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Abstract
Within the field of machine learning the research of Convolutional Neural Networks

(CNN) has been rapidly progressing. A recent development has been representing the
kernels used in the convolutional layers continuously through a separate auxiliary
neural network. A practical application of a CNN is in medical imaging, where the
neural network is trained to detect micro-bubbles in order to map the vascular network.
This work investigates the use of continuous kernel representations for the problem of
micro-bubble localization. This is done by training the neural network on a simulated
ultrasound signal where the result aims to replicate the corresponding ground truth
bubble location. This is done with the PyTorch library through the use of Jupyter
notebooks. The results show that representing the continuous kernel with a small
neural network was successful, but how using large kernels models in turn incorporates
long-term dependencies which are not beneficial for the problem context. Keywords:

SIREN, convolutional neural network,

1 Introduction

Within the field of machine learning, the study of artificial neural networks (ANNs) is a
rapidly progressing topic of research. Convolutional neural networks (CNNs) are a widely
used type of ANN that have been successful in applications such as image classification,
natural language processing, and medical image analysis. As the name suggests, CNNs
contain convolutional layers where a discrete convolution is applied to the input tensor with
a kernel that is represented by a sequence of weights. These weights are a portion of the
parameters that compose the network which are optimized during the networks training.

Recently, researchers have been enthusiastic regarding CNNs as they have shown to
be successful in tasks such as image classification, object detection, and segmentation.
Traditionally, CNNs were not suited to tasks such as sequential modeling and natural
language processing and were instead dominated by Recurrent Neural Networks (RNNs).
Recent research suggests that CNNs are actually able to handle these problems [1], which
helps to resolve known issues with RNNs such as vanishing gradients.

Deep neural networks are used in order to incorporate non-linearity and increase re-
ceptive field size in CNNs. A method used in order to increase the receptive field size is
the dilated convolution, where zeros are embedded in between the kernel weights which
increases the receptive field without increasing the overall number of parameters. A rea-
son for these methods is due to the fact that if one was to use large kernels in a shallow
network, the total parameters and overall network size will greatly increase and quickly
become computationally infeasible.
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In order to overcome the restriction on the size of the kernel, a radically different
approach has been proposed in the paper CKConv: Continuous Kernel Convolution For
Sequential Data [4]. As the title suggests, the approach consists of representing the kernel
by a continuous function. By doing so, increasing the size of the kernels doesn’t impact
the number of parameters and is computationally feasible.

Ultrasound localization microscopy is a technique in medical imaging where ultrasound
signals are processed by identifying the location of micro-bubbles in order to visualize the
underlying vascular structure. This process is difficult due the low concentration of micro-
bubbles in the blood vessels. Recently, the Physics and Fluids group of the University
of Twente have investigated the use of dilated convolutional neural networks in order to
localize micro-bubbles based on raw ultrasound RF data [2]. The aim of my research is
to investigate the process and efficacy of using continuous kernels for the same task of
micro-bubble localization.

2 Related Work

2.1 Neural representations

Several recent investigations in machine learning have been the application of coordinate-
based neural networks, dubbed as neural fields [6]. The aim of such networks is to map
the coordinates (input) to field that is being represented. One such application is the
continuous representations of images.

Following such methods, a small neural network MLPΨ will be used in order to rep-
resent the continuous kernel. The MLPΨ structure will be based on the paper regarding
SIRENs [5]. A SIREN is a fully connected neural network which utilizes sine as the acti-
vation function. The reason for this choice is their reported ability to accurately represent
arbitrary functions.

2.2 Continuous kernel convolutions on sequential data

The research conducted in the paper regarding CKConvs [4] is the main influence for
this research. The network architecture used demonstrates the success of using continuous
kernels representations in convolutional layers.

The experiments conducted in the research consist of classification problems based on
sequential data. One task is image classification on the permuted MNIST data set, where
the model has to determine the integer a handwritten number represents ranging between
zero and nine. Another is classifying spoken words based on audio signals, with a total of
ten possible words.

2.3 Micro-bubble localization

The work done by the Physics of Fluids regarding micro-bubble localization [2] is basis
for the problem investigated in the report. The research includes data generation as well
as micro-bubble localization through a convolutional neural network. The data from the
research will be used as well as other key components.

3 Methods

Describe what the problem is. This is deconvolving the raw RF signal into a signal of
equal length which should have values between (0,1). Over a certain threshold indicates a
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bubble is present, while not present when the value is below the same threshold.

3.1 SIREN representation of continuous kernel

To construct a continuous kernel which can be optimized during training a small neural
network is used. The network that is used is a multi-layer perceptron utilizing sine activa-
tion functions. The model is based on the work done in the paper [5] where it is labeled
as a SIREN network. The SIREN MLPΨ used to represent the continuous kernel has
3-layers, 32 hidden channels, and n out channels with n = Cin ∗Cout for the corresponding
convolution layer in the main network.

The implementation of the kernel function Ψ(x) is formulated below where ϕi is an
intermediate layer of the network. The domains of the functions ϕ1 and ϕ2 are ϕ1 : R 7→ R32

and ϕ2 : R32 7→ R32 respectively. The corresponding weight matrices are R32x1 and R32x32

and both bias vectors are of size R32.
The MLPΨ uses a real valued sequence, defined as {∆τ}, as the input and the output

is the corresponding kernel values. The output consists Cin ∗ Cout real valued sequences
which are used in the convolution.

ϕ1(x) = sin(ω0 · W1x + b1) (1)
ϕ2(x) = sin(ω0 · W2x + b2) (2)
Ψ(x) = W3(ϕ2 ◦ ϕ1)(x) + b3 (3)
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{∆τ}
1-D Convolution
(Cin, Cout) = (1, 32)

1 2 31 32

Multiply by ω0

Sine activation function

1-D Convolution
(Cin, Cout) = (32, 32)

Layer ϕ1

1 2 31 32

Multiply by ω0

Sine activation function

1-D Convolution
(Cin, Cout) = (32, n)

Layer ϕ2

Ψ1(t) Ψ2(t) Ψn−1(t) Ψn(t)

Ψ({∆τ})

Figure 1: SIREN MLPΨ architecture used to represent the kernel

3.2 Sampling of the kernel

In order to sample the MLPΨ for a given convolutional layer, the real valued sequence
{∆τ} is used as the input. The length of the sequence |{∆τ}| = K is equal to the kernel
size for the convolutional layer and is fixed prior to training. The sequence {∆τ} is a
linearly spaced vector from negative one to one. For example, if the kernel is of size five
then {∆τ}Nk = {−1, −0.5, 0, 0.5, 1} is the corresponding sequence.

The output from MLPΨ is a tensor of the shape (1, Cin ∗Cout,K) and is reshaped into
(Cout, Cin,K). This tensor is the kernel used when computing the convolution.

3.3 Convolution

3.3.1 Standard convolution

The convolution operation takes an input X, a weight tensor W, and a bias vector b
in order to calculate the output Y. Symbolically this would be X ∗ W + b → Y. The
size of each are written below where N represents the batch size, Cin the number of input
channels, Cout the number of output channels, and L the signal length. The signal length
is reduced after the operation to L̃ which is present in the output Y.
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X ∈ RN×Cin×L

W ∈ RCout×Cin×K

b ∈ RCout

Y ∈ RN×Cout×L̃

The following notation [X]a,b,c will denote the element (a, b, c) for the respective tensor.
The value for each element l ∈ L̃ is equal to the sum of the product between elements of
the weight tensor W and the input X. This is done for each batch Ni ∈ N and each
output channel Coutj ∈ Cout. The bias bj is added corresponding to the output channel.
The exact computation is formulated in equation 4, where k = K

2 .

[Y]Ni,Coutj ,l
= bj +

Cin∑
c=1

k∑
a=−k

[W]Coutj ,c,a
· [X]Ni,c,(l+a) (4)

In the case of a dilated convolution, with a dilation factor of d, the calculation in
slightly different. It effectively spaces out the elements of the kernel by inserting holes
between the elements. The exact computation is formulated in equation 5, where the only
difference is which elements of X are used.

[Y]Ni,Coutj ,l
= bj +

Cin∑
c=1

k∑
a=−k

[W]Coutj ,c,a
· [X]Ni,c,(l+d·a) (5)

Calculating the convolution between the given weight tensors and the layer’s input
is a straightforward process. This is done with PyTorch’s functional conv1d function
which takes the input tensor and the weight tensor and calculates the convolution. It also
has an argument to add dilation to the convolution. This convolution method is used
when emulating the previous work on micro-bubble localization [2] which is a conventional
convolutional neural network whoch uses kernels of size three, a depth of 12, and dilation
increasing by a factor at each subsequent layer.

3.3.2 FFT Convolution

Due to the large size of some of the kernels used it is imperative to compute the
convolution using the Fast Fourier Transform. This is due to the fact that the computation
time is exceedingly long when using the standard convolution. This is possible by utilizing
the convolution 6 where F is the Fourier Transform.

(x ∗ w) = F−1{F{x} · F{w}} (6)

This process is straightforward when the two signals (x and w) are of equal length.
Unfortunately this is not the case and the w is shorter than the input.

PyTorch has Fourier transform functions to facilitate this but does not have an function
to easily compute the FFT convolution. Instead the python package [3] was used which
adds a PyTorch FFT convolution function. The behaviour of the added function was tested
using representative tensors (PyTorch rand tensors) to confirm that it operates like the
standard convolution.
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3.4 CKCNN architecture

Based on previous naming, [4] the term CKCNN will be used in place of Continuous
Kernel Convolutional Neural Networks.

3.4.1 CKConv layer

The primary difference between the CKCNN architecture compared to a conventional
CNN are the convolutional layers. The CKConv layer acts as the analogue to the standard
convolutional layers. Each CKConv layer is defined by the number of input channels, the
number of output channels, and the kernel size. Each CKConv layer uses its own SIREN
MLPΨ in order to represent the continuous kernel function. During each forward pass the
MLPΨ is sampled with the sequence {∆τ} in order to obtain the kernel used during the
convolution calculation. The forward pass is shown in the diagram 2.

Input
Cin

CKConv MLPΨ

Convolution

Out
Cout

{∆τ}

Ψ({∆τ})

CKConv layer
forward pass

Figure 2: CKConv forward pass

3.4.2 Kernel of size 3 with increasing dilation

The work done by the Physics of Fluids group on micro-bubble localisation [2] utilizes
a convolutional neural network. The architecture is depicted in figure 3 and is composed
of conventional convolution layers, batch normalization, and ReLu activation functions.
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Figure 3: Figure from paper [2] "Architecture of the dilated convolutional
neural network. a) Architecture overview, showing a 1D reflection padding
layer, 1D convolutional layers, batch normalization layers and Rectified Linear Unit
(ReLU) activation layers. b) Detailed illustration of the three-layer block outlined
in a for m = 1, showing the convolution kernel, the stride, and the dilation rate
d. c) Stack of convolutional layers illustrating the exponential expansion of the
receptive field NR as a function of the number of convolutional layers L."

In order to make as direct of a comparison with to this model, the general layout of
is kept the same. The only change made is replacing the convolution layers with CKConv
layers. This is simple to do as the CKConv layer operates in the same way within the
overall network. An important note is that representing small kernels (3 in this case)
through the MLPΨ is not advantageous. The original CNN model consists of 137, 729
trainable parameters while the CKCNN model consists of 636, 497 trainable parameters.

3.4.3 CKCNN architecture for large kernels

Initially, the general architecture of the neural network would follow a similar struc-
ture to the previous work regarding Continuous Kernel Convolutional Networks [4]. To
summarize, the architecture utilized a block structure where the CKBlock was the primary
element. Each CKBlock was composed of two CKConv layers with each followed by layer
normalization, a ReLu activation function, and optional dropout. Also included was a
residual skip around the CKBlock.

The CKCNN architecture used is instead considerably simpler. It consists of an initial
reflection padding layer which is based the the kernel size and pads the input such that the
output signal length remains the same as the input. Afterwards there is a CKConv layer,
batch normalization, and a ReLu activation function. Those three layers are repeated four
times. Finally, a regular Conv1d with a kernel size of one consolidates the hidden channels
of the network into a single output channel. The architecture is shown in figure 4. This
model consists of 28, 392 trainable parameters.

7



CKCNN Architecture

Input

Reflection Padding

CKConv

BatchNorm

ReLu

Repeat
4 times

Conv1D

Output

Figure 4: NEEDS UPDATE

3.5 Training

The loss function used is the dual-loss function described in [2] which is a linear com-
bination of two separate losses. The first is a form of soft label training. It does so by by
calculating the convolution between the model output with a Gaussian kernel Gα = e−αx2

where a decrease in α widens the width of the Gaussian kernel. After the Gaussian kernel
is applied to both the prediction and the ground truth, L1 loss is applied to the soft labels.
The second is a form of hard label training which is the dice loss. The linear combinations
coefficients are defined as ϵ1 and ϵ2 respectively.

Figure 5: Dual loss diagram [2]

During training the value of α remains the same at α = 0.1 and the values of ϵ1 and
ϵ2 are set to ϵ1 = 1 and ϵ2 = 1.6 based on previous findings [2].
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In order to optimize the model parameters the Adam algorithm is used. The total
number of epoch is 1250 with an initial learning rate of 0.001 and the learning rate is
decayed instantly by a factor of 0.1 at epoch 1000.

4 Results

In order to determine evaluate accuracy of the prediction the F1 score is used, which
is the harmonic mean between the precision and recall. TP, FP, and FN represent true
positives, false positives, and false negatives respectively.

P = Precision =
TP

TP + FP
(7)

R = Recall =
TP

TP + FN
(8)

F1 =
2 · P ·R
P +R

(9)

The F1 score calculated is dependent dependent on a localization tolerance ttol and the
threshold φth which is visualized in figure 6.

Figure 6: Visualization of model evaluation [2]

4.1 CKCNN with Dilated Kernels of size three

The overall model structure was described in section 3.4.2 where the only remaining
hyper-paramters pertain to the MLPΨ and the CKConv layer. In this case that only
involves the hyper-parameter ω0. The model was not overly sensitive to the value of ω0,
and the final value used was ω0 = 8.

After training the model, the optimal threshold for each tolerance ({0, 1...8, 9}) is cal-
culated based on the data used during training. The optimal tolerance in this case means
which tolerance leads to the highest average F1 score for all the data. In order to test
the accuracy of the model, the trained model predicts the micro-bubble location based on
960 new data sets using a tolerance of 4 and the corresponding optimal threshold of 0.1.
In order to visualize the data, the F1 score of each data set is displayed in a scatterplot
against the number of micro-bubbles in each data set. Comparing the graphs (figure 7)
the result is comparable to the conventional CNN.

9



(a) Conventional CNN (b) CKCNN

Figure 7: Comparison of results

4.2 CKCNN with Large Kernels

When constructing the CKCNN’s for large kernels there is a large amount of flexibility
in the architecture. The main points investigated are the size of the kernels and the
selection of ω0. The total number of CKConv layers was kept at four throughout testing.

The number of hidden channels within the CKCNN’s was set to 22, as high as possible.
The number of hidden channels could not be increased due to running out of memory on the
GPU (24 GB). This was likely due to the FFT convolution calculation, and is mentioned in
the issues on the GitHub repository [3]. The hidden channels were maximized in order to
add more complexity to the model as the CKCNN architecture suffered from under-fitting.

4.2.1 Experiments on kernel size and ω0

In order to get an idea of the appropriate kernel size CKCNN models were trained
for 1250 epochs with the kernels of size: 65, 131, 263, 527, 1055, and 2111 with the fixed
ω0 = 30 hyper-parameter. In order to get an approximation of the accuracy of these models
quickly the optimal threshold φth for each ttol was calculated and stored with the average
F1 score. This was done on the same data used during training.

The optimal φth and average F1 score for ttol = 4 is shown for each model in table 1.

Kernel Size φth Mean F1

65 0.15 0.866
131 0.15 0.835
263 0.15 0.828
527 0.15 0.809
1055 0.15 0.676
2111 0.1 0.364

Table 1: Optimal φth and mean F1 score for tolerance ttol = 4. The values are
derived from the data used during training.

The kernels of size 131 and 527 were tested further with several values of the hyper-
parameter ω0, namely ω0 ∈ {10, 20, 30, 40, 50, 60, 70, 80}. The models were trained in the
same fashion, along with computing the optimal φth values. The trained models had the
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same optimal φth (for ttol = 4) when tested on the training data for all the ω0 values and
will be used when evaluating the accuracy on new testing data.

Afterwards the trained models predicted the micro-bubble locations on new testing
data (960 signals) using the tolerance ttol = 4 and the optimal φth of the respective model.
The F1 score is calculated for each prediction, and the collection of the scores for each
CKCNN comprises that models F1 score distribution. In order to visualize the F1 scores
for each model the distributions are shown through the violin plots of said distributions
8 where the middle hash marks represent the median of each distribution. The mean and
median values are provided in the table 2.

(a) Violin plot for kernel size 131 (b) Violin plot for kernel size 527

Figure 8: Violin plots of the F1 distributions

ω0 Kernel 131 Kernel 527
Median Mean Median Mean

10 0.912 0.869 0.748 0.723
20 0.917 0.870 0.843 0.822
30 0.871 0.821 0.861 0.829
40 0.902 0.842 0.733 0.686
50 0.911 0.847 0.781 0.737
60 0.886 0.826 0.796 0.746
70 0.868 0.822 0.001 0.007
80 0.870 0.803 0.262 0.247

Table 2: Median and mean of the F1 distributions

5 Discussion

The results from the CKCNN model for the dilated kernels of size 3 matched those for
the conventional CNN. This does not take full advantage of the continuous kernel repre-
sentation as a major benefit of this method is the capability for large kernels. These results
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do support the success of the SIREN MLPΨ architecture in representing the continuous
kernel, and their ability to model arbitrary functions.

The results from the shallow CKCNN models with large kernels are more convoluted.
The CKCNN with the kernel size of 131 performed better than when the kernel was of size
527. This seemed to be the case in general, where increasing the kernel size led to worse
results. One explanation for this is that the most important information for detecting a
micro-bubble at a given point in the signal is the information in close proximity of said
point. This seems to be the opposite of other problems such as image classification (such
as pMNIST), where the neural network benefits from incorporating all of the data to make
a final result.

6 Conclusion

The results show that incorporating long-term dependencies is not beneficial for every
task with one of those being micro-bubble localization. Incorporating long-term depen-
dencies may be beneficial in order to filter out noise patterns present across the entire
signal.
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