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Abstract 

Study objective and motivation 
Of the common side effects experienced by cancer patients, fatigue is the most common across cancer 
types, cancer treatment regimens, and long-term survivors. Previous studies have shown that patients 
still experience fatigue even after treatment, affecting a patient’s health-related quality of life (HRQoL). 
To mitigate the long-term effects of fatigue, prediction models are a tool that could be used to predict 
future fatigue. To the best of the author’s knowledge, a research gap exists to investigate the use of 
machine learning (ML) to predict future fatigue within cancer patients, especially on an individual level. 
Moreover, a research gap exists combining different cancer types when researching the prediction of 
future fatigue.  
 
Therefore, this study aimed to explore the use of ML algorithms to predict the future fatigue of patients 
across patients with colorectal cancer, ovarian cancer, endometrial cancer, bladder cancer, and varying 
types of lymphoma. This consisted of predicting clinically relevant fatigue after 24-36 months, as well 
as change in fatigue scores after said period. To do this, sociodemographic and clinical factors, as well 
as HRQoL and symptoms reported within 12 months after diagnosis were used as predictors. 
Furthermore, data gathered from questionnaires completed within 12 months after diagnosis and within 
24-36 months thereafter were used for prediction. 

Methods 
This study created prediction models predicting the presence of clinically relevant fatigue after 24 to 36 
months (classification) and predicting the change in fatigue for a patient after 24 to 36 months 
(regression). Missing values within predictor variables were imputed. K-Nearest Neighbours (kNN) 
imputation was done on HRQoL score, functioning scores, and symptom scores, while multivariate 
imputation using chained equations (MICE) was done on clinical and sociodemographic factors. This 
separation on imputation method was made to retain the realistic nature of imputed values from missing 
data.  
 
Extreme gradient boosting (XGBoost), support vector machines (SVM), and artificial neural networks 
(ANN) were utilised for prediction model development. A regression model was used as a reference for 
comparison. To avoid overfitting, repeated ten-fold cross-validation was conducted on each prediction 
model. Model outputs were analysed and compared based on different metrics for predicting the 
presence of future fatigue (accuracy, balanced accuracy, precision, sensitivity, and specificity) and 
predicting future change in fatigue (root mean square error, symmetric mean absolute percentage error 
(SMAPE), and R-squared). Furthermore, external validation was conducted and assessed using the 
statistical metrics and calibration plots.  

Results 
When predicting clinically relevant fatigue (classification), all prediction models attained an average 
area under the receiver operating curve (AUC-ROC) value above 0.85 with low standard deviation. 
Further, the reference regression model had the highest average AUC-ROC value (0.934) as well as the 
lowest difference between sensitivity and specificity. This implies a strong preference for the reference 
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regression model to predict the presence of clinically relevant, future fatigue. On the other hand, when 
predicting the future change in fatigue (regression), the prediction models were not able to perform the 
prediction task well. The prediction models produced average R-squared values between 0.019 and 
0.058 and average SMAPE values between 1.66 and 1.787. 

Conclusion 
This study shows that while most ML models predict reasonably well, there is no model that performs 
best on all quality indicators. This study found that the models were able to predict the presence of 
future fatigue well. However, no model was able to predict the future change in fatigue of patients. 
Other than this, this study showed the feasibility of combining multiple cancer types into a prediction 
model. Future research should explore further into future fatigue within patients of multiple cancer 
types, explore the influence of dichotomised symptom outcomes when developing prediction models 
within the cancer domain, and compare the use of different tools measuring fatigue in cancer patients 
for building prediction models using ML. 

Introduction 
Every year, the cancer survival rate increases as standards for treatment and care are continually 
improved. In the Netherlands alone, the number of cancer survivors increased from over 800,000 to 
over 1,000,000 from the 2001-2010 period to the 2011-2020 period [1]. Moreover, although cancer-
related mortality in the Netherlands increased from 42,858 to 44,839 between 2010 and 2015, this 
number plateaued to under 46,000 by 2021 [2]. Currently, in the Netherlands, more than 850,000 people 
have or survived cancer (20-year prevalence as per 1/1/2022) [3]. Together, these statistics show how 
much cancer-related treatment has improved over the past decade, especially in terms of handling the 
increasing prevalence over 20 years. However, even after treatment, cancer patients can still experience 
long-term side effects, such as fatigue, depression, and problems with infertility [4].  
 
Of the common side effects experienced by cancer patients, fatigue is the most common across cancer 
types, cancer treatment regimens, and long-term survivors [5]. Regarding the latter, previous studies 
have shown that patients still experience fatigue even after treatment [4, 6-7], which can have a long-
term effect on a patient’s health-related quality of life (HRQoL) [4]. Long-term fatigue was found in 
cancer patients with, among others, non-Hodgkin Lymphoma [4], endometrial cancer, and ovarian 
cancer [6]. Moreover, significant fatigue was reported across both male and female populations [7]. 
Notably, Poort et al. highlighted the importance of “developing scalable and effective transdiagnostic 
interventions to reduce fatigue” [6]. This is especially the case since fatigue is often persistent in the 
long-term, i.e., 12-24 months after treatment [6]. This implies the prolonged need for supportive care 
handling fatigue even if a patient had successful curative treatment.  
 
To understand the extent of the required supportive care, prediction models is a tool that can be used 
for this purpose. Within a clinical context, prediction models allow a clinician to anticipate and be 
adequately informed of a patient’s need for supportive care [8]. The use of prediction models within the 
cancer domain ranges from predicting cancer survival [9-11] to overall functioning and HRQoL [12-
13]. With respect to providing supportive care to handle long-term fatigue, prediction models provide 
the possibility to predict the future fatigue within a cancer patient. Therefore, clinicians are provided 
with necessary information for assigning supportive care regimens. 
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To be able to predict long-term fatigue using prediction models, these models would need to be fitted 
on a type of measurement. A common method to measure a patient’s fatigue is to use patient reported 
outcome measures (PROM). These are tools or instruments used to measure health-, quality-of-life-, or 
function-related responses directly reported by patients without the interpretation of clinicians or other 
stakeholders [14]. An example of this within the cancer domain is the European Organisation for 
Research and Treatment of Cancer Quality of Life Questionnaire Core-30 (EORTC QLQ-C30), which 
is a questionnaire that assesses a cancer patient’s quality of life, symptoms, and functioning [15]. This 
PROM is particularly applicable since it has been used and validated in previous studies [16-17].  
 
Within cancer research, machine learning (ML) is a tool that is increasingly utilised for developing 
prediction models [18]. ML is defined as algorithms that utilise past data to make predictions or 
decisions [19]. Critically, in developing prediction models, especially when ML is used, attention is 
paid towards generalisability and reproducibility. This implies, respectively, a focus on how the model’s 
output can be reproduced under modified or new conditions, and whether a model can be effective in 
different applications [20]. Previous studies have investigated using ML models to predict cancer 
susceptibility [21-22], recurrence [23-24], and survival [9-11]. Other studies have also used PROMs 
when developing ML models to predict future HRQoL and symptoms of cancer patients [12-13]. 
However, within the literature, there is a greater number of studies focusing on predicting cancer 
susceptibility, recurrence, and survival rather than predicting cancer symptoms, including fatigue. This 
comes despite cancer symptoms being another aspect that could be investigated with regards to the 
development of prediction models [14]. Moreover, of the PROMs utilised for prediction, the EORTC 
QLQ-C30 is not often used within the literature. Hence, this implies a research gap with respect to 
developing prediction models for future fatigue using ML as well as the EORTC QLQ-C30. 
 
In addition, while there are cancer-related registries available for research use [25-26], previous 
research mainly focused on one cancer type for predicting future fatigue [e.g., 12-13, 28]. This narrow 
scope loses the possibility to generalise a prediction model for predicting future fatigue to patients of 
multiple, different cancer types. By developing a prediction model that can be applied to patients of 
multiple cancer types, a helpful tool is provided to clinicians whereby an all-round model can be applied 
into different contexts with ease, simplifying the process for assigning appropriate (supportive) care 
regimes. Next to this, previous studies predicting fatigue utilised a binary variable, often against a 
baseline value, implying that the models predicted the presence of fatigue after a defined period. 
However, there is added value in investigating the change in symptoms of cancer patients, including 
fatigue, since it can contribute to developing tailored care [29-30]. Therefore, a further research gap is 
present with respect to developing a prediction model capable of predicting the future change in fatigue 
of cancer patients. 
 
Following the described research gaps, this study aims to predict the future fatigue of patients across 
multiple types of cancer, namely colorectal cancer, ovarian cancer, endometrial cancer, and various 
types of lymphoma, externally validating such a model with bladder cancer patients’ data. Specifically, 
this study will use data from historic longitudinal cohort studies that utilised the EORTC-QLQ-C30 
questionnaire to investigate whether such patients experience clinically relevant, future fatigue, using 
questionnaires answered within 12 months after diagnosis and between 24 and 36 months thereafter. 
This includes using sociodemographic and clinical factors, as well as HRQoL and symptoms reported 
within 12 months after diagnosis as predictors. Moreover, using the same prediction parameters, this 
study aims to predict the future fatigue change of cancer patients within the two timepoints. To 
understand the extent to which extent ML can be used to achieve these aims, different ML algorithms 
will be compared to a regression model. Ultimately, this study aims to answer the following questions: 
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RQ1. Using external validation, can clinically relevant, future fatigue be predicted for patients with 

different cancer types using clinical factors, sociodemographic factors, and HRQoL and 
symptoms reported within 12 months after diagnosis, using questionnaires answered within 

12 months after diagnosis and between 24 and 36 months thereafter? 
RQ2. Using the same prediction parameters as RQ1 as well as external validation, can the same 

model predict future fatigue change for patients with different cancer types? 
RQ3. How do different ML algorithms compare when predicting the future fatigue of cancer 

patients? 

Methodology 

Data collection 
This study collected data from the Patient-Reported Outcomes Following Initial Treatment and Long-
term Evaluation of Survivorship (PROFILES) registry. PROFILES contains longitudinal 
sociodemographic and EORTC-QLQ-C30 data from various cohort studies of patients diagnosed with 
different types of cancer [24-25]. Treatment- and tumour-related characteristics from the National 
Cancer Registry are also linked to the PROFILES registry [26]. Ethical approval was sought after and 
approved by the University of Twente’s Behavioural, Management, and Social Science (BMS) 
Faculty’s Ethics Committee. This study used data from cohort studies of patients with colorectal cancer 
(PROCORE), ovarian cancer (ROGY), endometrial cancer (ROGY), bladder cancer (BlaZib), and 
varying types of lymphoma (LYMPHOMA) – i.e., Hodgkin lymphoma (HL), non-Hodgkin lymphoma 
(NHL), chronic lymphocytic leukaemia (CLL), and multiple myeloma (MM).  
 
Notably, each cohort study collected its data differently in terms of the time intervals between follow-
ups. Table 1 provides an overview of the data collection timelines for each cohort. Note that for the 
ROGY cohort, although patients’ data was collected in terms of time since treatment, time since 
diagnosis was still recorded. To accommodate the difference in time intervals, patients were selected 
based on the time elapsed between filling out the first questionnaire and filling out the latest follow-up 
questionnaire. Specifically, patients were selected if the time elapsed within this interval was between 
24 and 36 months. Moreover, a patient’s baseline was defined as their first observation, given that said 
patient provided an observation under 12 months after diagnosis. Any patient with a baseline beyond 
12 months after diagnosis was not included. This avoided the possibility for a model to assume that an 
observation from a patient answering immediately after diagnosis had equal weight as an observation 
from a patient answering beyond 12 months after diagnosis. 
 
Table 1. Overview of data collection time intervals for each cohort study. 

Cohort Time since diagnosis  
(months) 

Time since initial 
treatment (months) 

0 3  6  12  18  24  36  0 12  24  
PROCORE 

[31] 
ü   ü  ü     

ROGY [32]        ü ü ü 
LYMPHOMA 

[4] 
ü*   ü*       
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BlaZib [33] ü  ü ü  ü     
 
*LYMPHOMA cohort studies do not have a coherent data collection schedule, only those referenced are shown. 
 
Because of the variety of data made available to this study, the cohorts were separated for model 
development and external validation. The PROCORE, ROGY, and LYMPHOMA sets were used for 
model development, while BlaZib was used for external validation. Aside from being the datasets made 
available for this study’s research, this division has an added benefit of exploring the generalisability 
of the developed ML models through external validation, especially across patients with different cancer 
types. In the following sub-sections, unless specified, the mention of used datasets refer to those used 
for model development.  

Data preparation 
Prior to conducting pre-processing, the prescribed cohort datasets were merged into one dataset and 
each variable was prepared depending on the presence of missing values or differences in categorisation 
method per cohort. All steps described in this section were done using R version 4.2.1. 
 
Firstly, the following steps were done to harmonise the missing entries within the dataset. Note that 
these steps did not omit patient data, rather omitting the datapoint directly: 

1. Categorical variables were initially given an alphanumeric input to indicate a missing entry. 
These entries were omitted. Furthermore, categorical variables with unknown values were 
identified and omitted. Appendix 1 shows which variables had missing values recoded. 

2. Datapoints that were unrealistic were omitted. This was done to ensure the dataset maintained 
a realistic representation of the sample and to avoid overfitting the model [34]. These unrealistic 
datapoints included BMI below the lowest recorded (i.e., BMI < 6.7) [35], BMI above the 
highest recorded (i.e., BMI > 105.7) [36], and an unrealistic recorded time since diagnosis to 
the filling of the questionnaire (i.e., negative time). 

 
Following this, although time since diagnosis was used as the criterion for filtering patients, this data 
was occasionally missing, particularly within follow-up observations. Using the known follow-up time 
intervals of each cohort, missing time since diagnosis values were inputted based on their respective 
follow-up schedules. This step ensured including as many patients as possible for model development 
since 9.4% of the data contained missing time since diagnosis values. This step applied for the 
PROCORE, ROGY, and BlaZib cohorts. Meanwhile, because the LYMPHOMA cohort did not have a 
coherent data collection schedule, the missing time since diagnosis values could not be inputted using 
a well-defined assumption. Therefore, only patients with known time since diagnosis values were 
filtered through. 
 
Aside from this, while the PROCORE dataset coded age as a categorical variable, the LYMPHOMA, 
ROGY, and BlaZib datasets coded age as both a categorical and continuous variable. To harmonise 
this, all ages were categorised under the same rules (see Appendix 1). Afterwards, the LYMPHOMA, 
ROGY, and BlaZib cohorts were checked to see whether they contained patients that had categorical 
age data, but without continuous age data. In such cases, the recorded age category remained. This 
renewed variable was used as the age variable for pre-processing and model development. 
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Data pre-processing 
Clinical-, sociodemographic-, and EORTC QLQ-C30-related variables were used as predictor variables 
for this study. Appendix 2 provides an overview of these variables in terms of what they describe and 
how they were coded within the dataset. Note that the “systemic” variable implied whether a patient 
underwent either chemotherapy, targeted therapy, or immunotherapy. All pre-processing steps were 
done using R version 4.2.1. 
 
For this study, two prediction tasks were conducted. Firstly, the prediction models conducted a 
classification task. This implied that the models sought to predict a label from an outcome variable 
within a finite set [37]. The prediction outcomes from this task implied how well the model was able to 
predict the presence of future fatigue within a cancer patient, answering RQ1. To prepare for this, the 
outcome variable, i.e., the fatigue scores of patients based on the EORTC QLQ-C30, underwent 
categorisation based on the clinical thresholds defined by Giesinger et al. [37]. This dichotomised the 
variable into [0,1], of which “1” indicated an individual having clinically-relevant fatigue. For fatigue, 
the cut-off point was set at 39, implying scores above that indicated the presence of clinically-relevant 
fatigue [38]. 
 
The other prediction task conducted by the prediction models was regression. This implied that the 
models sought to predict a continuous variable [37]. The prediction outcomes from this task implied 
how well the model was able to predict the extent of future fatigue within a cancer patient, answering 
RQ2. For this task, the outcome variable was a patient’s difference in fatigue scores between baseline 
and at endpoint. The baseline was defined as a patient’s first observation, given that said patient 
provided an observation under 12 months after diagnosis, while the endpoint was defined as the 
patient’s fatigue score at the last point they filled in the questionnaire, given that said patient completed 
follow-up between 24 and 36 months. Within the subsequent (sub-)sections of this study, a patient’s 
baseline (Tbaseline) and endpoint (Tendpoint) will use these definitions.  

Multiple imputation 
After examining the collected data, missing datapoints were due to patients inadequately answering the 
questionnaires both at Tbaseline and at Tendpoint. If only complete cases were used, this led to an information 
loss of over 70%. Moreover, a patients’ data at baseline could not be copied over to their Tendpoint or 
vice-versa since this risked an unrealistic representation of the patient, especially since the gap between 
observations is on the long-term. This thusly implied data being missing at random [39]. Hence, to 
avoid a significant information loss [39-40], imputation was done to handle the missing values present 
in predictor variables. EORTC QLQ-C30-related predictor variables were imputed using k-Nearest 
Neighbours (kNN). This implied grouping datapoints based on the proximity of an individual datapoint 
to a defined group [40]. Following the guidelines set by Aaronson et al., only observations whereby less 
than half of the EORTC QLQ-C30 questions were answered were treated as missing [15]. Hence, only 
observations where these occurred were checked and imputed. This process was done using the “VIM” 
package [42] within R version 4.2.1. 
 
On the other hand, missing values present in clinical- and sociodemographic-related predictor variables 
were imputed using multivariate imputation by chained equations (MICE). Quoting from Buuren and 
Groothuis-Oudshoorn [43], this process, “specifies the multivariate imputation model on a variable-by-
variable basis by a set of conditional densities, one for each incomplete variable.” MICE has been noted 
for its good imputation performance, leading to smaller standard errors and narrower confidence 
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intervals [44]. Furthermore, MICE is noted for its ability to retain the realistic nature of imputed values 
over predictor variables that might be related [43]. MICE was conducted using the MICE package 
available under R-CRAN’s repository [45] using R version 4.2.1. The following paragraphs in this sub-
section further describe the MICE process for this study. 
 
Prior to conducting the imputation process, imputer variables were defined. This enabled a pre-selection 
on which variables to use for obtaining prediction values in place of the missing datapoint. Notably, 
EORTC QLQ-C30-related variables were not used to impute the missing datapoints in other variables. 
This ensured that the imputed estimates remain close to the patient- and tumour-related characteristics 
of patients records within the dataset. Aside from this, imputation methods were defined individually 
for each variable. Binary variables utilised logistic regression, non-ordered multinomial variables 
utilised polynomial regression, ordered multinomial variables utilised an ordered logit model, and 
continuous variables utilised predictive mean matching. The latter process obtained a random value 
from an observation regression-predicted value that is closest to the regression-predicted value for a 
missing datapoint [46]. Appendix 3 lists the variables imputed along with their respective imputation 
methods. 
 
Following the imputation process, preliminary analysis was conducted to explore intervariable 
relationships. This was done through pooling together estimates from each imputed dataset and applying 
the Pearson correlation test on the pooled dataset. A correlation plot was created to show the 
correlational relationships between predictor variables and patients’ fatigue scores. 

Model development and internal validation 
Following data pre-processing, the data was split such that the patients’ data at Tbaseline were used as 
training data while the patients’ data at Tendpoint were used as testing data. To ensure the robustness of 
the models’ development, repeated cross-validation was utilised. This validation method was selected 
because of its computational efficiency [47] and advantage over the random split method [48]. This 
process is further described later in this section. For this study, alongside a reference model that utilises 
regression, three ML algorithms were used, namely eXtreme gradient-boosted random forest (XG-
Boost), support vector machines (SVM), and artificial neural networks (ANN). These models were 
selected since each have shown their proficiency as tools for developing prediction models in previous 
studies and literature reviews [9-10, 49-50]. Note that although two different methods for quantifying 
fatigue were used for analysis, this did not impact the model development procedure. All model 
development steps were done using R version 4.2.1. This sub-section will first describe the model 
development process for the reference regression model. Afterwards, the steps taken for developing the 
XG-Boost, SVM, and ANN models are described. 
 
For the reference regression model, firstly, all predictor variables were fitted. Afterwards, variables 
were selected by backwards selection using the Bayesian Information Criterion (BIC). This method 
selected a preferred model by adding a penalty based on the number of predictor variables within the 
model [see 51]. The process started from fitting all predictor variables into the model and after applying 
a penalty on a predictor variable, eliminated said variable from the model. The process ceased when no 
further improvement can be made from eliminating a predictor variable. Neath and Cavanaugh [51] 
further described possible benefits for using the BIC method for variable selection, such as its 
consistency characteristic [52] as well as this selection procedure’s tendency to choose parsimonious 
models, i.e., models with fewer variables. Once a preferred model was selected with optimal predictor 
variables, this model was tuned using ten-times-repeated ten-fold cross-validation. This internally 
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validated the model by using a random subset ten times interchangeably until all observations within 
the training data had been used for validation [47]. This process was repeated ten times such that, in 
total, there are 100 instances where the model had been internally validated.  
 
For each ML model, an initial model was created using all predictor variables and with default settings 
provided by the associated R package (“xgboost” for XG-Boost, “e107c1” for SVM, and “nnet” for 
ANN). The SVM model used a linear kernel for prediction, while the ANN model utilised a simple 
feedforward structure with hidden layers defined during hyperparameter tuning [53]. No further 
variable selection process was done for each ML model because such a process is part of each model’s 
framework [see 24, 28]. Once fitted, each model’s hyperparameters were tuned to optimise model 
performance. Hyperparameter tuning was done using a grid search on the required hyperparameters for 
each model. This implied that, through a grid containing possible ranges of each hyperparameter, every 
possible combination was tested to see which was the most optimal [53]. Each hyperparameter was 
selected based on the set required by the train() function under the “caret” package [see 53 for further 
documentation]. Table 2 lists the hyperparameters tuned for each ML model. Accuracy and root mean 
square error were used to define the most optimal hyperparameters for each model for the classification 
and regression tasks respectively. Alongside this step, each model utilised ten-times-repeated ten-fold 
cross-validation. This prevented any overfitting that can occur with a grid search for hyperparameter 
tuning [54]. Finally, each model was refitted using the most optimal hyperparameters. 
 
Table 2. List of hyperparameters tuned for each ML algorithm. 
Machine Learning Algorithm Hyperparameter Tuned Grid range 
eXtreme Gradient Boosted 
Random Forest  
(XGBoost) 

Maximum tree depth (max_depth) (3, 5, 7) 
Step size of each boosting step (eta) (0.01, 0.05, 0.71) 
Minimum loss reduction required 
to further partition a leaf node 
(gamma) 

(0.1, 1, 10) 

Subsample ratio of the training 
instance  
(subsample) 

(0.5, 0.6, 0.7) 

Support Vector Machine 
(SVM) 

Cost – “C” constant in Lagrange 
formulation (C) 

([0.01, 0.1], [0.2, 1], [2, 
10]) 

Artificial Neural Network 
(ANN) 

Number of hidden units in the 
network (size) 

(5, 6, 7, 8) 

Weight decay (decay) (0.01, 0.05, 0.1) 

Model output, statistical analysis, and external validation 
Since this study utilised multiple imputation, this implied that each model had to be applied to each 
imputed dataset and their respective results pooled [55]. The pooling process is needed since the data 
will differ per imputed dataset. To do this, the analysis results were averaged after a model was applied 
to each imputed dataset, and standard deviations were reported to show the extent of variation. 
Papachristou et al. [see 55, figure 2] provided a description and visualisation in their study on how this 
process is typically conducted. 
 
To analyse the performance of the models, because both a classification and a regression task was 
conducted, different metrics were calculated to assess the predictive ability of each model. This 
provided an answer to RQ3. Firstly, for classification, each model’s accuracy, balanced accuracy, 
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precision, sensitivity, and specificity were calculated and compared. While accuracy and precision 
explain how well a model creates correct predictions, sensitivity and specificity explain a model’s 
discriminative ability [56-57]. On the other hand, balanced accuracy calculates the average accuracy 
among the different classes, thereby avoiding potential bias due to class imbalance [58]. 
 
For each of these metrics, a model can attain a score within the range [0,1], in which a higher score 
implied a better-performing model. Following these metrics, a receiver operating curve (ROC) was 
plotted and the area underneath the curve (AUC-ROC) was calculated. This described how well each 
model retained its predictive performance up to a given threshold, thereby showing their respective 
discriminative abilities [57, 59]. For this metric, a model can attain a score within the range [0.5,1], in 
which a higher score implied a better-performing model. Moreover, an AUC-ROC value above “0.85” 
implied a model had excellently performed the classification task. 
 
As for the regression task, each model’s root mean squared error (RMSE), symmetric mean absolute 
percentage error (SMAPE), and R-squared value were calculated and compared. While the RMSE 
provided an overall picture of the distribution of errors between prediction and observed values [60], 
the R-squared value showed the “proportion of the variance in the dependent variable that is predictable 
from independent variables” [61]. For the R-squared value, a model can attain a score within the range 
[0,1]. Hence, this metric described the goodness-of-fit of the predictor variables within each model. 
Like the R-squared metric, SMAPE informed which model produced a good performance on the 
regression task [51]. For this metric, a model can attain a score within the range [0,2]. While a lower 
value for RMSE and SMAPE indicated the better-performing model, an R-squared value close to “1” 
provided that indication. Additionally, an R-squared value close to “0” and a SMAPE value above “1.5” 
indicated poor performance from a prediction model. 
 
Following statistical analysis, external validation will be conducted based on the steps recommended 
by Ramspek et al. [62]. This applied for predicting both the presence of future fatigue as well as the 
future change in fatigue. Firstly, the prediction models predicted the outcomes on the BlaZib dataset. 
The predicted outcomes are then compared using the same statistical analysis method as previously 
mentioned. This allows for a fair assessment between internal and external validation. Afterwards, 
calibration plots were plotted for each model’s result to visualise a comparison between the predicted 
outcomes are and the observed outcomes [63], in this case, with respect to the BlaZib dataset Through 
these plots, patterns of miscalibration can be identified, which indicated whether the model is 
sufficiently receptive to completely new data [62]. 

Results 

Patient characteristics 
Figure 1 depicts how patients were filtered for analysis within this study. After pre-processing, 511 
patients’ data was used for model development, representing 26.5% of the raw data. Respectively 334 
patients came from the PROCORE cohort (65.4% of cohort data), 162 patients from the ROGY cohort 
(31.7% of cohort data), and 15 patients from the LYMPHOMA cohort (2.9% of cohort data). Table 3 
shows the descriptive statistics of each cohort after pre-processing and imputation, indicating the 
patient-, tumour-, and treatment-characteristics of patients at Tbaseline and at Tendpoint. In describing these 
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characteristics, denoted percentages are with respect to the respective cohorts’ population. Note that for 
the BlaZib cohort, only data at Tendpoint is reported since this was the data used for external validation. 
 
Across the cohorts used for model development (PROCORE, ROGY, and LYMPHOMA), between 
Tbaseline and Tendpoint, there were more patients who were married, were actively drinking alcohol, had 
two or more comorbidities, and underwent systemic therapy compared to radiotherapy. At Tbaseline, the 
PROCORE cohort had a greater proportion of patients with stage 3 cancer (122; 36.5%) while the 
ROGY cohort had a greater proportion of patients with stage 1 cancer (114; 70.4%). Moreover, the 
spread of patients across age groups within each cohort were similar at both Tbaseline and Tendpoint. 
Regarding the proportion of patients with clinically relevant fatigue at Tbaseline, the ROGY cohort had 
the greatest proportion of such patients (76; 46.9%) while the PROCORE cohort had the smallest 
proportion of such patients (46; 13.8%). Meanwhile, at Tendpoint, the ROGY cohort had the greatest 
proportion of patients with clinically relevant fatigue (46; 27.2%) and the ROGY cohort had the smallest 
proportion of patients with clinically relevant fatigue (39; 11.7%). Finally, while patients in the ROGY 
cohort experienced the greatest decrease in fatigue scores (-13.13) and patients in the PROCORE cohort 
experienced the smallest decrease in fatigue scores (-0.25), the difference between patients were similar 
across all the cohorts. 
 
As for the BlaZib cohort, there were a greater number of patients who completed vocational school 
(625; 39.7%), were divorced (1,438; 91.4%), and were actively drinking alcohol (1,147; 72.9%). Like 
the ROGY cohort, patients within the BlaZib cohort were in stage 1 cancer at Tendpoint (930; 59.1%). 
There were a greater proportion of older patients within the BlaZib cohort. A relatively small proportion 
of patients within the BlaZib cohort had clinically relevant fatigue at Tendpoint (185; 11.8%). Finally, 
patients in the BlaZib cohort experienced a small decrease in fatigue scores (-1.53), but the difference 
between patients were in line with the other cohorts. 
 
Figure 1. Patient selection from data collection and final data composition for analysis per cohort. 
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Table 3. Patient-, tumour-, and treatment-related characteristics and patient-reported outcomes at Tbaseline and 
Tendpoint.  

 
Variable 

PROCORE Cohort 
(N = 334, N%) 

ROGY Cohort 
(N = 162, N%) 

LYMPHOMA 
Cohort 

(N = 15, N%) 

BlaZib 
Cohort  

(N =1,573, 
N%)1 Tbaseline Tendpoint Tbaseline Tendpoint Tbaseline Tendpoint 

Education level        
Lower 28  

(8.4) 
28  

(8.4) 
20 

(12.3) 
22 

(13.6) 
4 

(26.7) 
3 

(20.0) 
189 

(12.0) 
Middle 75  

(22.5) 
74  

(22.2) 
120 

(74.1) 
51 

(31.5) 
2 

(13.3) 
2 

(13.3) 
383 

(24.3) 
Vocational 136 

(40.1) 
137 

(41.0) 
22 

(13.6) 
66 

(40.7) 
4 

(26.7) 
4 

(26.7) 
625 

(39.7) 
Higher 95 

(28.4) 
97 

(29.0) 
0 

(0.0) 
23 

(14.2) 
5 

(33.3) 
6 

(40.0) 
376 

(23.9) 
Marital status        

Married 280 
(83.8) 

276 
(82.6) 

134 
(82.7) 

133 
(82.1) 

11 
(73.3) 

10 
(66.7) 

135 
(8.6) 

Divorced 54 
(16.2) 

58 
(17.4) 

28 
(17.3) 

29 
(17.9) 

4 
(26.7) 

5 
(33.3) 

1,438 
(91.4) 

Smoking history        
No, never  104 

(31.1) 
107 

(32.0) 
84 

(51.9) 
80 

(49.4) 
9 

(60.0) 
5 

(33.3) 
263 

(16.7) 
No, but used to 195 

(58.4) 
202 

(60.5) 
60 

(37.0) 
68 

(42.0) 
6 

(40.0) 
9 

(60.0) 
1,135 
(72.2) 

Yes 35 
(10.5) 

25 
(7.5) 

18 
(11.1) 

14 
(8.6) 

0 
(0.00) 

1 
(6.7) 

175 
(11.1) 

Alcohol use        
No, never 57 

(17.1) 
76 

(22.8) 
66 

(40.7) 
60 

(37.0) 
5 

(33.3) 
2 

(13.3) 
266 

(16.9) 
No, but used to 22 

(6.6) 
23 

(6.9) 
22 

(13.6) 
10 

(6.2) 
5 

(33.3) 
7 

(46.7) 
160 

(10.2) 
Yes 255 

(74.1) 
235 

(70.4) 
74 

(45.7) 
92 

(56.8) 
5 

(33.3) 
6 

(40.0) 
1,147 
(72.9) 

Comorbidities        
None 87 

(26.0) 
108 

(32.3) 
43 

(26.5) 
36 

(22.2) 
1 

(6.7) 
2 

(13.3) 
336 

(21.4) 
One 115 

(34.4) 
97 

(29.0) 
73 

(45.1) 
65 

(40.1) 
6 

(40.0) 
5 

(33.3) 
343 

(21.8) 
Two or more 132 

(39.5) 
129 

(38.6) 
46 

(28.4) 
61 

(37.7) 
8 

(53.3) 
8 

(53.3) 
894 

(56.8) 
Quality of life 

(mean, SD) 
76.82 

(18.54) 
79.82 

(17.46) 
70.01 

(18.59) 
75.46 

(18.32) 
72.78 
(9.16) 

75.00 
(17.25) 

80.91 
(12.58) 

Physical 
functioning 
(mean, SD) 

90.69 
(13.65) 

85.96 
(17.27) 

81.91 
(16.68) 

76.69 
(21.36) 

71.56 
(19.59) 

80.89 
(11.78) 

83.82 
(15.32) 
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Role functioning 
(mean, SD) 

87.13 
(22.97) 

87.08 
(23.43) 

71.19 
(25.54) 

76.13 
(29.07) 

68.89 
(31.41) 

78.89 
(22.24) 

85.97 
(19.17) 

Emotional 
functioning 
(mean, SD) 

78.75 
(19.86) 

89.15 
(15.78) 

78.22 
(21.01) 

83.56 
(17.76) 

77.04 
(26.96) 

86.11 
(16.27) 

92.46 
(13.59) 

Cognitive 
functioning 
(mean, SD) 

90.07 
(15.29) 

86.78 
(18.78) 

81.58 
(22.49) 

83.74 
(19.39) 

80.00 
(26.87) 

83.33 
(25.97) 

90.53 
(14.36) 

Social 
functioning 
(mean, SD) 

90.77 
(16.50) 

91.22 
(17.46) 

76.34 
(25.11) 

85.60 
(21.22) 

77.78 
(27.94) 

88.89 
(19.59) 

93.94 
(13.73) 

Fatigue (mean, 
SD) 

17.63 
(22.48) 

17.45 
(20.21) 

40.26 
(24.01) 

26.89 
(25.13) 

33.33 
(20.14) 

24.44 
(15.83) 

20.00 
(17.72) 

Nausea/vomiting 
(mean, SD) 

2.79  
(8.79) 

2.30  
(8.35) 

7.82  
(17.04) 

5.25  
(12.93) 

4.44  
(9.89) 

2.22 
(5.86) 

0.91 
(4.82) 

Pain (mean, SD) 9.58 
(18.62) 

12.38 
(21.49) 

25.10 
(26.35) 

23.97 
(28.11) 

21.11 
(19.38) 

10.00 
(12.28) 

7.41 
(15.69) 

Dyspnoea 
(mean, SD) 

8.68 
(19.36) 

11.28 
(21.05) 

16.87 
(24.99) 

12.35 
(23.17) 

17.78 
(24.77) 

11.11 
(24.12) 

13.99 
(20.88) 

Sleeping 
disturbance 
(mean, SD) 

20.76 
(25.34) 

17.76 
(26.03) 

32.10 
(32.58) 

24.90 
(29.56) 

31.11 
(38.76) 

13.33 
(27.60) 

11.26 
(20.71) 

Appetite loss 
(mean, SD) 

7.49 
(18.64) 

3.89 
(13.96) 

13.17 
(23.01) 

8.64  
(18.78) 

20.00 
(27.60) 

13.33 
(24.56) 

2.67 
(11.71) 

Constipation 
(mean, SD) 

10.38 
(20.47) 

8.28 
(17.93) 

20.58 
(28.57) 

13.37 
(24.49) 

20.00 
(27.60) 

4.44 
(11.73) 

5.40 
(14.69) 

Diarrhoea 
(mean, SD) 

14.87 
(24.68) 

9.18 
(19.73) 

9.88 
(21.31) 

6.58  
(16.96) 

4.44 
(11.73) 

0  
(0.00) 

3.33 
(12.39) 

Financial 
difficulties 

(mean, SD) 

2.30  
(9.56) 

4.09 
(15.06) 

4.53  
(15.09) 

5.14  
(16.85) 

11.11 
(27.22) 

13.33 
(30.34) 

1.91 
(9.69) 

Tumour type        
Non-Hodgkin 

Lymphoma 
    4 

(26.7) 
4 

(26.7) 
 

Hodgkin 
Lymphoma 

    2 
(13.3) 

2 
(13.3) 

 

Chronic 
Lymphocytic 

Leukaemia 

    3 
(20.0) 

3 
(20.0) 

 

Multiple 
Myeloma 

    6 
(40.0) 

6 
(40.0) 

 

Ovarian  
Cancer 

  99 
(61.1) 

99 
(61.1) 

   

Endometrial 
Cancer 

  63 
(38.9) 

63 
(38.9) 

   

Colon Cancer 245 
(73.4) 

245 
(73.4) 
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Rectal Cancer 89 
(26.6) 

89 
(26.6) 

     

Bladder Cancer       1,573 
(100.0) 

Cancer stage2        
1 112 

(33.5) 
112 

(33.5) 
114 

(70.4) 
114 

(70.4) 
0* 

(0.0) 
0* 

(0.0) 
930 

(59.1) 
2 94 

(28.1) 
94 

(28.1) 
10 

(6.2) 
9 

(5.6) 
1* 

(6.7) 
1* 

(6.7) 
407 

(25.9) 
3 122 

(36.5) 
122 

(36.5) 
31 

(19.1) 
32 

(19.8) 
1* 

(6.7) 
1* 

(6.7) 
137 

(8.7) 
4 6 

(1.8) 
6 

(1.8) 
7 

(4.3) 
7 

(4.3) 
0* 

(0.0) 
0* 

(0.0) 
99 

(6.3) 
Age category at 

questionnaire 
       

15 – 45  6 
(1.8) 

4 
(1.2) 

2 
(1.2) 

0 
(0.0) 

1 
(6.7) 

0 
(0.0) 

11 
(0.7) 

46 – 50 6 
(1.8) 

0 
(0.0) 

9 
(5.6) 

4 
(2.5) 

0 
(0.0) 

1 
(6.7) 

13 
(0.8) 

51 – 55  29 
(8.7) 

16 
(4.8) 

17 
(10.5) 

12 
(7.4) 

3 
(20.0) 

1 
(6.7) 

37 
(2.4) 

56 – 60  43 
(12.9) 

28 
(8.4) 

25 
(15.4) 

29 
(17.9) 

1 
(6.7) 

2 
(13.3) 

71 
(4.5) 

61 – 65  64 
(19.2) 

66 
(19.8) 

42 
(25.9) 

26 
(16.0) 

0 
(0.0) 

1 
(6.7) 

135 
(8.6) 

66 – 70  59 
(17.7) 

108 
(32.3) 

26 
(16.0) 

38 
(23.5) 

4 
(26.7) 

2 
(13.3) 

237 
(15.1) 

71 – 75  86 
(25.7) 

63 
(18.9) 

22 
(13.6) 

29 
(17.9) 

2 
(13.3) 

2 
(13.3) 

355 
(22.6) 

76 – 80  29 
(8.7) 

32 
(9.6) 

15 
(9.3) 

17 
(10.5) 

3 
(20.0) 

3 
(20.0) 

291 
(18.5) 

81 - 85  12 
(3.4) 

17 
(5.1) 

4 
(2.5) 

7 
(4.3) 

1 
(6.7) 

3 
(20.0) 

236 
(15.0) 

85 < 0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

0 
(0.00) 

187 
(11.9) 

Sex        
Male 209 

(62.6) 
209 

(62.6) 
0 

(0.0) 
0 

(0.0) 
7 

(46.7) 
7 

(46.7) 
*** 

Female 125 
(37.4) 

125 
(37.4) 

148 
(100.0) 

148 
(100.0) 

8 
(53.3) 

8 
(53.3) 

*** 

BMI (mean, SD) 26.57 
(3.82) 

23.29 
(1.92) 

28.71 
(6.99) 

28.83 
(5.84) 

27.84 
(4.25) 

27.49 
(5.22) 

26.40 
(5.62) 

Time since 
diagnosis (mean, 

SD) 

0.07  
(0.05) 

2.06  
(0.06) 

0.24  
(0.13) 

2.33  
(0.20) 

0.79  
(0.21) 

3.22 
(0.42) 

3.33 
(32.24) 
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Underwent 
systemic 

treatment 

101 
(30.2) 

101 
(30.2) 

50 
(30.9) 

50 
(30.9) 

13 
(86.7) 

13 
(86.7) 

110 
(7.0) 

Underwent 
radiotherapy 

49 
(14.7) 

49 
(14.7) 

27 
(16.7) 

27 
(16.7) 

2 
(13.3) 

2 
(13.3) 

206 
(13.1) 

Has clinically-
relevant fatigue 

46 
(13.8) 

39 
(11.7) 

76 
(46.9) 

44 
(27.2) 

4 
(26.7) 

2 
(13.3) 

185 
(11.8) 

Fatigue 
difference 

(mean, SD) 

0  
(0.00)** 

-0.25 
(21.34) 

0  
(0.00)** 

-13.13 
(25.51) 

0  
(0.00)** 

-5.93 
(22.56) 

-1.53 
(20.31) 

 
Data was averaged between imputed datasets. 1Patient characteristics from the BlaZib are only recorded for 
Tendpoint. 2Reported cancer stage combines the TNM and Ann Arbor cancer stages.*Cancer stages for patients with 
indolent Non-Hodgkin Lymphoma cannot be determined, thus imputation was not done. **Fatigue difference at 
Tbaseline is measured null since no fatigue change has occurred. ***Sex for BlaZib cohort is unreported due to 
oversight from the author. 
 
Figure 2 shows a correlation plot between the predictor variables used in this study and the fatigue 
scores of patients using Pearson’s correlation test. Correlation values are colour-coded with more 
positive relationships highlighted in green while negative relationships highlighted in brown. 
 
From the figure, it is evident that most of the predictor variables have a statistically significant 
relationship with fatigue. Most obviously, patients with more fatigue had lower levels of role 
functioning (-0.67; p = <0.01), HRQoL (-0.62; p = <0.01), physical functioning (-0.58; p = <0.01), and 
social functioning (-0.55; p = <0.01). On the other hand, patients with more fatigue had higher levels 
of pain (0.58; p = <0.01), appetite loss (0.50; p = <0.01), and dyspnoea (0.50; p = <0.01). Finally, no 
statistically significant correlation was found between fatigue scores and smoking history (0.02; p = 
0.60), cancer stage (0.03; p = 0.49), and marital status (0.03; p = 0.42). 
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Figure 2. correlation plot of predictor variables against fatigue. 
 

 

Predicting presence of clinically relevant future fatigue 
For predicting the presence of fatigue after 24-36 months, all four prediction models attained average 
AUC-ROC scores above 0.85 with low standard deviation. Figure 3 shows sample ROC curves for each 
prediction model. Table 3 shows the statistical output of each prediction model, averaged between each 
imputed dataset. Note that no standard deviation was reported with the reference regression model since 
it was negligible.  
 
The reference regression model had the highest average value for accuracy (0.908), balanced accuracy 
(0.818), sensitivity (0.682), and the area under the ROC curve (0.934). This indicates that with respect 
to these metrics, the ML models were not able to perform better than the reference regression model. 
Next to this, the XGBoost model has the highest average precision (0.812; SD = 0.054) and specificity 
(0.978; SD = 0.009), performing better than the reference regression model on these metrics. Next to 
this, the SVM model also performed better than the reference regression model with respect to precision 
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(0.775; SD = 0.036) and specificity (0.963; SD = 0.01). Notably, despite a very high average specificity, 
the XGBoost model has the lowest average sensitivity value (0.434; SD = 0.099). Finally, the ANN 
model has the lowest average value for accuracy (0.878; SD = 0.012), precision (0.651; SD = 0.048), 
specificity (0.927; SD = 0.017), and AUC-ROC (0.902; SD = 0.01).  
 
Table 3. Statistical output of each prediction model when predicting presence of future fatigue (RQ1). 

Statistical  
Metric 

Regression 
(Reference)  

XGBoost Support Vector 
Machine 

Artificial Neural 
Network 

Accuracy 0.908 
 

0.884 
(± 0.01) 

0.9 
(± 0.006) 

0.878 
(± 0.012) 

Balanced Accuracy 0.818 
 

0.706 
(± 0.045) 

0.78 
(± 0.033) 

0.787 
(± 0.018) 

Precision 0.759 
 

0.812 
(± 0.054) 

0.775 
(± 0.036) 

0.651 
(± 0.048) 

Sensitivity 0.682 
 

0.434 
(± 0.099) 

0.597 
(± 0.075) 

0.647 
(± 0.042) 

Specificity 0.955 
 

0.978 
(± 0.009) 

0.963 
(± 0.01) 

0.927 
(± 0.017) 

AUC-ROC 0.934 
 

0.933 
(± 0.007) 

0.932 
(± 0.002) 

0.902 
(± 0.01) 

Each metric was calculated per imputed dataset and averaged. Standard deviations are shown in brackets. 

 
Figure 3. Receiver operating curves for each prediction model.  
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Each imputed dataset was plotted and overlayed onto the overall chart. 

Predicting change in fatigue 
With regards to predicting the extent to which fatigue changes for a patient after 24 to 36 months, all 
models produced a better performance in terms of the RMSE and R-squared compared to the reference 
regression model. Furthermore, the SVM model performed the best since it has the lowest average 
SMAPE (1.66; SD = 0.013) and highest average R-squared (0.058). However, all the prediction models 
obtained average R-squared values close to “0” as well as average SMAPE values above “1.5”, 
indicating poor performance from the prediction models. Table 4 shows the statistical output of each 
prediction model when predicting the difference in fatigue scores of each patient between Tbaseline and 
Tendpoint, averaged between each imputed dataset. 
 
Table 4. Statistical output of each prediction model when predicting future change in fatigue (RQ2).  

Statistical  
Metric 

Regression 
(Reference) 

XGBoost Support Vector 
Machine 

Artificial Neural 
Network 

Root Mean Square 
Error  

26.045 
(± 0.024) 

24.887 
(± 0.313) 

25.347 
(± 0.186) 

24.046 
(± 0.058) 

Symmetric Mean 
Absolute Percentage 

Error 

1.669 
(± 0.001) 

1.725 
(± 0.023) 

1.66 
(± 0.013) 

1.787 
(± 0.082) 

R-squared 0.019 
 

0.054 
(± 0.003) 

0.058 
 

0.029 
(± 0.013) 

Each metric was calculated per imputed dataset and averaged. Standard deviations are shown in brackets. 

External validation 
Figure 4 depicts the calibration plots from external validation using the BlaZib cohort on all the 
prediction models. Note that these calibration plots were done with respect to predicting the presence 
of clinically relevant, future fatigue since this prediction task produced favourable statistical outputs. 
Based on the calibration plots, the XGBoost and ANN models performed better than the reference 
regression model. This better performance is seen through the distance between the calibration line and 
the “ideal” calibration line. Next to this, while the reference regression model had a greater tendency to 
underpredict, i.e., produce predictions smaller than the actual probabilities, the XGBoost and ANN 
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models had a greater tendency to overpredict, i.e., produce predictions greater than the actual 
probabilities.  
 
Figure 4. Calibration plots of prediction models predicting presence clinically relevant, future fatigue after 
external validation.  
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Discussion 
The aim of this study was to investigate the future fatigue of such patients given that questionnaires are 
started within 12 months after diagnosis and completed in between 24 and 36 months. In doing so, two 
prediction tasks were conducted, namely predicting the presence of clinically relevant fatigue using 
dichotomised outcomes and predicting the change in fatigue from Tbaseline to Tendpoint. This section 
interprets the results per prediction task and elaborates on a general comparison between prediction 
models as well as with respect to clinical application. 

Predicting presence of clinically relevant future fatigue 
In the case of predicting the presence of clinically relevant future fatigue at 24-36 months after 
diagnosis, all the prediction models performed very well since they each had an AUC-ROC value of 
above 0.85. Moreover, because of the stable prediction output across the imputed datasets, one could 
argue that this shows the strength in using any of the ML algorithms [40]. Despite so, the strong 
performance of the reference regression model suggests that predicting the presence of future fatigue 
does not require an overtly complex model. Within this study, after BIC selection, 13 predictor variables 
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were used in the final reference regression model. Amongst others, this included education level, 
alcohol use, HRQoL at  Tbaseline, cancer stage, and BMI.  
 
With respect to the ML models when predicting the presence of clinically relevant future fatigue, the 
ANN model is better with respect to discriminative ability. This is because the ANN model had the 
smallest difference between average sensitivity and specificity values of the ML models (0.28 – ANN, 
0.366 – SVM, 0.544 – XGBoost). Thus, the ANN model performed better in properly predicting patients 
with clinically relevant fatigue as well as those without than the other ML algorithms [56]. Within a 
clinical application, the difference between sensitivity and specificity values provides further insight to 
the AUC-ROC value since a more reliable assessment can be carried out to predict whether a patient 
will have future fatigue [64]. This echoes findings from previous studies that noted the strength of 
ANNs in terms of their discriminative ability when used as prediction models [64-65]. Therefore, within 
the clinical context, the ANN model might be preferred for predicting the presence of fatigue in the 
future within cancer patients. 

Predicting change in fatigue between Tbaseline and Tendpoint 
In the case of predicting the change in future fatigue of between Tbaseline and Tendpoint, all the prediction 
models performed very poorly. This is shown through the high average SMAPE and low average R-
squared values, both of which indicate poor performance in terms of making predictions comparable 
with actual outcomes [61]. Following the attained results, this would imply that the prediction models 
are better at predicting the presence of fatigue within a cancer patient in the future but is unable to 
predict how much more (or less) fatigued said patient that would be. To the best of the author’s 
knowledge, not many studies have explored whether this difference in performance holds within the 
context of predicting other symptoms or HRQoL within cancer patients. Future research would, 
therefore, be needed to investigate and verify whether this is the case. 

Comparing prediction models 
Regarding the external validation process, the prediction models within this study performed somewhat 
well in receiving new, unseen data. During the process itself, statistical outputs obtained from the 
prediction models were in line with those obtained from internal validation. This suggests that the model 
can perform on a consistent level with new data [62]. However, the models tended to either underpredict 
or overpredict when fitted with data from the BlaZib cohort. This deviance implied that the models 
showed signs of underfitting [62]. This could be explained by how the development data consisted of 
fewer patients than the external validation data, implying that the model tested on data with relationships 
that could have been missed within the development data. 
 
With respect to the prediction models within this study, interestingly, the ANN model did not 
exceedingly outperform the XGBoost and SVM models. While the ANN model showed very good 
discriminative ability when predicting the presence of clinically relevant, future fatigue, the model 
performed poorly in comparison to the XGBoost and SVM models when predicting the future change 
in fatigue. This contradicts the findings of various studies that supported ANN as being the preferred 
algorithm for prediction models on cancer patients [21, 65, 68]. Moreover, notably, ANN has been 
remarked as the gold standard algorithm within cancer research [24]. However, this level of 
performance might instead be explained by ANN’s strength as an algorithm that is able to explain 
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complex relationships [69]. Therefore, the ANN model is more capable to simplify the relationship 
between the predictor variables and clinically relevant fatigue.  
 
Within a clinical context, prediction models can be applied in the cancer domain to decide on the type 
of treatment and supportive care needed for a patient. Such an approach is thusly able to meet a patient’s 
needs as well as reduce healthcare costs [70]. In the case of fatigue, this implies using a prediction 
model to predict the extent to which a patient will experience fatigue and whether it is clinically relevant 
enough to require supportive care. Moreover, this implies deciding on care that reduces the potential 
for persistent levels of fatigue as a side effect [71]. It is, therefore, beneficial for a clinician to have a 
prediction model that not only can accurately predict whether a patient is going to experience clinically 
relevant fatigue, but also sufficiently predict patients who will not experience such levels of fatigue. 
Hence, this study noted and elaborated on the influence of the difference between the sensitivity and 
specificity values of each prediction model towards the attained AUC-ROC values. 
 
Aside from this, there is also a benefit to investigate the extent to which a patient’s fatigue level changes 
over time so that care can be better adapted to a patient [72]. Due to this, it is, therefore, unfortunate 
that the prediction models could not satisfactorily conduct the regression task with this objective in 
mind. However, the difference in performance level between the classification and regression tasks 
might indicate the complexity behind predicting future fatigue. This point has been raised in previous 
studies [73-74] and could be further due to the complex nature of fatigue since it is dependent on the 
patient [73]. This complex nature is also applicable to other long-term symptoms, such as depression 
and anxiety [4]. Next to this, depending on the task at hand, ML applications can perform differently 
even when given the same set of parameters (i.e., dataset, predictor variables, etc.) [75]. This might be 
due to the complexity of the task required [76], or due to different hyperparameter requirements during 
optimisation [77]. Hence, this could lead to different outcomes for different prediction tasks. Therefore, 
future research is needed to explore the extent of the difference in prediction outcomes for ML 
algorithms conducting different prediction tasks. This includes predicting other long-term symptoms 
using similar approaches as outlined in this study. Moreover, future research is also needed to develop 
better models that can predict the extent of future fatigue experienced by patients. 

Limitations 
Like all pieces of research, this study has its limitations. First is a limitation related to the data collection 
process for this study. Although covering multiple cancer types is useful for the generalisability and 
ubiquity of ML applications in the cancer domain [20], within larger datasets that incorporate equal or 
more types of cancers, if the data is skewed towards a specific cancer type, this will influence the 
development of prediction models in favour of said cancer type [78]. Within this study, this did imply 
that certain predictor variables could not be used within the prediction models. For example, treatment 
types inapplicable to haematological cancer types could not be used as predictor variables, despite their 
common usage in other cancer types. This included having whether a patient underwent surgery and 
chemotherapy as a predictor variable. On top of this, the low number of patients included from the 
LYMPHOMA cohort further raised doubts regarding the possibility of producing prediction models for 
multiple cancer types. However, in this case, it was decided to still include the LYMPHOMA cohort to 
ensure generalisability remained. Therefore, future research is needed to see whether issues relating to 
including data from patients of multiple cancer types persists when predicting clinically relevant, future 
fatigue. 
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Next to this, the strong performance of the reference regression model in predicting the presence of 
future fatigue could also be a result of the predictor variable selection method. Due to the punitive 
nature of the BIC method, a highly favourable prediction model from this method could have led to 
information loss through omitting predictor variable. Appendix 4 shows the results of applying the 
reference regression model for predicting future fatigue but using LASSO [79] and Ridge [80] for 
predictor variable selection. These methods were selected since they have shown to be capable to 
conduct variable selection while minimising prediction error [79]. Following these results, the reference 
regression model still performed better than the ML models when predicting future fatigue. However, 
the LASSO selection method produced more favourable results than BIC selection, since it has a higher 
AUC-ROC value (0.941; SD = ± 0.001) and smaller difference between average sensitivity and 
specificity (0.113). Interestingly, the LASSO method produced a final model with more predictor 
variables than the BIC method. Therefore, the LASSO method could have been used within this study 
since it produced more favourable outputs and included more predictor variables, implying a reduced 
risk of information loss. 
 
Following this, the extent of skewness within a dataset could also influence the subsequent analysis. 
This study mitigated this issue by conducting ten-times-repeated ten-fold cross-validation for internal 
validation. This method was chosen due to its computational efficiency as well as reliability for 
application across different prediction tasks [47, 48]. However, other internal validation methods could 
be used for this step. For example, Steyerberg et al. recommended the use of bootstrapping for internal 
validation of a logistic regression model [48]. Moreover, a randomised grid search, whereby every 
possible hyperparameter combination within a defined parameter space is used for tuning [53], could 
have been used during hyperparameter tuning. This search method has been noted to cover the 
parameter space well during model development [53]. Within this study, a streamlined method was 
preferred for developing the prediction models prior to conducting the prediction tasks. Hence, because 
the bootstrapping method was shown to be preferable only for classification tasks, it was not selected. 
In future research, this method could be used as part of investigating the future fatigue of cancer patients. 
However, the influence bootstrapping has on predicting the difference in fatigue with respect to 
computational efficiency should be considered. 
 
Secondly, although the prediction models within this study classified future fatigue quite well, in 
clinical application, the entire process can still be left up to a clinician’s and patient’s interpretation. 
This is because, despite using a literature-based clinically-relevant threshold for dichotomising fatigue 
scores, patients and clinicians can still have a different interpretation on  the level of fatigue experienced 
[38]. To add insight on this aspect, this study conducted additional analysis to predict the changes in of 
a patient’s future fatigue. Yet aside from achieving poor results, the interpretation of the scores attained 
during clinical application could still differ depending on the individual [38, 81]. Overall, this difference 
in interpretation influences the type of supportive care needed. Therefore, within the domain of 
predicting future symptoms within cancer patients, this aspect should be considered. 
 
Another aspect that could support the clinical interpretation of the models is through the variable 
selection step during model development. While the predictor variables within this study’s data were 
collected with support from previous literature [26], this study utilised ML methods to select predictor 
variables for the prediction models. Although the merits of this approach have been discussed in 
previous literature [24, 28, 51], a literature-based or combined approach could have been conducted. In 
this case, predictor variables are selected based on aspects previously found to be influential for 
predicting fatigue. This would make the prediction models more relatable and understandable for 
clinicians during application since the predictors are selected based on clinical opinion. Therefore, 
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future research could investigate either using a literature-based approach for variable selection or a 
mixture of ML- and literature-based variable selection when developing prediction models for future 
fatigue. 
 
Third is a limitation regarding the method used for multiple imputation. This study utilised kNN and 
MICE for imputing EORTC QLQ-C30-related variables, and clinical- and sociodemographic-related 
variables respectively. Aside from the possibility of utilising other imputation methods, e.g., missForest 
[82], since the follow-up schedules of each cohort study were known, missing data could have been 
imputed on this basis. Notably, imputation using kNN uses this as one of the criteria for clustering [42]. 
However, this was only done on the time since diagnosis variable. This was not extended to the other 
cohorts because of the incoherency of the follow-up schedules within the LYMPHOMA cohort. Yet 
this could be mitigated by imputing the cohorts separately and only combining them during analysis. 
Therefore, should future research decide to use the same patient cohorts, not only different imputation 
methods can be considered, but also imputing the cohorts separately and investigating the effect this 
has on the analysis. 

Conclusion 
A research gap existed in the literature regarding the use of ML models to predict long-term cancer 
symptoms on an individual level in patients with different types of cancer. This study showed that while 
most ML models predict reasonably well, there is no model that performs best on all quality indicators. 
Moreover, no model was able to predict the future change in fatigue of patients. For use in the clinical 
setting, the reference regression model is preferred, because of its ability to distinguish between patients 
with and without fatigue 24-36 months after treatment. Other than this, this study showed that 
combining multiple cancer types into a single model was feasible, which is beneficial for use in a 
clinical setting. Future research should explore the influence of internal validation and multiple 
imputation methods when developing prediction models for this purpose.  
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Appendix 1 
Variables with missing values but coded differently: 

Variables Names Coded as… 
“education” 99 

“smoking” 99 
“alcoholuse” 99 

“stage_annarbour” “ ” or “.” 
“age_questionnaire_cat” 1 

“age_diagnosis_cat” 1 

Appendix 2 
Variables used during analysis, their descriptions, and their types. 

Variable Names Description Variable Type 
“education” Patient’s highest education level Categorical (>2 factors, 

ordered) 
“partner” Patient’s marital history Categorical (2 factors) 

“smoking” Patient’s smoking history Categorical (>2 factors) 
“alcoholuse” Patient’s history of alcohol use Categorical (>2 factors) 

“comorbidities” # of patient’s comorbidities Categorical (>2 factors, 
ordered) 

“tumortype” Patient’s tumour type Categorical (>2 factors) 
“stage” Patient’s cancer stage Categorical (>2 factors, 

ordered) 
“radiotherapy” Whether a patient underwent 

radiotherapy 
Categorical (2 factors) 

“Age_questionnaire_cat” Patient’s age category at the 
time of questionnaire 

Categorical (>2 factors, 
ordered) 

“bmi” Patient’s BMI at the time of 
questionnaire 

Continuous 

“time_diagnosis” Time since diagnosis to the 
filling of the questionnaire 

Continuous 

“systemic” Whether a patient underwent 
systemic treatment 

Categorical (2 factors) 

“sex” Patient’s sex Categorical (2 factors) 
“ql” Patient’s quality of life score 

based on EORTC-QLQ-C30 
Continuous 

“pf” Patient’s physical functioning 
score based on EORTC-QLQ-
C30 

Continuous 

“rf” Patient’s role functioning score 
based on EORTC-QLQ-C30 

Continuous 

“ef” Patient’s emotional functioning 
score based on EORTC-QLQ-
C30 

Continuous 
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“cf” Patient’s cognitive functioning 
score based on EORTC-QLQ-
C30 

Continuous 

“sf” Patient’s social functioning 
score based on EORTC-QLQ-
C30 

Continuous 

“nv” Patient’s nausea/vomit score 
based on EORTC-QLQ-C30 

Continuous 

“pa” Patient’s pain score based on 
EORTC-QLQ-C30 

Continuous 

“dy” Patient’s dyspnoea score based 
on EORTC-QLQ-C30 

Continuous 

“sl” Patient’s sleep disturbance score 
based on EORTC-QLQ-C30 

Continuous 

“ap” Patient’s appetite loss score 
based on EORTC-QLQ-C30 

Continuous 

“co” Patient’s constipation score 
based on EORTC-QLQ-C30 

Continuous 

“di” Patient’s diarrhoea score based 
on EORTC-QLQ-C30 

Continuous 

“fi” Patient’s financial impact score 
based on EORTC-QLQ-C30 

Continuous 

Appendix 3 
Methods to impute variables with missing values. 

Variable Names Imputation Method 
“education” Ordered polynomial regression 

“partner” Logistic regression 
“smoking” Polynomial regression 

“alcoholuse” Polynomial regression 
“comorbidities” Ordered polynomial regression 

“stage” Ordered polynomial regression 
“radiotherapy” Logistic regression 

“bmi” Predictive mean matching 
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Appendix 4 
The table below shows the statistical outputs of the reference regression model using the BIC, LASSO, 
and Ridge methods for predictor selection. Statistical outputs from a regression model without predictor 
variable selection is also included. The accompanying figure depicts the ROC curve of the models using 
the LASSO method, Ridge method, and with no selection method. 
 

Statistical  
Metric 

Reference 
 (BIC Selection)  

Full model 
(Without selection) 

LASSO 
Selection 

Ridge  
Selection 

Accuracy 0.908 
 

0.903 
(± 0.003) 

0.888 
(± 0.001) 

0.897 
(± 0.003) 

Balanced Accuracy 0.818 
 

0.827 
(± 0.01) 

0.852 
 

0.845 
(± 0.006) 

Precision 0.759 
 

0.724 
(± 0.021) 

0.642 
(± 0.002) 

0.678 
(± 0.014) 

Sensitivity 0.682 
 

0.711 
(± 0.028) 

0.795 
 

0.766 
(± 0.016) 

Specificity 0.955 
 

0.943 
(± 0.008) 

0.908 
(± 0.001) 

0.924 
(± 0.006) 

AUC-ROC 0.934 
 

0.922 
(± 0.001) 

0.941 
(± 0.001) 

0.933 
(± 0.001) 

 
 

  



 32 

 

 


