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Executive summary
This thesis examines the feasibility of machine learning models to estimate the engineering
costs for EeStairs. As is the case in other versatile manufacturing companies (VMCs), their cost
estimation process is complicated. Among other factors this is due to the variability of their
products, a dominance of manual processes, challenges in linking predicted and actual costs,
and a lack of clear specifications provided by the client. To deal with the speed, accuracy and
consistency requirements of VMCs’ quotation processes, the company identified a need for a
time-efficient, objective and interpretable cost estimation method.

Drawing on interviews and existing literature on cost estimation and design & engineering costs,
this study identified several cost drivers. Then, data on 53 projects was gathered from EeStairs’
databases. Due to output data only being available as an aggregate over projects (while input
data was separated by individual staircase and balustrade), heavy feature engineering was
conducted. To construct a model that is understandable and implementable by the company,
this study focused on regression models and optimised four variants.

Our analysis shows that the Lasso Regression model is best equipped for the task. It performs
only slightly better than EeStairs’ manual method based on the mean squared error, whereas
the percent error is 57% higher. In addition, the model uses only one feature, indicating that
many of the engineered features offered little predictive value. This thesis concludes that our
model is not accurate enough to offer a reliable improvement over the old method.

Building on the information obtained through this study, we offer a number of recommendations
to enable a future machine learning project:

1. Record actual costs and hours in more detail, per balustrade or staircase rather than for
the entire project.

2. Use project & product features that are machine learning-usable in the new cost
estimation system, to aid data collection and minimise the information loss associated
with feature engineering.

3. Implement methods that increase the objectivity and consistency of input and output
data, e.g. by firmly distinguishing between the estimated cost and the quoted price or by
removing incentives for employees to misreport their hours worked.

All in all, this thesis took the first steps towards a data-driven approach for estimating costs
based on project features at the company. We hope this thesis provides a helpful foundation to
further automate and improve EeStairs’ cost estimation process, as well as those of other
versatile manufacturing companies.
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Abbreviations

Abbreviation Definition

BIM Building Information Model(ing)

CRM Customer Relationship Management

DSRM/P Design Science Research Process/Method

(M)AE (Mean) Absolute Error

(M)APE (Mean) Absolute Percentage Error

MSE Mean Squared Error

SLR Systematic Literature Review

VMC Versatile Manufacturing Company
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Glossary

Term Definition

Calculator Employee who calculates a project’s estimated cost

Quote / quotation Offer to a customer that describes a project’s details and their
associated costs
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1 Introduction
In this chapter, we motivate and provide context for the work done in this thesis. Section 1.1
offers a brief overview of the company where the research was executed: EeStairs. After
providing the required background, Section 1.2 explains EeStairs’ core problem and motivates
our research aim. Subsequently, Section 1.3 introduces the scope and requirements of this
thesis, and Section 1.4 our methodological framework.

1.1 Problem context
The internship leading to this thesis is conducted at EeStairs, a luxury staircase designer and
manufacturer best described as a versatile manufacturing company (VMC), defined by Amaro et
al. (1999) as “manufacturers of customised products that are involved in a competitive bidding
situation for (nearly) every order received”. Versatility, here, pertains to continually designing
and configuring how to manufacture new or modified products, dealing with varying production
loads, and dealing with each customer order individually (Kingsman & Souza, 1997).

The company designs, produces and installs made-to-order staircases and balustrades for
architects, retailers, offices and private customers. Except for a few standardised products,
which are outside the scope of this research, all of EeStairs’ projects are one-of-a-kind. Every
product is a unique combination of the materials, shapes, finishings and surroundings, some
examples of which can be seen in Figure 1.

Figure 1: Example staircases and balustrades from EeStairs (photography: Hans Morren).
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Figure 1, continued.

1.2 Research objective
EeStairs uses a predominantly manual quotation process and has identified this as a potential
bottleneck for future growth. We represent the current quotation process, from estimating a
project’s cost to quoting a price to the customer, in Section 2.1. There are three reasons for it
being a bottleneck. First, the current quotation process is labour intensive; employees spend
several hours at the beginning of every new project making a prediction for the costs, including
employee hours. Second, the current process heavily relies on the knowledge of a few
experienced employees. This is not scalable, as it is likely these employees will at some point
leave the company, or that not all experience can be passed on to new employees. Lastly, the
current system is often inaccurate: it regularly over- or underestimates the projects’ cost by
dozens of percentage points. For instance, the average percentage error for the engineering
cost is 35%.

From Figure 2, we can see most problems stem from two underlying sources: that the quotation
process is a manual process, and that EeStairs’ projects are highly customised. The latter is,
however, a problem inherent to their business of providing custom-made luxury staircases.
Therefore, we will tackle the core problem: the current quotation process is manual, subjective
and experience-based.

EeStairs’ case is not an isolated one: Kingsman et al. (1996) found that estimating the cost of
producing the order and then finding the price to be quoted is a significant problem encountered
by VMCs. This is a problem because a poor quality of estimates is often the cause of projects
going over the quoted price (Bashir & Thomson, 2001). Additionally, the faster and more
accurate the price estimation, the greater the possibility a client accepts the quotation
(García-Crespo et al., 2009).
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Figure 2: Problem cluster using the methodology of Heerkens and Van Winden (2021). We
connect EeStairs’ concrete (action) problems with the underlying cause, the core problem,

which this thesis aims to resolve.

However, the reason VMCs struggle with cost estimation, specifically, is because they often face
a unique set of challenges. According to Kingsman et al. (1996), VMCs...

● ...receive one-of-a-kind orders, requiring extensive quotation and some form of
activity-based costing.

● ..rely on expert knowledge to estimate costs, basing these estimations on unwritten rules
and previous experiences (García-Crespo et al., 2009).

● ...set a price instead of a profit margin, often using rule-of-thumb methods to make
adjustments to the estimated cost based on the company, client and market conditions.

● ...have automated some of their processes, while (fixed) capital expenses are harder to
allocate to specific projects than (variable) manual labour hours.

● ...heavily rely on bidding requiring speed, accuracy and consistency, factors that (with
manual estimation) are to the detriment of each other.

● ...are often unaware of the variance between estimated and actual costs because
estimates are discriminated by activity and by product component while the actual costs
are recorded by activity and by worker, making it impossible to identify cost variances.

● ...frequently face unclear specifications provided by the client.

Several other authors (e.g. Hvam et al., 2004; Denkena et al., 2009; Zhang et al., 2012) have
conducted research into cost estimation for manufacturers of custom-made products. However,
these concern companies that either produce at a large scale, produce products with limited
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variability, or both. Therefore, and because of the unique challenges faced by VMCs, this
literature is not directly applicable to EeStairs and companies alike.

This research aims to fill this research gap by estimating the engineering cost for a designer and
manufacturer of luxury staircases, hoping to function as a case study for similar companies that
wish to improve their quotation process. Moving towards a data-driven approach for estimating
the engineering cost for new projects, this study looks at a machine learning approach for
predicting engineering costs based on the available historic data. As such, we arrive at the
following research question:

Research question:
How can EeStairs use machine learning to improve its cost estimation process?

1.3 Scope & requirements
Focus on engineering cost
The company has stated clearly that the quoted price must not just be an aggregate price, but
should be made up of the costs of separate parts and activities so customers and employees
can understand where the final price comes from. Therefore, and to limit the scope of this
thesis, we decided to focus our effort on estimating the engineering cost. Since it is the first step
in the production process, it is independent from other activities within a project and thus a good
research focus. Engineering is quite complex, embodying nearly all aspects of a product, and
thus research into engineering is relatively representative for other parts of the production
process: if machine learning works to predict the engineering cost, it should be able to predict
other costs as well. This is echoed by Salam and Bhuiyan (2016), who concluded that
understanding and being able to estimate the design effort (in terms of person-hours) is crucial
in order to estimate a project’s cost.

Implementability
EeStairs has expressed the importance of understanding, working with, and, if necessary,
improving the cost estimation tool resulting from this research.. As such, our product should be
interpretable (as a linear regression formula, for instance). For this reason, we exclude more
complex models, such as Neural Networks and Decision Trees, from our research.

1.4 Methodological framework
We apply the design science research process (DSRP) (Peffers et al., 2006) as a
methodological framework for this research. According to the authors, DSRP is “a process for
carrying out design science research in information systems”. The methodology was created to
develop technology-based solutions to (business) problems by designing a successful ‘design
artefact’, such as a model or method. Since this research aims to design a tool that improves
EeStairs’ engineering cost estimation, DSRP seems applicable.
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The process comprises six phases illustrated in Figure 3, as based on Peffers et al. (2006).

Figure 3: Design Science Research Methodology process model.

The rest of this thesis is structured as follows. Phase 1 of the DSRP is executed in Section 1.1
and Chapter 2, first introducing and then explaining in detail the problem context and available
literature. The objectives of a solution are defined in Sections 1.2 and 1.3. Phases 3-6 of the
DSRP, then, correspond to the rest of this thesis’ chapters. In Chapter 3, we outline the method
used to develop our solution, including data collection and model development. In Chapter 4, we
present the results, followed by discussion and recommendations in Chapter 5. Chapter 6 offers
a conclusion.
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2 Literature review and current process description
In this chapter, we provide additional information that will help to understand both the problem
and possible solutions. In Section 2.1, we outline EeStairs’ current quotation process, including
the sales context in which it occurs. In Section 2.2, a systematic literature review is executed to
determine the cost drivers of design and engineering. Finally, Section 2.3 outlines the
challenges and methods of estimating design costs.

2.1 The quotation process at EeStairs
We establish an understanding of EeStairs’ current quotation process based on interviews with
directors, engineers and sales employees at EeStairs, together with a document review. What
follows is a brief description of this process.

Before a client requests a quotation for the production of their staircase(s) and/or balustrade(s),
a design of their requested product has already been made - either by an independent architect,
or by EeStairs in what it defines as a (separate & previous) ‘design project’. Using this (often
quite abstract) design, EeStairs employees the company refers to as ‘calculators’ then formulate
a list of materials, hours, and other associated costs. Over the course of a few hours (or more,
depending on the project), they generate a quotation which includes these cost factors and their
total sum.

Calculators use a program called TrapCalc to do their calculations with. A longer description of
TrapCalc and the associated calculation process can be found in Appendix A, but in brief this
software has the following functionalities:

1. It is a framework within which to enter product specifications and estimations.
2. It performs basic arithmetics on estimation.
3. It adds all estimations into a standardised quote in pdf-format.
4. It offers the ability to save estimations made for parts of the staircase for later use.

All other estimations and judgements are performed by calculators themselves. For instance,
they add the specifications of a product (often choosing from a list of options for materials, size
and shape), and estimate the cost for different parts of the project (such as steps, landings or
balustrades) per unit or metre.

Included in the estimations for each separate part of the project are those for the number of
engineering hours. TrapCalc then multiplies these hours by a constant hourly rate and sums
them up, summarising the engineering costs for the entire project. Importantly, in interviews, the
calculators indicated that after filling in a preliminary cost per part of the staircase, they look at
the total number of engineering hours allocated for the project to see whether it looks realistic.

The calculators estimate design time based on assumptions about the size and complexity of
the project, discounting for repetitive work. They repeat this process for each part of the
staircase, then look at the total number of hours allocated for the project to see whether it
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seems “good”. If they consider the total estimate too high, they go back to previous parts to in-
or decrease the estimates to manipulate the total cost. Importantly, the calculators noted that in
this phase they do not purely consider the realistic number of hours spent on engineering, but
also the ability to sell the product for the associated cost. As such, the distinction between
pricing and cost estimation is unclear. It would not be surprising to find that the average
estimated engineering cost is below the actual engineering cost, leading to decreased profit
margins in return for a higher chance of obtaining an order.

2.2 Literature review of cost drivers for design & engineering
We conduct a systematic literature review of cost drivers in design and engineering, as a basis
for this study’s cost estimation. A detailed description of the search strategy and selection
process is documented in Appendix B. Of an initial 121 sources, four papers were selected. All
offer several applicable cost drivers for design and engineering at EeStairs.

Table 1 shows the identified cost drivers. Xu and Yan (2006) offer the most detailed breakdown
of cost drivers, many of which are supported by the other three papers. Based on their work, we
divide the cost drivers into four categories and discuss them below.

Product characteristics
Product characteristics are included in each of the papers. Though authors define these cost
drivers differently, most relate to the number of actions to be taken and to the complexity of
these actions. As noted by Bashir and Thomson (1999), the definition of product complexity as
simply the number of functions to be designed “does not give a good picture of design
complexity [because] it assumes that all the functions are equally difficult to develop, which is
not true.”

Two academic papers attempt to distil product complexity. Xu and Yan (2006) define product
complexity as a combination of the products’ structure, size, and shape. Grabenstetter and
Usher (2013) further break down the cost. Functional requirements, according to the authors,
are the “specific types of functionality which will provide [an] intended behaviour. To achieve
these functionalities, they state that several basic components, or components that are “an
intrinsic requirement of most jobs”, are usually combined. The complexity is then further
heightened by the interdependencies between those components and functionalities, and the
technological complexity thereof. And finally, the authors state that the number of subsystems
(i.e. functional parts by which a product may be divided) can give an indication of the design
effort.

Design process
Next to the product’s characteristics, the design process also influences the design effort. In this
category, Xu and Yan (2006) defined the cost drivers of standardisation, process control, and
concurrency. The former two were echoed by Bashir and Thomson (1999), defining it as “use of
a formal process,” noting that design time is more predictable if the engineering process is
standardised. Salam et al. (2009) also named concurrency, using the definition by Winner et al.
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(1988): “Concurrent engineering is a systematic approach to the integrated, concurrent design
of products and their related processes, including manufacture and support, ... intended to
cause the developers ... to consider all elements of the product life cycle.”

Design team
Several studies indicate the importance of the experience of designers for completing the
project successfully (Salam et al., 2009). This is because experienced designers are more
adept at handling complex information, spend less time thinking about the physics, and easily
come up with a multitude of solutions compared to inexperienced designers (Bashir and
Thomson, 1999). Efficient communication and collaboration is another important cost driver.
Bashir and Thomson (1999) found that over 35% of the total design effort is spent on direct
communication, underscoring the impact of team size and communication efficiency on the
design effort.

Design conditions
Finally, we will discuss several cost drivers that do not fit into a category per se. One driver is
the availability of data (on previous projects), with Grabenstetter and Usher (2013) noting that all
the firms they observed attempted, as early in the process as possible, to find similar past jobs
which could be used to quote, design and build a new job. Another such cost driver is the
presence of regulations and standards, which play a big role within construction and differ
significantly between countries. The more strict the regulations, Grabenstetter and Usher (2013)
note, the more difficult and expensive a project is.
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Categories Xu and Yan (2006) Bashir and Thomson (1999) Salam et al. (2009) Grabenstetter and Usher (2013)

Product
characteristics

structure product complexity type of design;
degree of change

number of functional
requirements and basic
componentssize

shape

added demands technical difficulty: severity of
requirements, use of new technology

number of design
interdependencies, technologies
and sub-assemblies

Design process standardisation use of a formal process

process control

concurrency concurrency

Design team collaboration management complexity: team size,
methods of communication

individual experience experience, skill and attitude of team
members

experience of
personnel

individual skill

dedicated spirit

Design
conditions

design tools use of design assisted tools

management support

available data presence of a reference job

number of regulations and
standards

Table 1: Design & engineering cost drivers found in the systematic literature review.
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2.3 Literature review on estimating the design & engineering costs
In this section we review literature on variables that can estimate engineering costs, and the
challenges involved.

Estimating design cost
Benedetto et al. (2018) conduct extensive interviews with designers, identifying the following
aspects as contributing positively to the design effort quotation:

● Knowledge, or skills required to develop a project’s quotation. The authors divide it into
two distinct types: explicit knowledge and tacit knowledge.

● Execution, which is related to a professional’s knowledge level, in particular the tacit
knowledge gained through experience with the subject.

● Design method, because a well-defined design method helps those who estimate the
design costs to estimate the time needed for each activity.

● Planning and control, which adds empiricism to the process, allowing evaluation of past
projects and their estimations to improve future estimations.

Additionally, an extensive review of systems for machining price quotation found that
experienced personnel are essential to determine the subjective factors that influence the
generation of a quotation (García-Crespo et al., 2009). The authors suggest VMCs need a
knowledge representation model representing:

● Expert knowledge
● Knowledge of other applications
● Detailed estimation models that complement the expert knowledge

Challenges in estimating design effort
Studies identify several challenges to estimating the design effort. Bernardes et al. (2019) note
that time estimation poses a unique challenge in design because the reference data available in
other fields is not easily accessible. This is corroborated by the fact that design projects are
often unique (Kumar, 2008; Rittel & Webber, 1973). Another challenge of finding accurate time
estimates is that the activities within the design process are not independent of each other,
making it difficult to estimate the time dedicated to each task (Hellebrand et al., 2010).
Estimating the design effort is a complex effort, including many uncertainties, thus requiring the
combination of various estimation methods (Garcia-Crespo et al., 2009).

Although the factors found in the previous section may be good estimators of design effort in
theory, not all these variables are documented in practice. Therefore, Niazi et al. (2006) argue
qualitative cost estimation techniques are more appropriate early in the design cycle than
quantitative cost estimation techniques - noting that a combination of the two may help provide
useful cost estimates at various phases of design and development.
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3 Methodology
In this chapter, we discuss our approach (model development) and rationale. The method we
propose is adapted from Matel et al. (2019) and consists of three overarching phases: data
collection (Section 3.1), model development (Section 3.2) and finally a presentation and
discussion of the results (Chapters 4 and 5). The method is visualised in Figure 4.

Figure 4: Proposed method.
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We determine the input variables, or the features we will collect data on, in Section 3.1.
Following, we decide which projects to in- and exclude in our dataset. Finally, we perform
several feature engineering processing steps to make our dataset usable for model
development.

Section 3.2 describes our machine learning model. We develop our model with Scikit-learn, a
commonly used Python library for implementing machine learning algorithms. It is then
optimised by first choosing the best performing training algorithm out of a selection that fits our
project, and then by optimising the selection of input variables for the algorithm. The result is a
model whose input is variables relating to one of EeStairs’ projects, returning an estimate of the
number of engineering hours.

3.1 Data collection
In this section, we describe the data collection process. An overview of our data collection and
selection process is visualised in Figure 5, with the coloured boxes corresponding to the
Subsections 3.1.1 to 3.1.4 where they will be explained.

Figure 5: An illustration of the data collection process.
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3.1.1 Data sources

Figure 6 gives an overview of the data sources within EeStairs. We created a dataset by
gathering data from three sources: The Customer Relationship Management (CRM) software
called EeRM, a project management service software called EeProjects, and EeStairs’ current
calculation tool named TrapCalc. What follows is a brief description of these three sources.

Figure 6: Overview of data sources.

TrapCalc

TrapCalc is the company’s quotation software. The company’s calculators use TrapCalc to enter
all sizes, materials, treatments and other aspects of a project, divided by products (e.g. Stair 1,
Balustrade 1 and 2), which are further divided by part (e.g. railing, steps), in order to predict the
cost of a project. The program then prints out a quote to be sent to the client, which in this
research is our most reliable source to determine the properties of a project and its parts. An
extensive description of the program can be found in Appendix A.

EeRM

EeStairs has its own CRM software, EeRM. This data consists mainly of high-level quantitative
breakdowns (e.g. profit margins), and archives (e.g. e-mail exchanges, quotes, technical
drawings, photos of the finished product), but also has some information identifying the type of
client. The archived pictures and drawings are used to either corroborate, clarify, or add to the
information found in TrapCalc.

19

https://app.diagrams.net/?page-id=s4sbBoCBZxawQYssHnls&scale=auto#G1bJaQZtAxeLb3VsDM5eRKwbV1__RhBd1P
https://app.diagrams.net/?page-id=s4sbBoCBZxawQYssHnls&scale=auto#G1bJaQZtAxeLb3VsDM5eRKwbV1__RhBd1P


EeProjects

EeProjects is the company’s project management software. It offers an aggregate of data from
TrapCalc, such as the expected total number of engineering hours, and an overview of all hours
worked on a project. For each of their projects, EeStairs maintains the following information:

● Project information: the name, code, start- and end date, market segment.
● Client information: the name and address of clients.
● Project management: the project manager, salesperson, quoted price, payables.
● Hours spent: hours worked per person per day, by activity.
● Purchases: material, transportation and outsourcing costs.

Figure 7 shows an example of an overview created with EeProjects. However, because of
limited bandwidth from the company’s data engineer, not all the data seen in the figure could be
exported. As such, in this study, we only use the ‘key figures’ and ‘percentages of cost price’
(underlined in the picture) and exclude the cost per individual engineer/employee or purchase.
This data has been made readily available through an Excel export (ProjectData.csv), with rows
for each project and their respective key figures and cost price percentages.

Figure 7: a detailed report on the costs relating to a project. Black boxes censor names and
other sensitive data, and the yellow box includes English translations for all (necessary) Dutch

words or abbreviations.
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3.1.2 Feature selection

We have to aggregate and process some data the company provides before we can start the
data analysis. Because this can take a lot of time, we first make a selection of features that we
expect will be informative for predicting the number of engineering hours.

In Appendix C, we select variables based on a combination of the cost factors found in the
literature review in Section 2.3, and those which the company has indicated to be preferred
and/or useful features. After combining the two, we inspect these variables to see which
features we can include in practice and arrive at a final feature set which we present in this
section.

In order to customise the factors to EeStairs’ goals and constraints, we divide the
product-related factors into two categories: staircases and balustrades, as these two are
distinctive products that should be operationalised differently. Additionally, we introduce those
project-wide factors that relate to the client & the project.

Client & Project
These are the factors relevant to all balustrades and staircases that are part of the project, or
relevant only to the client. In Table 2, we outline the chosen factors, their variables, and our
reasoning as it applies to the choice of factor and/or operationalisation.

Factor Variables Reasoning

Experience &
type of
collaboration

client: {private, contractor,
designer}
sector: {residential, office,
retail, public, (semi) public}

Information on, for example, the exact size of
the client's team cannot be found in the data.
The type of client and the sector they operate
in are the closest variables we could find.

Travel
distance

address The travel distance formed a part of EeStairs’
factors regarding site surveys and design
meetings, and the address is easily obtained.

Presence of a
BIM

{yes, no} If the client provided a BIM (Building
Information Model), it should be findable in
EeRM’s file archive. Presence of a BIM should
remove some work from an engineers’ plate.

Table 2: Client & project features.

Staircase
For each staircase, we have the features shown in Table 3.

Factor Variables Reasoning

Size width: millimetres
height: millimetres

These are four variables
commonly available from
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riser: millimetres
tread: millimetres

EeStairs’ internal data, referring
to the size of the staircase.

Shape shape: {straight, winding} This information is found in
drawings and quotes. While
EeStairs uses more categories,
we decided to limit it to these
two: the laboriousness factor
will account for further
complexities with regard to
shape.

Repetition 0%: Everything has to be designed from
scratch.

20: A small amount of this part can be
copied from another project or part.

40%: A larger amount of this part can be
copied from another project or part.

60%: This part is a copy of another project
or part, but some major changes need to
be made (i.e. the radius of the staircase,
or there is an addition such as a landing).

80%: This part is a copy of another project
or part, but some simple things need to be
changed (i.e. the staircase is a bit longer
or wider than the other, there are some
corners or stops in the balustrade).

100%: This part is a one-on-one copy of
an earlier project (such as standard
balustrades) or of another part in this
project (such as when two of the same
stairs are built).

In case of doubt between two categories,
e.g. 10% or 30% can be used.

For repetition (derived from
‘degree of change’ and
‘presence of a reference job’),
we decided on a 0-100% scale:
some products are full copies of
each other, while others have
slight or larger differences.

Laboriousness 1: Not laborious (parts of the staircase are
extraordinarily large, simply shaped and
similar to each other.)
2: Not too laborious
3: Average
4: Somewhat laborious
5: Very laborious (the staircase is very
detailed, shapes are very complex or parts
are all very different from each other.)

This factor should account for
the additional complexities that
are not covered by the previous
factors.
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Calculation {no, detail, structural} Some clients need a structural
or detail calculation to be done,
which entails additional costs.

Balustrades
included

{0, 1, 2 sides of the staircase is included} In most cases, staircases and
their balustrades are calculated
separately. Some staircases,
however, have an embedded
staircase. Here, the balustrade
and the beam holding the steps
together is created from a
single piece. This factor is to
account for those cases.

Table 3: Staircase features.

Balustrades
The other important component in EeStairs’ projects are balustrades. Table 4 shows the
variables that relate to the engineering cost of the balustrades. Generally speaking, there are
two types of balustrades: standalone balustrades, and those attached to a staircase. Since the
relevant cost influence of this is already covered by the shape factor, however, this difference is
neglected for the purposes of this study.

Factor Variables Reasoning

Size Length: metres Length is the main factor for
balustrade size used by
EeStairs.

Parts Corners: count
Parts: count

The number of corners and
loose balustrades a specific
type of balustrade consists of
determines how many of them
need to be ‘placed’ in a
drawing, increasing the amount
of time.

Shape Shape: {straight, rising, curved, curved +
ascending}

Determines the complexity of
the balustrade shape.

Type Type: {custom-made, handrail,
TransParancy, GroovEe, FlatRhythm,
Cells}

Determines whether
components of the balustrade
need to be custom engineered,
or have been created before. It
also records the difference
between a handrail and a
balustrade, the latter of which
takes more time.
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Repetition Group: letter Determines which balustrades
in a project are part of the
same design style which,
together with the ‘type’
variable’, helps us to determine
how many unique designs
have to be made for this
project.

Detail 1: No detail (it’s a standard type of
balustrade.)
2: Not detailed (i.e. it’s a standard type of
balustrade with a non-standard height, or
it’s a simple handrail.)
3: Average (a fairly straightforward
custom-made balustrade, or a more
complex handrail.)
4: Detailed (the balustrade is
custom-made, of regular complexity.)
5: Very detailed (the balustrade is
custom-made, and includes many complex
parts.)

This shows the balustrade's
design complexity.

Table 4: Balustrade features.

3.1.3 Project selection

EeStairs has worked on  4779 different projects between the years 2000 and 2021. Due to time
constraints and limited data accessibility, we did not use all projects within this time period.
Table 5 shows the categories based on which we selected projects from the entire dataset and
Table 6 describes the projects we exclude, and for what reason. After this selection process, we
are left with a final dataset containing 53 projects.

Criteria Reason

Finished projects Ongoing projects are excluded as the engineering costs are still
changing.

Location within The
Netherlands

Projects within The Netherlands are the focus of my supervisor’s
research at EeStairs. Projects in other countries introduce several
complexities, such as different regulations and/or outsourced design
work, which are outside the scope of this thesis.

Consists of custom
products

Standardised products such as EeStairs’ 1m2 (a staircase that fits
within one square metre) are outside the scope of this project,
because we focus on custom-made products.

Includes engineering,
production and

We only include projects that comprise all aspects of the production
process. With this, we remove some outliers, such as design
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installation costs projects or projects that are significantly outsourced.

Project value over EUR
10.000

We exclude very small projects with this threshold, which removes
outliers.

Project value under EUR
500.000

We exclude extraordinarily large projects to remove outliers.

Projects from 2020 We focus on the projects executed in 2020 in order to further
reduce the quantity so the data collection fits within our time
constraints. We decided that a recent year is the most suitable for
our purposes, because throughout the years there have been some
changes to both the reporting methods and the work process.

Table 5: Selection criteria for narrowing down the scope of the data.

Project Reason for exclusion

43250 This is a maintenance project.

43276 This project includes a significant part (50% of the total price) that is neither a
staircase nor a balustrade.

41621 This project almost entirely consists of steel beams and supports for flooring and
walls.

40827 Most of this project was initially designed but later scrapped, causing a large
discrepancy between the quoted product and the final product.

40769 Like the above, many parts were scrapped and/or added after writing up the
quotation. Most of the project was steel construction works rather than stairs or
balustrades.

40042 The quotation did not describe the product in sufficient detail for our analysis, and
drawings were not included.

Table 6: Excluded projects.

3.1.4 Feature engineering

Having selected a dataset, we can now proceed to prepare the data for analysis. To analyse our
data, it must be machine readable, the dimensions of each instance must match, and features
should be independent to do a regression analysis (full details in Section 3.2).

The first and primary obstacle is the dimensionality of the data. The features of our collected
dataset are descriptive: every project comprises multiple balustrades and staircases (with an
average of 7 parts and a maximum of 24). However, the output, the total number of engineering
hours spent during the entire project, is a scalar value (see Figure 8). For our analysis, it is
necessary to change the data structure so every output has 1 row of input features.
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Figure 8: The input and output data for 2 projects.

To do so, we are presented with three options:
1. Increase the quantity of output data points. One option is to create a formula that

distributes engineering hours over all different parts (e.g. find 6 and 13 output variables
for projects in Figure 8).

2. Decrease the number of input data points. Another option is to merge input features
through, for example, addition, averaging or combining features in more complex ways.

3. Increase the number of features. Accommodate for the largest project in the data set
while setting empty values to 0 for smaller projects. For the ‘metres’ feature, for instance,
this would result in a ‘Metre1’ feature for the first balustrade in a project, ‘Metre2’ for the
second, etc.

We choose option two. The third option appears undesirable because the result would be a data
set with more columns than rows, which is nearly unusable for machine learning. Option one
relies on splitting up the output value (and other overarching project-related features) over
several parts in a way that is, at best, arbitrary. While it would increase the amount of training
data from 53 (projects) to 368 (parts), it is uncertain whether this weighs up to the information
loss due to the detachment from the projects a product belongs to. The second option appears
most favourable as we can minimise the information loss by carefully engineering the features.

To condense the data for each project into a single row while minimising the information loss,
we utilised different methods. What follows is a brief description of the condensation process for
each category of feature: balustrade, staircase, and other.

Balustrade

This category comprises quantitative features (metres, corners, parts) that are highly correlated.
We choose to reduce them to the ‘segments’ feature, adding the number of ‘corners’ and ‘parts’
together. These appear more meaningful than the number of metres because extending a
balustrade is (in terms of design) a relatively simple operation. Having to place parts in different
places, and making a balustrade run across a corner, is therefore a better indicator of design
effort. While the shape of the balustrade also impacts the design effort, we choose not to split
the ‘segments’ among the four different shapes, losing the ‘shape’ feature.
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The other qualitative features, type, group and detail, relate more to the time to create the
balustrade design, which is independent of how often this design is copied. We reduced these to
two features: the number of balustrade designs and the average detail of those designs. Figure
9 demonstrates our operations.

Figure 9: An example of how the balustrade features were engineered.

Staircase

It is much more complex to reduce the number of rows for staircases. Our approach is to
compute the number of steps for each staircase by dividing the height by the riser (for the first
staircase in Figure 10, this is 3980/190 = ~21). For staircases that have platforms, we include
the area as well. We correct the number of steps by the repetition quantity, the percentage of
the staircase “copied” from other staircase designs within the project or in other projects. Next,
we subtract this number from the total sum, which in the example of Figure 10 is formulated as
steps = 21*0.65 + 18*0.65 + 19*1 = 44.35. Detail is integer encoded (‘No detail’ = 0, ‘Not
detailed’ = 1, … ‘Very detailed = 4’). Finally, we compute a weighted average.

Figure 10: An example of engineering the staircase features.

Other
All other features relate to the entire project, and as such do not need to be condensed. All
features in this category, aside from travel time (denoted in hours), are categorical and are
integer encoded. Figure 11 shows an example.

Figure 11: An example of how the other features were engineered.
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Finally, ‘sector’ feature is left out because interviews indicated it was viewed as rather
inconsequential to the design effort. BIM, conversely, is considered quite impactful but excluded
as there is only one known occurrence of a project with BIM, and because company
management showed they have low confidence in that data.

3.1.5 Exploratory data analysis

In this section, we provide a brief exploration of the statistics and aspects of the remaining 53
projects. We highlight insights regarding EeStairs’ current estimation accuracy and projects
relation to the engineering effort.

Figure 12 shows a bar chart of the 53 projects and their total cost. We observe that the project
costs range from €6029 to €381,962, with a median of €25948 and an average of €38817.
Figure 13 shows the number of engineering hours spent on each project plotted against the
project's cost. It has a linear trendline, that is, engineering hours = 0.00192005 * Total costs +
14.6402, fitted to it. From this figure, we can conclude there is a positive correlation between the
number of engineering hours and the total cost of the project, confirming our intuition that larger
projects require more engineering work.

Judging from Figure 13, there may be a risk of outliers. Should the two rightmost projects be
excluded, the result may be a trend line which is much steeper. However, we choose to keep
those projects included: larger projects are already very important for EeStairs and in the future
the company aims to further specialise in large and/or complex projects, thus there is a clear
need to be able to predict those.

Moreover, the large deviations from the trendline in Figure 13 show there are several other
factors that influence the engineering cost besides the project size. This can also be observed in
Figure 15, which shows that engineering as a percentage of the project cost varies significantly,
with a 50% confidence interval between 0.84 and 4.58.

Figure 14 compares the estimated against the actual number of engineering hours per project.
The blue lines (y=x) indicate what a perfect estimation would look like. We can see there is a
tendency to underestimate the number of engineering hours. Often, the actual number of hours
is more than double the estimate.

Lastly, Figure 16 shows a stacked bar chart for the number of estimated engineering hours per
project, divided by those agreed upon at the start of the project (‘Initial’) and those that are
added during the project (‘Extra’). Extra hours occur when a client has additional demands after
the project was officially agreed upon, for instance because the client requests significant
changes or wants a new product.
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Figure 12: Total costs per project.
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Figure 13 (left): Scatter plot of engineering hours vs. project cost.
Figure 14 (right): Scatter plot of the predicted vs. actual no. of engineering, log. scale. Ideal performance is indicated by a (y=x) line.
Figure 15 (bottom): Box plot for engineering costs as a percentage of the total project cost.
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Figure 16: The number of engineering hours per project. In blue those initially agreed upon and included in the original quotation, in
yellow the extra hours.
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3.2 Model development
We describe our approach to designing and developing our model for predicting EeStairs’
engineering costs based on the selected project features. In Section 3.2.1 we introduce
regression analysis, and in Section 3.2 the method used to make the most of our data for
training and testing. Section 3.2.3 describes how the data was scaled, and Section 3.2.4
introduces the method used to select features to use in the final model. Finally, Section 3.2.5
describes the four regression models which were used in our experiments.

3.2.1 Regression analysis

The statistical method used to develop our model is regression analysis: we aim to predict the
number of engineering hours (output variable) based on several features, which contain
information about projects from EeStairs. In this section, we explain regression analysis and
introduce four variants of regression utilised in this thesis: Multiple-, Ridge-, Bayesian Ridge-
and Lasso Regression.

The most common regression model is linear regression. The simplest form, linear regression,
uses a single feature (x) to predict an output variable (y). Mathematically, we have the form

. Since x and y are known (while training our model), the aim is to estimate β1 (the𝑦 =  β
0

+ β
1
𝑥

regression coefficient) and β0 (the constant).

Figure 17 shows an example of this process. Blue dots indicate the data points: for example, in
the top right we see a point where X = 58 and y = 16. The goal of linear regression is to learn
the coefficients such that the error (for instance, the distance from the line to all the points) is
minimised. This function can make a new prediction where we only know the value of a feature,
but not the value of the output variable. Say X = 0, for example; we find the y-value of the red
line at the point where X = 0 and predict y = 5.

Figure 17: An example of linear regression with one feature (Sewagu, 2010).
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As mentioned, regression models estimate the coefficient and constant value to minimise an
error, as displayed in Figure 18. This error can be measured in different ways. A common metric
is the mean absolute error (MAE), which is the average distance |y - ŷ| from the predicted value
(ŷ) to the actual value (y). Another metric is the mean absolute percentage error (MAPE), which
defines the absolute error in relation to the actual value - or |y - ŷ|/y. Since these functions are
not differentiable, however, the most commonly used metric in machine learning is the mean
squared error (MSE), defined as (y - ŷ)2. In this thesis, we will use MSE to optimise our models
while calculating the MAE and MAPE to offer further insight into our results.

Figure 18: An example of linear regression, illustrating the error (Gupta, 2021).

3.2.2 k-Fold Cross Validation

To correctly assess the model’s performance, it is essential to split the data into test and train
sets. If our trained model can make accurate predictions on unseen data, the model is capable
of generalising from the training set to the test set (Müller & Guido, 2016).

It is possible, however, for the model to overfit (as illustrated in Figure 19), which happens when
the model exactly remembers the exact data points, instead of extracting patterns from the data.
If an overfit model makes predictions with the test set, we will find its performance to be
drastically lower than its performance on the train set.

33



Figure 19: An illustration of an overfitted model (Bronstein, 2017).

Due to the limited size of our dataset, the probability of an imbalanced train-test split is high.
The outcomes may significantly vary depending on the selection of projects in the respective
sets, and the amount of data available for training could decrease. To mitigate this issue, we
utilise k-Fold Cross-Validation, a technique described in Bengio & Grandvalet (2004) and
depicted in Figure 20.

In brief, this approach partitions the dataset into k subsets, with typical choices of k being 3, 5,
and 10. To maximise the amount of training data, we opted for k = 10 in this study, resulting in
each split containing 5 or 6 projects. Then, for t = 1 to 10, we use split t as the test set and all
other splits as the train set. Each of the 10 distinct train-test combinations is a fold. Within each
fold, the entire training process is carried out using the training set, and subsequently, the
model's performance is evaluated using the corresponding test set.

Figure 20: Illustration of k-Fold Cross Validation (Sossi Alaoui et al., 2018).

This process results in ten different scores. The mean and variance over these scores are
computed, allowing us to assess the overall performance and to compare it to other models.
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3.2.3 Scaling

Scaling is necessary because our current feature set displays a significant variance in data
points. For instance, while there are between 0 and 7 balustrade designs across projects, the
number of balustrade metres varies from 5.1 to 308.8. As a result, larger values of metres may
significantly impact the outcome compared to the number of designs. Scaling guarantees all
data is within a comparable range, facilitating parameter comparison. To do so, we apply the
StandardScaler method to our features, ensuring each feature’s mean is zero and the variance
is one, while preserving the data point distance as much as possible.

3.2.4 Feature Selection

To reduce the complexity of our models, a method called SelectFromModel was used
(scikit-learn, 2023). This uses the models introduced in the following section to find the optimal
number of features to be used to train our model.

3.2.5 Model training

After scaling the training dataset, we train four distinct models: Multiple Regression, Lasso
Regression, Ridge Regression, and Bayesian Ridge Regression. In addition, these models were
used for feature selection.

Multiple Regression

Since in our project we have multiple features to predict the number of engineering hours, we
will use multiple linear regression (scikit-learn, 2023). Instead of only one feature, as illustrated
above, it uses multiple (independent) features to predict the output variable. This becomes
harder to visualise because an extra dimension is added for every additional feature, but the

formula remains familiar: , where p is the total number of features.𝑦 =  β
0

+  
𝑓=0

𝑝

∑ β
𝑓
𝑥

𝑓

Lasso Regression

Multiple regression fits a function that suits best to the training data, which does not mean the
learned model generalises well. There is a danger of overfitting, where the model performs well
on the training data but much worse on data it has not seen before, on testing data. In general,
complex models will have a lower bias (or error on the training data) and a higher variance (or
error on the testing data): the more complex the model, the more the model’s coefficients will
change depending on which training data it is offered. As a rule of thumb, one should aim to
keep models as simple as possible.

The aim of regularisation is to reduce complexity, by adding a penalty to the features’
coefficients to encourage solutions where coefficients are small. This leads to simpler and more
interpretable models, which generally perform better on the test data (Müller & Guido, 2016).
Lasso Regression, for instance, leverages L1-regularisation, which introduces a penalty term

35



, where λ or lambda determines the magnitude of the penalty (scikit-learn, 2023). This
𝑓=0

𝑝

∑ |β
𝑓
|λ

penalty encourages the objective function to minimise the coefficient's magnitude or eliminate
features (by reducing the coefficient to 0) that have minimal relevance. The objective function

from this approach is: 𝑦 =  β
0

+  
𝑓=0

𝑝

∑ β
𝑓
𝑥

𝑓 
+ |β

𝑓
|λ 

Ridge Regression

Ridge Regression is similar to Lasso regression, using L2-regularisation instead (scikit-learn,
2023). It employs the squared coefficient rather than the absolute value of the coefficient,

resulting in a penalty of: . The most important difference between Lasso and Ridge
𝑓=0

𝑝

∑ (β
𝑓
)2λ

Regression is that L2-regularisation tends not to entirely eliminate features.

Bayesian Ridge Regression

Bayesian Ridge Regression is a linear model incorporating a Bayesian framework to find a
balance between over- and underfitting. The model estimates the distribution of the coefficients
instead of a single value, using prior knowledge about the distribution of the coefficients to
update the posterior distribution after observing the data. To control the complexity of the model
and prevent overfitting, the algorithm adds an L2-regularisation parameter. The model uses
Bayes' rule to update the posterior distribution by multiplying the prior distribution by the
likelihood function of the data, which it assumes to be normally distributed. The uncertainty of
the model is captured by the covariance matrix of the posterior distribution (scikit-learn, 2023;
Koehrsen, 2018). Additionally, this model was used because it is thought to work well with small
datasets.

36



4 Results
In this chapter, we outline the results of our model selection, optimisation and training process.
The performance of our optimised models and motivation for our final model choice is outlined
in Section 4.1. Finally, in Section 4.2, we assess our final models’ performance in more detail
and compare it to EeStairs’ old calculations.

4.1 Optimal model
After several experiments, as described in Appendix D, we ended up with optimised models
whose scores are shown in Table 7. Among all the models, Lasso had the best MSE and MAE
scores, while Linear and Bayesian Ridge Regression outperformed Lasso on MAPE.
Furthermore, Lasso had a considerably lower estimated variance compared to the other
models, as depicted in the two columns on the right. Therefore, we selected Lasso as the final
model. The MSE scores are also visualised in Figure 21.

Model MSE MAE MAPE MSE % increase
over train score

MSE
variance

LinearRegression 970.51 24.996 0.5350 19.29 1281.85

Ridge (alpha = 8) 941.02 24.737 0.5508 14.68 665.55

BayesianRidge 928.18 24.450 0.5265 16.03 763.66

Lasso (alpha = 5) 888.26 24.179 0.5452 6.77 575.71

Table 7: Several scores and indicators for the four optimised models.

Figure 21: Box plots of the four optimised models’ test MSE scores.
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4.2 Model performance
Next, we will compare the performance of our final Lasso model with the company’s predictions,
and analyse its performance. For this, we used leave-one-out (or 53-fold) Cross Validation,
generating valid results for all projects within the dataset. All predictions, both by the model and
the company, are shown in Figure 22. The resulting error scores, shown in Table 8, demonstrate
that the model (which was optimised for MSE) outperforms the company’s predictions at the
MSE and MAE scores, but has a score significantly worse for MAPE.

MSE MAE MAPE

Company 1133.36 25.316 0.3483

Model 895.85 24.233 0.5471

Difference -21.0% -4.3% +57.1%

Table 8: Comparison of the model’s error scores with those of the company’s predictions.

Figure 22: Scatter plot comparing the predicted to the actual number of engineering hours, for
our model and the company’s, including a trend line for both.
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The swarm plots presented in Figure 23 offer detailed observations of the error scores for all
individual predictions. The error distributions reveal that the model’s errors are centred, with a
mean of -0.03, whereas the company’s predictions are skewed to underestimate the number of
engineering hours, with a mean error of -19.98. Regarding the APE distributions, while the bulk
of both methods' predictions have a percentage error ranging between 0 and 75%, our model
presents significant outliers of up to 338%.

Figure 23: Swamplots of the Error, Absolute Error and Absolute Percentage Errors, for both our
model and the company’s.

In-depth examination of the APE score reveals smaller projects have the highest percentage
errors, as illustrated in Figure 24. We observe a positive Pearson correlation of 0.68. In addition,
the models' highest percentage errors are overestimations of actual costs, whereas larger
projects are more precise - with a slight tendency to be underestimated.
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Figure 24: Scatterplot of the percentage error to the number of engineering hours.

In the discussion in the next chapter, we will interpret these findings and their limitations and
propose explanations for the observed results..
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5 Discussion
In this thesis, we outlined a roadmap for integrating machine learning into EeStairs' quotation
process for automation. Our findings show the optimal model outperforms EeStairs' manual
quotation calculator as measured by the MSE and MAE. However, its accuracy for small
projects is low. In this chapter, we present a thorough evaluation of our model's performance
and the limitations of our research, concluding with several recommendations for EeStairs.

5.1 Interpretations
Our model’s MAE shows that, on average, it is 24.2 hours off the correct number of engineering
hours: an improvement of 1.1 hours compared to the current manual quotation process at
EeStairs. The MSE score showed a similarly slight improvement. However, the MAPE score
shows that our model’s predictions are on average 54.7% off from the actual number of
engineering hours, whereas the old method is only 34.8% off on average.

When inspecting the performance of our model on a project-by-project basis, we found the
largest percentage errors all belonged to projects with less than 30 engineering hours (as seen
in Figure 24). The reason for this is likely that our model was optimised for MSE, thus favouring
the accuracy of large projects. This is because errors of small projects, while being rather small
in absolute terms, could still be large relative to its actual score.

Additionally, we observe that our final Lasso model only uses one feature: the number of
balustrade segments. Staircase features are completely excluded by the final model, while the
engineering time for balustrades is far lower than that for staircases.. Though this could partially
be due to the L1 regularisation applied in Lasso (shrinking some coefficients to 0), models
without regularisation or with L2-regularisation generally also used only 1 or 2 features.

The above indicates that the engineered features, as described in Section 3.1.4, have a low
predictive power. That Lasso outperformed the other models likely has to do with its tendency
towards simpler, more reliable models. This is reflected by its relatively small 6.77% MSE test
score increase over the train score, whereas the other models had out-of-sample scores that
were between 14.68 and 19.29% higher.

With these observations and interpretations in mind, let us return to our research question:

“How can EeStairs use machine learning to improve its cost estimation process?”

We presented an approach for EeStairs to integrate machine learning into their quotation
process. By aggregating data from several sources, followed up with heavy data engineering,
we presented a Lasso regression model that showed decent performance across 53 projects at
EeStairs. For several reasons, however, it appears this model is not good enough for EeStairs
to use in order to improve its cost estimation process.
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The first and foremost reason for this is that its performance is only decent compared to
EeStairs’ manual estimations, while one of the main problems associated with this old method
was that the company deemed its performance to be unsatisfactory. Any new method should
thus, at the very least, perform significantly better than the old method. Another drawback to this
model is the fact that it only uses one feature, besides other limitations which we will discuss in
Section 5.2.

The results certainly confirm that cost estimation for Versatile Manufacturing Companies is a
challenge, as several researchers have previously noted (e.g. Kingsman et al., 1996; Bashir &
Thomson, 2001). Through building our machine learning approach, we stumbled upon several
challenges related to infrastructure and data collection, and acquired valuable insights on how
to work towards a machine learning pipeline at EeStairs that is accurate, fast and reliable.
These insights will be discussed in the recommendations section.

As we have noted previously, most research into cost estimation for manufacturers of
custom-made products is conducted at companies that either produce at a large scale, produce
products with limited variability, or both. To researchers working at companies with a versatility
and scale similar to EeStairs, the recommendations outlined in Section 5.3 should prove
valuable in order to identify and overcome obstacles to improving their cost estimation process.

5.2 Limitations
The present research is subject to several noteworthy limitations, encompassing issues of data
quantity, quality, and reliability, as well as concerns regarding the application of machine
learning techniques and the defined scope of the study.

First, the number of projects included in this research is only 53, due in part to the time-intensive
process of data collection. Another reason for this low number is that, while costs are currently
estimated both by type of work (e.g. engineering, production, installation) and by project part
(per staircase or balustrade), the actual costs made or hours worked is an aggregate either for
the entire project, or only separated by the type of work (i.e. it is known which employee worked
on which project, but not on which part of it). As such, extensive feature engineering (detailed in
Section 3.1.4) was required in order to arrive at aggregate features per project. Significant
information loss is likely to have occurred as a result, both in quantity and quality, and the
features related to the staircase were the hardest to engineer properly. This is confirmed by the
final model, showing that the predictive power of the engineered staircase-related features is
low.

Second, to compensate for the low amount of data, the choice was made to include all 53
projects for training and testing (using k-Fold Cross Validation), thus not utilising any unseen
data to validate the final model. For similar reasons, the choice was made to not exclude the
two potential outlier projects observed in Figure 13, because there is a clear need for the
company to be able to predict large projects well. Both could have a slight influence on the
reliability of the results.
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Third, while working on the research, it became clear data reliability is another limitation: Both
the original and actual numbers of engineering hours are subject to potential subjectivity.
Interviews with employees showed that factors such as the likelihood of a client accepting an
offer may significantly impact the quoted number of hours budgeted for a project. Salespeople
may adjust the quote to increase the chances of a sale or adjust it upwards if it is deemed cost
is not a significant concern for the client.

Similarly, it is likely that the recorded number of hours worked on projects is biased.
Interviewees showed engineers could, for example, step up their productivity when approaching
the quoted number of hours, or take a more relaxed approach otherwise. Likewise, they could
decide to record the number of hours worked differently, for example by rounding their hours up
or down based on the above-mentioned factors. For these reasons, it is likely that the recorded
number of engineering hours is biased towards the estimated number, thus artificially increasing
the accuracy of the company’s previous estimation method.

Finally, because of the necessity for a solution to be easily interpretable by EeStairs’ employees
(and possibly customers), this research only looked at (linear) regression analysis. Other
machine- or deep learning methods (such as Neural Networks) might offer better performance,
although the data quality is likely to remain a limiting factor.

5.3 Recommendations
From the points made earlier, it becomes clear this model is not a viable replacement for
EeStairs’ current cost estimation process. Regardless, this research can provide valuable
insights on how machine learning can improve the cost estimation process of EeStairs and
companies like it. In this section, we outline four recommendations for the company, followed by
additional remarks for researchers at other Versatile Manufacturing Companies.

1. Record actual costs and hours in more detail

Recording costs in higher detail, including materials and work hours, would greatly enhance the
data quality of EeStairs. To achieve a balance between practicality and data quality could
probably be struck if hours and costs per project part (such as per balustrade or staircase),
where feasible. This should include engineering hours.

2. Implement and record machine learning-useable project features

Although at this time EeStairs’ data lacked some of the quality and quantity needed for machine
learning to make significant improvements to the accuracy of their cost estimation, this is likely
to change in the future. As the company implements their new quotation system, they are
implementing a system that meticulously records the input variables that help determine
projects’ costs. These input variables, if recorded over several years of work, could form the
basis for a machine learning-project that:
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● Requires little time to create and transform data.
● Has much more data to work with.
● Uses data that more closely reflects reality.

3. Increase the objectivity and consistency of both input and output data

The aforementioned points are contingent upon the crucial prerequisite that the data utilised are
as unbiased as possible, and evaluated consistently across time. To this end, the company
should firmly distinguish between the estimated cost and the quoted price (i.e. the costs should
be estimated purely on the projects’ details, without thinking of customer expectations in terms
of cost). To protect the integrity of this objective data, the company should implement a
subjective factor, e.g. ‘profit margin’ or ‘discount’, that can give the customer a lower or higher
price for sales-technical reasons. Additionally, EeStairs should encourage employees to report
their hours as accurately as possible, and take away any incentives to do otherwise:

● Judge employees by their overall, long-term performance and do not discipline or
reprimand them when they go over time on a single project, to ensure they do not see
the quoted number of hours as a depository to report any hours to.

● Give employees the flexibility to report some of their hours to non-project-related tasks
(such as team meetings), to make sure they do not report unrelated hours to specific
projects.

● Distinguish between productive and unproductive/erroneous hours worked on a project,
for instance, in case someone made a mistake and their work needs to be redone.

● In general, make (accurately) reporting hours as simple as possible.

4. Until then, use other machine learning or traditional methods

To improve the results with the current data, other machine learning methods could be explored.
For instance, Tayefeh Hashemi et al. (2020) found that, other than regression analysis, artificial
neural networks (ANN) are often used for cost estimation, while Badawy (2020) found superior
results in cost estimation for residential buildings using an approach combining ANN and
regression models. Similarly, it is worth exploring the usage of traditional cost-estimation
methods such as those mentioned by Niazi et al. (2006) and García-Crespo et al. (2009), or
using a combination of machine learning and traditional methods - for instance, using the model
of this research to estimate balustrade costs, and using a knowledge-based system for
staircases.

For other VMCs it is advisable to scrutinise the quality and quantity of their data, as many of the
problems encountered in this thesis are likely to apply to other VMCs as well. Only when
sufficient data of adequate detail is available should companies consider applying machine
learning to improve their cost estimation systems. If the company in question has good data on
part of the cost, but limited or low-quality data on other parts, companies could consider using a
mixed-method approach with machine learning and, for instance, heuristics. If not, we would
recommend VMCs to use non-machine learning methods, or to first undertake a project aimed
at improving the quality of their existing or future data and data infrastructure.
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6 Conclusion
To conclude, the company identified a need to improve and automate their quotation process.
As part of this project, we investigated the use of machine learning to predict their projects’
engineering costs. Based on interviews and existing literature on cost estimation and design &
engineering costs, we selected and created relevant data on 53 projects from EeStairs’ existing
databases: a relatively small amount of data, due to a time-intensive process of data collection.
Because the output data was only available as an aggregate over projects (whereas the input
data was broken down by staircase or balustrade), heavy feature engineering was then
required.

Aiming to construct a model that was both understandable and implementable by the company,
we implemented and optimised four different regression models and selected the best one–the
Lasso Regression mode–to proceed with our analysis. While our model’s performance was
slightly better than EeStairs’ manual method based on the mean squared error, it showed a 57%
worse accuracy in terms of percent error, mostly because of large errors for projects with fewer
than 30 engineering hours. In addition, we found that the optimal model used only one feature,
indicating that many of the engineered features offered little predictive value.

From the above results, we concluded our model is not accurate enough to offer a reliable
improvement over the old method. We identified several underlying reasons our model is
underperforming and offered four core recommendations to EeStairs. Taken together, we took
the first steps towards a data-driven approach for estimating costs based on project features at
the company. We hope this thesis provides a helpful foundation to further automate and improve
EeStairs’ cost estimation process, as those of other versatile manufacturing companies.
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Appendix A: TrapCalc: EeStairs’ current cost
estimation program
In this appendix we describe the current cost estimation process, based on unstructured
interviews with two of EeStairs’ calculators and a demonstration. The current system used to
estimate costs and generate a quote is named ‘TrapCalc’, Dutch and shorthand for ‘Staircase
Calculator’. The program’s start page is shown in Figure 25. By hand of one project whose
calculation has been completed, we will illustrate its functioning, censoring sensitive numbers
and customer/employee identifiers.

Figure 25: Screenshot of the TrapCalc start page.

Overview
After importing some basic project information from the CRM system (such as the customer’s
name and location), a quote can be created. The first screen to open is the quote overview.
After the estimations for all parts of a project have been completed, this overview looks as seen
in Figure 26. In the top section, ‘totalen’, we find the total estimated cost for several categories
(including ‘tekenen’, or engineering), and the quoted price. In the section below is general
information about the calculator, the quote, the project and the customer. Next is information on
travel distance & the number of times a measurement must be made on location. Then the
payment terms, delivery details and the quote’s expiration date is noted, and finally a list of
general comments (such as terms & conditions) is generated based on which boxes the
calculator ticks.
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Figure 26: Screenshot of the quote overview.

Estimation per product part
To start calculating the cost for a project, a submenu is created for each part. As seen on the left
side of Figure 26, in this project this is divided into ‘algemeen’ (general), ‘wenteltrap’ (spiral
staircase), ‘balustrade’ and ‘berekeningen’ (structural calculations). General includes the time
spent on taking measurements, installing the staircase, and on transportation, while the
structural calculations simply refers to a predetermined price depending on how many different
(parts of the) staircase(s) have to be calculated.

The spiral staircase is further divided into ‘trap’ (staircase, the steps), ‘bordes’ (landing, the flat
area in the middle of a staircase), and ‘hekwerk’ (railing, the two sides of the staircase), making
calculations for the time spent on production and installation per step (of a staircase) or per
metre (of a railing), for the materials used, the design time, and any finishing treatment. These
calculations are shown in Figure 27. At the bottom is where the calculations for the size,
materials, treatment, labour & extras are added. Of these, the size, materials and treatment can
be estimated quite accurately: the approximate measurements, types of material to be used and
any treatment required can be predicted based on the first designs. After the number of steps is
calculated, the approximate materials used per step and for the beams (holding the steps
together) are added. Treatment is added at a known price per square metre, since it is normally
outsourced.

For the balustrade, in this case the calculation is rather easy, as is often the case: because
EeStairs regularly produces similar balustrades, a template is used to which only minor edits are
made (such as its length or a specific finish). If this project had a custom balustrade, some more
calculations would have to be made in terms of its type of material and the amount of material
per metre of length, as well as estimations on the engineering time.
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Figure 27: Screenshot of the calculations done for the staircase.

Estimating engineering time
For brevity’s sake, we will not go into detail of processes such as the production & installation,
and focus on engineering (‘tekenen’ in Figure 27). Within this program, for the steps and for the
landing, an estimate is made for the amount of time taken to design the entire thing. For
balustrades and railings this design time is accounted for per metre. TrapCalc then adds up all
these hours spent, as shown in the top table of the above picture.

Degree of automation
Though TrapCalc is not entirely a manual system, the built-in functions to speed up the process
are very basic. Aside from simple multiplication or addition of inputs, the main speed-increasing
function is the ability to create templates for common products (such as balustrades, some of
which EeStairs produces regularly) and terms & conditions, decreasing the time spent typing or
calculating in those instances. Additionally, customer data is automatically copied to TrapCalc
from the CRM system, and after filling in all costs a quote can be produced with 1 click,
including layout & information about EeStairs.
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Appendix B: Systematic Literature Review protocol

Search strategy

The question answered through this literature review is the following:

What are cost drivers for design and engineering?

Databases

For this literature review, the database used is Scopus. This is used both because of its quality
as a very extensive multidisciplinary database, and because the University of Twente provides
access to it.

Search terms and strategy

To answer this question, a number of key concepts and their synonyms were defined. These
can be seen in Table 9.

Key concepts Synonyms Narrower Broader

Cost Time, effort Price

Estimation Estimating Drivers, estimators,
factors

Quotation

Design x Drawing, architecture Engineering

Table 9: Search terms.

The first searches using these terms resulted in thousands of sources, and as such the search
query was refined until a large percentage of the remaining sources seemed relevant. This
resulted in a query that combined “design” + “cost estimation” and “estimating” + “design cost”
and their (most relevant) synonyms. The result of this can be seen in Table 10.

Search query Database Hits

((Design OR engineering) AND (“time estimation” OR “estimating time”
OR “estimating effort” OR “estimating price” OR “cost drivers” OR “price
quotation”)) OR ((Estimating OR estimation) AND (“design time” OR
“design effort” or “design cost” OR “engineering time” OR “engineering
effort” or “engineering cost”))

Scopus 121

Table 10: Search query.
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Inclusion criteria
- Sources that name or identify general cost drivers (whether in terms of time, effort or

price) for design and/or engineering

Exclusion criteria
- Paid sources, except those accessible via the University of Twente or through Sci-Hub.

For budgetary reasons, and because most sources can be found that way.
- Sources that identify cost drivers for a specific unrelated products’ design or engineering,

such as software engineering or die casting

Judging the articles found on these criteria resulted in the following selection process, seen in
Table 11. After a preselection judging whether or not the article is likely to contain information on
cost drivers, 26 articles were chosen for reading. Of those that could be accessed some were
removed because no factors could be found, others because the factors were very specific to a
certain product and as such not relevant for this review. A number of the remaining articles were
by the same authors, leading to the removal of the least relevant overlapping articles (often
case studies). In one case, the authors’ most relevant article on the topic was not included in the
literature review but was used as a source in each of their other articles, leading to its inclusion
in this literature review. In another case, the factors used came directly from another article,
which was subsequently included.

Total number of hits 121

Removing duplicates -3

Selecting based on title -64

Selecting based on abstract -28

Article not accessible -7

Removed after reading -17

Added after reading 2

Total selected of review 4

Table 11: Resulting articles after several selection steps.

These four articles are introduced and discussed in Section 2.2.
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Appendix C: Feature selection process

Synthesis of the systematic literature review

In this section, we select cost drivers from our systematic literature review (SLR) in Section 2.2
that are informative for our use-case and goal. The reasons to exclude a cost driver can be
found in Table 12.

# Criterion Reasoning

E1 Universality This factor is the same for all of EeStairs’ projects, and as such
offers no useful information for our data analysis.

E2 Scope Assessing the value of this factor is too complex or
time-consuming for this project, or the data is simply not
available.

E3 Inconsequential In interviews with Engineers, this factor was found to likely be of
little to no influence to the process.

E4 Intransferable The cost influence of this factor can or should not be transferred
to the client.

E5 Redundant This cost category is already (sufficiently) covered by other
factors.

E6 Inapplicable This cost factor does not apply to EeStairs’ projects.

Table 12: Exclusion criteria.

In Table 13, these exclusion criteria are applied to the cost drivers identified in the SLR, and you
can find which cost drivers we will include in further research.

Category Cost driver Exclusion

Product characteristics

Product complexity Structure Included

Size

Shape

Degree of change

Added demands Technical difficulty

Severity of requirements
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Use of new technology E5 - Insofar there are new technologies,
these are included in ‘Technical difficulty’ and
‘Severity of requirements’.

Number of design
interdependencies,
technologies and
sub-assemblies

E5 - Is included in ‘Technical difficulty’ and
‘Severity of requirements’.

Design process

Use of a formal
process

Standardisation E1/E4 - Design processes are generally the
same across projects, and insofar there is a
difference it should not be transferred to
clients.

Process control

Concurrency Concurrency E3/E4 - How many different projects are
running at the same time was found not to be
consequential. Even if it were, this is not a
cost that should be transferred to clients.

Design team

Collaboration Management complexity E1 - EeStairs’ team and their
collaboration/communication is the same
across all projects.Team size

Methods of
communication

Other Experience E2/E4 - Which specific engineer works on a
project does differ, but this is beyond the
scope of this project. Additionally, the price of
a project should depend on the projects’
complexity, not on whether or not the
fastest-working engineer happens to be
assigned to the project.

Skill

Dedicated spirit

Design conditions

Past information Available data Included

Presence of a reference
job

Included

Other Use of design (assisted)
tools

E1/E4 - Generally, the same tools are used
across projects. Although different engineers
use different CAD applications due to
personal preference/skill, this (probably
marginal) cost difference should not be
transferred to the client.
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Management support E1 - EeStairs’ management is the same
across all projects.

Number of regulations
and standards

E2 - Although regulations across country
boundaries do influence the project cost, the
decision was made to focus on The
Netherlands for this project.

Table 13: Applying the exclusion criteria to the cost drivers identified in Section 2.2.

One important difference between EeStairs’ engineering process and those analysed in the
SLR, however, is that EeStairs’ process is highly linked to the client and their needs. As such,
while the factors in the ‘Design team’ category are all excluded, we will introduce a new and
related category as it applies to EeStairs: ‘Client collaboration’. These cost drivers and their
reasons for in- or exclusion can be found in Table 14.

Cost driver Included? Reasoning

Management
complexity

No E6/E5 - This is partially inapplicable to EeStairs, and the
relevant parts are mostly covered by the following cost driver.

Team size Yes In interviews with the company, the size of the clients’ team
was found to be quite influential to the decision-making
process. Whereas a single decision-maker is relatively easy to
deal with, larger teams take longer to make decisions and may
require more information.

Methods of
communication

No E1/E3 - The methods of communication are generally similar
across projects, and insofar there is a difference it is not
consequential.

Experience Yes The experience/skill of the decision-maker(s) is thought to be
of importance, because experienced clients are easier to work
with and make decisions faster.Skill

Dedicated
spirit

No E1/E2 - One could assume that all clients who purchase from
EeStairs are dedicated at least a little. However, insofar there
is a difference here, it would be very hard to determine a
clients’ dedication, and definitely outside this projects’ scope.

Table 14: Additional cost drivers and their reasons for in- or exclusion.

EeStairs’ proposed factors

At the start of this project, EeStairs’ director had created a list of potential factors to be used for
all aspects of EeStairs’ projects, including engineering. In this section we will lay those relevant
to engineering next to the factors synthesised from the SLR, and briefly discuss their overlap
and/or differences. You can find this in Table 15.
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SLR factor EeStairs factors Discussion

Structure Design &
visualisations;
Workshop drawings

Although the SLR factors are more specific, they
do impact the time spent on design, visualisation
and workshop drawings.Size

Shape

Degree of change

Technical difficulty Site survey Depending on the complexity of the product, and
especially its installation (and the surrounding
environment), there may be a need for multiple
site surveys.

Severity of
requirements

Structural
calculations

Some clients require structural calculations to be
performed.

Clients’ team size Project
management;
Design meetings

The team size and experience are thought to
impact both the time it costs in terms of project
management, and the number of design
meetings necessary to reach a decision.

Clients’ experience

Available data Building Information
Modelling (BIM)

Some clients model their entire building
environment, reducing the need for EeStairs to
create that part of the model.

Presence of a
reference job

Although EeStairs’ ‘Design & visualisations’ and
‘Workshop drawings’ are placed above, the
presence of a reference job does influence the
time it costs to complete both and as such, they
are applicable here.

Table 15: Discussion of the overlap between the factors resulting from the SLR and those
proposed by EeStairs.
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Appendix D: Model development process
For the development of our models, we used an approach (experiment A) that started with the
four models referenced in Section 3.2.5 in their default scikit-learn setup, using all features as
described in Section 3.1.4. In experiment B, we added a feature selection method as described
in Section 3.2.4. And finally, in experiment C, we further optimised the Ridge, Bayesian Ridge
and Lasso Regression models in order to arrive at our final models, the scores of which are
shown in Section 4.1.

All models are trained and tested with a 10-fold Cross Validation procedure, as described in
Section 3.2.2. The entire procedure is instantiated 10 times for each model, using 10 different
seeds for the CV procedure, in order to increase the comparability between models (due to the
small amount of data, it appeared to make quite a large difference depending on how the 10-fold
split was seeded). After scaling, optional feature selection and training, the models are run on
the test set and compared based on their average MSE, MAE and MAPE scores across splits
and seeds. In addition, two scores are used to estimate the variance of our model: the average
percentage increase from the train MSE to the test MSE, and the variance of test MSE scores
across the 10 CV seeds. Highlighted in bold are the best-performing scores in a column.

Experiment A: Basic models

Training our models without any feature selection and with their default setup shows that Lasso
performs best, as seen in Table 16. This is in line with the feature eliminating behaviour
described in Section 3.2.5.

Model MSE MAE MAPE MSE % increase
over train score

MSE
variance

LinearRegression 1131.37 27.180 0.5866 51.65 2139.97

Ridge 1122.45 27.123 0.5891 50.42 1741.20

BayesianRidge 1135.14 27.217 0.6135 43.34 1575.42

Lasso 1024.12 25.643 0.5592 34.90 1255.45
Table 16: Error scores and variance of basic models.

Experiment B: Basic models + feature selection

Still using the basic models, in experiment B we then include a SelectFromModel feature

selection method, which also uses the default model setup. The results in Table 17 confirm what

was seen in experiment A: all models show an improvement due to the feature selection

method, except for Lasso - which gives roughly equal results.
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Model MSE MAE MAPE MSE % increase
over train score

MSE
variance

LinearRegression 970.51 24.996 0.5350 19.29 1281.85

Ridge 959.73 24.836 0.5346 20.78 1472.24

BayesianRidge 928.18 24.450 0.5265 16.03 763.66

Lasso 1024.11 25.643 0.5592 34.90 1255.51

Table 17: Error scores and variance of basic models, including feature selection.

Experiment C.1: Ridge optimisation

To optimise Ridge Regression, we experimented with different values for the coefficient that
multiplies the L2-regularisation score, called Alpha in scikit-learn. Original experiments started
with Alpha = [0.1, 1, 5, 10, 20]; 6 and 8 were included after it showed that the score was roughly
equal between Alpha = 5 and 10. Ultimately, Alpha = 8 showed the best results, as can be seen
in Table 18.

Alpha MSE MAE MAPE MSE % increase
over train score

MSE
variance

0.1 966.94 24.882 0.5323 21.84 1667.43

1.0 959.73 24.836 0.5346 20.78 1472.24

5.0 945.53 24.746 0.5428 17.17 1261.27

6.0 944.83 24.769 0.5462 16.48 1064.57

8.0 941.02 24.737 0.5508 14.68 665.55

10.0 946.62 24.859 0.5573 13.97 724.00

20.0 1008.44 25.905 0.5932 13.44 1174.74

Table 18: Error scores and variance of several Ridge Regression settings.

Experiment C.2: Lasso optimisation

A similar experiment was conducted for Lasso, which showed superior results for alpha = 5. The
results can be seen in Table 19.

Alpha MSE MAE MAPE MSE % increase
over train score

MSE
variance

0.1 1120.28 27.041 0.5841 50.25 1823.13
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1.0 1024.11 25.643 0.5592 34.90 1255.51

5.0 888.26 24.179 0.5452 6.77 575.71

10.0 969.24 25.524 0.5860 6.76 542.15

20.0 1324.02 29.700 0.6812 9.61 3190.07

Table 19: Error scores and variance of several Lasso Regression settings.

Experiment C.3: BayesianRidge optimisation

Finally, BayesianRidge was optimised. Due to the much larger number of hyperparameters that
can be optimised for this method, we opted to use the method BayesSearchCV (scikit-optimize,
2020). BayesSearchCV implements a Bayesian optimisation over the hyperparameters of our
BayesianRidge model. The resulting best setup showed no significant improvement over the
default settings, as can be seen in Table 20.

Method MSE MAE MAPE MSE % increase
over train score

MSE
variance

Benchmark (no
search) 928.18 24.450 0.5265 16.03 763.66

BayesSearchCV 935.04 24.652 0.5296 16.71 836.45

Table 20: Error scores and variance of several Bayesian Ridge Regression settings.

Experiment C: Final comparison of optimised models

The best-performing Ridge, Lasso and BayesianRidge models were then taken and compared
with each other and the default Linear Regression model, as shown in Section 4.1.
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