
HALY: Automated Evaluation of Hardening
Techniques in Android and iOS Apps

Wilco van Beijnum
University of Twente

5 July 2023

Supervisor: Andrea Continella
Second supervisor: Ralph Holz

Abstract—Although mobile operating systems employ a vari-
ety of features to sandbox and isolate apps, these are not always
sufficient. Because of this, app developers are recommended to
implement their own security checks. In this work, we investigate
the prevalence of hardening techniques in mobile apps. We
design and develop HALY, an open-source framework that can
detect the implementation of eight hardening techniques in apps
by combining automated static and dynamic analysis. We use
HALY to analyze 1,836 popular Android and iOS apps and
present the general prevalence of these hardening techniques,
as well as prevalence in relation to several factors, such as
app store category and access to privacy-sensitive permissions.
Our research is the first work that combines research into the
prevalence of multiple hardening techniques with analysis of
multiple mobile platforms, namely Android and iOS. We conclude
that hardening techniques are more prevalent on Android than
on iOS, and that apps with more privacy-sensitive permissions
implement more hardening techniques. Furthermore, we find that
many apps implement hardening techniques on only one of the
two OSes and that third-party libraries contribute significantly to
the prevalence of hardening techniques. Overall, our study reveals
that respectively 0.9% and 2.7% of the analyzed Android and
iOS apps lack all the recommended self-protection mechanisms,
31.4% and 78.1% implement less than half of the studied
hardening techniques, and only 1.5% of Android apps and no
iOS apps adopt all the techniques that we studied.

I. INTRODUCTION

Nowadays, many people rely on their phones for a vari-
ety of tasks, including sensitive operations such as finances.
Mobile operating systems (OSes) such as Android and iOS
employ various isolation and sandboxing mechanisms so that
potentially malicious apps cannot access sensitive data of other
apps. However, both malware and users themselves can try to
circumvent these protective measures, for instance by rooting
or jailbreaking a device. This can affect both the confidentiality
of the data, as well as its integrity. For instance, a malicious app
could steal sensitive data from other apps, or a cheating frame-
work could tamper with game data [38]. In such a scenario,
an app needs to rely on its own detection methods to make
sure that it can protect itself and its data. To this end, several
hardening techniques, sometimes also referred to as Runtime
Application Self-Protection (RASP), are available to protect an
app from being reverse engineered, debugged, or otherwise
tampered with. The OWASP Foundation has published a list
of these hardening techniques in their Mobile Application
Security Verification Standard (MASVS) [27], which has to be
followed by apps on the Google Play Store when they opt for

independent security review [15]. In particular the Resilience
category of MASVS deals with validation of the platform
and the implementation of anti-tampering and anti-static and
-dynamic analysis techniques.

Even though, evidently, the implementation of these harde-
ning techniques is important, there has been surprisingly little
research into the prevalence of these techniques. There has
been some research into the usage of hardening techniques for
both Android and iOS separately [37], [52]. However, very
different approaches were used, and different hardening tech-
niques were investigated, making a direct comparison between
these works difficult. Other existing works focused only on a
specific hardening technique, such as root detection [11], [21],
anti-tampering using SafetyNet [19], certificate pinning [32],
or secure connections [34]. Furthermore, many works analyzed
a relatively small dataset of a few dozen to a few hundred
apps [11], [34], [52]. We present a summary of existing work
in Table I.

Clearly, there is a lack of research into the adoption of
different types of hardening techniques by both Android and
iOS apps. Thus, it is not clear how common the general
adoption of hardening techniques is, and how apps on Android
and iOS compare to each other in this regard.

In this work, we collect and analyze a wide range of
hardening techniques available in both the Android and iOS
ecosystems. Excluding only code transformation techniques
such as encryption and obfuscation, we design and implement
an open-source automated HArdening anaLYzer, HALY, which
tracks the implementation and adoption of as many hardening
techniques as we could find. We study these hardening tech-
niques in both Android and iOS apps, using both static and
dynamic analysis.

In particular, HALY can detect the presence of eight dif-
ferent hardening techniques on Android, and seven different
hardening techniques on iOS. Thus, it can detect more harde-
ning techniques than related work, while also supporting both
iOS and Android.

To gain a better understanding of the prevalence of har-
dening techniques, we use our framework to perform analysis
on a large dataset of Android and iOS apps. To this end, we
scrape the top 100 apps of each Apple App Store category
and link these apps to the Android version of each app using
a combination of automatic and manual matching. This results
in a dataset of 1,843 popular apps that are available on both



TABLE I. COMPARISON OF HALY WITH RELATED ANALYSIS FRAMEWORKS AND THE HARDENING TECHNIQUES THEY CAN DETECT. * ANDROID ONLY.

AppJitsu [52] Pradeep et al. [32] Kellner et al. [21] Ibrahim et al. [19] Evans et al. [11] Reaves et al. [34] HALY

Analysis type Dynamic Static & Dynamic Static & Dynamic Static & Dynamic Static & Dynamic Static Static & Dynamic

OS support Android Android & iOS iOS Android Android Android Android & iOS

Number of apps 455 5,079 3,482 163,773 35 46 3,672

Anti-tampering protection Yes No No Yes No No Yes

Hooking detection Yes No No No No No Yes

Debug detection Yes No No No No No Yes

Emulation detection Yes No No No No No Yes

Root/jailbreak detection Yes No Yes No Yes No Yes

Keylogger protection No No No No No No Yes

Screenreader protection No No No No No No Yes*

Secure connections No Yes No No No Yes Yes

iOS and Android. On each OS, we successfully analyze 1,836
of these apps, for a total of 3,672 apps.

After analyzing the dataset, we find that the prevalence of
hardening techniques is higher on Android than on iOS. We
also find that the prevalence of hardening techniques differs
between app categories, and that apps with more privacy-
sensitive permissions implement more hardening techniques.
Furthermore, we find that many apps implement certain har-
dening techniques on only one of the two OSes. Lastly, we
find that third-party libraries contribute significantly to the
prevalence of hardening techniques.

Overall, we find that 0.9% and 2.7% of the analyzed
Android and iOS apps do not implement any of the hardening
techniques we studied. Furthermore, only 1.5% of Android
apps and no iOS apps adopt all of the studied techniques.

In summary, we make the following contributions:

• We design and develop HALY, an open-source frame-
work to analyze the usage of hardening techniques on
both Android and iOS.

• We create a large, labeled dataset of popular apps that
are available on both Android and iOS.

• We analyze the prevalence of hardening techniques in
these apps, the results of which provide new insights
into the similarities and differences between Android
and iOS.

• We provide new insights into the relation between
the presence of hardening techniques in apps and the
usage of privacy-sensitive permissions, as well as their
prevalence in first- and third-party code.

Our dataset, results, and source code of our framework
are available at https://github.com/utwente-scs/haly-hardening-
analyzer.

II. BACKGROUND

A. Threat model

There are several threats that apps can face that can move
a developer to adopt hardening techniques in their apps [52].
First of all, the app can be executed by a malicious actor
in a controlled environment set up for analysis and reverse

engineering in order to find exploits in the app. For instance,
a malicious actor might want to investigate if there is a
vulnerability in a shopping app that allows one to place free
orders. Secondly, the app can be executed on an end-user
device with weakened security. For example, the device might
have malware that tries to steal a session token from a bank
app. A user can also willingly weaken security. For instance,
a user might root their phone to be able to install game cheats
or jailbreak their phone to be able to customize the home
screen. We consider malicious attackers that attempt to reverse
engineer and analyze an app and its behavior in a controlled
environment, in order to obtain sensitive information, exploit
vulnerabilities in the app, or break Intellectual Property (IP).

To protect against these threats, developers can implement
several hardening techniques, which we describe in the next
section. It should be noted that most hardening techniques can
be bypassed. While some techniques require skilled actors to
bypass, others can easily be bypassed using tools available on
the internet. If developers want to protect their apps from these
threats, they should thus implement multiple hardening tech-
niques, with redundant checks for each hardening technique.

B. Hardening techniques

There are many techniques available to harden an app,
i.e., make it more resilient to attacks such as reverse engi-
neering and malware. Sihag et al. have performed a survey
of the techniques currently in use [39]. They focus on the
Android ecosystem in their paper, but most techniques can
be applied to iOS too, although their implementation might
differ. The OWASP Foundation has also provided a list of re-
silience requirements in their Mobile App Security Verification
Standard (MASVS) that an app should implement [27]. They
state that apps should validate the integrity of the platform
and implement anti-tampering, anti-static analysis, and anti-
dynamic analysis techniques. In this chapter, we discuss exist-
ing hardening techniques that are used for hardening legitimate
apps and are relevant to this research. Table I shows which of
these techniques have been explored in previous research.

Anti-tampering protection. Even on an unmodified and non-
instrumented device, an app cannot assume to be running in
a safe environment. An attacker can decompile, modify and
recompile an app to add malicious behavior or bypass security
mechanisms and spread this app outside the official mobile

2

https://github.com/utwente-scs/haly-hardening-analyzer
https://github.com/utwente-scs/haly-hardening-analyzer


app stores. Especially on Android, re-packaging an app is
relatively easy because apps can be installed from outside the
Google Play Store on unmodified devices. To make it harder
to re-package an app, it can use anti-tampering techniques.
By performing an integrity check at the start of the app, such
as validating the signature of the app, the app can be sure to
be unmodified. It should be noted that this check can also be
removed by adversaries. However, the implementation of anti-
tampering protection does require a more skilled adversary to
circumvent, especially when combined with other hardening
techniques.

Hooking detection. Aside from modifying a binary itself, an
attacker can also modify an app, or extract information from
it, by using a hooking framework such as Frida [43], Cydia
Substrate [36], or Xposed [35]. With these frameworks, one
can specify functions or system calls (syscalls) to hook into,
and read and modify arguments and return values at runtime,
or completely replace a function with a new implementation.

Debug detection. Debuggers can be used by developers to
resolve bugs in their apps. However, they can also be used by
adversaries to reverse engineer an app. Native debugging can
be performed using tools such as ptrace [37]. Android also
allows for debugging of Java apps using the Java Debug Wire
Protocol (JDWP) [39]. To thwart the effort of attackers, apps
can block these debug methods or quit when detecting them.

Emulation detection. Attackers can make use of emulators
to run and debug apps in a controlled and easy-to-modify
environment, making reverse engineering easier. However, it
is very difficult to emulate a device in such a way that it
is indistinguishable from a real device. By checking for these
differences in hardware and software configuration, an app can
detect if it is running on an emulator [20], [22], [24], [44].

Root and jailbreak detection. A rooted Android device or
jailbroken iOS device is a strong indicator of an insecure
environment for an app. With such a device, the user of the
device obtains control over the OS as a root user. This allows
apps to break out of their normal sandboxed environment.
They can then, for instance, read app data belonging to other
apps or modify system files. Since this could reveal sensitive
information processed by the app, many hardened apps cannot
be executed on rooted or jailbroken devices or show a warning.

Keylogger protection. A malicious third-party keyboard can
function as a keylogger and send any input typed by the user
to an adversary. To prevent this from happening, an app can
show a custom virtual keyboard for sensitive fields, optionally
only in case a non-trusted keyboard is used.

Screenreader protection. An adversary can obtain sensitive
information by using a malicious app that captures or records
the screen. To prevent sensitive data from being exposed, apps
can detect screenreaders and block screen captures.

Secure connections. An app does not only need to protect
itself and its local data from adversaries but also the data
communicated between the app and its servers. For this, it is
important that data is encrypted when sent over a network, such
that a man-in-the-middle attack cannot take place. To further
increase security, an app can implement certificate pinning. By
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Fig. 1. System design overview

including a (hash of a) trusted certificate in the app’s source
code, it can make sure it is communicating with the party it is
expected to communicate with, even in case an adversary has
injected a self-generated CA certificate into the OS root store.

III. SYSTEM DESIGN

In this work, we design an analysis framework that sup-
ports the detection of the hardening techniques discussed in
Section II in both Android and iOS apps. To be able to
take advantage of the strengths of both analysis techniques,
our framework, HALY, combines static and dynamic analysis.
Using static analysis, we can detect certain implementations
that are difficult to detect during dynamic analysis, as well
as hardening techniques that might only be executed during
a specific situation that might not be encountered during dy-
namic analysis. Furthermore, during dynamic analysis, we can
detect the execution of implementations—even if an app uses
obfuscation. Combining these two techniques allows us to gain
a better understanding of the general prevalence of hardening
techniques in apps, mitigating potential false positives and
negatives.

Overall, our framework consists of five main stages, namely
downloading the apps, pre-processing them for analysis, static
analysis, dynamic analysis, and reporting of results. An
overview of the stages can be found in Fig. 1. Below, we
describe the design of each of the stages.

A. Downloading and pre-processing.

Before HALY can analyze an app, it of course needs to
download the app from the app store. It also collects metadata
from the app store such as the app’s category. After this is
finished, it performs some pre-processing. Since iOS apps are
encrypted when they are downloaded, an iOS app has to be
decrypted first, so that our framework can effectively perform
static analysis on it. Some initial data is then extracted from
the app which can be used later during the static analysis.
Furthermore, HALY creates an index of the pre-processed files
so it can quickly search through them during static analysis.
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B. Static analysis.

After downloading and pre-processing the apps, static ana-
lysis is performed. HALY disassembles the binaries of the apps
and investigates relevant function calls. Furthermore, HALY
searches for string patterns in the application, and parses the
manifest file of the app to extract information about the app,
such as the list of required permissions.

C. Dynamic analysis.

After static analysis has completed, HALY performs dy-
namic analysis of the app. HALY instruments the app and
intercepts syscalls and other functions to detect what hardening
techniques an app implements. During this process, our frame-
work collects the parameters, return values, and stacktraces
of the intercepted functions. This data can then be used at a
later stage to calculate statistics on the prevalence of hardening
techniques in apps, as well as how apps implemented these
techniques.

D. Technique tracking.

Both static and dynamic analysis make use of a modu-
lar system of detectors, where each detector is responsible
for detecting a specific hardening technique. This way, our
framework can easily be expanded with detectors for more
hardening techniques. In addition to the detection of hardening
techniques, HALY also has a module that extracts general app
information, such as its name, version, and permissions. Since
we are using a rooted/jailbroken, instrumented phone for our
dynamic analysis, we want to prevent the app that is being
analyzed from fingerprinting our environment, to prevent an
app from terminating after the first hardening technique is
triggered. To this end, the detectors also implement counter-
measures to circumvent the app’s hardening techniques and
trick the app into assuming it is executed in an unmodified
environment.

E. Post-processing and reporting.

After analyzing the apps, the results of all the individual
apps are merged into a report. Our framework uses the data
from the app store and the results of the analysis to relate the
detected presence of hardening techniques to various variables
such as the app’s category and permissions. Furthermore, it
also categorizes the hardening technique implementations it
detected as first-party or third-party implementations, depend-
ing on whether the specific implementation also occurs in other
apps or only the analyzed app.

IV. SYSTEM IMPLEMENTATION

In this section, we describe the stages of our system and
their implementation in more detail.

A. Downloading and pre-processing

In the download stage, HALY downloads the apps in the
dataset from their mobile app store. Android apps are down-
loaded from the Google Play Store using gplay-downloader [5]
and iOS apps are downloaded from the Apple App Store using
IPATool [2]. After downloading, HALY pre-processes the apps
for analysis. First, Android apps are disassembled to smali

code using Apktool [42], and iOS apps are unzipped. Then,
iOS apps are decrypted using a Frida [43] script that installs
and opens the app on an iPhone and then dumps the decrypted
binaries from the phone’s memory. The encrypted binaries in
the unzipped directory are then replaced by these decrypted
binaries. After this, all human-readable strings are extracted
from all binary files using Radare2 [33], and placed in text files
alongside the binary files. Finally, Code Search [18] is used to
index all text files, so HALY can quickly search through these
files using regular expressions during static analysis.

B. Static analysis

During static analysis, HALY uses Code Search to search
for the occurrence of specific strings, such as file or app
names, as well as Java method calls in the smali code.
Furthermore, Radare2 is used to find method calls in native
binaries. HALY also uses Radare2 to identify SVC instructions
in the binaries. SVC instructions can be used to directly
invoke syscalls from native code, bypassing normal intercepts
of hooking frameworks. Lastly, our framework also extracts
some information from specific files by parsing them directly,
such as the AndroidManifest.xml file on Android and
the Info.plist file on iOS, which contain information such
as the app’s name and version.

C. Dynamic analysis

During dynamic analysis, HALY uses Frida to hook into
various methods and syscalls. For some syscalls and methods,
it also modifies the arguments or return value to try to hide to
the app being analyzed that our phone is rooted/jailbroken and
running Frida. Furthermore, the memory addresses of the SVC
instructions that we found during static analysis are hooked.
Whenever the SVC instruction is executed, HALY identifies
the corresponding syscall by looking up the SVC’s instruction
number and processes the call in the same way as a ‘normal’
syscall. Unfortunately, solely relying on called functions to
track the hardening techniques that apps adopt does have a
downside, namely that we cannot track variables. For example,
in Android apps, Build variables such as Build.MODEL
are often used to check if the app is running on an emulator.
Although HALY does track the usage of these variables during
static analysis, to the best of our knowledge, Frida cannot track
if these variables are accessed, and if so, what values they are
compared against.

D. Technique tracking

As described in Section III, HALY makes use of a mod-
ular system of detectors. HALY makes use of the following
detectors to track each hardening technique:

Info. During both static and dynamic analysis, HALY saves
some basic information about the app. This includes informa-
tion like the app’s name, version, and requested permissions.

Anti-tampering protection. On iOS, there is no way to
directly check the signature of an app. All apps from the Apple
App Store are re-signed by Apple’s signature, and iOS devices
only allow for the execution of Apple-signed binaries, unless
this check is disabled by a jailbreak. Because of this, checking
the signature is not useful on non-jailbroken devices either
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way. Apple does provide an App Attest Service that should
check if the app is unmodified [3]. HALY can detect the usage
of this service.

On Android, HALY tracks functions related to retrieving
and validating the signature of the app, as well as the usage
of the SafetyNet Attestation API [16] or its successor Play
Integrity API [14]. It should be noted that these APIs also
perform more extensive checks on the integrity of the device,
such as checking that the device is not an emulator. We
thus classify apps that implement these APIs as having anti-
tampering and root, hooking, and emulation detection.

Hooking detection. There are several hooking frameworks
available, such as Xposed [35], Cydia Substrate [36], and
Frida [43]. During static analysis, HALY checks if the names
of these frameworks, or related apps or files, occur in the
app’s code or text files. During dynamic analysis, HALY tracks
access attempts for files related to these frameworks, and if
the app checks whether apps related to these frameworks are
installed. Since jailbreaks almost always come with Cydia
Substrate (or ‘tweak’) support, the distinction between hooking
and root detection on iOS is a bit difficult. We have chosen to
classify any mentions of “substrate” as hooking detection while
classifying any other checks related to Cydia as root detection.
Apps on iOS can also use _dyld_get_image_name() to
check if there are any modules related to hooking frameworks
loaded into the memory.

Debug detection. On iOS, the syscalls ptrace and sysctl
can be used to check if the app is being traced. Furthermore,
getppid can be used to validate the process ID of the parent
process, which should always be 1 if the app is started by
the launcher. HALY looks for and hooks these syscalls to see
if they are used by the app. On Android, HALY also looks
for ptrace, in addition to various Java methods such as
Debug.isDebuggerConnected().

Emulation detection. On iOS, an app can check the en-
vironment variables to verify whether it is running on an
emulator or simulator. For example, the iOS simulator has the
environment variable SIMULATOR_MAINSCREEN_WIDTH
and the Corellium emulator has the environment variable
SANDBOX_TOKENS. On Android, an app can use various vari-
ables from the Build class such as Build.MODEL to vali-
date that it is not running on an emulator. Furthermore, an app
can also check if certain files exist on the device that only exist
on an emulator, such as /Applications/Xcode.app on
an iOS simulator or /dev/socket/genyd on a Geny-
motion Android emulator. HALY tracks the usage of these
variables and access of these files.

Root and jailbreak detection. There are many ways to check
if a device is rooted or jailbroken. An app can, for example,
check if certain files exist that are not present on stock devices,
or check if file or directory permissions are different than
they are on an unmodified device. During static analysis,
HALY checks if the app contains any mention of these files,
and during dynamic analysis, HALY hooks syscalls related to
file access to track this. An app can also check if certain
apps are installed related to rooting/jailbreaking. During static
analysis, HALY looks for mentions of these apps, and during
dynamic analysis, it tracks if any information about these apps

is requested by hooking openURL() and canOpenURL()
on iOS, and hooking methods of the PackageManager and
Intent classes on Android.

Keylogger detection. To prevent keylogging, apps can show
their own keyboard at an input field, or check if the active
keyboard is part of a whitelist. HALY checks for the usage
of functions related to hiding the system keyboard from an
input field and functions for getting the active keyboard. On
Android, functions like EditText.setShowSoftInput
OnFocus() and InputMethodManager.getEnabled
InputMethodList() can be used for this. On iOS,
apps can use functions like UIView.inputView() and
UIResponder.textInputMode().

Screenreader detection. On iOS, there is no easy method
available to block screenshots or -recordings. There are a
few workarounds available that implement this, but it is
difficult to detect these in an automated way. On Android,
an app can set a part of the app as being “secure”, which
blocks screenshots. HALY checks for the setting of this secure
flag using SurfaceView.setSecure() or Window.
setFlags().

Secure connections. During static analysis, HALY uses a
similar methodology to Pradeep et al. [32] to detect certifi-
cate pinning. HALY checks for the inclusion of certificates
or certificate hashes in the app. During dynamic analysis,
HALY tracks the usage of known pinning functions of popular
libraries functions. Furthermore, it also intercepts all network
traffic during the dynamic analysis of the app. This traffic is
then inspected to investigate whether the app makes use of
plaintext network traffic or insecure TLS connections. Pradeep
et al. found that background traffic can occur on iOS just after
installing an app, so before starting the dynamic analysis on
iOS, HALY waits two minutes for this traffic to cease. Note
that, unlike Pradeep et al., we have not performed differential
analysis, and only check for known pinning functions of
popular libraries during dynamic analysis.

E. Post-processing and reporting

After the analysis is complete, our system starts a Flask
server [29] that presents the aggregated results, as well as
the analysis results of individual apps, to the user. During
this stage, HALY also identifies if the detected hardening
techniques are first-party or third-party implementations. For
this, we first identify all third-party libraries. We categorize
any library that is present in at least five apps as a third-party
implementation. For native libraries, we use the file name as
the identifier for this process, while we use the code path for
Java libraries (e.g., com.google.android.gms). For each
hardening technique implementation, we then identify if it is
in this list of third-party libraries. During dynamic analysis,
we use the stacktrace for this. After ignoring all system
libraries in this stacktrace, we select the top item from the
backtrace as the source of the hardening technique. It should
be noted that the actual number of third-party implementations
of hardening techniques may be higher since HALY would be
unable to determine that a library is third-party in cases where
obfuscation is used that changes the names or code paths of
the library.
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V. EXPERIMENTAL RESULTS

We now present our dataset of popular Android and iOS
apps, describe our validation process, and use HALY to analyze
our dataset of apps to assess the adoption of hardening
techniques. First, we investigate the general prevalence of
hardening techniques on both Android and iOS. Then, we
directly compare the Android and iOS versions of apps to each
other to gain insight into the development process of these
hardening techniques in companies. Afterward, we investigate
whether hardening techniques are implemented by third-party
libraries or first-party code, and study the correlation between
the presence of hardening techniques and the usage of privacy-
sensitive permissions. Finally, we also present some insights
into the adoption of TLS and the usage of plaintext network
requests.

A. Dataset

To compare Android and iOS as fairly as possible, and also
gain insight into the development methodology of companies,
we construct and analyze a dataset of apps that are available
on both iOS and Android. First, we select the top 100 apps
in each category in the United States Apple App Store, which
results in a dataset of 2,382 apps. Note that some apps are
present in the top 100 of multiple categories. The apps are
then linked to their Android versions. For this, we first use
appranking.com. They provide a mapping between Android
and iOS apps, but only for a relatively small subset of our
dataset. We then use alternativeto.net, a crowdsourced website,
to further find Android versions of the iOS apps in our dataset.
Here, we crawl the first 100 pages of AlternativeTo’s Android
apps list and verify whether our iOS apps are included here.
Finally, we manually link the remaining apps to their Android
version. To this end, we query the Google Play Store for
the iOS app’s name and publisher, and manually select the
corresponding Android app from the first five results, or none
if none matches. Finally, we manually validate the dataset of
Android and iOS apps obtained from the above three sources.
The resulting dataset consists of 1,843 apps that have both an
Android and iOS version.

In the dataset mentioned above, seven apps failed our static
analysis on Android. We decided to remove both the iOS
and Android version of these apps from our dataset since our
dynamic analysis relies on data gathered during static analysis.
This means we analyzed 1,836 apps per OS, so 3,672 apps in
total.

B. Experimental setup

For our experiments, we use an iPhone 8 running iOS
16.4.1, which is jailbroken using the rootful palera1n jail-
break [28]. After this, we install the Sileo package manager
[40] and use it to install frida-server, which we then start
using SSH. Furthermore, we use a Pixel 3a running Android
12, which we root by installing Magisk [47]. We then install
the Magisk module MagiskFrida [45], as well as Universal
SafetyNet Fix [23] to pass SafetyNet.

After configuring our phones for analysis, we start a Squid
proxy [41] on the computer running the dynamic analysis
and configure the phones to use this proxy, such that we can
intercept network traffic of the devices during the dynamic

analysis. We intercept traffic using tcpdump with a filter on
the IP address of the phone. We do not perform any man-in-
the-middle attacks.

For our testing, we configure a timeout of 10 minutes and
a memory limit of 8 GB per binary for the static analysis. Note
that these limits are set for individual binary files within an
app, and not for analyzing the app as a whole. Furthermore,
we use a timeout of one minute for the dynamic analysis.

C. Validation

To minimize false positives and false negatives, we validate
our dataset, framework, and results to the best of our abilities.
As mentioned above, our dataset of input apps is entirely
manually validated, and we are thus confident that we have
managed to create a large dataset with a correct mapping
between Android and iOS versions of popular apps. To validate
our framework, we develop and analyze an Android and iOS
app that triggers no hardening techniques (a blank Android
Studio or Xcode project), as well as an Android and iOS app
that triggers all hardening techniques. For all of these, HALY
produces the expected results.

We also investigate false positives. During the analysis,
HALY marks any low-confidence detections of hardening
technique as uncertain. These cases are specifically discussed
below. Because we can identify if function calls are low-
confidence or not, false positives can only occur during the
pattern-matching in our static analysis phase. We manually
investigate all of the relevant results for false positives, and
adjust our patterns and filtering accordingly. After this, we did
not find any false positives in our pattern-matching results.

Finally, HALY is unable to fully analyze some (components
of) apps, either using static or dynamic analysis. These issues
are discussed below.

Static analysis. There are 11 Android and 36 iOS apps
that contained one or more binaries that failed to complete
static analysis because our timeout or memory limit was
reached. On Android, the binaries that failed analysis are all
third-party libraries, namely libwebviewchromium.so,
libUE4.so, and libili2cpp.so. The first two libraries
are present in one app each, while the last library is present
in nine apps. On iOS, the binaries that failed analysis are a
bit more diverse. The larger number of failed analyses can be
explained by the fact that iOS binaries are generally larger
and more complex than native Android libraries since most
Android apps implement the majority of their logic using
Java. There are 23 iOS apps in which the analysis of the
main binary failed. Furthermore, there are 20 plugins and two
frameworks that failed static analysis. There are two plugins
that are present in two iOS apps and failed static analysis
for both of them, namely FileProvider.appexx and
ShareExtension.appexx. The rest of the frameworks
and plugins were only present in one app.

Dynamic analysis. There are 46 Android apps and 70 iOS
apps that failed to complete dynamic analysis without crashing
or exiting before the timeout. We manually investigated why
these apps might be crashing. First of all, there are 33 Android
apps and 37 iOS apps that also crashed or exited when we
executed them manually on our test devices. This indicates
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Fig. 2. Number of apps that each hardening techniques is detected for, using both static and dynamic analysis. The partially transparent bars indicate unconfident
detections of the hardening technique. Note that screenreader protection was only analyzed for Android.

that these apps are not compatible with our devices, contain
a bug that causes them to crash, or contain advanced root or
jailbreak detection techniques that our framework is unable to
circumvent. Furthermore, three Android apps exit as soon as a
Frida session is connected to them, which indicates these apps
have advanced Frida detection techniques that our framework
is unable to circumvent. Finally, there are 10 Android apps
and 33 iOS apps that crash whenever HALY tries to analyze
them. This could be caused by the hooks we implemented, or
general bugs in Frida. We were unable to determine the exact
cause of these crashes.

D. Prevalence of hardening techniques

In Fig. 2, we present an overview of the prevalence of
each of the hardening techniques that we analyzed. For each
hardening technique, the chart shows in how many apps HALY
detected this technique on Android and iOS, both for static and
dynamic analysis. The partially transparent bars indicate low-
confidence detections, which we further elaborate on below. On
a general level, we can see that the prevalence of hardening
techniques differs greatly between different techniques, as well
as different OSes. Fig. 3 shows the cumulative distribution of
the number of techniques adopted by Android and iOS apps,
excluding screenreader protection, which is only supported for
Android. Respectively, 0.9% and 2.7% of the analyzed Android
and iOS apps do not implement any of the studied hardening
techniques, 68.6% and 21.9% implement at least half of the
tested techniques, and only 1.5% of Android apps and no iOS
apps adopt all the recommended techniques.

Anti-tampering protection. There are two ways to implement
anti-tampering protection. First of all, a developer can use an
attestation framework. On Android, HALY detects the Safe-
tyNet API in 9.5% of apps when using static analysis, but only
in 0.5% during dynamic analysis. Its successor Play Integrity
API is only detected in 1.4% of apps during static analysis,
and not detected at all during dynamic analysis. However, the
Play Integrity API has only been released since 2022. On iOS,
HALY finds the App Attest Service in 6.3% of apps using static
analysis and 1.1% of apps during dynamic analysis. The lower

adoption of the App Attest Service could be explained by its
relatively recent release in 2020 [31]. Interestingly, there are
many apps that include an attestation service, which is however
not detected during dynamic analysis. One would expect an
app to execute attestation at the earliest possible moment.
This could indicate that many apps planned to implement
attestation, but did not complete the implementation, or that
they only perform attestation in specific scenarios.

On Android, an app can also use the signature
of the app to check if it is unmodified. HALY finds
the PackageManager::hasSigningCertificate()
function, which can be used to validate the app’s signature,
in 12.1% of apps using static analysis, but we only detect it
in one app during dynamic analysis. Furthermore, we detect
requesting of the app’s signature in 99.1% of apps during
static analysis, and 80.0% during dynamic analysis. However,
manually looking through the results, this seems to be often
used for fingerprinting purposes, and not necessarily for sig-
nature validation. For instance, we found that 28.6% of apps
performed a signature retrieval from a function or class with
the word “fingerprint” in its name.

Hooking detection. Using static analysis, we find hooking
detection in 41.7% of Android apps and 29.9% of iOS
apps. Interestingly, detection during dynamic analysis is much
lower for Android apps, namely around 6.4%. We manually
investigated this difference. We find that around 25.3% of
apps include the library com.appsflyer, which performs
both Frida and Xposed detection. We find that this library
accesses the file /proc/<pid>/maps during dynamic ana-
lysis, which can be used to find traces of Xposed or Frida.
However, this file can also be read for a different reason,
which is why HALY marks it as an uncertain detection. In
total, we detect access to this file in 23.9% of apps. In
12.8% of apps, we detect that this accessing originates from
the com.appsflyer library. In the other results, we see
also see a large number of false positives. Meanwhile, on
iOS, hooking is detected in 23.5% of apps during dynamic
analysis. The high number of uncertain results on iOS can
be explained by the fact that around 91.4% of iOS apps use

7



- Android - i0S 
100 
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apps.

the _dyld_get_image_name or _dyld_image_count
functions, which are quite commonly used to check for traces
of hooking frameworks. However, these functions can also be
used for other purposes. Note that most jailbreaks on iOS
come with Cydia Substrate to allow users to install so-called
‘tweaks’, which use hooking to modify apps such as the home
screen. Of the apps that implement jailbreak detection, 34.1%
also implement detection of this hooking framework.

Unsurprisingly, detection of hooking frameworks that are
only available on Android are only detected in Android apps.
Xposed detection is present in 32.6% of Android apps. Refer-
ences to the lesser-known Android hooking frameworks Zygisk
and Riru were only found in two apps and one app respectively.
There are still quite a few Android apps that check for the
Cydia Substrate framework, even though Cydia Substrate has
not been in active development on Android after 2013 [17].
We find references to this framework in 12.6% of Android
apps. Naturally, the detection of Cydia Substrate is much more
prevalent on iOS, where we find it in 29.8% of apps. Using
static analysis, we also reveal that Android apps implement
detection of Frida more often than iOS apps, namely 26.9%
vs. 3.8%. This difference can mostly be explained by the
aforementioned com.appsflyer library.

Debug detection. Almost all Android apps implement
some kind of debug detection. 82.9% of Android
apps use the Debug::waitingForDebugger() or
Debug::isDebuggerConnected() function. 44.5% of
Android apps check if the developer settings are enabled,
and 28.5% check if ADB is enabled. Furthermore, we find
usage of ptrace in 37.8% of Android apps and 3.1% of
iOS apps. 24.4% of iOS apps use the getppid function.
Finally, HALY finds the sysctl function in 98.4% of apps,
which can be used to check for the P_TRACED flag, but also
for other purposes.

Emulation detection. Emulator detection is very common on
Android and is present in 97.6% of Android apps. Build
variables are used in 97.2% of apps to identify emulators. This
also explains the large difference between static and dynamic
analysis results, since the usage of these variables cannot be
detected during dynamic analysis, as mentioned in Section IV.
The most common Build checks can be found in Table II.
Aside from the Build variable, 9.8% of Android apps check
for the existence of emulator-related files.

Contrary, on iOS, emulator detection is very rare. During
static analysis, HALY detects five apps that check for the iOS

TABLE II. MOST COMMON BUILD CHECKS ON ANDROID

Variable Value Occurence

FINGERPRINT contains(generic) 89.3%
TYPE equals(eng || userdebug) 82.8%
TAGS contains(dev-keys || test-keys) 82.3%
TAGS contains(test-keys) 69.7%
TAGS contains(dev-keys) 69.1%
PRODUCT contains(sdk) 66.3%
DEVICE startsWith(generic) 61.1%
BRAND startsWith(generic) 54.6%
MANUFACTURER contains(Genymotion) 53.6%
HARDWARE contains(goldfish || ranchu) 42.5%

simulator using the /Applications/Xcode.app
directory, and two apps that inspect the
SIMULATOR_SHARED_RESOURCES_DIRECTORY
environment variable. Furthermore, we only find one
app that mentions Corellium-related files. However, none
of these apps are present in our dynamic analysis results,
which only include 12 apps that check for the CI_NO_CM
and CI_PRINT_PROGRAM environment variables, which we
identified as environment variables present on a Corellium
emulator but not on a physical iPhone. The large number of
uncertain results for dynamic analysis on iOS are retrievals
of all environment variables. HALY cannot detect if these
variables are then used for emulation detection or something
else, but considering our other results, we consider the latter
a more probable hypothesis for most of these retrievals.

The lack of emulator detection on iOS could be explained
by the relatively recent developments in this area. The emula-
tion of iOS devices is only widely possible since Corellium,
the only iOS emulator available so far, opened its services
to the public in 2021 [9]. Furthermore, before the release of
the M1 processor, which uses the ARM architecture, it was
impossible to run apps from the Apple App Store on an iOS
Simulator from Apple, since the simulator only ran on x86
platforms, while iOS apps from the App Store run on the ARM
architecture. In 2021, Giertler released a blog post on how to
get ARM app binaries working on the iOS Simulator [12].

Root and jailbreak detection. We find root detection in 91.1%
of Android apps and 96.5% of iOS apps. During dynamic
analysis, we find that 77.6% of Android apps and 89.3% of iOS
apps check for the existence of root-related files or validate the
permissions of system directories, and 8.5% of Android apps
and 3.3% of iOS apps check if root-related apps are installed.
The most common apps and files apps check for can be found
in Table III and Table IV respectively.

TABLE III. COMMON DETECTIONS OF ROOT- AND
JAILBREAK-RELATED APPS.

Android Occur. iOS Occur.

eu.chainfire.supersu 6.8% cydia:// 3.0%
com.noshufou.android.su 6.8% sileo:// 1.7%
com.koushikdutta.superuser 6.7% undecimus:// 1.6%
com.thirdparty.superuser 6.7% blackra1n:// 0.1%
com.topjohnwu.magisk 4.5% Icy:// 0.1%
com.devadvance.rootcloak 4.2% RockApp:// 0.1%
com.devadvance.rootcloakplus 4.2%
com.ramdroid.appquarantine 3.9%
com.noshufou.android.su.elite 3.8%
com.yellowes.su 3.8%
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Fig. 4. Average number of hardening techniques implemented in an app per category.

Since jailbreaks for different iOS versions have distinct
names, we can also investigate if an app checks for a specific
jailbreak. We observe that apps with checks for specific
jailbreaks mostly only check for the blackra1n and unc0ver
jailbreaks, which were both quite popular jailbreaks. Checks
for these jailbreaks were found in 10.7% and 4.0% of iOS apps
respectively. Furthermore, there are a few apps that check for
a larger selection of lesser-known jailbreaks, such as Pangu
and Electra. Interestingly, we find no apps with detection
for specific jailbreaks for iOS 13 or newer, indicating that
jailbreak detection in apps is not updated very often after it has
been implemented. Note that many apps use a more generic
approach to detect jailbreaks, for instance by checking if a
third-party app store is installed, if directory permissions differ
from a non-jailbroken iPhone, or if a binary such as apt exists
on the phone.

Keylogger protection. On Android, we find that 20.1% of
Android apps and 38.4% of iOS apps query which input
methods are enabled, which can be used to check if a trusted
keyboard is used. Furthermore, 1.4% of Android apps disable
showing the keyboard for some input fields and 6.8% of iOS
apps change the inputView of an input field, which can
be used to show a custom keyboard for the input field. The
uncertainty in static analysis results for Android is caused by
HALY not always being able to determine if a function is used
to enable or disable showing the keyboard and which exact

TABLE IV. COMMON DETECTIONS OF ROOT- AND
JAILBREAK-RELATED FILES. * THESE DIRECTORIES ALSO EXIST ON

NORMAL DEVICES, BUT MIGHT HAVE DIFFERENT PERMISSIONS.

Android files iOS files

1 /system/app/Superuser.apk /private*
2 /system/xbin/su /private/var/mobile/Containers*
3 /system/bin/su /Applications/Cydia.app
4 /sbin/su /bin/bash
5 /data/local/xbin/su /Applications/RockApp.app
6 /data/local/bin/su /Applications/Icy.app
7 /data/local/su /Applications/blackra1n.app
8 /system/sd/xbin/su /Applications/FakeCarrier.app
9 /system/bin/failsafe/su /Applications/IntelliScreen.app
10 /su/bin/su /Applications/MxTube.app

settings are retrieved. The dynamic results could be lower
because the input view for which a custom keyboard is shown
is not visible on the startup screen.

Screenreader protection. HALY detected 24.3% of Android
apps set a view as “secure” to prevent screenshots or screen
recording of that view. The much lower dynamic analysis
results could be caused by apps only using this flag for views
with sensitive information, and not for the main screen that
is shown when the app starts. Furthermore, uncertainty in
static analysis results is caused by HALY not always being
able to determine if the secure flag or another flag is enabled.
Unfortunately, there is no API available on iOS to prevent
screenshots or screen recording, and HALY is not able to detect
custom implementations of this.

Certificate pinning. HALY detects some form of pinning in
many apps. We find certificates in 34.1% of Android apps
and 40.3% of iOS apps. These certificates can be included
as a certificate file or as the hash of a certificate. We find
a certificate file in 22.5% of Android apps and 39.4% of
iOS apps. Furthermore, we find certificate hashes in 18.3%
of Android apps and 18.0% of iOS apps. It is unfortunately
quite difficult to say if an app uses certificate pinning when
utilizing detection analysis. In many cases, HALY can detect
that a certificate pinning or connection security related function
is called, but it was only able to confirm that certificate pinning
was used in less than 1% of cases.

After looking at each hardening technique in detail, we
want to zoom out and provide some insight into the prevalence
of hardening techniques in relation to the category of apps, as
well as the privacy-sensitive permissions they request.

App store categories. One would expect hardening techniques
to be more prevalent in apps within certain categories, de-
pending on the amount and sensitivity of privacy-sensitive
information typically handled by apps in a category. In Fig. 4
we present the average number of hardening techniques im-
plemented by apps in each category. Here, we considered
a hardening technique as being present in an app if it was

9
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Fig. 5. Average number of hardening techniques implemented in an app
depending on the number of privacy-sensitive permissions.

detected during static or during dynamic analysis. In general,
the OSes follow a similar pattern. Especially the Finance
and Shopping categories have a high average of implemented
hardening techniques. In this graph, we can also clearly see that
the number of implemented hardening techniques is generally
lower on iOS than on Android. It should be noted here
that HALY cannot detect screenreader protection on iOS, so
this slightly skews these results towards Android apps having
more hardening techniques. Removing screenreader protection
from the results decreases the average number of hardening
techniques on Android, but does not significantly change
the prevalence of hardening techniques in different categories
relative to each other.

Apps with privacy-sensitive permissions. Apps with access
to privacy-sensitive data likely want to keep such information
safe. To investigate this relation, we have identified eight
categories of privacy-sensitive permissions, namely calendar,
camera, contacts, location, microphone, health sensors, stor-
age, and HomeKit access, where the last permission category
is only relevant for iOS. For each app, we calculate the
number of categories of privacy-sensitive permissions the app
uses. In Fig. 5, we present the average number of hardening
techniques for apps depending on the number of these privacy-
sensitive permission categories. On both OSes, we can see
a clear trend, namely that apps with more privacy-sensitive
permissions also implement more hardening techniques. There
are no results for iOS apps with all eight privacy-sensitive
permission categories since there are no iOS apps in our dataset
that request permissions from all eight categories.

E. Adoption comparison: Android vs. iOS

It is interesting to know whether the prevalence of harde-
ning techniques differs between the iOS and Android versions
of the same apps. This gives an indication if there are any
company-wide policies to implement certain hardening tech-
niques or if the implemented hardening techniques are strictly
dependent on the OS. In Fig. 6, we present whether hardening
techniques are implemented on both the Android and iOS
versions of apps, or only on one of the two. Interestingly,
we can see that there are quite a few apps that implement
a hardening technique only on one of the two OSes, even for
hardening techniques that are prevalent on both OSes. In Fig. 7,
we present the difference between the number of hardening
techniques implemented on the iOS and Android version of
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Fig. 6. Consistency of hardening techniques between OSes. Shows for how
many apps, both the Android and iOS version or only the iOS or the Android
version implement the hardening technique, or if neither version implements
it.
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Fig. 7. Number of hardening techniques that are only implemented on one
of the two OSes.

apps. Here, we exclude the screenreader protection hardening
technique, since HALY cannot detect this on iOS. We can see
that, for most apps, the variance in implemented hardening
techniques between their Android and iOS version ranged from
one to three. We find only five apps that implement the same
hardening techniques on both OSes.

Overall, our results show a significant inconsistency in the
implementation of the hardening techniques among the iOS
and Android versions of the same apps, indicating either a
disjunction among developers for the two OSes, together with
a gap in the developer’s expertise for a certain OS, or that
certain techniques (e.g., anti-debug and emulation detection)
are strictly related to and more documented for only one of
the two OSes.

F. First-party vs. third-party implementations

In Fig. 8, we present the prevalence of hardening tech-
niques in third-party libraries vs. first-party code. Note that
apps may have both first-party implementations, as well as
third-party libraries that implement hardening techniques. In-
terestingly, we can see that the majority of hardening tech-
niques on Android originate from third-party libraries, while
on iOS, the majority is implemented in first-party code. Ta-
bles V and VI show the most popular libraries that implement
any hardening techniques, respectively for Android and iOS.
There are three Android libraries that contribute a lot to
this difference. Surprisingly, the hardening techniques that are
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Fig. 8. Prevalence of hardening techniques in first-party vs. third-party code.

detected in these libraries differ per app. This might be caused
by different versions of the libraries, or different parts of it
being used.

The most-used Android library we find is Google Mobile
Services, which is detected in 96.6% of Android apps. We find
emulation detection in this library in 92.3% of apps and debug
detection in 31.8% of apps. Next, the Firebase library is found
in 89.0% of apps, which we find to implement root detection
in 48.1% of apps, debug detection in 47.4% of apps, and
emulation detection in 41.8% of apps. Finally, the AppsFlyer
library, which is present in 25.9% of apps, implements hooking
detection in 25.2% of apps.

Interestingly, there are no iOS libraries that jump out as im-
plementing a hardening technique for any significant number
of apps, apart from the root detection hardening technique.
The main libraries responsible for this seem to be Firebase
and GoogleUtilities, the latter of which is a utilities library for
Firebase, among other libraries. Firebase-related libraries are
detected in 38.0% of iOS apps. We find that these libraries are
responsible for root detection in 37.1% of apps.

We find several libraries that seem to be specifically
focussed on hardening apps, however, none of them are im-
plemented by a significant number of apps. Some examples
of these libraries are RootBeer (3.1% of Android apps),

TABLE V. MOST POPULAR THIRD-PARTY ANDROID LIBRARIES WITH
IMPLEMENTED HARDENING TECHNIQUES. * FULL NAME:

AUDIENCE NETWORK.COM.FACEBOOK.ADS.REDEXGEN.X.
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com.google.android.gms 96.6% 62.7% 92.3% 1.4% — — 51.3% 0.5%
com.google.firebase 89.0% 47.5% 41.8% 5.7% — — 48.3% 5.7%
com.google.android.play 57.9% — 38.8% — — — — —
com.facebook 52.9% 1.2% 36.5% 0.5% — — 16.1% 0.1%
okhttp3 38.3% — — 0.1% — 0.3% 0.2% —
com.squareup.picasso 30.1% — — — — — — —
com.appsflyer 25.3% — — 25.2% — — 0.6% —
libcrashlytics-common.so 15.6% 15.6% — — — — — —
bo.app 14.5% — — — — — 14.5% —
audience network.com* 13.6% 13.4% — — — — — —
com.applovin 11.1% 0.8% 11.0% 1.0% 0.2% — 0.9% 0.1%
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Fig. 9. Number of privacy-sensitive permissions that are only requested on
one of the two OSes.

TrustDefender (2.7% of Android apps), FraudForce (2.3% of
iOS apps), and Forter (1.7% of iOS apps).

G. Usage of privacy-sensitive permissions.

We also investigated how consistent apps are in the required
privacy-sensitive permissions across the two OSes, the results
of which we present in Fig. 9. We can see that many apps
request different permissions across their iOS and Android
versions. We find that only 21.2% of apps use the same
privacy-sensitive permissions on both OSes. Most apps have
one or two privacy-sensitive permissions that are only used on
one of the two OSes.

We created a mapping between iOS and Android per-
missions by combining the protected resources [4] in the
iOS documentation with the manifest permissions [13] in the
Android documentation. Note that there is no perfect one-
to-one match between Android and iOS permissions, so an
app might have the same functionality on both OSes but still
require different permissions. Furthermore, while on Android,
the developer explicitly defines the needed permissions, no
such system is present on iOS. Here, permissions are requested
dynamically when a function is called that needs a permission.
Developers do, however, need to provide a description of why
they request a privacy-sensitive permission in the plist file. We
detect the presence of these descriptions. An app might also
define the permission in the manifest, or provide a description
in the plist file, but not actually use the permission.

We manually investigated the apps showing a difference

TABLE VI. MOST POPULAR THIRD-PARTY IOS LIBRARIES WITH
IMPLEMENTED HARDENING TECHNIQUES.
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GoogleUtilities 37.7% — — — — — 34.3% —
GoogleDataTransport 32.4% 0.1% — — — — 23.9% —
FirebaseCore 30.9% — — — — — 24.1% —
FirebaseCrashlytics 27.7% — 0.1% — — — 25.4% —
FBSDKCoreKit 26.1% — — — — — 7.5% —
FBLPromises 16.8% — — — — — 0.1% 0.3%
FirebaseCoreDiagnostics 15.4% 0.1% — — — — 15.3% —
GTMSessionFetcher 15.2% — — — — — 15.2% —
FirebaseRemoteConfig 15.4% — — — — — 14.0% —
SDWebImage 11.6% 0.1% — — — 0.1% 11.5% —
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of at least five permissions. In all cases, the iOS version of
the app requested more permissions than the Android version.
An example of one of these apps is Audiomack. One of
the permissions present on the iOS version of this app but
not on the Android version, is location access. On iOS, this
permission is used to “show popular music in your area”.

H. Adoption of TLS.

During dynamic analysis, we capture the network traffic
of apps. From this data, we find that 5.8% of Android apps
and 58.5% of iOS apps contact a webserver over unencrypted
HTTP. On iOS, most of these connections are used for
Online Certificate Status Protocol (OCSP) stapling or other
verification of certificates. It should be noted that OCSP
stapling commonly takes place using plaintext HTTP since
requiring a TLS connection with OSCP validation for OCSP
itself can create a deadlock. OCSP responses are signed to
prevent modification. The most commonly accessed domains
without encryption are r3.o.lencr.org from Let’s Encrypt and
ocsp.digicert.com from DigiCert. If we filter out all plaintext
network traffic related to OCSP stapling, we are left with 8.7%
of iOS apps using plaintext HTTP, which is still more than
Android, but significantly less than 58.5%. We observe that,
aside from OCSP traffic, images are the most common resource
requested using plaintext HTTP (around 43% of non-OSCP
requests), followed by API requests (around 31%), followed
by fonts (around 17%).

Encryption of network traffic. The TLS_AES_128_
GCM_SHA256 cipher is the most used cipher for TLS
connections, namely in 59.1% of connections on Android
and 64.5% on iOS. This cipher is considered Modern by
Mozilla. The second and third most used ciphers were
ECDHE-RSA-AES128-GCM-SHA256 (18.8% on Android,
14.6% on iOS) and TLS_AES_256_GCM_SHA384 (9.9%
on Android, 16.5% on iOS), which are considered Modern
and Intermediate respectively by Mozilla. Less than 0.3% of
connections on Android and less than 0.2% of connections on
iOS used a cipher considered Old by Mozilla.

VI. RELATED WORK

In this section, we discuss related work and highlight the
differences with our work. Here, will show that our analysis
is not just more extensive, but also leads to results that often
deviate significantly from earlier work thanks to our unique
detection analysis approach. An overview of the most closely
related studies and their features can be found in Table I.

The most closely related work to this research is Rasp-
Scan [37] and AppJitsu [52]. RaspScan is a framework for
iOS that uses static and dynamic analysis to detect several
hardening techniques using a similar methodology to our work.
For static analysis, the framework radare2 [33] is used and for
dynamic analysis, RaspScan makes use of Frida [43]. It can
detect the use of hooking, debug, and jailbreak detection using
static and dynamic analysis, as well as the use of SSL pinning
using static analysis, by detecting the use of specific strings and
syscalls. Furthermore, it also replaces return values of syscalls
to bypass jailbreak and hooking detection, such that analysis
can take place on a jailbroken iPhone running Frida.
J. Seredynski found, using his RaspScan framework, that

around 73% of iOS apps implemented jailbreak, debug, or
hooking detection. Debug detection was found in around 10%
of apps by RaspScan, and hooking detection using _dyld_
get_image_name() and _dyld_image_count() was
found by RaspScan in around 60% of apps. Certificate pinning
is found in around 15% of apps by RaspScan. Here, they only
implemented the detection of pinning-related functions, and
not (the hashes of) certificates. Even though our work generally
uses a similar methodology, we observe a significantly higher
prevalence of all these hardening techniques. This could be
caused by differences in our dataset, but also our more
extensive detection of hardening techniques.

AppJitsu [52] is a framework for Android that only uses
dynamic analysis. It can detect the use of signature verification,
as well as hooking, debug, emulation, and root detection.
Contrary to RaspScan and our work, it does not use hooking
during analysis but instead uses multiple environments to
perform differential analysis. It detects hardening techniques
by checking if an app runs differently on a phone or emulator,
and with or without root, Frida, or debug tools. They found
that 19% of apps have anti-tampering protection, which is
close to our result of at least 21% of Android apps. Emulator
detection was found in 25% of apps, 36% of apps failed to
run on a rooted emulator, and 49% of apps failed to run on
a rooted emulator with Frida running. Finally, 36% of apps
failed to run on an emulator with a debugger attached. These
are all much lower percentages than we find in this work. A
plausible explanation for this is that apps might implement
hardening techniques for statistical purposes, to differentiate
between debugging and normal code, or to fingerprint the
device, without actually terminating the execution of the app
or otherwise changing its behavior. This is further supported
by the fact that we observed that a large portion of the detected
hardening techniques on Android originates from third-party
libraries that are not necessarily used for security purposes.

Multiple studies have been performed on the prevalence of
individual hardening techniques. Pradeep et al. [32] performed
a comparison of certificate pinning and connection security
between iOS and Android apps. They use static analysis to
analyze a dataset of 5,079 apps and find certificates and
certificate hashes in the app binaries, indicating the use of
TLS pinning, which they find in 19.7% of Android apps and
33.4% of iOS apps, which is a significantly lower percentage
than we find in this work. They further enhance these results
by utilizing differential dynamic analysis. By first running
the app in a normal environment and then with mitmproxy
and a certificate added to the root store, the traffic can be
compared to detect TLS pinning. Using this methodology, they
find that only 6.7% of Android apps and 11.4% of iOS apps use
TLS pinning. They also investigated the usage of the Network
Security Configuration file to implement certificate pinning and
observed that 1.8% of popular Android apps used this method.
We find a slightly higher number, namely 3.1%.

Ibrahim et al. [19] performed research on the prevalence
of SafetyNet in Android apps. They analyze 163,773 popular
apps. They first use static analysis to filter out apps without
SafetyNet and then use dynamic analysis to identify apps
that invoke SafetyNet attestation. They only find 62 apps that
invoke SafetyNet attestation, and no apps that implement the
SafetyNet API in a fully correct way. Even though we found a
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higher number of apps that implement SafetyNet using static
analysis, our dynamic analysis also suggests that most apps
have not completely correctly implemented SafetyNet.

Kellner et al. [21] analyzed jailbreak detection in 34
banking apps on iOS. During their study, they also researched
the general prevalence of jailbreak detection in a dataset of
3,482 popular apps. They find that 59% of popular apps and
53% of banking apps implement jailbreak detection, and that
the prevalence of jailbreak detection in banking apps thus does
not exceed the average prevalence in popular apps.

Evans et al. [11] performed a study on the prevalence of
root detection in Android apps. They analyzed 16 security apps
and 19 enterprise mobile device management apps. They find
that 13 security apps and 15 device management apps with
root detection, but also manage to develop a framework that
can bypass root detection in all of these apps. Since this study
is from 2015, the prevalence of root detection in these apps
might have changed in the meantime.

Reaves et al. [34] have investigated the communication
security of branchless banking applications. They investigate
46 Android apps and find that the majority of these apps fail
to properly protect the financial information they are handling.

Although this is not the focus of this research, much
research has also been performed into the usage of obfuscation
and packing to thwart the reverse engineering of malicious
or legitimate apps. There are many studies on developing
identification techniques for obfuscation in apps [6], [7], [25],
[26], [30]. Furthermore, Wang et al. [46] specifically investi-
gate the prevalence of obfuscation in popular iOS apps. They
analyze 6,600 apps and identify 601 versions of 539 unique
apps that implement obfuscation. Another method to make it
harder to analyze apps is the use of packing. Furthermore,
there are several studies on the identification and reversing of
packing [10], [48]–[51]. Xue et al. [49] also used their packing
detector Happer to investigate the prevalence of packing in
legitimate Android apps and found 1,710 apps that used
packing in a dataset of 24,031 apps.

It is also worth mentioning that there are several analysis
frameworks available that can be used by security researchers
to investigate the security of apps, as well as the usage of cer-
tain hardening techniques. A popular open-source framework
for this purpose is MobSF [1].

In conclusion, this work differs from related work by
implementing the detection of more hardening techniques
and utilizing static and dynamic analysis to investigate the
prevalence of these techniques on both Android and iOS using
a large dataset of apps. Thus, our work provides a more
extensive insight into the prevalence of hardening techniques,
and the difference between both OSes.

VII. LIMITATIONS & FUTURE WORK

In this work, we have studied the prevalence of several
hardening techniques in both Android and iOS apps. However,
there are some limitations to our work, and some interesting
possibilities for future research.

Technical limitations. Our analysis approach brings some
technical limitations with it. Since we depend on the detection

of the usage of specific method calls and fields in apps, our
framework might miss certain hardening techniques that are
implemented in an unconventional way. Furthermore, our static
analysis is not always able to determine if a method calls
corresponds to the implementation of a hardening technique if
this depends on the arguments passed to the method, or how the
return value is processed. Finally, our dynamic analysis cannot
detect accessing of variables, and cannot detect how an app
processes the return value of a function. These limitations can
partially be resolved by using more advanced static analysis
techniques. Furthermore, future work can look into how the
results of static analysis can be used during dynamic analysis
to determine if a certain method call is indeed related to a
hardening technique.

Differential analysis. Since we only perform detection analy-
sis instead of differential analysis, our framework is unable to
determine how an app responds to the detection of a hardening
technique. It could, for instance, only be used during the
collection of statistics about the device, or to fingerprint the
device. This hypothesis also explains the difference between
our results and the results of related work that use a differ-
ential analysis methodology. To overcome this limitation, our
framework could be expanded by adding differential analysis
and combining the results of both dynamic analysis techniques.
This way, one can investigate very specifically what hardening
techniques an app implements, as well as the effect this has
on the app’s behavior.

Privacy leakage. In our work, we investigated the relation
between access to privacy-sensitive permissions and the usage
of hardening techniques and noticed a correlation between
them. Self-protection techniques can be a double-edged sword
as they can also be adopted by apps to complicate their analysis
and hide malicious behavior. For example, apps have been
shown to adopt obfuscation, or other hardening techniques,
to hide the leaking of private information [8]. It would thus be
interesting to further investigate the relation between the usage
of hardening techniques and the processing of privacy-sensitive
information, as well as privacy leakage. This way, we can
gain a better understanding of the motivation for developers
to implement hardening techniques, namely if they do so to
protect sensitive information, or to hide leakage of it.

Detectable hardening techniques. There are two more harde-
ning techniques that were not the focus of this study, namely
code obfuscation and device binding [39]. Code obfuscation
can take many forms, and the implementation of device
binding is highly app-specific, which makes them both difficult
to detect automatically. Thus, investigating the prevalence of
these techniques requires more research, and was considered
out-of-scope for this work.

Hardening bypassing. To be able to run our dynamic analysis,
HALY tries to bypass root and hooking detection. However,
these bypasses are not perfect, and some apps are still able
to detect that the device is rooted or that Frida is running.
Because of this, there may be a few apps that did not execute
all their hardening checks. Furthermore, some apps failed
dynamic analysis since they quit after detecting Frida. Since
this only happens for a small number of apps in our dataset
(less than 5% of the apps), this does not affect the significance
of our findings. However, more research into the detection and
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circumvention of these advanced hardening techniques would
be interesting for future work.

Dataset. Although we analyzed a large dataset of apps, our
dataset was limited to popular apps that are available on both
Android and iOS. It would be interesting to analyze a larger
dataset that also includes (far) less popular apps, as well
as apps only available on one of the OSes, and investigate
how this changes the results for the prevalence of hardening
techniques.

App exploration. During our analysis, we did not use any
app exploration. We assume that an app wants to run its
hardening techniques at the earliest possible stage and that we
will thus be able to detect most hardening techniques without
any app interaction. Furthermore, Pradeep et al. [32] found
that random interactions made no significant changes to the
resulting network traffic. However, targeted app interactions
such as creating an account could influence results and would
be interesting for future work.

Validation. We were unable to manually verify all of our
results. To the best of our abilities, we have minimized false
positives and false negatives. However, a small number of false
positives and negatives likely still remains.

First-party vs. third-party. In our work, we have investigated
the difference in the prevalence of hardening techniques be-
tween first-party and third-party code. However, we have not
investigated whether these libraries were added to harden the
app or for other purposes. Future research should further in-
vestigate the usage of these libraries, as well as their purposes.

VIII. KEY TAKEAWAYS

Large dataset of iOS/Android apps. We created a high-
quality labeled dataset of 1,843 apps that are available on both
Android and iOS. This dataset can be used for future research
into the prevalence of hardening techniques, as well as other
research topics.

Prevalence of hardening techniques. We show that some har-
dening techniques are more prevalent than others. Specifically,
root and jailbreak detection are present in most Android and
iOS apps, and emulator and anti-debug detection are present
in most Android apps.

Prevalence on iOS vs. Android We show that the prevalence
of hardening techniques is lower on iOS than on Android.

Lack of full adoption. Our results show that, of the analyzed
Android and iOS apps, respectively 31.4% and 78.1% of the
analyzed Android and iOS apps implement less than half of the
recommended hardening techniques. Furthermore, only 1.5%
of Android apps and no iOS apps adopt all the techniques that
we studied.

Prevalence in different categories. We show that the preva-
lence of hardening techniques differs between app categories.
Specifically, we show that apps in the Finance and Shopping
categories implement more hardening techniques than apps in
other categories.

Prevalence in apps with privacy-sensitive permissions.
We show that apps with more privacy-sensitive permissions
implement more hardening techniques. This indicates that
developers are more likely to implement hardening techniques
if they handle privacy-sensitive information. Furthermore, we
show that the usage of privacy-sensitive permissions often
differs between Android and iOS apps.

Consistency of hardening techniques. We show that many
apps implement hardening techniques on only one of the two
OSes. More specifically, we show that most apps, namely
84.6%, have two to four hardening techniques that are only
implemented on one OS. This can indicate that there are not
always company-wide policies to implement certain hardening
techniques, that developers have more knowledge on imple-
menting hardening techniques for one of the OSes, or that
some hardening techniques are more documented for only one
of the two OSes.

First vs. third-party implementations. We show that the
difference in the prevalence of hardening techniques between
iOS and Android is largely caused by third-party libraries.
Furthermore, we show that, on Android, hardening techniques
are more often present in third-party libraries than in first-party
code, while on iOS this is the other way around.

IX. CONCLUSION

In this work, we studied the adoption of hardening tech-
niques in both Android and iOS apps. To this end, we first re-
viewed the common hardening techniques available to mobile
app developers and then implemented an automated universal
framework, HALY, that can automatically detect these harde-
ning techniques on both mobile OSes, using a combination of
static and dynamic analysis. We then used HALY to analyze
a large dataset of 1,843 popular apps available on both OSes.
Our results show that hardening techniques are more prevalent
on Android than on iOS, and that adoption of hardening
techniques differs between app categories, with categories
such as finance and shopping implementing more hardening
techniques than other categories. Furthermore, we show that
apps with more privacy-sensitive permissions implement more
hardening techniques and that the usage of privacy-sensitive
permissions differs between Android and iOS apps. Finally, we
show that many apps implement hardening techniques on only
one of the two OSes, and that third-party libraries significantly
contribute to the prevalence of hardening techniques in apps.
Overall, our study shows that respectively 0.9% and 2.7% of
the analyzed Android and iOS apps lack all the recommended
self-protection mechanisms, 31.4% and 78.1% implement at
less than half of the studied hardening techniques, and only
1.5% of Android apps and no iOS apps adopt all the techniques
that we studied.

ACKNOWLEDGMENT

I would like to thank everyone who helped me with this
research by providing support, ideas, and feedback. I would
especially like to thank my supervisor Andrea Continella for
his guidance and feedback. Furthermore, I would like to thank
my second supervisor Ralph Holz, as well as Jan Seredynski
for providing me with the source code of his master’s thesis,
RaspScan, and Jacco Brandt for explaining it to me. Finally,

14



I would like to thank Magdalena Steinböck, Herbert Bos,
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