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Abstract

We present a method to identify the parameters of a state space model for a max-
plus linear system based on the data from input-output sequences. This method
is based on modeling the system as a mixed-integer program. We show that this
method is computationally more efficient compared to existing methods, given the
assumption that the system and data are not corrupted by noise. Furthermore, we
present a linear program that could be used for state space identification in certain
cases. This method is even more computationally efficient and allows us to identify
max-plus linear systems of a higher order. Additionally, we will show that the same
mixed-integer programming formulation can be used to find the minimal state space
realization of a max-plus linear system and present an algorithm to find this minimal
realization. Moreover, we will present a method to model capacity constraints in a
max-plus linear system.
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Chapter 1

Introduction

1.1 Background

In the modern high-tech industry, with the ever increasing and changing market
needs, there is a need for smart and flexible manufacturing systems that can produc-
tively handle various types of products, such that factories can quickly satisfy these
market needs and maximize profits. Manufacturing systems often consist of multiple
coupled sub-systems, each consisting of one or more machines, that perform op-
erations on the products being produced. Often these sub-systems are created by
different companies and are thus not always perfectly optimized to cooperate, which
could result in a loss of productivity. Additionally, sometimes the exact behaviour of
a sub-system is completely unknown. To meet customer needs, companies must
have reliable estimates of their order delivery times, which in turn requires accurate
predictions of the finishing times of the jobs on the manufacturing system. However,
given the complex nature of operations within these systems, and the unknown be-
haviours, estimating finishing times can be a complex problem. In order to do this, it
will be key to discover the behaviour of the unknown system dynamics. This can be
seen as learning a black-box or grey-box model of the unknown sub-system.

In literature, multiple methods have been proposed to model and analyse manu-
facturing systems, such as queuing models, Petri nets, and discrete event systems
(DES). In general, DES lead to a nonlinear description in conventional algebra. How-
ever, there exists a subclass of DES for which this model becomes “linear” when it is
formulated in the max-plus algebra [1], [5], where the conventional operators addi-
tion and multiplication are replaced by maximization and addition, respectively. This
subclass of DES has two important characteristics, namely synchronization and no
concurrency or choice. Synchronization requires the availability of several resources
or users at the same time, whereas concurrency appears, for instance, when some
users must choose among several resources, at a certain time [1]. The maximization
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2 CHAPTER 1. INTRODUCTION

operator corresponds to synchronization, where a new operation starts as soon as
all preceding operations have been finished. The addition operator corresponds to
the duration of an activity, where the finishing time is equal to the starting time plus
the duration. DES with synchronization and no concurrency are known as max-plus
linear (MPL) systems [11], [33]. In addition to modeling production systems, the
max-plus algebra can be used to model railroad networks, array processors, queu-
ing systems, and urban traffic networks [1], [5], [19].

In order to use MPL systems to estimate the behaviour of a system, we need to be
able to estimate the parameters and structure of the model. In literature, this prob-
lem is known as system identification [24]. Multiple methods have been proposed
to estimate the parameters of MPL systems [13], [27], [32]. However, most of these
methods assume that the internal structure of the system is completely known, and
that the state is assumed to be measurable. In this thesis, we assume that we can
only observe input-output sequences of the system. Input-output sequences are a
collection of the times that some item enters and leaves the system.

Furthermore, many modern mathematical models that are being used to represent
real-world processes present difficulties in numerical calculations due to their com-
plexity, and size or dimension of the model. Particularly, issues arise when these
models need to be used in real-world applications where there is only a limited
time for computations, as in smart and flexible manufacturing systems. One of the
methods proposed in literature is to find a minimal realization of the system. The
minimal realization problem deals with finding the smallest possible model that ac-
curately represents the observable data of a given system. The data are typically
the impulse response of the system, the step response, frequency response data,
or input-output measurements [7]. The latter will be the focus in this thesis.

1.2 Problem Statement

This research will focus on two primary objectives. The first objective is to investigate
the existing state-space identification methods that only use input-output sequences,
and aim to improve these methods.

The second objective is to develop a method to solve the minimal state space real-
ization problem for MPL systems, where the only observable data from the system
are the input-output sequences.

In addition to the two primary objectives, it became evident that the literature lacks
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a clearly defined method for modeling capacity constraints in MPL systems. As a
result, an extra objective is to design a method to model capacity constraints in MPL
systems. Capacity constraints will be clearly defined in Section 3.1.

1.3 Outline

In Chapter 2, we will discuss some preliminaries related to the max-plus algebra
and present related work to state space identification and minimal state space re-
alizations for MPL systems. Chapter 3 presents a method for modeling capacity
constraints in an MPL system, and we will show how to model the max-plus state
space identification problem as a mixed-integer program (MIP) and linear program
(LP). In Chapter 4, we will show some numerical experiments in which we compare
the computation times of a mixed-integer quadratic program (MIQP), MIP, and an
LP for different model dimensions. We will first discuss the experimental setup and
afterwards show the results. Chapter 5 is specifically focused on the minimal state
space realization problem. In this chapter we will present an algorithm to solve this
problem. The thesis ends with some conclusions and recommendations discussed
in Chapter 6.
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Chapter 2

Preliminaries

In this chapter we will first discuss the basics of the max-plus algebra and give some
examples on the max-plus algebra. Subsequently, we will dicuss the related work
on state space identification and minimal state space realization of max-plus linear
systems.

2.1 The Max-Plus Algebra

This section gives an overview of the theoretical foundations of the max-plus alge-
bra, drawing primarily from the work of [11]. The paper has provided a clear overview
of the max-plus algebra. We begin by introducing the key concepts and definitions
of the max-plus algebra as presented in the paper. To obtain a more comprehensive
understanding of the max-plus algebra, interested readers are referred to [1] and [5].
In addition, we give an example of how to model a system as an MPL system and
explain some methods to visualise these systems.

2.1.1 Basic Operations of Max-Plus Algebra

As the name already suggests, the max-plus algebra consists of the basic opera-
tions maximization and addition [1], [5]. These are represented by ⊕ and ⊗ respec-
tively:

x⊕ y = max(x, y) and x⊗ y = x+ y

for x, y ∈ Rε
def
= R ∪ {−∞}.

These symbols are used since there is a remarkable analogy between ⊕ and ⊗, and
the conventional addition and multiplication, respectively. This association enables a
substantial number of properties and concepts from linear algebra to be transposed
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onto the max-plus algebra by substituting + by ⊕ and × by ⊗ [1], [5].

It is worth noting that there exist certain differences between the conventional alge-
bra and max-plus algebra. A primary distinction is the absence of inverse elements
with respect to ⊕ in Rε in general. In addition, the zero element for ⊕ in max-plus
algebra is denoted by ε

def
= −∞, and the identity element is denoted by e

def
= 0.

In the max-plus algebra, the order of evaluation corresponds to that of conventional
algebra. Specifically, the operator ⊗ takes precedence over ⊕.

For all a ∈ Rε, exponentiation of the max-plus algebra is defined as:

a⊗
n

= a⊗ a⊗ ...⊗ a︸ ︷︷ ︸
n times

= a+ a+ ...+ a︸ ︷︷ ︸
n times

= na

The max-plus algebra satisfies the following properties:

1. Associativity. For all a, b, c ∈ Rε, we have a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c and
a⊗ (b⊗ c) = (a⊗ b)⊗ c.

2. Commutativity. For all a, b ∈ Rε, we have a⊕ b = b⊕ a and a⊗ b = b⊗ a.

3. Distributivity of ⊗ over ⊕. For all a, b, c ∈ Rε, we have (a⊕b)⊗c = (a⊗c)⊕(b⊗c)

and c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b).

4. Idempotency of ⊕. For all a ∈ Rε, we have a⊕ a = a.

5. Zero element. For all a ∈ Rε, we have a⊕ ε = ε⊕ a = a.

6. Absorbing zero element. For all a ∈ Rε, we have a⊗ ε = ε⊗ a = ε.

7. Identity element. For all a ∈ Rε, we have a⊗ e = e⊗ a = a.

2.1.2 Matrix Operations in Max-Plus Algebra

The basic max-plus operations ⊕ and ⊗ can be extended to matrices. Suppose we
have matrices A,B ∈ Rm×n

ε and C ∈ Rn×p
ε then for all i, j we have

(A⊕B)ij = aij ⊕ bij = max(aij, bij)

(A⊗ C)ij =
n⊕

k=1

aik ⊗ ckj = max
k

(aik + ckj)

The zero matrix in max-plus algebra is defined as Em×n ∈ Rm×n
ε where (Em×n)ij = ε

for all i, j. The identity matrix is defined as En where (En)ii = e for all i ∈ {1, ..., n}
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and (En)ij = ε for all i, j where i ̸= j. If we would multiply the identity matrix En with
any vector x ∈ Rn

ε , we would see that En ⊗ x = x.

For matrix exponentiation, we have A⊗0
= En and

A⊗n

= A⊗ A⊗ ...⊗ A︸ ︷︷ ︸
n times

.

Example 2.1.2.1. Given α = 2, A =

(
e 1

ε 4

)
and B =

(
−2 4

1 ε

)
, the following

computations can be done:

A⊕B =

(
max(e,−2) max(1, 4)

max(ε, 1) max(4, ε)

)
=

(
e 4

1 4

)

α⊗ A =

(
2⊗ e 2⊗ 1

2⊗ ε 2⊗ 4

)
=

(
2 3

ε 6

)

A⊗B =

(
max(e− 2, 1 + 1) max(e+ 4, 1 + ε)

max(ε− 2, 4 + 1) max(ε+ 4, 4 + ε)

)
=

(
2 4

5 ε

)

B ⊗ A =

(
max(−2 + e, 4 + ε) max(−2 + 1, 4 + 4)

max(1 + e, ε+ ε) max(1 + 1, ε+ 4)

)
=

(
−2 8

1 2

)

A⊗2

= A⊗ A =

(
max(e+ e, 1 + ε) max(e+ 1, 1 + 4)

max(ε+ e, 4 + ε) max(ε+ 1, 4 + 4)

)
=

(
e 5

ε 8

)

2.1.3 Max-Plus Linear Systems

Discrete event systems (DES) with only synchronization and no concurrency can
be modeled by a max-plus-algebraic model. Synchronization requires the availabil-
ity of several resources or users at the same time, whereas concurrency appears,
for instance, when some users must choose among several resources, at a certain
time [1]. In this research, we assume that each item flowing through the system has
a fixed route. As a result, there is no concurrency.

The max-plus algebraic model is of the following form:

x(k) = A⊗ x(k − 1)⊕B ⊗ u(k)

y(k) = C ⊗ x(k)
(2.1)

with A ∈ Rn×n
ε , B ∈ Rn×m

ε and C ∈ Rp×n
ε , where m is the number of inputs and p

the number of outputs. The vector x represents the state, u is the input vector, and
y is the output vector of the system. It should be noted that u, x, and y are event
times and that k is an event counter. For all k ∈ {1, ..., N}, we have x(k) ∈ Rn×1

ε ,
y(k) ∈ Rp×1

ε , and u(k) ∈ Rm×1
ε , where N is the total number of events.
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Example of a simple system

To clarify, suppose that we have a system as in Figure 2.1. The system consists of
three resources each with different processing times Ti for i ∈ {1, 2, 3}. Raw mate-
rials are fed to resources 1 and 2, and subsequently processed by these resource.
When resources 1 and 2 are finished processing, resource 3 can start processing.
After resource 3 is finished, the item leaves the system. In this example, it is as-
sumed that the time to transport items is negligible and that each resource starts
working as soon as possible. Furthermore, the buffers are initially empty and none
of the resources are stocked with raw material or intermediate items. We define the
event times as follows:

• u(k): time instant at which raw material is fed to the system for the kth time.

• xi(k): time instant at which the ith resource starts processing for the kth time.

• y(k): time instant at which the kth finished item leaves the system.

Figure 2.1: A simple system.

Before resource 1 can start processing for the kth time, it should first of all be finished
with the previous item. Resource 1 started processing the (k− 1)st part at x1(k− 1).
Since it takes T1 = 3 time units to process the raw material, we know that x1(k) ≥
x1(k− 1)+ 3. In addition, the kth raw material should have reached resource 1. As a
result, we know that x1(k) ≥ u(k). Because of the assumption that resources start
processing as soon as possible, we have

x1(k) = max(x1(k − 1) + 3, u(k))

for k ∈ {1, ..., N} with N being the total number of items passing through the system.
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Using a similar reasoning, we find the following expressions:

x2(k) = max(x2(k − 1) + 2, u(k))

x3(k) = max(x3(k − 1) + 6, x1(k) + 3, x2(k) + 2)

= max(x3(k − 1) + 6, x1(k − 1) + 6, u(k) + 3, x2(k − 1) + 4, u(k) + 2)

= max(x3(k − 1) + 6, x1(k − 1) + 6, u(k) + 3, x2(k − 1) + 4)

y(k) = x3(k) + 6

for k ∈ {1, ..., N}. We have the initial condition xi(0) = ε for i ∈ {1, 2, 3}, which corre-
sponds to the assumption that initially buffers are empty and none of the resources
are stocked with raw material or intermediate items.

We can now rewrite the max-plus equations above in matrix notation. The system
will look as follows:

x(k) =

3 ε ε

ε 2 ε

6 4 6

⊗ x(k − 1)⊕

e

e

3

⊗ u(k)

y(k) =
(
ε ε 6

)
⊗ x(k)

where x(k) =
(
x1(k) x2(k) x3(k)

)T
. The model is now of the form as in (2.1). It

has to be noted that this is the explicit model of the system. In the implicit model the
vector x(k) is also dependent on x(k). For this example the implicit model looks as
follows:

x(k) =

e ε ε

ε e ε

3 2 e

⊗ x(k)⊕

3 ε ε

ε 2 ε

ε ε 6

⊗ x(k − 1)⊕

e

e

3

⊗ u(k)

y(k) =
(
ε ε 6

)
⊗ x(k)

In this thesis, our general assumption is that we aim to model the explicit form.

Dependence on previous cycles
In certain scenarios, the occurrence of events do not only depend on the previous
cycle, but also cycles before that. In other words, the event is dependent on events
in cycle k − c, where c ∈ {1, ..., k}. Consequently, the state equation can be refor-
mulated as

x(k) =
k⊕

c=1

Ac ⊗ x(k − c)⊕B ⊗ u(k)
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where each matrix Ac ∈ Rn×n
ε . If x(k) does not depend on x(k − c) for some c ∈

{1, ..., k}, that part could be removed from the equation, or the matrix Ac could be
set equal to the zero matrix En×n.

2.1.4 Visualizing Max-Plus Linear Systems with Graphs

There exists a close relation between the max-plus algebra and graph theory. In
particular, there is a subclass of timed Petri nets, called timed event graphs (TEGs),
that have been identified to capture the class of stationary MPL systems [4]. In
TEGs each place has exactly one input and one output transition and all arcs have
weight 1. A TEG consists of a set of places P = {p1, ..., pn}, a set of transitions
T = {t1, ..., tm} and a set of arcs A ⊆ (P ×T )∪ (T ×P ). In Figure 2.2, an example of
a TEG can be seen. This is the TEG for the system depicted in Figure 2.1. In a TEG,
each place is represented by a circle and each transition by a rectangle. As can be
seen, each place has exactly one input transition (incoming arc from a rectangle)
and one output transition (outgoing arc to a rectangle). The numerical value next
to a place denotes the sojourn time, representing the number of time units required
to elapse before the token becomes available for the firing of the output transition.
In a manufacturing system, this will generally be equal to the processing time of a
resource.

Timed event graphs provide a formal and structured way to model, analyze, and rea-
son about temporal relationships between events. Furthermore, TEGs are valuable
for visualising the structure of MPL systems and it is straightforward to construct
an MPL system from a TEG. As an example, if we define x1(k) to be the kth fir-
ing of transition x1, then we can easily determine from the TEG how to calculate
x1(k). As can be seen in Figure 2.2, x1 exhibits two incoming arcs: one through
u and the other via the previous firing of x1. Since a transition is fired as soon
as there is an available token in each input place, we can construct the equation
x1(k) = max(u(k) + 0, x1(k) + 3). This is the same equation as we had discovered
before in our example. If the TEG correctly represents a system, it allows for a more
systematic approach in creating the max-plus equations by taking into account all
incoming arcs of a transition.

Another method to visualise the constraints of an MPL system is to create a con-
straint graph. This is a little bit more intuitive than the TEG representation. It can
actually be done by unrolling the timed event graph for each firing. To clarify, first
we define u(k), xi(k) and y(k) the same as in Section 2.1.3. In Figure 2.3, the con-
straint graph for the system of Figure 2.1 can be seen. In the constraint graph, each



2.2. RELATED WORK 11

Figure 2.2: Timed event graph of the system in Figure 2.1.

node fires as soon as all incoming arcs are ready. As an example, x1(2) starts as
soon as u(2) + 0 and x1(1) + 3 are satisfied. This can be translated to the constraint
x1(2) = max(u(2) + 0, x1(1) + 3). From this graph it is immediately clear that we can
do this for all k ∈ {1, ..., N}, resulting in the equation x1(k) = max(u(k), x1(k−1)+3).
Because of the assumption that xi(0) = ε for all i ∈ {1, 2, 3}, we have omitted the
arcs from xi(0) to xi(1). Again, the max-plus equations can be easily constructed
from this graph.

2.2 Related Work

In the early 1960s, Cuninghame-Green [6], and Giffler [3], made independent dis-
coveries that max-linear models could be used to describe certain classes of dis-
crete event systems (DES). Later on Cuninghame-Green extended his work on
max-algebraic system theory by publishing [5]. Together with the book of Baccelli et
al. [1], he layed the foundations of the max-plus algebra and the MPL system theory.

In this section, we will discuss the related work to state space identification of MPL
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Figure 2.3: Constraint graph of the system in Figure 2.1.

systems and subsequently discuss related work to minimal state space realization
methods in the max-plus algebra.

2.2.1 State Space Identification

In the 1990s, Boimond, Hardouin, Chiron, and Gallot [2], [15] were one of the first
researchers investigating the identification problem for MPL discrete event systems.
In their research, they used a transfer function approach to estimate the parameters
of MPL systems. As in conventional system theory, they transformed the transfer
function into an ARMA model to obtain a finite number of parameters. Afterwards,
they defined a prediction error and minimized it using residuation theory. The au-
thors mentioned that they could not guarantee the minimality of the model due to
the considered expression of the transfer function.

As was mentioned by De Schutter et al. [12], the connection with the physical struc-
ture is usually lost when transforming an identified transfer function into a state
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space model, whereas the state space matrices of an MPL system clearly repre-
sent the physical layout of the system. In addition, the extension from single-input,
single-output (SISO) to multiple-input, multiple-output (MIMO) is more intuitive for
state space models, and they have the capability to uncover hidden behaviour, such
as unobservable modes. Therefore, we focus on state space identification in this
thesis.

In Schullerus and Krebs [27], a state space identification method has been derived.
However, in their paper the state is assumed to be measurable and the internal
structure of the system is assumed to be completely known. In this thesis, this is
not the case. We assume that only input-output sequences can be observed. This
is in line with the assumptions of the paper from De Schutter et al. [12]. In their
paper, they transformed the state space identification problem into a mixed integer
quadratic programming (MIQP) problem. Within their MIQP they try to minimize the
error between the estimated output times and actual output times given the con-
straints of the MPL system. They include measurement noise. In this thesis, we
will show that, if we assume there will be no measurement noise or noise on the
processing times as in [15], [25], [28], we can reformulate this problem into a mixed
integer program (MIP), and in special cases even be able to solve this problem using
a linear program (LP).

It should be noted that some other methods have been proposed for the state space
identification of MPL systems as well. Menguy et al. [25] developed a method to
estimate the parameters using an impulse response, and in De Schutter and De
Moor [9] the authors use the system’s Markov parameters to find the system pa-
rameters. Furthermore, Hook [22] presented new theory and algorithms for 2-norm
regression over the max-plus semiring and showed how this could be used in system
identification. He assumed that the states were measurable. As already mentioned,
in this thesis we focus mainly on the methods discussed in De Schutter et al. [12].
In Section 3.2.2, we will describe their problem and method in more detail.

Furthermore, some methods have been proposed for the state identification prob-
lem. This problem concerns the correct estimation of the state x whenever there
is some uncontrollable noise involved. In this case the parameters of the matrices
A,B, and C are known. Hardouin et al. [18] proposed a method to find the state
estimates based on the Luenberger observer in classical linear systems theory, and
Lai et al. [23] proposed an algorithm based on the fact that the dynamic behaviour
of a max-plus automaton can be characterized by its state vector. It has to be noted
that this problem is related to the problem in this thesis, but concerns different as-



14 CHAPTER 2. PRELIMINARIES

sumptions. In addition to finding estimates of the system matrices A, B, and C, our
method will also give estimates on the state of the system.

It is important to emphasize that this thesis is focused on deterministic MPL systems.
Nonetheless, research has also been conducted on identification of stochastic MPL
systems, as explored by Farahani et al. [14] and Van den Boom et al. [34]. These
authors have proposed different methods to solve this problem.

In addition to estimating the parameters of an MPL system, It is valuable to be aware
that the input signal design has an influence on the identification of the matrices. If
the input signal design is chosen incorrectly, different modes of MPL systems could
be unobservable and thus not be identified. In Schullerus et al. [29], the authors
propose a new method for the input signal design. The input signal design will not
be the focus of this thesis.

2.2.2 Minimal State Space Realization for Max-Plus Linear Sys-
tems

Before diving into the theory, it is worth mentioning that there is a small difference
between minimal realization and model reduction. Model reduction is focused on
reducing the complexity of an already existing high-order model, while minimal real-
ization is focused on finding a model of the minimal order representation of a system
given some data. Examples of model reduction are balanced truncation [26], Krylov
subspace methods [20], and singular value decomposition.

The minimal realization problem could be solved using a whole spectrum of differ-
ent methods, including methods using transfer functions and state space models.
In this thesis, the focus will be on state space models. Gilbert [16] first introduced
the minimal state space realization problem for linear time-invariant systems. In his
work, Gilbert proposed a method aimed at converting a transfer function into a set
of differential equations. After Gilbert’s work, multiple methods have been proposed
to solve this problem for linear systems, such as Silverman’s algorithm [31] and Ho’s
algorithm [21]. However, despite the remarkable analogies between the max-plus
algebra and linear algebra, the process of translating properties and algorithms from
linear algebra to the max-plus algebra is not always straightforward. As was men-
tioned by De Schutter and De Moor [10], the minimal state space realization problem
is one of the problems that is easily solved in linear system theory, but a complex
problem in max-algebraic system theory.
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In 1995, De Schutter and De Moor [9] showed that the minimal state space real-
ization problem in the max-plus algebra could be formulated as an extended linear
complementarity problem (ELCP), and solved this problem for the first time. As was
shown by the same authors, the general ELCP is an NP-hard problem [8]. In De
Schutter [7], it is even stated that there are strong indications that the general max-
plus-algebraic minimal state space realization problem is at least NP-hard. Not a lot
of methods have been proposed in literature to solve the minimal state space real-
ization problem for MPL systems. In 1997, De Schutter and De Moor [10] proposed
another method in which they used a matrix factorization algorithm to determine a
lower bound for the minimal system order. Their procedure could often be used to
compute the system matrices of a minimal state space realization as well. How-
ever, in both of their papers from 1995 and 1997 they assumed that the known data
consisted of impulse responses, while the focus in this thesis will be on input-output
sequences. We will formulate a method to model the minimal state space realization
problem in the max-plus algebra as a mix of multiple MIPs.
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Chapter 3

Modeling

This chapter is focused on the modeling part of this thesis. We will first show how
capacity constraints can be modelled in MPL systems. Afterwards, we will explore
methods for representing the max-plus identification problem as an MIP problem
and give a method to solve the problem using an LP for certain cases.

3.1 Modeling Capacity Constraints

As was mentioned in Section 1.2, one of the goals of this research was to design a
method to model capacity constraints in MPL systems. Capacity constraints are con-
straints on one or multiple resources, where the number of items in those resources
cannot exceed a certain maximum capacity. We will first show an example of how
to model a capacity constraint in an MPL system, and afterwards give a method for
generating the max-plus equations for systems with capacity constraints.

3.1.1 Example of Modeling Capacity Constraints

Suppose we have a system as in Figure 3.1. This system consists of two resources
with a processing time of T1 = 1 and T2 = 3. Both resources can process 1 item at
a time, indicated by the maximum capacity a1 and a2 of 1. Furthermore, this system
has a capacity constraint over both resources 1 and 2 of c = 2, indicating that at
most 2 item can be in the system at the same time.

This capacity constraint creates an extra constraint on both x1(k) and x2(k). To get
a better understanding, let’s first look at the constraint graph of this system, depicted
in Figure 3.2. We assume that xi(k) = ε for k ≤ 0 for i ∈ {1, 2}. For convenience the
arcs coming from xi(k) for k ≤ 0 are neglected. We see that each x1(k) has three
incoming arcs, one from u(k), one from x1(k− 1), and one from x2(k− 2). For x2(k),

17
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Figure 3.1: Example of a system with a capacity constraint.

we see that it has two incoming arcs, one from x1(k), and the other from x2(k − 1).
The resulting max-plus model for this system is as follows:

x(k) =

(
T1 ε

T1 + T1 T2

)
⊗ x(k − 1)⊕

(
ε T2

ε T1 + T2

)
⊗ x(k − 2)⊕

(
e

T1

)
⊗ u(k)

y(k) =
(
ε T2

)
⊗ x(k)

Figure 3.2: Constraint graph of the system of Figure 3.1. For convenience the arcs
coming from xi(k) for k ≤ 0 for i ∈ {1, 2} are neglected.

As can be seen in the previous example, the extra matrix used to model the capacity

constraint is the matrix A2 =

(
ε T2

ε T1 + T2

)
, which is multiplied by the vector x(k−2).
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3.1.2 Generalization of Modeling Capacity Constraints

In the previous section, we have shown an example of how to model a capacity con-
straint in a simple system. In this section, we will establish a general method of how
to model a capacity constraint. Before we can do this, we first need to introduce
the term capacity restriction area. A capacity restriction area is defined as the area
where the capacity constraint is active. We make the assumption that there is a
single location where an item can leave the capacity constraint. For most systems
this makes sense. However, if this is not the case, other methods have to be devel-
oped. In the example of Section 3.1.1, the capacity restriction area includes both
resources 1 and 2.

Suppose an item has a certain path through a system, where it enters a capacity
restriction area at resource i and leaves it after resource j. Suppose the maximum
capacity is c. Then the starting time of event xj(k − c) will have an influence on
all resources in the path after and including resource i. Suppose, without loss of
generality, that the path through the system passes the following resources:

(1 → ... → i− 1 → i → i+ 1 → ... → j − 1 → j → j + 1 → ... → n)

where n is the last resource before leaving the system. Let us denote Tx as the
processing time of resource x. Resource x for x ∈ {i, i + 1, ..., n} can only start
processing the kth item when at least Tj + Ti + Ti+1 + ... + Tx−1 time units have
passed after the event time xj(k − c). As a result, we could construct the following
matrix:

Ac =



a1,1 · · · a1,j−1 a1,j a1,j+1 · · · an,1
... . . . ...

...
... . . . ...

... ai−1,j−1 ai−1,j ai−1,j+1 · · · ...

... ai,j−1 ai,j ai,j+1 · · · ...

... ai+1,j−1 ai+1,j ai+1,j+1 · · · ...

...
...

...
... . . . ...

an,1 · · · an,j−1 an,j an,j+1 · · · an,n


=



ϵ · · · ϵ ϵ ϵ · · · ϵ
... . . . ...

...
... . . . ...

... ϵ ϵ ϵ · · · ...

... ϵ Ty ϵ · · · ...

... ϵ TxTy ϵ · · · ...

...
...

...
... . . . ...

ϵ · · · ϵ TxTx+1...Tn−1Ty ϵ · · · ϵ


To prevent the matrix above from becoming excessively large, the ⊗ operation has
been omitted between the processing times. As an example, ai+1,j = TxTy = Tx ⊗
Ty = Tx + Ty. The given matrix can be effectively used within an MPL system with
n-serial resources. As an example, let us consider the system depicted in Figure
3.3. Utilizing the structure of the matrix above, generating the max-plus equations
becomes straightforward. The resulting max-plus equations can be expressed as
follows:
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Figure 3.3: System with 4-serial resources with three capacity constraints.

x(k) =


3 ε ε ε

6 5 ε ε

11 10 4 ε

15 14 8 7

⊗ x(k − 1)⊕


ε ε ε ε

ε ε 4 ε

ε ε 9 ε

ε ε 13 ε

⊗ x(k − 2)⊕


ε 5 ε ε

ε 8 ε ε

ε 13 ε ε

ε 17 ε ε

⊗ x(k − 3)⊕


7 ε ε ε

10 ε ε ε

15 ε ε ε

19 ε ε ε

⊗ x(k − 5)

y(k) =
(
ε ε ε 7

)
⊗ x(k)

The construction of the matrix that is multiplied by x(k − 1) is straightforward. An
efficient method has been described by Seleim and El Maraghy [30]. In their paper
they basically describe that the matrix that will be multiplied by x(k − 1) in a system
with n-serial resources has the following structure:

T1 ϵ . . . . . . ϵ

T 2
1 T2

. . . ϵ
...

... . . . . . . ...
T 2
1 T2...Tn−2 T 2

2 T3...Tn−2 . . . Tn−1 ϵ

T 2
1 T2...Tn−1 T 2

2 T3...Tn−1 . . . T 2
n−1 Tn


(3.1)

If there will be multiple capacity constraints with the same maximum capacity, the
matrices can of course be combined into one matrix by using the ⊕ operation. If for
example, the red capacity restriction area of Figure 3.3 had a maximum capacity of
2 (cred = 2), then the matrix created by the red and green capacity constraint could
be combined into the following matrix:

ε 5 ε ε

ε 8 ε ε

ε 13 ε ε

ε 17 ε ε



ε ε ε ε

ε ε 4 ε

ε ε 9 ε

ε ε 13 ε

⊕ =


ε 5 ε ε

ε 8 4 ε

ε 13 9 ε

ε 17 13 ε
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Figure 3.4: System with a capacity constraint and branching.

It is worth noting that in case there exist any transportation times between the re-
sources, they must be accounted for and added to the calculations. This step is
relatively straightforward.

With the process that we have described above, it is easy to create the max-plus
equations for systems with n-serial resources containing any number of capacity
constraints. However, if there are any branches within the system where the process
splits from one resource to two or more other resources, there are multiple paths until
the item leaves the system. In this particular scenario, the structure of the matrix is
slightly different. However, the underlying principle remains unchanged. We can still
create a matrix for each path that the system follows. Afterwards, we can combine
the different matrices and only include the highest values by using the ⊕ operation
between the matrices. This holds for any number of matrices. To clarify, suppose we
have a system as in Figure 3.4. For the capacity constraint, we can create matrices
for both the different paths via resource 3 and resource 4. As already mentioned, this
can be done in a similar way as for the system with n-serial resources. However, if
we choose the path via resource 3, we have to leave out resource 4, and vice versa.
The matrix for the path via resources 3 and 4 will then look as follows, respectively:

A2,resource 3 =


ε 3 ε ε ε

ε 4 ε ε ε

ε 7 ε ε ε

ε ε ε ε ε

ε 13 ε ε ε

 , A2,resource 4 =


ε 3 ε ε ε

ε 4 ε ε ε

ε ε ε ε ε

ε 7 ε ε ε

ε 10 ε ε ε



Subsequently, these matrices can be combined into the matrix A2, which will be
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multiplied by x(k − 2) in the MPL system. This matrix looks as follows:

A2 = A2,resource 3 ⊕ A2,resource 4 =


ε 3 ε ε ε

ε 4 ε ε ε

ε 7 ε ε ε

ε 7 ε ε ε

ε 13 ε ε ε


In general, we can state that for any path through the system, and capacity restric-
tion starting at resource i and finishing at resource j with a maximum capacity of c,
the event xl(k) with l being any resource in the path after and including resource i,
will occur at least when time xj(k − c) + Tj + Ti + Ti+1 + ...+ Tl−1 has passed.

3.2 Mixed-Integer Programming Formulation

In this section, we will dive deeper into the method of how to model the state space
identification problem as an MIP. We will first show methods how to model maxi-
mization constraints, and afterwards show how to model an MPL system as an MIP.
As mentioned before, we assume that the processing times and measurements of
u(k) and y(k) in the MPL system are not corrupted by noise.

3.2.1 Modeling Maximization Constraints in an MIP

To effectively model an MPL system as an MIP problem, it is essential to understand
how to model a maximization constraint as an MIP constraint. Suppose we have the
following maximization function:

z = max(a1, ..., an) (3.2)

To model this in an MIP, we can first ensure that z ≥ max(a1, ..., an) by using the
linear constraints:

z ≥ ai, ∀i ∈ {1, ..., n} (3.3)

In some optimization problems, it can be the case that the objective function enforces
that z ≤ max(a1, ..., an) and thus the optimization only requires the constraints as in
(3.3). As a result, the constraints do not need any integer variables and we can
solve the problem with an LP. However, if this is not the case, it should be enforced
by some additional constraints. Let M be a constant upper bound on z, and let
yi ∈ {0, 1} ∀i ∈ {1, ..., n} be a binary decision variable. We can now impose the
following linear constraints:
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n∑
i=1

yi ≥ 1 (3.4)

z ≤ ai +M(1− yi), ∀i ∈ {1, . . . , n} (3.5)

To proof that these constraints correctly model Equation (3.2), we first show that if
Equation (3.2) is true, constraints (3.3), (3.4), and (3.5) are satisfied. Afterwards, we
show that if constraints (3.3), (3.4), and (3.5) are satisfied, that Equation (3.2) holds.

First suppose that z = max(a1, ..., an). This immediately implies that constraint
(3.3) holds by definition of the maximization function. We know that there exists an
i ∈ {1, ..., n} such that ai ≥ aj ∀j ∈ {1, ..., n}. This implies that ai = max(a1, ..., an),
and thus z = ai. Subsequently, yi can be set equal to 1 without violating constraint
(3.5) and thus constraint (3.4) is also satisfied. For all j ̸= i, we have that yj can
be set equal to 0, implying that constraint (3.5) is satisfied for all j ∈ {1, ..., n}. As a
result, (3.2) implies that all constraints (3.3), (3.4), and (3.5) are satisfied.

Now suppose that constraints (3.3), (3.4), and (3.5) are satisfied. This implies that
yi = 1 for some i ∈ {1, ..., n}. Therefore, by constraint (3.5) we have z ≤ ai and by
Constraint (3.3) that z ≥ ai. As a result, we have z = ai for some i. In addition, by
constraint (3.3), we see that z is larger than or equal to ai ∀i ∈ {1, ..., n}. This implies
that z = max(a1, ..., an) and thus Equation (3.2) holds.

3.2.2 Modeling a Max-Plus Linear System as an MIP

To model an MPL system as an MIP, we can use the logic from Section 3.2.1 to
replace all the maximization constraints by using constraints (3.3), (3.4) and (3.5).
However, we will first look into the methods that have been used in [12] to create
an MIQP. In their paper, they considered the following estimation model of the MPL
system:

x̂(k) = Â⊗ x̂(k − 1)⊕ B̂ ⊗ u(k)

ŷ(k) = Ĉ ⊗ x̂(k)

where Â, B̂, Ĉ, x̂(k) and ŷ(k) are the estimates of A,B,C, x(k) and y(k), respectively.
In addition, they mention that it is possible to add additional constraints on the es-
timates if, based on physical constraints or insights, hard upper and lower bounds
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are known. The constraints they add are of the form

Amin ≤ Â ≤ Amax

Bmin ≤ B̂ ≤ Bmax

Cmin ≤ Ĉ ≤ Cmax

xmin(0) ≤ x̂(0) ≤ xmax(0)

Afterwards, they define the following:

x̂tot =

 x̂(0)
...

x̂(N)

 , ŷtot =

 ŷ(1)
...

ŷ(N)

 , ytot =

 y(1)
...

y(N)


The goal is to minimize the error between the estimated output ŷ(k) and the mea-
sured output y(k) for all k ∈ {1, ..., N}. They define the MPL state space identifica-
tion problem as follows:

minÂ,B̂,Ĉ,x̂tot,ŷtot
||ŷtot − ytot||22

subject to x̂(k) = Â⊗ x̂(k − 1)⊕ B̂ ⊗ u(k), k ∈ {1, . . . , N}
ŷ(k) = Ĉ ⊗ x̂(k), k ∈ {1, . . . , N}
Amin ≤ Â ≤ Amax

Bmin ≤ B̂ ≤ Bmax

Cmin ≤ Ĉ ≤ Cmax

xmin(0)≤ x̂(0) ≤ xmax(0)

(3.6)

To solve the optimization problem, the authors of the paper recast the problem as
an Extended Linear Complementarity Problem (ELCP) [8] and use the fact that this
problem can be recast as a mixed-integer feasibility problem. Together with the
quadratic objective function, the authors create an MIQP to solve the optimization
problem. This is very similar to using the constraints described in Section 3.2.1 for
creating the maximization constraints.

As was mentioned before, the assumption in De Schutter et al. [12] was that the
processing times are corrupted by noise. Due to this assumption, the optimization
problem is formulated as an MIQP problem. However, if we assume that the pro-
cessing times are not corrupted by noise, we can show that the optimization problem
can be solved by an MIP, which could be significantly more computationally efficient.

Basically, whenever we assume that there is no noise, we can remove the quadratic
objective function and completely remove the variable ŷ(k) from the optimization
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problem. We could then change the optimization problem into the following:

max 0

subject to x̂(k)= Â⊗ x̂(k − 1)⊕ B̂ ⊗ u(k), k ∈ {1, . . . , N}
y(k)= Ĉ ⊗ x̂(k), k ∈ {1, . . . , N}

(3.7)

where we have neglected the bounds on Â, B̂, Ĉ, and x̂(0). These could be added
whenever any physical bounds of the system are known. For the rest of the report,
we assume that we do not know any bounds on these matrices. However, we do as-
sume in all of our experiments that x̂(0) = ε, since we assume that all initial buffers of
the MPL system are empty. Instead of finding the best parameters Â, B̂, Ĉ, x̂tot, and
ŷtot that minimize the sum of squared errors between ŷtot en ytot, the optimization
problem is now about finding some feasible solution that perfectly maps the input
signal u(k) to the output signal y(k) for all k ∈ {1, ..., N}.

Note the difference between the equation y(k) = Ĉ⊗x̂(k) of (3.7) and ŷ(k) = Ĉ⊗x̂(k)

of (3.7). It is only a small difference, but it makes a significant difference. Neglect-
ing the variable ŷ(k) is possible because there is no noise involved in the process
anymore. To clarify this, suppose we have a very simple MPL system consisting of
only one resource as in Figure 3.5. If the processing time T1 is corrupted by noise,
the model (3.7) will not be able to find a feasible solution in general. In this simple
system, the constraints for (3.7) are basically equal to

y(k) = max(ĉ1,1 + â1,1 + x̂(k − 1), ĉ1,1 + b̂1,1 + u(k))

where â1,1, b̂1,1, and ĉ1,1 are the only entries of the matrices Â, B̂, Ĉ ∈ R1×1
ε . Since

we know exactly how the system looks, we know that â1,1 = T1, b̂1,1 = 0, and ĉ1,1 = 0.
This means that in the equation above, we have ĉ1,1+â1,1 = T1 and ĉ1,1+b̂1,1 = 0. If we
assume that u(k) = 0 for all k ∈ {1, ..., N}, and that T1 can be any value between 0.9
and 1.1 time units, this system will obviously not be able to find a feasible solution in
general. However, for the model of (3.6) this system can be solved. This is because
of the extra decision variable ŷ(k) that has been used.

Figure 3.5: System consisting of one resource with a processing time of T1.

The model (3.6) has N more decision variables than the (3.7), because of the extra
ŷ(k) that are included for k ∈ {1, ..., N}. Again, N here is the total number of items
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passing through the system.

The optimization problem of (3.7) can be reformulated into an MIP by replacing the
maximization constraints by the constraints (3.3), (3.4), and (3.5) described in Sec-
tion 3.2.1. In order to do this, we first expand the matrix notation of the optimization
problem of (3.7) and arrive at the following notation of the optimization problem:

maximize 0

subject to x̂i(k)= max{ âi,1 + x̂1(k − 1), . . . , âi,n + x̂n(k − 1),

b̂i,1 + u1(k), . . . , b̂i,m + um(k)}, i ∈ [n], k ∈ [N ]

yi(k)= max{ ĉi,1 + x̂1(k), . . . , ĉi,n + x̂n(k)}, i ∈ [p], k ∈ [N ]
(3.8)

where [n] denotes the set {1, ..., n}. Now we can change the maximization con-
straints in the optimization problem above into an MIP. The resulting MIP looks as
follows:

max 0

s.t. x̂i(k) ≥ âi,j + x̂j(k − 1), i, j ∈ [n], k ∈ [N ]

x̂i(k) ≥ b̂i,j + uj(k), i ∈ [n], j ∈ [m], k ∈ [N ]

x̂i(k) ≤ âi,j + x̂j(k − 1) +M(1− di,j), i, j ∈ [n], k ∈ [N ]

x̂i(k) ≤ b̂i,j + uj(k) +M(1− di,j+n), i ∈ [n], j ∈ [m], k ∈ [N ]∑n+m
j=1 di,j≥ 1, i ∈ [n]

yi(k) ≥ ĉi,j + x̂j(k), i ∈ [p], j ∈ [n], k ∈ [N ]

yi(k) ≤ ĉi,j + x̂j(k) +M(1− ei,j), i ∈ [p], j ∈ [n], k ∈ [N ]∑n
j=1 ei,j ≥ 1, i ∈ [n]

di,j ∈ {0, 1}, i ∈ [n], j ∈ [n+m]

ei,j ∈ {0, 1}, i ∈ [p], j ∈ [n]

(3.9)

It has to be noted that if certain constraints on the system are known or if certain
measurements of the state or processing times are available, they could easily be
included in the MIP model above.

For the optimization problem of (3.6), the similar method can be used to construct
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the following MIQP:

max ||ŷtot − ytot||22
s.t. x̂i(k) ≥ âi,j + x̂j(k − 1), i, j ∈ [n], k ∈ [N ]

x̂i(k) ≥ b̂i,j + uj(k), i ∈ [n], j ∈ [m], k ∈ [N ]

x̂i(k) ≤ âi,j + x̂j(k − 1) +M(1− di,j), i, j ∈ [n], k ∈ [N ]

x̂i(k) ≤ b̂i,j + uj(k) +M(1− di,j+n), i ∈ [n], j ∈ [m], k ∈ [N ]∑n+m
j=1 di,j ≥ 1, i ∈ [n]

ŷi(k) ≥ ĉi,j + x̂j(k), i ∈ [p], j ∈ [n], k ∈ [N ]

ŷi(k) ≤ ĉi,j + x̂j(k) +M(1− ei,j), i ∈ [p], j ∈ [n], k ∈ [N ]∑n
j=1 ei,j ≥ 1, i ∈ [n]

di,j ∈ {0, 1}, i ∈ [n], j ∈ [n+m]

ei,j ∈ {0, 1}, i ∈ [p], j ∈ [n]
(3.10)

Now that the MIQP and MIP have been constructed, numerical experiments can be
conducted to evaluate the computation time for both models for various MPL sys-
tems. Before we focus on that, we first want to describe the possibilities of modeling
an MPL system as an LP.

3.2.3 Modeling a Max-Plus Linear System as an LP

As was already mentioned in Section 3.2.1, in some optimization problems, the
objective function enforces that the constraints (3.3) are tight for at least one of
them. To clarify, suppose that we have the following optimization problem:

min z

s.t. z ≥ ai, ∀i ∈ {1, ..., n}
(3.11)

If z is the only decision variable and ai are given values, we can see that the objective
function forces z = ai for some i ∈ {1, ..., n}. This logic could also be used in creating
an LP for an MPL system. The LP that we have created looks as follows:

max
∑n

i=1

∑n
j=1 âi,j +

∑n
i=1

∑m
j=1 b̂i,j +

∑p
i=1

∑n
j=1 ĉi,j

s.t. x̂i(k)≥ âi,j + x̂j(k − 1), i, j ∈ [n], k ∈ [N ]

x̂i(k)≥ b̂i,j + uj(k), i ∈ [n], j ∈ [m], k ∈ [N ]

yi(k)≥ ĉi,j + x̂j(k), i ∈ [p], j ∈ [n], k ∈ [N ]

(3.12)

It should be emphasized that this model will most of the times not give a solution Â,
B̂, and Ĉ that exactly map the input sequences to the output sequences. Whereas,
the MIP model finds the matrices that exactly map the input sequence to the output
sequence, it can be the case that the LP gives matrices in which there is some differ-
ence between the predicted output sequence ŷ(k) and the actual output sequence
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y(k). However, in certain cases this LP model can be used to find an MPL system
that maps the input sequences correctly to output sequences.

The idea of this LP is that the objective function forces the entries of the matrices Â,
B̂, and Ĉ to be as high as possible. Given the fact that we know all uj(k) and yi(k),
all of the decision variables Â, B̂, Ĉ, and x̂i(k) are bounded from below and above.
We will test this model in the next chapter and see what the error is between the
predicted output ŷ(k) and the actual output y(k).



Chapter 4

Numerical Experiments

This chapter is focused on the numerical experiments that have been conducted
regarding the state space identification of MPL systems. We will first introduce the
experimental setup and subsequently show the results of the experiments. We will
perform tests for the MIQP, MIP, and LP formulation as shown in Chapter 3.

4.1 Experimental Setup

In this section, the experimental setup will be described. We will first introduce how
we generate the input-output sequences. Subsequently, we will discuss how the
models will be generated, and which experiments we have conducted.

4.1.1 Generating Input-Output Sequences

Before we can solve an LP, MIP or MIQP, we first need to generate correct data.
In order to create input-output sequences that correspond to MPL systems, we first
need to create the max-plus matrices A, B, and C. During the experiments, we
have created matrices of different dimensions. We assumed that the number of in-
puts and outputs are equal to 1, so we have that A ∈ Rn×n

ε , B ∈ Rn×1
ε and C ∈ R1×n

ε .
In addition, we assumed that there will always be a path from the input u(k) to any
resource in the system. This corresponds to the fact that matrix B does not contain
any ε entries. For matrix A, we assumed that between 40% and 70% of the entries
are equal to ε, and for matrix C this is between 60% and 90%. Here we include
the additional constraint that at least one of the entries in all matrices should not be
equal to ε. As an example, If the matrix C ∈ R1×2

ε and 90% of the values in C should
be equal to ε, we set all values equal to ε according to the percentage. However,
because of the constraint that at least one of the entries should not equal ε, we
set one of the entries equal to a random number. This is to ensure that an output
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sequence will be generated. Note that the number of entries equal to ε are most
of the times higher for matrix C compared to matrix A. Matrix C maps the relation
between x(k) and y(k), which basically means that it only maps the resources that
are directly connected to the output y(k). For most systems, only a relatively small
percentage of the resources are directly connected to the output. For example, for
a system with n-serial resources, this will only be one resource. Matrix A maps the
relation between x(k) and x(k − 1). From (3.1), we have seen that in a system with
n-serial resources, the matrix A has a lower triangular shape. Since a triangular ma-
trix has n(n+1)

2
entries, it will have 100n(n+1)

2n2 percent of the entries not equal to ε. This
corresponds to more than 50%. For max-plus systems with parallel resources, the
number of entries will be less. Therefore, we have chosen the number of ε-entries
to be between 40% and 70% for matrix A.

If the values in the matrices are not equal to ε, we have assigned a random integer
value between 0 and 10. We have chosen a lower bound of 0 in our experiments,
because we wanted the values to be nonnegative. This aligns with the underlying
physical properties of a system, where it is impossible for a resource to process an
item in a negative time duration. The upper bound could in principle be set to any
positive value.

After we generated the max-plus matrices, we generated the input sequence u(k)

for k ∈ {1, ..., N}. In order to generate u(k), we have used the equation u(k) =

u(k− 1) + rv(0, 20), where rv(0, 20) represents a random integer value ranging from
0 to 20. Her we set u(0) = 0. Introducing a random input signal allows us to discover
multiple modes of the MPL system, where one time u(k) will be the bottleneck and
another time x(k − 1) will be the bottleneck. We have set the upper bound of the
random value equal to two times the upper bound of the values in the matrices. This
is to ensure that u(k) can still possibly be the bottleneck when k has a relatively
high value. If the upper bound of the random value would be set equal to the upper
bound of the values in the matrices, and one of the values in the matrix A is equal
to 10, the resources connected to the high values in the matrix A will almost always
be the bottleneck.

Subsequently, the output sequence y(k) for k ∈ {1, ..., N} can be generated by
utilizing the matrices A, B, and C, and the input signal u(k) by simply using the
basic structure of the MPL system of the form as in (2.1). In the experiments we
assumed that all initial buffers are empty, which corresponds to xi(0) = ε for all
i ∈ {1, ..., n}.
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4.1.2 Generating the Models

In order to generate all the MIP, MIQP, and LP models, we have used the Gurobi soft-
ware [17] in a Python environment. For each model, we have exactly implemented
the constraints as described in the models (3.9), (3.10), and (3.12). It has to be
noted that the MIQP should be able to find an optimal solution where the objective
value is equal to 0. This is due to the assumption that there is no noise involved in
the processing times or measurements of the data.

4.1.3 The Experiments

All three models have been tested for different dimensions n of the matrices and for
a different number of items passing through the system N . In addition, for most of
the (n,N )-combinations we have tested it 10 times for each model. Whenever the
computation time was below 1 hour on average, we tested it for 10 times. If it was
more than 1 hour on average, we have only tested it 3 times. We added a maximum
computation time of 3 hours. If the computation time exceeded 3 hours, we did not
include those times in the charts of the experimental results. For some of the models
we were not able to test for a higher value of n or N , because of the fact that it was
too computationally expensive. If we were able to test a given (n,N )-combination
for multiple models, we have used the exact same matrices A, B, and C and the
exact same input-output sequences u(k) and y(k) for the different models. In Table
4.1, the experiments that have been conducted can be seen. It has to be noted that
some of the experiments are overlapping. The experiments of the first three rows in
Table 4.1 have been created to compare the three different models for the different
values of N . The maximum dimension n that we have tested for the LP, MIP, MIQP
are 500, 20, and 10, respectively. For higher values of n, the computation time
increased significantly. The experiments in the fourth until the sixth row of Table 4.1
have been created to exactly show the effect of the total number of items N passing
through the system for each model individually. We have chosen a dimension n for
each model for which we were still able to obtain a solution for N = 100 observed by
the experiments in the first three rows of the table.

4.2 Experimental Results

In this section, we discuss the results of the experiments presented in Section 4.1.3.
It is important to highlight that due to high computing times, not all experiments could
be executed.
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Model n N

LP [1,...,20,50,100,200,500] [5,10,20,100]
MIP [1,...,20] [5,10,20,100]

MIQP [1,...,10] [5,10,20,100]
LP 50 [2,5,10,20,50,100,200,500,1000]
MIP 10 [2,5,10,20,50,100,200,500,1000]

MIQP 5 [2,5,10,20,50,100,200,500,1000]

Table 4.1: Experiments conducted during this research for different models and
(n,N )-combinations. n is the number of states in the model (or the di-
mension of the model), and N is the total number of input-output se-
quences.

In Figure 4.1, four different line charts can be seen. Each line chart represents the
computation time of the MIQP, MIP, and LP for different combinations of the number
of items passing through the system N and of dimension n. As can be seen, for
all four charts, the computation time of the MIQP is significantly high for relatively
low dimensions compared to the MIP and LP. The computation time for the MIP in-
creases significantly for higher dimensions, while the computation time for the LP for
a dimension of 20 is still relatively small. The maximum dimension n that we were
able to test, decreases as the value of N increases. For example, for the MIQP, we
were still able to get results for n = 10 and N = 5, while we were not able to retrieve
the computation time for n = 8 and N = 100. This is due to the fact that it took
too long to find a feasible (for the MIP) or optimal solution (for the MIQP). For one
experiment specifically, the MIQP with N = 20 and n = 10, we observed a computa-
tion time of more than 24 hours, and it did not find an optimal solution yet. This was
the only experiment where we neglected the restriction of 3 hours maximum out of
curiosity. For the experiments conducted, the MIP formulation can solve a system
double the order of a system with the MIQP formulation in approximately the same
time.

Note that for some of the line charts the computation time decreases while the di-
mension increases. This is due to some outliers in the data. If the branch-and-cut
algorithm branches on the incorrect node and explores all possibilities in that spe-
cific node, it can take a very long time before it reaches a feasible or optimal solution.
If this will be the case for a lower dimension, it could happen that the computation
time is higher than for a higher dimension. As an example, for N = 5 and n = 16,
we have seen a computation time of more than a 1000 seconds. However, for most
of the charts we see that the computation time clearly increases as the dimension
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grows.

In Figure 4.2, we have specifically depicted the computation time of the LP for
N ∈ {5, 10, 20, 100} and different values of n. As we have seen in Figure 4.1, the
computation time of the LP was negligible for dimensions smaller than 20. However,
we can see that the computation time clearly increases as N and n increase. As
was mentioned in Section 3.2.3, the solution Â, B̂, and Ĉ of the LP will not always
give the exact mapping from the input sequences to the output sequences. There
could be an error between the predicted ŷ(k) and the real y(k). In Figure 4.3, four
line charts can be seen of the mean squared error of the LP for the different (n,N)-
combinations. As can be seen, in some cases the error is quite substantial which
indicates that the matrices found do not represent the actual mapping from input
to output at all. Also for these charts, all experiments have been tested 10 times,
which means that the charts represent the averages over all 10 tests. Even if the
average mean squared error over the 10 tests was a higher value than 0, it does not
mean that we have not seen cases for which the mean squared error was equal to 0,
indicating that the obtained solution exactly mapped the input sequences exactly to
the output sequences. In Table 4.2, we have listed the highest dimensions for which
we obtained a mean squared error equal to 0 for a given N . It is very interesting to
see that we were able to find solutions for relatively high dimensions. In particular,
the fact that we found a solution for N = 100 and n = 100 is very interesing. With the
MIP and MIQP it would be almost impossible to find a solution for this N and n due
to the computation time required to solve this problem.

N highest dimension n

5 10
10 17
20 20
100 100

Table 4.2: Table displaying the highest dimension n for which a solution has been
found by the LP with a mean squared error equal to 0 for a given N .

In Figure 4.4, three scatter plots can be seen. These plots show the relation between
the computation times for the MIQP, MIP, and LP and the number of input-output
sequences N . Some of these datapoints have already been seen in the previous
plots. These scatter plots clearly show that the computation time of the models
increase as N gets bigger.
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Figure 4.1: Four different line charts for the computation times of the MIQP, MIP,
and LP for N ∈ {5, 10, 20, 100}. For each chart the computation time is
plotted as a function of the dimension of the model. The computation
time is in seconds.



4.2. EXPERIMENTAL RESULTS 35

Figure 4.2: Line chart of the computation time for the LP for N ∈ {5, 10, 20, 100}.
Each line is a function of the dimension of the model. The computation
time is in seconds.
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Figure 4.3: Line charts of the mean squared error for the LP for N ∈ {5, 10, 20, 100}.
Each line chart is a function of the dimension. The computation time is
in seconds.
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Figure 4.4: Three scatter plots of the computation time of the MIQP, MIP, and LP
with a dimension of 5, 10, and 50, respectively. The computation time
is in seconds.
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Chapter 5

Minimal State Space Realization

This chapter is focused on the minimal state space realization problem in the max-
plus algebra, aiming to find the smallest possible MPL system that correctly de-
scribes the input-output sequences of a possibly higher-order MPL system. With
the order of the MPL system, we are referring to the total number of states in the
system. Particularly, the goal is to find a state space realization of the form (2.1) with
the smallest possible order n that describes the input-output sequences exactly. In
this chapter, we will first provide an example to demonstrate the impact that a min-
imal state space realization can have on the order of a system. Subsequently, we
present an algorithm to find the minimal state space realization of an MPL system.

5.1 Example of Minimal State Space Realization in a
Max-Plus Linear System

Suppose we have a system of four serial resources as in Figure 5.1. If we would
perfectly model this system using the max-plus algebra, we would need to create a
model of order n = 4. The model would look as follows:

x(k) =


8 ε ε ε

16 2 ε ε

18 4 3 ε

21 7 6 2

⊗ x(k − 1)⊕


0

8

10

13

⊗ u(k)

y(k) =
(
ε ε ε 2

)
⊗ x(k)

(5.1)

However, due to the fact that resource 1 is the bottleneck with a processing time
of T1 = 8 and the fact that the processing times of resources 2, 3, and 4 together
will never be the bottleneck (T2 + T3 + T4 = 7), we can find a minimal state space
realization of the system with order n = 1. The following MPL system, will result in
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Figure 5.1: System with four serial resources.

the exact same input-output sequence:

x(k) = 8⊗ x(k − 1)⊕ 0⊗ u(k)

y(k) = 15⊗ x(k)
(5.2)

Note that the variable x(k) ∈ R1×1
ε , whereas in the MPL system (5.1), x(k) ∈ R4×1

ε .

As an example, suppose we have an input sequence

{u(k)}Nk=1 = 0, 1, 3, 26, 33, 40, 50, 60, 65, 66, 67, 100

Running both of the MPL systems of the system in Figure 5.1, will result in the output
sequence

{y(k)}Nk=1 = 15, 23, 31, 41, 49, 57, 65, 75, 83, 91, 99, 115

which could easily be verified. Note again that we assumed that all initial buffers are
empty, corresponding to xi(0) = ε for all i.

5.2 Minimal State Space Realization Algorithm

The example in the previous section shows that minimal state space realization of
a system can have a significant impact on the size of the model. For very simple
systems, these realizations could be obtained by hand. However, when the sys-
tems become more complex, it could be very time consuming to find a minimal state
space realization by hand. In addition, finding a system by hand is very prone to
errors. In this section, we will introduce an algorithm to obtain a minimal state space
realization given some input-output sequences of an MPL system. The MPL system
obtained by this algorithm should exactly map u(k) to y(k) for all k ∈ {1, ..., N}. So,
the estimates of the output values ŷ(k) should exactly equal the observed output
values y(k).

If we assume that the measurements or processing times are affected by noise, it is
very likely that only an MPL system with a very high-order can describe the input-
output sequences exactly, while this high-order model will most likely not represent
the underlying system and will be prone to overfitting to the observed input-output
sequences. Furthermore, as we have seen in Section 4.2, the computational time
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required for the MIQP is already substantial even for relatively low orders. As a re-
sult, in the presence of noise, it is not very likely that a feasible solution will be found
with an error of zero. If there will be room for error between the prediction of ŷ(k) and
the observed value y(k), the MIQP (3.10) can be used to find the smallest possible
mean squared error between ŷ(k) and y(k) for some dimension n. This method will
generate matrices A, B, and C for any n, where the mean squared error decreases
as n gets bigger and will converge to 0. An acceptable mean squared error will be
very specific for each individual case.

However, as in the previous chapters, we make the assumption that processing
times and measurements of the input-output sequences are not corrupted by noise.
As we have seen in Section 3.2.2, to find the matrices Â, B̂, and Ĉ that correctly
describe some input-output sequence, we could use the MIP formulation of (3.9) for
some given n. To find the minimal state space realization, we could check what is
the smallest n for which the MIP could still find a feasible solution. The method is
described in Algorithm 1 below.

Algorithm 1 Minimal State Space Realization via mixed-integer programming
Given: u(k), y(k) ∀k ∈ {1, ..., N}
for n = 1 to N do

Generate MIP (3.9) with dimension n

if model found a feasible solution then
Â, B̂, Ĉ found
Break

end if
end for

As can be seen, we have tested up until a maximum dimension of N . The dimension
of the matrices Â, B̂, and Ĉ that describe the input-output sequence of size N will
never have to exceed this value, since this sequence can certainly be described by
a max-plus model of order N . In most cases, a model will already be found for a
dimension smaller than N . If a model is found, the algorithm stops and returns the
model that has been found.

It has to be mentioned that looping over all dimensions, starting at n = 1 up until
the dimension of the minimal state space realization, and solving an MIP for each
of those dimensions, is possibly not the most efficient way to solve this problem.
We could think of methods to test specific dimensions and, based on this, narrow
down the dimension search space. As an example, we could start of with testing for
dimension n = 3 and n = 7. If no solution is found for the former, but a solution is
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found for the latter, we know that the order of the minimal state space realization is
between 4 and 7. We could then try to only test dimension n = 5 and based on the
outcomes of this MIP, continue our search for the minimal state space realization.
However, as we have seen in Section 4.2, and given the fact that an MIP problem
is NP-hard, the computation time increases significantly when the dimension of the
model increases. Consequently, it will be very computationally expensive to test di-
mensions that are higher than the dimension of the minimal state space realization.
However, for these higher dimensions, multiple feasible solutions to the problem ex-
ist, which could lead to a faster computation time.

On the other hand, it could also be very computationally expensive to prove that a
feasible solution does not exist for a certain dimension. To solve an MIP, Gurobi uses
a branch-and-cut algorithm. As a result, to prove that a feasible solution does not
exist, it has to continue its search process until all nodes in the branch-and-bound
tree are explored.

In order to test the logic explained above, we have performed one numerical experi-
ments that we have tested four times to see if there is any indication that it could be
valuable to use some other dimension search space methods. For this experiment,
we have generated an input-output sequence of N = 20 from four randomly gen-
erated eight-dimensional MPL systems. We have generated the data in the same
way as explained in Section 4.1.1. We have tested how long it takes the MIP to find
a feasible solution or state that no feasible solution exists for MIP (3.9) with dimen-
sions ranging from 1 until 14. The results can be seen in Figure 5.2. For all four
tests, we see that if the dimension increases, the computation time increases as
well. Especially in test 2, we see that the computation time is very high for dimen-
sion n = 12 and n = 14. In addition, we see that for these tests it did not take a
significant amount of time to prove that the model was infeasible. However, as we
see, this has only been tested whenever the model had a dimension of n = 3 or
smaller.
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Figure 5.2: Four line charts showing the computation times of the MIP for di-
mensions ranging from 1 until 14 for four different input-output se-
quences (for N = 20) generated by different randomly generated eight-
dimensional MPL systems. A red dot indicates that no feasible solution
has been found, while a green dot indicates that a feasible solution has
been found. The computation times are in seconds.
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Chapter 6

Conclusions & Recommendations

6.1 Conclusions

The developed algorithm for state space identification of MPL systems from input-
output sequences using a mixed-integer programming formulation shows a signifi-
cant improvement over existing algorithms that use a mixed-integer quadratic pro-
gramming formulation. This holds true, given the assumption that no noise is in-
volved in the processing times or measurements of the data. As was seen in Chap-
ter 4, the dimension of the MPL system could be doubled for the same computation
time for the MIP compared to the MIQP. Furthermore, we have seen that the LP
formulation was able to find solutions where the inputs were exactly mapped to the
outputs even for high dimensions n and for a relatively high number of items passing
through the system N . For these high values of n and N , it would be impossible to
find a solution with the MIP or MIQP due to the complexity of the problem and the
computation time involved with this complexity.

Moreover, we have seen that the MIP formulation can be used to find a minimal
state space realization for an MPL system given some input-output sequences. The
tests performed in Chapter 5 did not indicate that it will be very useful to optimize
the dimension search space. However, more experiments should be conducted with
larger dimensions to investigate if it could potentially be interesting.

In addition, in Section 3.1 a method has been developed to model capacity con-
straints in an MPL system.
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6.2 Recommendations

In order to generalize the algorithm for state space identification found in this thesis,
it will be interesting to investigate methods in which noise could still be incorporated
in the MIP formulation. Possibly, some slack variables could be added to the con-
straints to compensate the noise. The objective function could then be the sum of
all slack variables, where the goal is to minimize this function. This will result in a
model with some extra decision decision variables, and this turns the problem into an
optimization problem instead of the problem of finding a feasible solution. This will
slow down the MIP. However, it could still be modelled as an MIP instead of an MIQP.

In addition, it will be interesting to investigate under which assumptions the LP model
will find a solution that exactly maps the input sequences to the output sequences.
If the assumptions hold for certain systems, we would be able to find a state space
representation of some high-dimensional MPL system for which we would not be
able to solve it using the MIP or MIQP formulation.

Furthermore, to improve the minimal state space realization algorithm, methods
could be developed to optimize the dimension search space. However, precedingly,
tests should be conducted to investigate if it will be valuable to create algorithms for
the dimension search space. In these tests, the computation time that it takes to
prove that a feasible solution does not exist for a relatively low order should be com-
pared to the computation time of a higher order for the same input-output sequences.
In this thesis, we have only seen examples of this for input-output sequences that
could be explained by MPL systems of order 3. It will be interesting to test this
for input-output sequences where the order is higher. If it will be valuable to find
methods to optimize the dimension search space, this method should take into ac-
count the trade-off between the computation times of proving that a feasible solution
does not exist (if the order is lower than the minimal realization order), and finding a
feasible solution (if the order is higher than or equal to the minimal realization order).

Additionally, it could be interesting to investigate whether the LP could be used for
the minimal state space realization problem. It would be difficult to state that some-
thing certainly is a minimal realization. However, it could possibly be used to find an
upper bound on the dimension of the minimal state space realization. Nonetheless,
this will only be the case if a solution will be found that exactly maps the input se-
quence to the output sequence. Before this will be a valuable method, we first need
to know under which assumptions the LP will be able to find a solution that correctly
maps the input-output sequences.



Bibliography

[1] François Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat.
Synchronization and linearity: an algebra for discrete event systems. 1992.

[2] Jean-Louis Boimond, Laurent Hardouin, and P Chiron. A modeling method of
siso discrete-event systems in max algebra. In European Control Conference
ECC’95, pages 2023–2026, 1995.

[3] B Ciffler. Scheduling general production systems using schedule algebra.
Naval Research Logistics Quarterly, 10(1):237–255, 1963.

[4] Guy Cohen, Didier Dubois, J Quadrat, and Michel Viot. A linear-system-
theoretic view of discrete-event processes and its use for performance evalua-
tion in manufacturing. IEEE transactions on Automatic Control, 30(3):210–220,
1985.

[5] RA CUNINGHAME-GREEN. Minimax algebra. Economics and Mathematical
Systems, 1979.

[6] Raymond A Cuninghame-Green. Describing industrial processes with interfer-
ence and approximating their steady-state behaviour. Journal of the Opera-
tional Research Society, 13(1):95–100, 1962.

[7] Bart De Schutter. Minimal state-space realization in linear system theory: an
overview. Journal of computational and applied mathematics, 121(1-2):331–
354, 2000.

[8] Bart De Schutter and Bart De Moor. The extended linear complementarity
problem. Mathematical Programming, 71(3):289–325, 1995.

[9] Bart De Schutter and Bart De Moor. Minimal realization in the max algebra
is an extended linear complementarity problem. Systems & Control Letters,
25(2):103–111, 1995.

[10] Bart De Schutter and Bart De Moor. Matrix factorization and minimal state
space realization in the max-plus algebra. In Proceedings of the 1997 American

47



48 BIBLIOGRAPHY

control conference (Cat. No. 97CH36041), volume 5, pages 3136–3140. IEEE,
1997.

[11] Bart De Schutter and Ton van den Boom. Max-plus algebra and max-plus linear
discrete event systems: An introduction. In 2008 9th International Workshop
on Discrete Event Systems, pages 36–42. IEEE, 2008.

[12] Bart De Schutter, Ton JJ van den Boom, and Vincent Verdult. State space
identification of max-plus-linear discrete event systems from input-output data.
In Proceedings of the 41st IEEE Conference on Decision and Control, 2002.,
volume 4, pages 4024–4029. IEEE, 2002.

[13] Samira S Farahani, Ton van den Boom, and Bart De Schutter. An approxi-
mation approach for identification of stochastic max-plus linear systems. IFAC
Proceedings Volumes, 44(1):8241–8246, 2011.

[14] Samira S Farahani, Ton van den Boom, and Bart De Schutter. Exact and ap-
proximate approaches to the identification of stochastic max-plus-linear sys-
tems. Discrete Event Dynamic Systems, 24:447–471, 2014.

[15] F Gallot, Jean-Louis Boimond, and Laurent Hardouin. Identification of simple
elements in max-algebra: application to siso discrete event systems modelisa-
tion. In 1997 European Control Conference (ECC), pages 1866–1871. IEEE,
1997.

[16] Elmer G Gilbert. Controllability and observability in multivariable control sys-
tems. Journal of the Society for Industrial and Applied Mathematics, Series A:
Control, 1(2):128–151, 1963.

[17] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

[18] Laurent Hardouin, Bertrand Cottenceau, Ying Shang, Jörg Raisch, et al. Con-
trol and state estimation for max-plus linear systems. Foundations and Trends®
in Systems and Control, 6(1):1–116, 2018.

[19] Bernd Heidergott, Geert Jan Olsder, Jacob Van Der Woude, and JW van der
Woude. Max Plus at work: modeling and analysis of synchronized systems: a
course on Max-Plus algebra and its applications, volume 13. Princeton Univer-
sity Press, 2006.

[20] Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for
solving linear systems. Journal of research of the National Bureau of Stan-
dards, 49(6):409–436, 1952.



BIBLIOGRAPHY 49
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