system and become the
coordinator itself if no response is received within a timeout period.

The reconfiguration manager (service) is only active on the coordinator node.
It listens to node failures or node reintegration events and will select the next
configuration to reconfigure to accordingly. Once a configuration is selected, it
sends a reconfiguration request to the reconfiguration service of all nodes,
including itself, to keep the system running at its full potential.

The reconfiguration service is used to mitigate node failures by reconfiguring
to a configuration that does not include the failed node. The reconfiguration service
reconfigures the tasks and channels on the node and its role. The configuration id
to reconfigure to is received from the reconfiguration manager.

4.5.1 Algorithm requirements

The four services above need to be adapted to implement the online algorithm. All
other parts of the ScOSA middleware do not need to be changed. The online
algorithm should comply with constraints to ensure dependability, as explained in
(3.1). Unique for the online algorithm is that it should schedule a set of tasks within
the (bounded) maximum reconfiguration time trtb *4.7). Also, the existing
requirements for the offline algorithm still stand, such as for the total utilisation
loadn 2.12 and for the total traffic ttc 2.14. With the decision to go for the functional
approach, the algorithm’s constraints are partially determined by the target
hardware it is designed to run on, and by the DLR.

As the online algorithm will run on the target hardware, the bounds are given
values that are determined by the limitations of this hardware. For the maximum
reconfiguration time trtb (4.7), the value of 4 seconds is assigned by DLR,
determined by previous design goals and internal testing. The load limit lln (2.15
bound is set as a combination of the percentages of the CPU load and memory
load, as it is currently not possible to perform a utilisation calculation with the task
WCETs being unknown. The bandwidth be (2.13) is set by the network interface
with the lowest link speed, as determined by SpaceWire with a link speed of 2
Mbit/s [31]. To ensure that there will always be enough bandwidth for other services
using the network and to avoid network traffic congestion, 80% of the link speed is
set as the bandwidth constraint for ScOSA, resulting in a be of 1.6 Mbit/s. Finally,
the online algorithm should implement traceability to give insight into its
decision-making process and on what information a decision has been based.

4.5.2 Combining algorithms

Several online algorithms were found for heterogeneous distributed systems.
However, none of these algorithms are fully in line with the requirements for
ScOSA. Therefore, a combination is proposed consisting of parts of the algorithms
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that were found in the literature. Utilising the best parts of these algorithms results
in a novel, tailor-made online algorithm that is new within the field of distributed
space avionics.

Fault tolerance

ScOSA is specifically designed to be used in space environments where
dependability and availability are key. Using the offline algorithm, little
communication is required to request the system to switch to another configuration,
minimizing the effects of network failures. For the online algorithm, however,
communication with the rest of the system is far more frequent, increasing the
chances of messages getting lost. The online algorithm, therefore, requires
fault-tolerance, built into its scheduling procedure to ensure that messages have
successfully reached their destination and that the destination performed the
correct action.

Therefore, a fault-tolerant scheduling algorithm is needed, similar to what Dan
et al. [30] and Mei et al. [29] propose. The work from Feng et al. focuses
specifically on the guaranteeing of successful scheduling, which is an important
guarantee to give for the dependability of the system. The guarantee of successful
task execution is changed to a guarantee of a successful task allocation, as it is
currently not possible to check for the successful execution using the Tasking
Framework. Convergence monitoring and the backup schedule that Feng et al.
propose can improve the system’s response time in case a scheduling failure
occurs. Although this would improve the efficiency of the algorithm, it is not
essential for the online algorithm’s functioning and was, therefore, not incorporated.

The fault-tolerance of the scheduling algorithm is seen as the ”shell” that wraps
around the scheduling procedure. It is used to check at several instances that its
execution and communication are working as intended. Upon a detected failure, the
scheduling process should be re-attempted or cancelled based on the type of error
and state of the system.

Events

The online algorithm is designed to act upon the arrival of events. Upon the arrival
of an event, the online algorithm is designed to adapt the system to the changing
situation. The algorithm should respond to the following events:

• New task event

• Scheduling failure event

• Node recovery event

• Node failure event

The new task event is generated when a new task is submitted to be
scheduled which has not been scheduled before. This task can, for example, be
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dynamically loaded during runtime. This could be useful for runtime updates
without interrupting the system.

The scheduling failure event is generated when a task is unsuccessfully
scheduled to a node. This can occur due to insufficient resources being available
on the node or the communication being severed. The task can be rescheduled to
another node, or in case this is also not possible, graceful degradation can take
place or a switch to safe mode. If the scheduling failure event occurred due to a
node failure, the node failure event will be called instead.

The node recovery event is called when a node request reintegration into the
system. When a node has been in the system before, the system can recover to a
state where the node was included. When a new node that has not been seen
before enters the system, the system can optimise to redistribute the load over all
nodes equally.

The node failure event is called when a node failure is detected. If a node fails,
the tasks that were running on it should be scheduled to other nodes. The whole
system should also be made aware of the failure so other nodes no longer attempt
to engage with it.

Algorithm input

As mentioned above, all events will trigger a scheduling procedure using the online
algorithm. The decision-making of the online algorithm will be based on its input
parameters. The input of the online algorithm will be a data structure containing the
following:

• A set of tasks to schedule

• A set of healthy nodes

The set of tasks to schedule contains all the tasks that need to be scheduled. For
example, after a node failure, all the tasks that were running on the failed node will
be put in this set. Next, the set of healthy nodes will contain all the operational nodes
in the system, thus excluding the node that just failed. The online algorithm runs in
its own separate service, sequentially handling sporadically arriving events.

Algorithm phases

The online algorithm has been split into six phases, which it will step through
sequentially. These phases take care of two scheduling responsibilities: assigning
node roles and assigning tasks to nodes. This sequential scheduling approach
makes the algorithm easily adaptable and extendable. The flow chart of the
scheduling phase can be seen in appendix A.1 and is explained, per phase, in
further detail.
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Phase 1: Node roles
The algorithm starts at phase 1 when an event arrives. In this phase, the algorithm
takes care of the assignment of node roles. It attempts to assign the coordinator,
observer 1, observer 2 and worker roles to the healthy nodes in the system. If no
coordinator is present in the system, one is to be selected by the online algorithm.
Ideally, the coordinator is in the ”centre” of the system, with it being as physically
close as possible to all nodes in the network. By placing the coordinator as central
as possible, communication delays are expected to be reduced. To implement this,
a path-searching algorithm is needed. Currently, however, the facilities required to
implement this are not implemented in the SpaceWireIPC, requiring an alternative
coordinator selection method based on the node id. In the alternative method, the
node with the lowest id is automatically selected as the new coordinator from the set
of healthy nodes initially in the system. The node with the second lowest node id
becomes observer 1, and the node after that observer 2. All other nodes then get
the ”worker” role assigned.

The system needs to be aware of the location of the coordinator, observer 1 and
observer 2. If any of these nodes roles change, this update is sent to all nodes in the
system through a partial reconfiguration. If only a change takes place considering a
worker node, other nodes do not need to be made aware of this.

A partial reconfiguration consists of a message that contains the ids of the
coordinator, observer 1, observer 2 and a task id, if a task should be scheduled to
the receiver node. The task id field is ignored when only the node role is updated
through a partial reconfiguration message.

Phase 2: Check cache
After the node roles have been assigned, and if the node is the coordinator, the
algorithm continues with phase 2. In this phase, caching is implemented to provide
quick responses to situations that have already occurred before. For example, if a
system setup with a set of healthy nodes has occurred before, the system can load
the task scheduling scheme it used before for this set. There is, however, a limit on
how many cache entries can be stored due to the limited availability of memory.
The cache is limited by its fixed size and should only contain entries of situations
that occur most frequently. However, providing a mechanism to determine which
entries are most relevant for caching falls outside of this project’s scope, and a
simplified version is implemented instead. The simplified caching mechanism
simply appends all the scheduling decisions it can store until it fills up. In doing so,
the performance of a cache load can still be evaluated with respect to the time it
takes to handle an event. If a cache entry is loaded, no further scheduling needs to
take place, and the algorithm proceeds by moving directly to phase 6 to finish the
reconfiguration. If no cache entry is present, the algorithm continues to phase 3.

Phase 3: Prioritise tasks
Without a cache entry to load, the full program flow through all six phases is taken. In
phase 3, the tasks are prioritised to determine which tasks from the input set should
be scheduled first. First, the set of tasks that still need to be scheduled is copied to a
list. If the list is empty, meaning that there is no more task to schedule, the algorithm
continues with phase 6 to finish the reconfiguration. Otherwise, it continues with
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prioritising the tasks in the list.
Tasks are implemented by ScOSA using the Tasking Framework, as explained

by the model of 2.2. Important to note is that in its current form, tasks in ScOSA
do not implement deadlines and mixed-criticality, ruling out task prioritisation based
on these parameters. There are several other ways tasks can be prioritised, for
example, with the objective of:

• Reducing response time [17, 32]

• Reducing makespan [17, 20, 21, 28–30, 32]

• Reducing execution time [18, 32]

• Reducing resource consumption [18, 26, 27, 29, 30]

• Maximising parallelism [19, 20]

• Balancing multiple objectives [24, 25]

However, the current code base does not support any of these tasking prioritisation
objectives. Several time-related parameters are currently not available through the
Tasking Framework API, such as the arrival time, execution time, and finish time of
(periodic) tasks. Therefore, prioritisation based on response time and execution
time cannot be implemented. Ideally, a multi-objective task prioritisation
mechanism is implemented, focusing on utilising parallelism, reducing resource
consumption and minimising makespan. A multi-objective prioritisation mechanism
can be achieved by utilising a ranking-function to achieve a balance between
multiple parameters that influence the system’s performance.

However, for the evaluation of the online algorithm, the task prioritisation step is
arguably less important than the next phase, where nodes get prioritised. With the
algorithm needing to be evaluated more on feasibility than on performance, it was
decided to opt for a simplified task ranking step. In the current task prioritisation
phase, tasks are prioritised based on the amount of task outputs. A task output is
used as the input of a successor task, meaning that if a task with a lot of outputs is
not running, successor tasks will not be activated due to a missing result from its
predecessor. It was therefore chosen to schedule these tasks first, with the aim of
keeping as many tasks in the system available as possible. With the tasks
prioritised, the algorithm will continue to phase 4.

Phase 4: Prioritise nodes
In the node prioritisation phase, the ”best” node is selected to execute the highest
priority task. Here, the coordinator cannot select the ”best” node from the limited
amount of information it has on other nodes but instead has to gather this information
by requesting it from the them. The coordinator requests each node to calculate its
priority itself rather than doing this itself. This is effectively a parallelisation step by
spreading the priority calculation over the distributed system. Crucially, each node
should implement the exact same, normalised, priority calculation method.
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The normalised priority is defined by the sum of three values:

• Eagerness

• Suppressor

• Accelerator

The eagerness is a positive value that describes how eager a node is to
calculate a task, similar to volunteer computing [26]. The eagerness will be based
on a normalised representation of the available resources in the system, such as
CPU or memory, looking only at the node itself.

The suppressor is a negative value representing the network’s load. If a task
causes an increased load on the network that approaches the load limit, the
suppressor value’s magnitude increases.

The accelerator is a positive value to give a boost to nodes that are deemed as
more desirable. For task scheduling, a task with a predecessor or successor task
on that same node will not cause more traffic on the network and will reduce delays
between tasks. In this case, the accelerator value is rewarded for task locality, to
avoid tasks from being scheduled physically far apart from each other in the
system.

The suppressor and accelerator calculation, however, can currently not be
implemented due to the limited access to the network layer by SpaceWireIPC. This
makes it not possible to access the network load or to determine who the
neighbouring nodes are. Nevertheless, the eagerness calculation already provides
some metrics to prioritise the nodes. The OUTPOST library provides only limited
access to lower-level system information, so only the percentages of CPU and
memory usage are currently used for the eagerness calculation.

After calculating the eagerness value, each node sends back its result to the
coordinator. The coordinator waits for all the responses, limited by a timeout, and
puts them in a list for sorting based on eagerness. The eagerness values are then
used to prioritise the nodes by means of a sorted list, containing the highest priority
nodes in ascending order to be used in phase 5.

Phase 5: Schedule task
The results from phase 3 and phase 4 will be used in phase 5 to schedule the
highest priority task to the highest priority node. This involves a single partial
reconfiguration request directed at the highest priority node, containing the request
to execute the highest priority task. Upon reception by the Reconfiguration Service
of the highest priority node, a dynamic configuration is used to store the task
change before actually applying it in phase 6. Upon an acknowledgement of the
partial reconfiguration, the online algorithm removes the task from the set of tasks
that need to be scheduled and goes back to phase 3 to schedule any remaining
tasks. If there are no more tasks to schedule, the algorithm moves to phase 6 to
make the changes definite.
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If a partial reconfiguration request cannot be applied and a failure is
communicated back to the coordinator, the task should not be removed from the
set. Instead, it should now be attempted to schedule the task to the second highest
priority node. This however, is currently not fully implemented, and instead, the task
is simply not removed from the set of tasks to schedule to let it go through all the
scheduling phases again.

Phase 6: Finish reconfiguration
In this final phase, the changes that have been made by the online algorithm
through the partial reconfiguration request are made definite. Note that all nodes
continued executing tasks in phase 1 to 5, even while receiving partial
reconfiguration requests. In phase 6, however, the affected nodes will temporarily
stop executing to apply the changes that were made by the partial reconfigurations
through a reconfiguration to the dynamic configuration. To do this, the coordinator
sends a reconfiguration request to only the nodes that were affected by the
scheduling process. At this moment, the affected nodes stop executing tasks and
reconfigure to the dynamical configuration. Upon completion, a reconfiguration
successful message is sent back to the coordinator. The coordinator waits for all
reconfiguration successful messages from the node, and finally applies the new
configuration by sending a reconfiguration finish message. At this moment, the
nodes start executing tasks again, making the whole system available again.

Graceful degradation

At some point, when there are a lot of tasks already scheduled and a low number
of healthy nodes are available, the situation will occur that not enough resources
are available to schedule a task. When this situation occurs, the system can either
move to safe mode, as was standard for the offline algorithm or opt for a graceful
degradation of the system. With graceful degradation, decisions can be made to
stop ”less important” tasks to schedule other more important ones. This, however,
would require the availability of a mixed-criticality system, so that the decision of
what tasks are less important than others can be determined by the application
developers. As this is currently not available, a safe mode is used, similar to the
offline algorithm.

Optimisation

With the algorithm focusing on the scheduling of tasks, a different approach is
needed when a node reintegrates into the system. With a reintegrating node, more
resources become available, meaning that nodes with a high utilisation can have
some of their tasks off-loaded to the reintegrating node to create a better overall
balance while also having more opportunities to exploit parallelism. Therefore,
when a node reintegrates into the system, the coordinator should balance the load
over the system. In an operational system, optimisation is important to continue to
get the most out of the system. However, this was considered outside of the scope
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for evaluating the online algorithm, as it would not utilise a scheduling procedure
such as for the online algorithm.

4.5.3 Implementation

Software

The online algorithm and its six phases are implemented in the Online
Reconfiguration Manager in ScOSA. It is a derived class from what was originally
the Reconfiguration Manager. The original offline algorithm is also moved to a
derived class, called the Offline Reconfiguration Manager. The Reconfiguration
Manager is now turned into the base class and contains common functionality
between the offline and online managers. Figure 4.1 shows a visualisation of this
class structure.

Figure 4.1: Reconfiguration Manager inheritance class diagram

The actions taken by the online algorithm, from an event to the reconfiguration
finish message, can be seen in appendix A.2 through an example where the failure
of node B is shown. Upon a heartbeat loss, SpaceWireIPC, the NetworkDispatcher,
and eventually the Online Reconfiguration Manager are called. With Node A being
the coordinator, the node failure is handled by processing the scheduling action. In
the scheduling loop, a partial reconfiguration is used to schedule a task to node
C. The scheduling loop is visualised in more detail in appendix A.3, visualising the
phases of a coordinator scheduling a task to a node.

Traceability

Traceability is achieved by utilising the existing logging capabilities of ScOSA.
ScOSA can output logging information to the terminal or to an output file, which is
ideal for post-processing. Important is that it needs to be clear by operators on the
ground on what information the decisions by the online algorithm are based on.
Therefore, when a scheduling action takes place, the calculated eagerness of all
nodes in phase 4 are logged, followed up by the decision to schedule a task to a
node. Finally, the time to schedule the full set of tasks, from phase 1 up till phase 6
is logged as the decision-making time, together with the reconfiguration time of
phase 6.
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Evaluation

In this chapter, the method of evaluating the online algorithm is presented, focusing
on the test setups and how they should be used for gathering results.

5.1 Evaluation methodology

The functional approach has the advantage that it can be evaluated on ScOSA’s
target hardware. Therefore, to test the online algorithm, a test setup is needed. As
the online algorithm is to be compared to the offline algorithm, the setup for the
offline algorithm can be used. There are already some test programs to
demonstrate and test the existing code base, of which one can be selected. An
example program (threeNodesExample) designed for three nodes, running four
tasks, is selected for its simplicity and well-defined offline configurations. Using this
program, the algorithm’s compliance with the requirements can be evaluated, as
well as the functioning of the overall design of the algorithm.

5.2 Evaluation approach

Two separate test setups have been created to evaluate the online algorithm, a time
setup, focusing on the time and a network setup, focusing on the network traffic
required for an online scheduling procedure. Using these test setups, the feasibility
of the online algorithm can be verified by testing for functionality and compliance with
the constraints. Both setups can be used to compare the online algorithm with the
offline algorithm by providing a constant testing environment. For both test setups,
the selected example program is used.

39
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(a) Test program of the hardware network (b) Test program task graph

Figure 5.1: Test program configuration

Test programs

Different test programs are compiled for the test setups. They are compiled for the
target hardware and to run on a server. The exact same code is used in the test
programs, consisting of four tasks to test the scheduling functionality:

• Task-Id 100: Sender

• Task-Id 101: Receiver

• Task-Id 102: Receiver

• Task-Id 103: Receiver

The four tasks can communicate with each other using a channel with Id 100,
which the receiver tasks use to listen to the output of the sender task, as visualised
by task graph (2.1) of figure 5.1b. All tasks are compatible with all nodes, meaning
that compatibletn in (2.16) will always be true. The hardware network (2.2) consists
of three nodes, numbered 2,3 and 4, interconnected via Ethernet, as shown in
figure 5.1a.

For each test setup, three test programs are used to compare the offline and
online algorithms:

• Test program 1: Offline algorithm

• Test program 2: Online algorithm with caching enabled

• Test program 3: Online algorithm with caching disabled

The two online algorithm test programs can be compared to determine the impact
of caching on time and traffic. Note that the program with the offline algorithm is the
original version DLR uses. It is used to compare the online algorithm programs with
the offline situation to determine whether the performance of the online algorithm is
satisfactory. The offline version test program 1 reconfigures the system according
to the decision graph of figure 5.2. The vertices represent the configuration id, and
the edges represent a failed node. For example, when the system is configured to
configuration 0 and node 1 fails, the system reconfigures to configuration 1. If node
2 then fails as well, the system reconfigures to configuration 4.
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Figure 5.2: Test program 1 decision graph

Test setup 1: Time analysis

The first test setup is used to analyse time. Time is measured by looking at two
delta times, the ”Reconfiguration Delta Time”, which has been defined as
reconfigurationc (4.6) and the ”Decision-Making Delta Time”, which has been
defined as decisiontc (4.1).

The reconfigurationc parameter tracks how long it takes for the entire system to
reconfigure to a new configuration, initiated by the coordinator. The online and
offline algorithms use this parameter to track how long a ”switch” to the next
configuration takes. The new configuration has been dynamically set up for the
online algorithm but essentially contains the same information as a configuration for
the offline algorithm. However, node role changes are faster on the online algorithm
when no tasking changes are made, meaning that a varying reconfigurationc is
expected for the online algorithm.

Besides reconfigurationc, for the online algorithm, additional time is required for
the decision-making of the online algorithm in the coordinator node. The decisiontc

parameter keeps track of how long the coordinator takes to decide and schedule a
set of tasks to a node. Only the online algorithm has a decision-making time, as for
the offline algorithm, the decisions are predetermined in a decision graph 5.2.

In accordance with the proposed algorithm design in (4.5), the coordinator
makes the decision based on the current system state. The coordinator receives
the system’s state during the decision-making time over the network. Due to this
dependency on the network, the network delay is also part of the overall
decision-making time. The parameter is only outputted by the coordinator, as this is
the only node which, at any point in time, is allowed to perform a scheduling
procedure. Finally, reconfigurationc and decisiontc can be used to calculate the
total reconfiguration time trt of (4.6) to compare it with the bound trtb.
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Figure 5.3: Target hardware network containing three HPNs and an RCN

In test setup 1, test programs are run on the actual target hardware, consisting
of a network of three HPN nodes interconnected via Ethernet. By running the test
programs on the target hardware, the real-life temporal behaviour of the algorithms
can be determined. RCNs are not part of the network. The target hardware, with
two carrier boards containing three HPNs and one RCN, can be seen in figure 5.3.

To automatically run each test program on the HPNs individually, a test script
B.1 is used. On each HPN, the script is executed, which runs and kills the test
program using random time intervals to simulate the behaviour of nodes failing and
reintegrating. The test program outputs logging information (traceability) containing
the temporal data to a log file for post-processing. The test script can then be
executed for a configurable amount of time. An execution period of 5 hours for each
test program was selected to collect enough data points for statistical analysis.

Test setup 2: Network analysis

Next to changing temporal behaviour, an increase in network traffic is expected for
the online algorithm compared to the offline algorithm. With the online decision
being based on the real-time information of the system, naturally, more traffic will
be generated to communicate this information to the coordinator, depending on the
number of nodes in the system.

Again, the three test programs are used in test setup 2. They will, however, not be
run on the HPN network but on the server with the x86 64 desktop processor using
internal loop-back routing for the virtual network traffic. Using the server, network
traffic can more easily be gathered, and it has the additional benefit that more virtual
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nodes can be run than just three.
The online and offline algorithms are tested for their behaviour when a single

node fails, which happens to be the coordinator. A failing coordinator is chosen, as
this is the ”worst case” node failure that can occur. With a failing coordinator, a new
coordinator has to be selected. The new coordinator then also needs to schedule the
tasks that were running on the node that failed. The coordinator selection, combined
with the task scheduling, results in the largest amount of traffic.

A network test script is used to start the network capture tool tshark and a
configurable number of nodes. The node with Id 2 is then killed, which triggers a
reconfiguration procedure for both the online and offline cases. During this time,
the network traffic is captured and filtered. The sum of the total traffic tte, as
defined in equation 2.14, is then stored in an output file for post-processing. When
the node 2 fails, the online algorithm will assign the new coordinator role to the
node with the lowest node Id. An example of what the scheduling procedure may
look like when node two fails can be seen in figure 5.4, where after a failure, node 3
becomes the new coordinator and task 100 and 101 are rescheduled to node 4.

After the total traffic (tte) of all the runs has been captured, a comparison can be
made with the bandwidth be (2.13) after converting from bytes to bits. The
bandwidth is defined as bits per second, and we say that the total traffic in bits may
never exceed the number of bits available per second to avoid network traffic
congestion and ensure the quality of other services using the network.

With the ability to scale the system up, a unique opportunity appears to test
the network traffic of the online algorithm for a system with a higher number of
nodes. As the dependency on memory for the offline algorithm, as described in 1.1,
shifted to a dependency on the network, it is important to determine how the network
traffic scales. Additionally, it can be shown that the number of nodes in the system
can scale up without an increase in memory intensity, as is the case for the offline
algorithm.

The network test script is used on the server to create a virtual network with a
configurable amount of nodes and triggers a reconfiguration 25 times. It iteratively
creates a network consisting of 3, 4, 5, 6, 7, 8, 9, 16, 32, 48, 64, 80 and 96 nodes.
A network of 128 nodes was found to suffer from buffer overflows outside of this
project’s scope and was therefore not considered. The network traffic outputs from
tshark are saved, filtered to contain only reconfiguration bytes, and accumulated.
The accumulated result for each of the 25 runs is then stored in an output file. This
data structure is then used to analyse the different test cases statistically.

The test programs 1 and 2 can be used to directly compare the online and offline
algorithms when running a network of three nodes. The ”worst-case” situation is
used for this comparison, with a failing coordinator and all four tasks needing to be
scheduled while having no cache entry available for loading.
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Figure 5.4: Example of a simulated node failure using online scheduling



Chapter 6

Results

The performance of the design is assessed based on the results that have been
gathered by the tests as described in section (5.2), looking at temporal and network
performance. The data is prepared for statistical analysis for each test setup.

6.1 Timing analysis

For the timing analysis, the test outputs from test setup 1 are used.

6.1.1 Reconfiguration time

The reconfiguration times of the three test programs are compared to find the
differences between the offline and online algorithms, of which the results can be
seen in table 6.1. Note that for the reconfiguration time, the output of the test
programs 2 and 3 are combined, as caching showed to have no influence on the
reconfiguration time. The difference in standard deviation between the offline and
online cases can be identified and visualised with a distribution in figure 6.1, where
a bi-modal distribution can be identified for the reconfiguration time of the online
algorithm. This indicates two reconfiguration time ”groups” for the online algorithm,
as is visualised in figure 6.2 in more detail.

Statistic Count Mean Standard Deviation Min Max
Offline 779 80.38 16.61 34 119
Online 2327 139.04 90.33 11 333

Table 6.1: Reconfiguration time (ms)
Count represents the number of reconfiguration occurrences during tests

45
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Figure 6.1: Reconfiguration time online vs offline density plot

Kernel Density Estimation (KDE) with Gaussian kernel
Smoothing bandwidth = 1, with independent function normalisation

Figure 6.2: Reconfiguration time online histogram and density plot

KDE with Gaussian kernel
Smoothing bandwidth = 1
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6.1.2 Decision-making time

For the decision-making time of the online algorithm, one can look at the output of
the test program 2 and test program 3, for the time with cache enabled and cache
disabled. The results can be found in table 6.2. The two cases appear very similar,
as is further backed by the plot in figure 6.3

Statistic Count Mean Standard Deviation Min Max
Non-cached 563 85.34 140.23 3 930
Cached 570 84.92 155.91 3 950

Table 6.2: Decision making time (ms) Cache enabled vs disabled

Figure 6.3: Decision making time cached vs non-cached density plot

KDE with Gaussian kernel
Smoothing bandwidth = 0.75

With independent function normalisation

The two cases appear to be very similar, which would suggest that caching
does not have a noticeable effect on the decision-making time of the algorithm.
However, looking at the results from the test program with caching enabled only,
and separate the cached decisions from the noncached decisions, caching does
appear to have different decision-making time, as can be seen in figure 6.4. The
mean of the test result with cache enabled seemed to be caused by the fact that
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only 108 of the 570 decisions were actually loaded from cache, as can be seen in
table 6.3. With only about a fifth of the decisions being loaded from cache, the
resulting means in (6.2) ended up very similar. Of the 108 cached decisions loaded
from the cache, it can be seen that the mean is about half that of a noncached
decision. Also, the deviation is smaller while having fewer outliers and a smaller
max value, as visible in the box plot of figure 6.5. A difference can thus be
observed when an actual load from the cache occurs, with the probability
appearing higher that the decision-making time is shorter for a cached decision
then for the noncached decision.

Statistic Count Mean Standard Deviation Min Max
Cache load 108 44.94 74.19 5 475
No cached load 462 93.89 168.13 3 950

Table 6.3: Decision making time (ms) cache load vs no cache load

Figure 6.4: Decision making time (ms) cache load vs no cache load density

KDE with Gaussian kernel
Smoothing bandwidth = 0.75

With independent function normalisation
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Figure 6.5: Decision making time (ms) cache load vs no cache load box plot

Finally, the outputs of test program 2 and test program 3 are combined to test for
the decision-making time per node. The table in 6.4 shows the differences between
the nodes. The count here is interesting, as it can be seen that there were more
entries for node 2 and node 3 than for node 4. This can be explained by the way
the coordinator is selected in the test setup, where it is selected based on the lowest
node Id. This will thus make it a lot more likely that when a coordinator fails, the
lowest node Id node will take over as the coordinator, making it less likely that node
4 takes over as the coordinator.

Statistic Count Mean Standard Deviation Min Max
Node 2 518 97.45 160.01 3 950
Node 3 432 88.19 149.55 3 944
Node 4 183 42.09 93.30 3 940

Table 6.4: Decision making time (ms) per node
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6.2 Network traffic analysis

For the network analysis, the test outputs from test setup 2 are used.

6.2.1 Three nodes

Test program 1 and test program 2 are used to compare the online and offline
algorithms one-to-one for a setup with three nodes. The results can be seen in 6.5,
where an increase in the mean network traffic of over three times can be seen. In
figure 6.6, the network traffic distribution can be seen for the three nodes network
of test program 1 and test program 2.

Statistic Count Mean Standard Deviation Min Max
Offline 23 491.43 33.67 436 511
Online 17 1592.94 41.80 1549 1680

Table 6.5: Three nodes offline vs online network traffic (bytes)

Note also that the count does not always correspond with the actual 25 runs, as
tshark was found to have occasional memory errors when starting a capture with
already a lot of traffic going on, resulting in malformed packets. These runs were
discarded and not considered in the statistics.

Figure 6.6: Three nodes offline vs online network traffic density plot

KDE smoothing with Gaussian kernel
Smoothing bandwidth = 1.25

With independent function normalisation
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6.2.2 Scaling

Another important parameter is to see how the network traffic for the online
algorithm scales when the number of nodes in the network increases. Caching is
also expected to affect the amount of traffic, as a cache load does not need to
request the eagerness of the nodes. In figure 6.7, the network traffic can be seen
for increasing nodes, both with caching enabled and disabled. It appears that for
both test program 2 and test program 3, the network traffic increases linearly with
the number of nodes, with the caching-enabled version requiring slightly less traffic.
It thus seems like the changing network state and the subsequent informing of all
the nodes in the system about this generates the most traffic. This is caused
directly by the design decision to make the coordinator stateless and decentralise
more responsibilities to the nodes, like figuring out the channel configuration.

Figure 6.7: Scaling online algorithm with caching enabled vs disabled plot

Linear regression estimation function
Confidence interval = 95%

Besides some outliers, it can be read from figure 6.7 that the amount of network
traffic increases linearly, with a confidence interval of 95%. Looking at the worst-
case situation of test program 3 where caching is disabled, an equation can be
derived 6.2, describing the total traffic in bytes tt as a function of the number of
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nodes n and the number of tasks.

n ∈ R≥3 : t ∈ R≥1 (6.1)

Where:
tt = (c1t+ c2)n− 1564 (6.2)

The coefficients, as denoted by c1 and c2 in equation 6.2, determine the effect of
the number of tasks on the scaling of the network traffic. From figure 6.7 equation
6.3 can be estimated for the test program with 4 active tasks.

tt = 1168n− 1564 (6.3)

It was observed that a varying number of tasks also generated a linear increase
in network traffic, but no time was available to implement the required changes into
the ScOSA code-base and test setup to find the c1 and c2.



Chapter 7

Discussion

The discussion chapter describes and interprets and reflects on the the Design
methodology chapter (3), Design chapter (4) , Evaluation chapter (5) and Results
chapter (6) while highlighting what these results mean within the context of the
project and for DLR. What the results cannot say is also discussed as part of the
limitations of this research and how these are recommended to be addressed in
future work.

7.1 Interpretations

7.1.1 Literature research

The literature research in the early phase of this project was important for identifying
the wide range of literature regarding online algorithms for distributed systems. The
literature showed the diversity of distributed systems and how online algorithms can
be used as a solution for a wide range of situations. None of the literature, however,
proposed a solution for a situation similar to the one of ScOSA. The literature did
provide many design concepts for task prioritisation and node prioritisation, as well
as for fault-tolerance and testing methods. The literature research was an important
initial step towards the algorithm and test setup design. The systematic approach
that was used to search for literature proved to be an effective method for filtering
out irrelevant literature in a reproducible fashion.

7.1.2 Design

Algorithm design

With no existing literature available with an online algorithm that was usable for
ScOSA, the decision to design a new, tailor-made algorithm turned out to be an
effective way to test for feasibility. Designing, implementing, and running the design
in ScOSA proved that an online algorithm is indeed feasible, answering the main
research question in (1.2.4). Thus, The functional approach proved to be effective
in testing for feasibility and provides more direct insight into the algorithm’s
behaviour on the target hardware than the simulated approach could have done.
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Splitting up the algorithm into phases made the algorithm straightforward and
easier to understand. Also, the phases were made with maintainability and flexibility
in mind, meaning that they can be modified individually without having to change
others. The addition of caching, although rudimentary, is seen as a potential solution
to mitigate the downsides of online scheduling. Combined with cache pre-loading,
an optimum between online and offline scheduling can potentially be achieved.

The online algorithm’s behaviour turned out to be satisfactory. It is, however, not
fully implemented yet, meaning that it is also not ready yet for deployment.
Nonetheless, its implementation allows for continued development to prepare the
system for its use case is space. Now that the number of nodes in the system can
be scaled up again, an even higher availability can potentially be achieved
compared to the offline algorithm.

Test setup design

The test setup was essential for evaluating the feasibility and behaviour of the
online algorithm. The nodes of the target hardware, as well as the virtual nodes on
the server, were valuable for testing and gathering results. Performing tests
focusing on the temporal behaviour of the target hardware meant that a one-to-one
comparison could be made between the two algorithms. On the other hand, the
virtual nodes on the server provided additional testing flexibility, allowing the
isolation of the worst-case reconfiguration scheduling actions. The virtual nodes
made test automation easy, allowing several tests to be run for a configurable
number of times. The test programs that were used during the tests proved to be
simple to use and well analysable. Due to them not being complex, it allowed bugs
to be spotted during the implementation phase while simplifying the
post-processing of results.

7.1.3 Time

Worst-case

The time the online algorithm requires is important for the performance of the
system, as it affects the availability. Using the results we can use the worst-case
values for reconfigurationc of 333 ms and decisiontc of 950 ms to get the worst
case total reconfiguration time trt (4.6): 333ms + 950ms = 1283ms. Comparing this
with the bound of 4 seconds as defined in 4.7, we can see that 1283ms ≤ 4000ms
indeed holds. It is, however, higher than the worst-case total reconfiguration time of
the offline algorithm, which is determined by the reconfiguration time. An over
10-fold increase in time can be observed when comparing with the
reconfigurationc of 119ms for the offline algorithm.

Reconfiguration time

An interesting pattern is visible in figure 6.1 of the reconfiguration time, as the form
of a bi-modal distribution can be observed.
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The two modes were found to be caused by network delays and the processing
time of nodes, with the first mode around 75 ms and the second mode around 250
ms. When a reconfiguration occurs, the coordinator will (only) send out a
reconfiguration request to the nodes that need to be changed. It will then wait for
these nodes to respond with a confirmation that their reconfiguration was
successful. Finally, once all confirmations have been received, the coordinator
sends out a finish message to the involved nodes to start the new configuration.

The two modes are caused by waiting for the confirmations of a reconfiguration
after a node failure and a node recovery event. When a node recovers and gets
reintegrated into the system, its Reconfiguration Service will initialise the system
from scratch. This first reconfiguration after a boot-up was found to be
time-consuming, causing all other nodes to wait until that reconfiguration
completes, resulting in the second mode. The first mode is caused by a
reconfiguration after a node failure. Upon a failing node, none of the remaining
nodes need to be initialised from scratch, causing the reconfiguration to be faster. It
was also observed that a larger number of tasks in a reconfiguration causes the
reconfiguration time to increase. This, however, could not be investigated further,
as the algorithm currently has no support to extract the network delay times with a
fine enough granularity.

Decision making time

When looking at the decision-making time, the worst-case situation to calculate the
trt is not the best representation of the online algorithm’s performance. It was
found that the high decision-making times, visible as some of the outliers in figure
6.5, are caused by a complete restart of the network. This happens when not a
single node is alive in the system, and the restarting node must completely set the
system up from scratch. Also, it can be seen that these far outliers are not present
for the cached decision-making. This is because no cached decision can be loaded
when the system restarts, as no cache entries exist yet. As explained in the 4.5,
the online algorithm is designed to adapt and act to changing situations such as
failing nodes. A changing system setup due to nodes exiting or reintegrating into
the network can be quickly and dynamically adapted to. However, setting up a large
system completely from scratch takes a long time.

When looking at the online algorithm’s performance under the circumstances it
is designed for, namely for adapting to system changes in a running system, its
performance is a lot better. By using the mean values for reconfigurationc as
139.08 ms and decisiontc from table 6.2 as 84.92 ms to get trt:
139.08ms + 84.92ms = 224ms. Comparing this to the mean reconfigurationc of
80.38ms for the offline algorithm, a lower increase of about 2.8 times can be seen.

Caching effect

From (6.3), it can be seen that trt can be reduced even more when a cache load
occurs. Instead of performing an entire scheduling procedure for a situation that
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has occurred before, a quick load from the cache can load the scheduling result
from the past with a reduced decisiontc. By using the mean values for
reconfigurationc as 139.08 ms and decisiontc from table 6.3 as 44.94 ms to get trt:
139.08ms + 44.94ms = 184.02ms. Comparing this to the mean reconfigurationc of
80.38ms for the offline algorithm, an increase of about 2.3 times can be seen.

Caching, therefore, does have an impact on the time required by the algorithm.
Still, looking at the distributions in figure 6.3, which compares the test programs
with caching enabled and disabled, it can be seen that both graphs are very similar.
However, this can be explained by how the test was run. When looking at the
count(6.3) for many of the decision-making times were actually the result of a
cache load, we can see that there are more non-cached (462) decisions than
cached decisions (108). This means that a cache load simply did not occur as
often, therefore not having a noticeable impact on the mean decisiontc. However, it
appeared that the decision-making time does get reduced when a cache load
occurs. If an increasing number of cache loads during scheduling can be achieved,
it is expected to reduce the mean decisiontc, resulting in a better overall trt.

One way of increasing the number of cache loads is by implementing
cache-preloading, as suggested in the design chapter 4.5. Common system states
can be pre-calculated, similarly to the offline algorithm, and pre-loaded into the
cache. For common situations, the system can then quickly load an optimised
configuration. The long decision-making time at startup can be solved by
implementing cache-preloading. In the situation where the system is switched on,
with all nodes being healthy, a pre-loaded entry can be loaded to get the system
quickly up and running with a balanced configuration. After the cache entry is
loaded, the online algorithm can continue adapting to dynamic system changes for
which it is designed. Even more so, having the ability to pre-load an optimised
configuration for the most common system configuration, where the entire system
is healthy, will cause cache loads to be far more frequent, resulting in a lower trt,
and thus increasing availability.

Therefore, the trt, under situations it is designed for, is several lower than the
bound trtb in (4.7). The trt for non-cached of 224 ms and cached 184.02 ms is only
a fraction of trtb. Even the worst-case situation of a trt of 1283 ms is well below trtb,
meaning that the online algorithm is compliant with this constraint.

7.1.4 Network traffic

Worst case

Another important metric is the amount of network traffic the online algorithm
generates. With the dependency on the network for decision-making, the additional
traffic that is generated will induce an additional load on the network links. Using
the results, we can use the worst-case tte (2.14) value of 1680 bytes to compare
with the bandwidth be (2.13). By converting the tte to bits by multiplying by eight, we
get a total of 13440 bits. Comparing that with the bound of 1.6 Mbit per second, we
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can see that 13440bits ≤ 1.6× 106bits holds. Comparing this with the worst-case tte
of the offline algorithm of 511 bytes, an increase of about 3.3 times can be seen.
This is acceptable for the test program with a network of three nodes, as it is
several orders of magnitude smaller than be.

The increase in network traffic can be explained by the way system information
is gathered by the coordinator and how a new configuration is applied. For every
task that is to be scheduled, the system requests the eagerness of each node,
followed by a partial reconfiguration request where a task is assigned to a node.
This assignment is also communicated to the other nodes in the system. Finally,
the nodes where a change has been made apply and acknowledge the new
configuration.

Scaling

An interesting situation occurs when scaling the system up by using a larger number
of nodes while performing the exact same scheduling procedure. By doing so, a
linear increase in network traffic becomes apparent as a function of the number of
nodes. This linear increase can be observed by the linear regression estimations in
figure 6.7 where caching is enabled and disabled. The largest system with 96 nodes
had a worst-case tte of 139626 bytes. Converting this tte to bits, we get a total of 1
117 008 bits. This is a big increase compared to the situation with three nodes, but
the bandwidth constraint still holds: 1117008 ≤ 1600000.

Caching

Looking at figure 6.7, it can be observed that enabling caching, comparatively, does
not decrease the amount of network traffic by a lot. Although no eagerness
calculations need to be communicated with the coordinator, a changing task
allocation does need to be communicated to all the other nodes in the system.
Therefore, the large number of system updates, in the form of node role changes
and task re-allocations, are mainly responsible for the increase in network traffic.
Caching in its current form is, therefore, not as effective in reducing network traffic
as it is in reducing decision-making time.

Traceability

Traceability was another requirement for the online algorithm that has been
implemented as a form of logging. For each algorithm step and decision, a trace is
outputted for post-processing. The outputted files by the test programs were crucial
for gathering and analysing results and proved to be an effective way of providing
insight into the inner workings of the algorithm. Two snippets of a trace have been
highlighted in the appendixes. One where a ”worst-case” reconfiguration takes
place, where a coordinator fails, in appendix C.1 and one where a fast
reconfiguration takes place due to a cache load in appendix C.2. It becomes clear
that in the coordinator failure trace, decisiontc is 433ms, while for the cached load,
this is just 6ms. Using these (long) traces, the test results could be successfully
parsed and analysed.
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7.2 Implications

The results show that the designed and implemented online algorithm can indeed
solve the scalability issue of the offline algorithm as formulated by the research
sub-question in (1.2.4). The online algorithm requires more time to run, produces
more network traffic, and cannot optimise as exhaustively as the pre-calculated
offline algorithm. This increase, however, was not desirable and was not found to
violate any system constraints. Nevertheless, it can be stated that the online
algorithm does not perform better in terms of time and network usage compared to
the offline algorithm. It does, however, solve the scalability problem of the offline
algorithm, with the test programs being in line with the online algorithm
requirements in (4.5.1). The online algorithm provides a solution for the offline
algorithm not being able to support systems with a large number of nodes. The
online algorithm, therefore, allows a distributed avionic middleware such as ScOSA
to be usable for larger systems as well.

These results provide a unique view of how COTS hardware can be a potential
solution for demanding environments such as in space. The related work of ScOSA
was already able to show that through software, high dependability can still be
achieved by utilising a distributed system. With the online algorithm, however, the
system can be scaled up even further than was recently possible with ScOSA,
potentially increasing the computational power and reliability of the system even
more. The results show a new insight into what implications an online algorithm
has on a distributed system through the consumption of resources in other aspects.
It contributes to the understanding of fault-tolerant online scheduling algorithms by
presenting a novel solution and highlighting its potential and limitations.

The unique approach of ScOSA is one of the many projects aiming to improve
computational performance in space without sacrificing dependability. These
results, therefore, build on existing evidence that using COTS components in space
is a viable option.

7.3 Limitations

7.3.1 Design

Although the algorithm proved to be functional, not all aspects of the design could
be implemented into ScOSA. Especially the parts of the algorithm where network
information was required were not supported by the current code base and could
not be implemented.

Also, convergence monitoring in phase 5 of the algorithm could have been
implemented to ensure that the procedure of scheduling a task to a node is
successful. If the scheduling fails, the task should be scheduled to the second-best
node in the priority list instead of going through phase 3, 4, 5 again. Scheduling to
the second-best node, combined with convergence monitoring to keep ensure the
scheduling of a task within a specific time, can increase the robustness and
efficiency of the online algorithm.
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Another aspect that influences the robustness of the algorithm is its ability to
deal with failures and corner cases. The online algorithm has been specifically
designed for dealing with node failures, not looking at other potential failures such
as, for example, failing network links. Although these other kinds of failures were
outside of the scope of this project, they should be considered to increase the
dependability of the system.

During testing, it was observed that messages that require an
acknowledgement or a response are often susceptible to sporadically occurring
delays, slowing down the decision-making time and the reconfiguration time of the
online algorithm. It is, however, currently not possible to extract the exact source of
these delays, with it either being in the physical network, SpaceWireIPC or the
ScOSA middleware. Additionally, the network usage has not been optimised, likely
causing more network traffic than necessary. With more traffic needing to be
handled, network delays increase even more. These network delays have a
negative effect on the performance of the algorithm due to its reliance on the
network, resulting in a longer decision-making time.

Cache pre-loading would have been another useful feature to solve the long
scheduling time required during the startup of the system. By pre-calculating optimal
cache entries for common situations, the system can potentially switch to these
entries with speeds similar to the offline algorithm. However, to allow speeds similar
to the offline algorithm in these situations, caching should have been extended to
nodes with other roles besides the coordinator as well. However, due to the cache
pre-loading not having been implemented, the performance of the online algorithm
during start-up remains relatively poor compared to the offline algorithm.

In the node prioritisation phase, nodes should calculate their own priority by an
accumulation of the eagerness, suppressor and accelerator. Currently, only the
eagerness could be implemented due to a missing interface to network information
by the SpaceWireIPC. This limitation makes it impossible to consider the network
state when calculating the priority, potentially leading to link bandwidths being
exceeded. Although such as situation did not occur during tests, in its current state,
there is no mechanism to prevent a task from being scheduled to a node with
already high network usage.

The functional approach that was used to test for feasibility, although able to
prove feasibility, could not be used to find the optimal algorithm design. If the
simulated approach had been used instead, several algorithms could have been
tested to find the most optimal one. Creating just one design on the target
hardware only provides limited tuning capabilities, as testing on the target hardware
does not provide a large degree of flexibility. Therefore, using the functional
approach, it was not possible to explicitly point out what part of the online algorithm
could have been designed better, as only limited control over the target hardware’s
environment was available.
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7.3.2 Test program

The test results in (6) cannot be fully generalisable, as not all parameters of a
ScOSA program have been tested for. The test program uses a fixed number of
four tasks, as explained in (5.2). The number of tasks, however, can increase to a
maximum of 200. Even though single-task scheduling might be relatively fast,
starting up the system with 200 tasks can take an unacceptable amount of time.
Similarly, the network traffic generated to schedule 200 tasks will be very high and
may violate the link bandwidth. Even though the algorithm is designed to make the
system adapt to a changing environment, involving only a limited amount of
changes, defining its exact limitations was impossible with the test program that
was used.

7.3.3 Test setup

Another limitation was the amount of HPN nodes available to test on. With only 5
HPN nodes available, it was known from the beginning that a test on the target
hardware with a large number of nodes was impossible. The virtual nodes that
could be used in the server environment provided a solution for the network traffic
tests, but these values would not be a correct representation of the total
reconfiguration time. A test setup with a larger number of nodes could have
provided valuable information on the temporal scalability of the system.

The absence of heterogeneity in the test setup is another limiting factor in the
generalisability of the results. Heterogeneity is an important strength of ScOSA,
and through the diversity of hardware, improved dependability can be achieved. The
absence of, for example, an RCN in the test setup means that especially a uniform
temporal behaviour with slower hardware in the system cannot be guaranteed.

7.3.4 Network delays

The performance of the decision-making by the online algorithm is known to be
affected by network delays. Delays have been observed during the scheduling
procedure when waiting for an eagerness value and during a reconfiguration when
waiting for a reconfiguration confirmation. This networking information was,
however, not stored for the HPN test setup, and therefore no conclusion can be
drawn.

7.3.5 Exploratory statistics

In the results, exploratory statistics have been used to analyse and visualise time
and network traffic results for exploratory purposes. Although these exploratory
statistics are helpful in identifying patterns, their results cannot be used for a
generalisable conclusion, as not enough parameters have been tested for. Even
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though the test program proved to be compliant with the system’s constraints, this
cannot be guaranteed for a program with a maximum number of tasks.

7.4 Recommendations

7.4.1 Design improvements

Although the algorithm could not be fully analysed using the functional approach,
some design improvements could still be identified. The following aspects, as
previously discussed, should still be implemented into the online algorithm:

• Caching on all nodes to store dynamic configurations.

• Cache pre-loading, to quickly load commonly occurring situations

• Convergence monitoring when scheduling a task to a node

• Implement an interface to get network information from the SpaceWireIPC

• Implement the suppressor and accelerator calculation

Implementing caching on all nodes, together with cache pre-loading, is not difficult
to implement and test. It is recommended that these parts of the design should still
be implemented to make the online algorithm more efficient and faster.
Fault-tolerance mechanisms such as convergence monitoring will further improve
the algorithm’s efficiency and reliability. Finally, implementing an interface to
retrieve network information is an important addition to the node prioritisation
phase of the algorithm. With it currently not being possible to detect if links are
about to violate their bandwidth, it is possible that this will happen for a large
system at some point. Therefore, the large but necessary addition to retrieving
network information through the SpaceWireIPC is also recommended.

7.4.2 Test additional parameters

The test setups used to test for time and network usage proved useful to test the
functionality and feasibility of the algorithm but still left some questions
unanswered. It is recommended that additional tests are added to evaluate the
algorithm, including:

• Heterogeneity, using a network of HPNs and RCNs

• Increase the number of nodes consisting of the target hardware

• Increase the number of tasks by using an improved test program

• Investigate the presence of network delays

• Evaluate the fault-tolerance of the online algorithm in corner cases

• Evaluate the dependability of the system
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An important aspect of ScOSA is the support for heterogeneity through HPNs and
RCNs. Heterogeneity, however, has not been included in the test setup. Also, the
current number of nodes in the test setup should be expanded to be able to perform
tests for the temporal behaviour of the algorithm on a larger system as well. It is
therefore recommended that the test setup using the target hardware is expanded
by introducing RCNs and increasing the number of nodes to a representable number
for a mission. It is also recommended to increase the number of tasks in the test
setup and, ideally, make the number of tasks in the test program configurable. By
being able to configure the number of tasks, the algorithm can be evaluated for its
limitations automatically, possibly even through a continuous integration test. Being
able to define, mitigate and overcome the limitations of the online algorithm early on
will be beneficial for the dependability of the system.

The delays that were observed and expected to be network-related should be
investigated. Although this could be considered outside of the scope of the
algorithm, its dependency on the network makes it worth investigating. It should be
determined where the delay comes from, either the physical network,
SpaceWireIPC, the ScOSA middleware, or the online algorithm. Even though it is
unlikely that the online algorithm is causing these delays, this cannot be said with
certainty.

Fault-tolerance of the online algorithm is also recommended to be evaluated not
just during specific run-time situations but also during corner cases. Evaluating
how the algorithm behaves during situations of an unreliable network, for example,
can provide insight into the robustness of the scheduling procedure, which, again,
impacts the dependability of the system. Finally, the dependability of the online and
offline algorithms should be evaluated and compared. Currently, the term
dependability remains mostly undefined and is not quantifiable. It is recommended
that the tests are to be expanded by defining and testing for a quantifiable metric for
dependability, potentially consisting of the availability and reliability of the system.
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Conclusion

This project aimed to evaluate the feasibility and performance of an online
reconfiguration algorithm as a solution to the scalability issues experienced by the
ScOSA’s offline algorithm.

After determining the specific requirements the online algorithm had to adhere
to, a literature research was conducted to find works that aimed to solve a similar
problem. It was found that even though there exists a diverse range of online
algorithms for distributed systems, none could be applied in ScOSA, mainly due to
the absence of fault-tolerant scheduling mechanisms. A functional design approach
had been chosen to design a new tailor-made algorithm specifically for ScOSA, as
implemented in the ScOSA code-base, to test for feasibility. The novel online
algorithm has been evaluated by testing on the target hardware, where it proved its
feasibility. Even though the algorithm design could not be fully implemented, it was
able to show its potential and can dynamically create a new configuration without
any prior knowledge based on the real-time status of the system. With
maintainability in mind, alterations to the algorithm can easily be made, for
example, to further extend and fine-tune the decision-making process.

The test results showed that instead of increasing memory usage, the online
algorithm requires other resources, such as time and network traffic. For the test
program, the online algorithm was able to schedule tasks to nodes without violating
the time constraint of a reconfiguration while staying within the network traffic
constraint as well. Most importantly, when the number of nodes in the system
scales up, the amount of network traffic increases linearly, compared to an
exponential increase in memory usage in the offline algorithm. Upon starting the
project, it was expected that an increase in time and network usage would take
place. This increase, however, was found to be acceptable. Furthermore, its more
sophisticated fault-tolerance design can potentially achieve higher dependability
than the offline algorithm in its current form. The online algorithm can therefore be
used to solve the problem of memory growth in the offline algorithm while removing
the reliance on pre-determined configurations.
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Appendix A

Software diagrams

A.1 Scheduling phase flow chart
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A.2 Node Failure handling sequence diagram
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A.3 Scheduling procedure sequence diagram



Appendix B

Scripts

B.1 HPN testing script

#!/bin/bash

echo "Integrating node"

while true; do

t="$(shuf -i 30-120 -n 1)"

echo "Node failure in $t seconds"

timeout "$t"s ./threeNodesExample log.txt info $1 $2 $3 $4

t="$(shuf -i 20-40 -n 1)"

echo "Reintegrate after $t seconds"

sleep "$t"s

done
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Appendix C

Traces

C.1 Coordinator failure trace

C.2 Node failure cache load trace
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