
Fuzzing Android Automotive’s CAN interface

Mihai Macarie
Master Thesis

Semantics, Cybersecurity & Services (SCS)
Faculty of Electrical Engineering, Mathematics & Computer Science

University of Twente
PO Box 217, 7500 AE, Enschede, Netherlands

Abstract. Our research aims to evaluate the cybersecurity of the Con-
troller Area Network (CAN) [1] interface in Android Automotive using
fuzzing techniques. The growing dependency of the automotive indus-
try on cyber-physical systems exposes vehicles to new cyber risks and
threats [2]. In addition, vehicles nowadays have external connections such
as Bluetooth, WiFi, and mobile networks. Previous research has uncov-
ered numerous security issues in these systems, including unencrypted
protocols and privacy concerns [3, 4, 5]. In March 2017, Google intro-
duced Android Automotive OS, an in-vehicle infotainment (IVI) oper-
ating system (OS). This operating system interacts with climate control
and digital instrument clusters [6]. Thus, cyberattacks targeted at this
OS endanger vehicle safety and, as a result, in some cases, also human
lives. Polestar and Volvo use Android Automotive OS, and more man-
ufacturers plan to use it [7, 8, 9]. Researchers have started investigating
the security aspects of Android Automotive, but further research is nec-
essary. In addition, there is no research on fuzzing specific components
of Android Automotive [5,10]. Fuzzing might identify software bugs that
other testing techniques might not find. We perform fuzzing experiments
on the CAN interface of Android Automotive, one of the most critical
buses used in modern vehicles. We use libFuzzer and AFL for our exper-
iments because of their integration into Android Open Source Project
(AOSP) and their features. We perform experiments on AOSP emula-
tors and car manufacturer emulators. We have noticed that AFL found
several crashes during our experiments, while libFuzzer found nothing.
We have also developed a modified harness that achieves higher code
coverage. Furthermore, we observe that the version of the Android Au-
tomotive emulator used affects the code coverage. Finally, we have some
contributions to the AFL++ fork in the repositories of AOSP.

Keywords: Cybersecurity · Fuzzing · Android Automotive · AFL · lib-
Fuzzer · CAN · Automotive

Committee members:
Chair: dr.ir. Andrea Continella
UT member: prof.dr.ir Roland van Rijskwijk-Deij
1st TNO supervisor: Bart Marinissen, MSc.
2nd TNO supervisor: Gerben Broenink, MSc.

Table of Contents

1 Introduction . 6
1.1 Research questions . 7
1.2 Hypotheses . 8
1.3 Research challenges . 8

2 Background . 9
2.1 Fuzzing . 9
2.2 Android Automotive and Controller Area Network (CAN) 11
2.3 Current guidelines in automotive cybersecurity 12

3 Related work . 13
3.1 Security in automotive . 13
3.2 Commonly-used fuzzers . 14

AFL(++) . 14
Angora . 15
Driller . 15
VUzzer . 16
QSym. 16
libFuzzer . 17
Comparison of the presented fuzzers . 17

3.3 Fuzzing technologies in automotive . 17
4 Why the CAN interface? . 18
5 Methodology . 21
6 Implementation . 22

6.1 Android Open Source Project (AOSP) setup 22
6.2 Running and using AOSP emulator . 23
6.3 Choosing the fuzzing frameworks used in the research 23
6.4 Fuzzing harness compilation and running . 24
6.5 Modified CAN interface harness . 24
6.6 Initial corpora data . 29
6.7 Fuzzing metrics measurement . 30
6.8 Emulators provided by the car manufacturers 30

7 Experiments . 31
7.1 Experiment set-up . 32
7.2 Running both default and improved CAN interface harnesses

five times for 24h with both libFuzzer and AFL 32
7.3 Use complex initial corpus and rerun experiment #1 36
7.4 Running fuzzers on different emulators from car manufacturers . . 38

Honda . 39
GM Lyriq . 41
GM SUV . 43

8 Discussion . 45
9 Limitations . 47

Fuzzing Android Automotive’s CAN interface 3

10 Contributions . 48
11 Future Work . 48
12 Conclusions . 49
A Appendix . 51

A.1 AFL additional steps . 51
A.2 Modified CAN hardware interface fuzzing harness source code [11] 51

References . 71

4 M. Macarie

List of Figures

1 Android Automotive architecture [7] . 11
2 Call graph of the original harness . 26
3 Call graph of the improved harness . 28
4 libFuzzer vs AFL - Coverage in default vs improved CAN harness

with AFL-measured coverage . 33
5 libFuzzer vs AFL - Crashes detected number in default vs improved

CAN harness . 33
6 libFuzzer-measured coverage in default vs improved harness 34
7 Coverage vs time using default and improved harness using libFuzzer . 35
8 Coverage vs time using default and improved harness using AFL 35
9 libFuzzer vs AFL - Coverage in default vs improved CAN harness

with complex corpus . 36
10 libFuzzer-measured coverage in default vs improved harness -

complex corpus . 37
11 libFuzzer vs AFL - Crashes detected number in default vs improved

CAN harness with complex corpus . 37
12 Coverage vs time using default and improved harness with complex

corpus using libFuzzer . 38
13 Coverage vs time using default and improved harness with complex

corpus using AFL . 39
14 libFuzzer - Coverage in default vs improved CAN harness using

Honda emulator . 40
15 Coverage vs time using default and improved harness using

libFuzzer on Honda emulator . 40
16 Coverage vs time using default and improved harness using

libFuzzer using complex corpus on Honda emulator 41
17 libFuzzer - Coverage in default vs improved CAN harness using GM

Lyriq emulator . 42
18 Coverage vs time using default and improved harness using

libFuzzer on GM Lyriq emulator . 42
19 Coverage vs time using default and improved harness using

libFuzzer using complex corpus on GM Lyriq emulator 43
20 libFuzzer - Coverage in default vs improved CAN harness using GM

SUV emulator . 44
21 Coverage vs time using default and improved harness using

libFuzzer on GM SUV emulator . 44
22 Coverage vs time using default and improved harness using

libFuzzer using complex corpus on GM SUV emulator 45

Fuzzing Android Automotive’s CAN interface 5

List of Tables

1 Input interfaces in Android Automotive . 19
2 List of added direct calls in modified harness . 25

6 M. Macarie

1 Introduction

The growing dependency of the automotive industry on cyber-physical systems
exposes vehicles to new cyber risks and threats. Some examples include systems
that detect road traffic signs, traffic lights, pedestrians, and vehicle recognition.
In this category, we also add systems that detect blind spots and systems that
detect lane departure and correct it, if necessary. In addition, vehicles nowa-
days have external connections such as Bluetooth, WiFi, and mobile networks.
Previous research has uncovered numerous security issues in these systems, in-
cluding unencrypted protocols and privacy concerns [3, 4, 5]. Besides academia,
standards development organizations have created international standards such
as ISO 26262 [12], UNECE R155 [13], and UNECE R156 [14], which are related
to general cybersecurity in automotive systems, but also to automotive software.
Even if there are cybersecurity standards that automotive industry stakeholders
must follow, security issues can still be present. Cybersecurity standardization
is challenging due to evolving threat landscape and potentially missing specific
cases and scopes.

In March 2017, Google introduced Android Automotive, an Android OS variant
for in-vehicle use. Its adoption has been growing among car manufacturers such
as Volvo and Polestar. Therefore, more research on the security aspects of this
OS is needed. Android Automotive interacts with critical vehicle protocols and
systems like the Controller Area Network (CAN), and any potential vulnerability
could seriously threaten human lives. By accessing the CAN bus, an attacker can
sniff or inject malicious packets related to different systems in a vehicle, such as
air conditioners and steering control [9, 10,15].

We research the cybersecurity aspects of Android Automotive using fuzzing
techniques and the fuzzing performance in such an environment. Fuzzing is a
technique for detecting software bugs and vulnerabilities using random or semi-
random input data and identifying potential crashes, unexpected behaviour, or
information leaks using a fuzzer tool. We use fuzzing because it helps to uncover
security vulnerabilities and overlooked software bugs during traditional testing
approaches, representing a time and cost-efficient automated process. For a suc-
cessful fuzzing process (i.e., discovering crashes and achieving the highest code
coverage possible), we need the right fuzzing tools, good harnesses, and valuable
initial inputs (input seeds). In fuzzing, the number of crashes detected and the
code coverage achieved are essential because these metrics reveal how many po-
tential security issues exist in the target and how the fuzzer reaches the target.
Using fuzzing, we investigate whether the Android Automotive OS is reliable
and safe to use, and we report any issues found to the appropriate stakeholders
to be taken care of [16,17,18].

Android Automotive has many input interfaces of interest regarding fuzzing.
However, we prioritize the interfaces we fuzz. We continue our investigation into
the Controller Area Network (CAN) interface by assessing its risk of security
vulnerabilities and applicability to automotive systems. Previous academic re-

Fuzzing Android Automotive’s CAN interface 7

search has highlighted the importance of securing this interface, making it a
candidate for fuzzing [5, 19].

Our methodology relies on white-box fuzzing, which benefits from the target’s
source code accessibility. Firstly, we compile the target’s source code with code
instrumentation and integrate it into the build configuration of the environment
where fuzzing occurs. Secondly, we prepare the initial input seeds to kick-start
the fuzzing process. Thirdly, fuzzing involves continuous analysis of target be-
haviour using input seeds, observing code coverage and system abnormalities,
and generating new input seeds through mutation and evolutionary algorithms.
Lastly, upon completing the fuzzing process, we review the findings.

Our experiments include comparisons between the existing CAN hardware inter-
face fuzzing target in AOSP and our modified version that aims to improve code
coverage and crash detection. We also investigate the role of initial data used
in fuzzing. Finally, we compare the Android Automotive emulator built directly
from the AOSP source and some of the emulators provided by General Motors
(GM) and Honda.

The experiments reveal that AFL++ (AFL for simplicity) detects more crashes
than libFuzzer, which has not detected any. AFL also achieves a higher coverage
than libFuzzer in most cases. Furthermore, our modified version of the harness
usually achieves higher coverage. Finally, we conclude that the Android version
affects both harnesses’ coverage.

We have contributed to the AOSP project by adding building rules for two AFL
binaries. AOSP maintains a modified version of the AFL repository for Android
OS, excluding some original AFL binaries because the maintainers still need to
integrate them or are unnecessary in the Android environment.

1.1 Research questions

Our main research question for this master thesis is:

Research question 1. How performant is the fuzzing in testing the CAN in-
terface, and how can this performance be improved in the Android Automotive
environment?

We split this main research question into three other sub-questions. Therefore
we introduce the first sub-research question:

Sub-Research question 1.1. How does the harness’s complexity affect the source
code’s code coverage or the number of crashes found?

When we answer this question, we see how a modified harness affects the fuzzing
performance when we answer this sub-question. Adding more calls in harnesses
increases the code coverage.

8 M. Macarie

Sub-Research question 1.2. How do different fuzzers affect the fuzzing pro-
cess performance in Android Automotive?

Answering this sub-question helps us to understand how the libFuzzer and AFL
perform on the same harnesses. Each fuzzer engine has its algorithms for per-
forming fuzzing, which affects the fuzzing performance.

Sub-Research question 1.3. How do different Android Automotive emulators
affect the source code’s code coverage or the number of crashes found?

By answering this sub-question, we want to analyze the fuzzing performance
of the harnesses on different Android versions. Each Android version has its
implementation particularities, which can affect the fuzzing performance.

The aforementioned research questions and sub-questions guide us in achieving
our goal of using fuzzing the CAN interface in the Android Automotive environ-
ment.

1.2 Hypotheses

Our study tests the following hypotheses, which correspond to our research ques-
tions:

1. Increasing the harness’s complexity increases the source code’s code cover-
age or the number of crashes found. This hypothesis helps us answer Sub-
question 1.1. Modifying a fuzzing harness by adding more calls to the inter-
face under test might lead the fuzzer to undiscovered parts in the source code
of the interface, so increasing the code coverage and the chance of detecting
crashes.

2. libFuzzer detects fewer crashes than AFL. libFuzzer and AFL are coverage-
based fuzzers that use genetic algorithms. LibFuzzer uses evolutionary al-
gorithms and heuristics based on feedback. AFL uses mutation techniques
for creating corpus files and relies heavily on coverage feedback. Thus the
likelihood of achieving a higher corpus count and discovering crashes is in-
creased in the case of AFL [20,21,22]. By verifying this hypothesis, we answer
Sub-question 1.2.

3. The version of the Android Automotive emulator influences the source code’s
coverage, the number of crashes or the type of crashes. This hypothesis helps
us answer Sub-question 1.3. Each Android Automotive emulator version has
its changes regarding the source code of the packages, services, and kernel.
Older versions are more likely to be more vulnerable than the current ones.

1.3 Research challenges

The challenges we come across during our research are:

Fuzzing Android Automotive’s CAN interface 9

1. Simulation of CAN protocol communication – the simulation in a virtualized
environment of a physical vehicle or vehicle-specific hardware subsystem is
challenging because of the complexity of real-life situations (e.g., multiple
sensors communicating at the same time in a vehicle and various vehicles
operating situations), multiple types of frames in CAN protocol, and repli-
cating security issues in CAN protocol in an emulated environment.

2. Fuzzing of hardware interface implementations - for achieving good code cov-
erage, thus increasing the chance of detecting software abnormalities, it is
crucial to write performant fuzzing harnesses. Writting performant harnesses
is challenging because Android Automotive supports various hardware de-
vices and influences fuzzing performance (e.g., code coverage and fuzzing
speed). Fuzzing hardware interface implementations is challenging because
of the necessity of particular configurations, limited device resources, and
limited documentation.

3. Interacting with the Android Automotive emulator for fuzzing purposes –
requires a good understanding of how the emulator communicates with the
host machine. Interacting with the emulator is challenging because we need
to understand the emulator and communication between the emulator and
the host machine, use code instrumentation, hardware limitations, and con-
currency and timing issues.

2 Background

This section presents background knowledge about the most relevant notions
and technologies useful for our master thesis.

2.1 Fuzzing

Fuzz testing, or fuzzing, is a technique for discovering software bugs and vulner-
abilities. The technique sends random or semi-random input data to a software
system to identify potential crashes, unexpected behaviour, or information leaks.
The tool used for performing fuzzing is called a fuzzer [16]. We usually measure
the performance of fuzzers in terms of code coverage. Code coverage represents
a metric that counts the number of lines, basic blocks, and other similar features
processed while the software is executed [17,18].

A common concept in fuzzing is code instrumentation, which inserts special
instructions in certain parts of the code to track the code coverage. For example,
we instrument mathematical, logical, and array operations to track the input flow
throughout program execution. Fuzzing is a search problem that seeks to have
as much code coverage as possible and find the best inputs to cause the most
significant software crashes.

A fuzzer may rely or not on the system under test structures, such as variables,
logical flows, input/output formats, and data types for performance improvement

10 M. Macarie

(e.g., code coverage and speed). As a result, we tell the difference between the
following fuzzer types [23,24,25]:

1. Dumb fuzzer - does not consider the system’s existing structure.

2. Smart fuzzer - the chance of finding a crash is increased by creating mean-
ingful input test data, for instance, using knowledge of the system’s existing
structures.

We also categorize fuzzers into the following types based on how much prior
knowledge we have about the system under test as follows [23,24,25]:

1. White Box Fuzzing - fuzzing a system having good knowledge of the struc-
tures in the system, including build environment and source code, with com-
plete monitoring of the code paths that the fuzzer has reached at that point.
By calling conditional branches along the way, symbolic execution restricts
the inputs used in the fuzzing process. Usually, we use symbolic execution
in a dynamic environment. To achieve as many possible execution paths, we
repeatedly use symbolic execution while utilizing cutting-edge search tech-
niques. [26].

2. Black Box Fuzzing - fuzzing a system without knowing the system’s struc-
tures, especially not the source code, without monitoring the code paths
the fuzzer has reached. This type of fuzzing is recommended for large, non-
deterministic, slow systems or complex input data (e.g., a JPEG image).
Some examples of black-box fuzzers include Radamsa [27], BFuzz [28], and
ClusterFuzz [29,30,31].

3. Grey Box Fuzzing - a combination of white and black box fuzzing, having
partial knowledge of the structures in the system, including parts of the
source code, with partial monitoring of the code paths that the fuzzer has
reached. American Fuzzing Loop (AFL) [32] is a well-known example of a
grey-box fuzzer.

Based on how we generate the input data, we divide fuzzers into three categories
[23,25]:

1. Generation fuzzer - data is entirely randomized or slightly prepared from
scratch. Generally, the fuzzer slices valid input data into multiple parts and
fuzz each piece randomly. Radamsa [27] and Peach Fuzzer [33] are examples
of fuzzers using generation techniques researchers discuss in academia.

2. Mutation fuzzer - valid input data (input seed) is provided to the fuzzer. The
fuzzer uses this input seed to generate more testing data using alteration
techniques such as bit flipping. Several fuzzer use mutation approaches, such
as libFuzzer [22], AFL [32], and Peach Fuzzer [33].

3. Evolution fuzzer - input data is generated using principles of genetic pro-
gramming. Whenever the fuzzer identifies an abnormality by executing a
particular input, such as a system malfunction or a memory leak, it uses

Fuzzing Android Automotive’s CAN interface 11

that input to create more testing data. Some examples of such fuzzers are
fuddly [34] and VUzzer [35].

Fuzzing helps find vulnerabilities and bugs such as memory buffer errors (e.g.,
buffer overflow), data validation issues (e.g., out-of-bounds array indexes), im-
proper pointer usage (e.g., dereference of NULL pointer), numeric errors (e.g., an
integer overflow), concurrency issues (e.g., improper synchronization) and bad
coding practices (e.g., stack variable address return) [36,37].

2.2 Android Automotive and Controller Area Network (CAN)

Android Automotive is an Android OS variant designed for in-vehicle infotain-
ment (IVI) systems. However, it includes extra libraries and features designed
explicitly for IVI systems. An example is the hardware abstraction layer (HAL),
which helps connect and integrate the existing networks and buses in a vehicle:
e.g., CAN, LIN, WiFI, Bluetooth, and Ethernet [9].

Fig. 1. Android Automotive architecture [7]

As illustrated in Figure 1, the Android Automotive ecosystem includes several
stakeholders: Android, original equipment manufacturers (OEMs), and 3rd Par-
ties. Android Automotive OS includes the following types of apps: systems apps
(developed by Android), OEM apps (developed by OEMs), and third-party apps
(developed by third parties) [38,39].

These apps run on top of two Application Programming Interfaces (APIs): the
Android Framework API and the Car API. The latter communicates with the

12 M. Macarie

Car service, which communicates with the Android System Services. Moreover,
the Vehicle HAL is a development interface for Android Automotive that ”sets
the properties OEMs can implement and contains property metadata”. With the
help of this HAL, the Traditional Android HALs and the Car Service communi-
cate more easily.

The Controller Area Network (CAN) bus is a communication protocol widely
used in the automotive industry, developed by Bosch in 1986. It uses a two-
wire interface for communication inside a vehicle. The protocol operates on the
OSI model’s Data Link and Physical layers. CAN support efficient real-time
communication, robust error detection, and handling capabilities, with data rates
up to 1 Mbit/s. However, newer protocol versions, such as CAN-FD (Flexible
Data-Rate), have higher data rates [1, 40,41].

In Android Automotive, the CAN interface is part of the Vehicle HAL, part
of the lowest level in the architecture shown in Figure 1. Within the AOSP
source code, it is located in the hardware/interfaces/automotive/can direc-
tory. Android Code Search platform contains the source code of the interface1.
The CAN interface communicates with and integrates various sensors and actu-
ators present in the car, such as speed, engine parameters, air conditioner, and
lightning.

2.3 Current guidelines in automotive cybersecurity

The automotive industry implements several standards to ensure safety, includ-
ing cybersecurity. The three most relevant to our discussion are ISO 26262,
UNECE R155, and UNECE R156 [2, 12,13,14,42,43,44,45,46].

ISO 26262, also known as ”Road vehicles – Functional safety”, provides recom-
mendations for the safety of the ”electrical and electronic systems installed in
serial production road vehicles”. To ensure software security assurance, Auto-
motive manufacturers can use certified commercial tools like Helix QAC [47], a
static analysis tool for C and C++, and Mayhem [48], a software security testing
tool using that also includes fuzzing.

UNECE R155, named ”Cyber security and cyber security management system”,
is a set of regulations specially focused on the cybersecurity management as-
pect of automotive products. This standard emphasizes integrating cybersecurity
measures into vehicle design and operation to ensure optimal security. However,
the standard does not explicitly mention fuzzing as a way of testing software but
encourages manufacturers to use tools for vulnerability detection.

UNECE R156, titled ”Software update and software update management sys-
tem”, sets regulations for software updates in the automotive industry. These

1 https://cs.android.com/android/platform/superproject/+/master:hardware/
interfaces/automotive/can/1.0/default/

https://cs.android.com/android/platform/superproject/+/master:hardware/interfaces/automotive/can/1.0/default/
https://cs.android.com/android/platform/superproject/+/master:hardware/interfaces/automotive/can/1.0/default/

Fuzzing Android Automotive’s CAN interface 13

regulations cover aspects such as guaranteeing that an over-the-air (OTA) up-
date does not affect the safety certification of a vehicle. Furthermore, the regula-
tions enforce the obligation for regular safety updates. While the standard does
not mention fuzzing explicitly, it obligates the manufacturers to ensure software
stability. Fuzzing is a good option for testing software stability.

In conclusion, automotive industry policymakers think cybersecurity is also cru-
cial in the automotive sector. The regulations mentioned above make the man-
ufacturers of automotive systems aware of cybersecurity risks in the field.

3 Related work

This section describes related work and resources on automotive security and
novel fuzzers.

3.1 Security in automotive

Researchers have studied the security aspects of different protocols, technolo-
gies, and systems used in automotive. These studies have frequently revealed
significant vehicle security issues, such as insecure protocols and privacy con-
cerns. Our research focuses on Android Automotive and CAN interface, but we
highlight why cybersecurity in the automotive sector is critical by illustrating
various attacks and vulnerabilities.

In a study by Kyounggon Kim et al. [5], the authors have surveyed 151 papers
related to automotive cybersecurity published from 2008 to 2019. The studies
in their review show successful attacks against cars from Tesla, BMW, Ford,
and Toyota. These papers describe the exploitation of different automotive sys-
tems, ranging from radio interference to zero-day vulnerabilities in WiFi and
web browsers.

Some papers surveyed by Kyounggon Kim et al. and other studies [5, 49, 50]
expose privacy and security concerns about the Tyre Pressure Monitor System
(TPMS). Because the sensors and TPMS ECU in a car communicate without en-
cryption, special equipment can easily read each sensor’s unique ID, potentially
allowing the tracking of vehicles based on these IDs. In these papers, authors
often describe how TPMS ECU failures can occur due to man-in-the-middle
(MiTM) and denial of service (DoS) attacks.

In addition, other papers surveyed by Kyounggon Kim et al. [5] indicate several
security flows of the CAN protocol, making the protocol outdated and susceptible
to attacks such as DoS, MiTM, and spoofing. Attacking the CAN protocol has
dangerous consequences, given the role of the protocol in communicating with
critical vehicle systems like brakes, airbags, and fuel injection systems. Attackers
can execute these attacks remotely or locally by utilizing a malicious hardware
device connected to the OBD2 port of a car.

14 M. Macarie

The vulnerability of ”keyless” systems to amplification and spoofing attacks is
also a concern. Such attacks allow attackers without a physical key to unlock
or start cars from a much greater distance than intended, provided the key is
within range [5, 51].

Other researchers study the potential impact of specific Bluetooth stack vul-
nerabilities on vehicles equipped with Bluetooth-enabled infotainment systems.
For example, Antonioli et al. [52] demonstrate that attackers can use BIAS
(Bluetooth Impersonation AttackS) [53] and KNOB (Key Negotiation of Blue-
tooth) [54] attacks against in-vehicle Bluetooth devices of various famous car-
makers such as KIA, Toyota, Suzuki, and Skoda.

Other authors’ teams focus on the spoofing attack susceptibility of LIDAR-
based ADAS sensors used in various vehicles currently. They present attacks that
allow the creation of fake ”cars” using specially crafted pixel points, triggering
unnecessary sensor responses, such as emergency braking, despite no imminent
danger [55].

As our research focuses on the Android Automotive OS, we need to discuss the
security research already done about this OS. Researchers present their privacy
concerns regarding inter-component communication (ICC) among apps in the
ecosystem of Android Automotive. First, malicious apps may exploit the OS’s
API system to gather and leak information, such as vehicle identification details,
location, and speed. Second, abusing the permissions of the apps can lead to
damage to the vehicle components. Finally, an incorrect implementation by the
IVI vendor may lead to arbitrary CAN injection [10,15].

3.2 Commonly-used fuzzers

This subsection overviews the literature about common fuzzers, such as AFL
and Angora. The fuzzers presented below are some of the most discussed, well-
known, and used in the literature and production. In addition, researchers use
most of them as a basis for further research in fuzzing technologies.

AFL(++) The American Fuzzing Loop (AFL) [20] is a well-known mutation-
based grey box fuzzer, along with its more advanced iteration AFL++ [21],
which is driven by the community.

AFL mutates test cases to discover new execution paths based on coverage-based
feedback. Moreover, AFL applies optimizations such as minimizing test case size
without impacting program behaviour. The two types of mutations used by
AFL are deterministic and havoc. Deterministic mutations include single input
changes like bit flipping, additions, and substitutions, while havoc mutations
involve randomly adding, deleting, and altering inputs.

For further optimization, AFL uses a forkserver, which avoids the entire reini-
tialization of the program being fuzzed for faster execution of test cases. One
more optimization used by AFL is Persistent Mode, where each iteration within

Fuzzing Android Automotive’s CAN interface 15

a loop uses one test case run at a time. Furthermore, AFL++ introduces other
optimization approaches, such as prioritizing low-frequency paths to enhance
coverage with its technical support, including LLVM, GCC, QEMU and Unicor-
nafl, which are particularly useful for binary fuzzing.

Angora Angora [56] is a fuzzer increasing coverage without symbolic execution
but still utilizing path constraints.

The main optimizations of Angora are as follows:

1. Context-sensitive branch coverage - increases coverage through executing
path constraints in multiple contexts

2. Scalable byte-level taint tracking - reduces exploration space by tracking the
input bytes affecting the path constraint and only mutating those that were
modified

3. Search based on gradient descent - path constraint solver based on machine
learning that increases the effectiveness of the fuzzer.

4. Type and shape inference - identifies input bytes used together, determines
their data type, and enhances the mutation strategy of the fuzzer.

5. Input length exploration - increases input length if needed to trigger different
paths, effectively increasing coverage.

Driller Driller [57] is a fuzzer that combines AFL fuzzer with angr, a symbolic
execution engine. Driller introduces the concept of compartments, i.e., identify-
ing and categorizing specific inputs since each may lead to a distinct execution
flow. Driller employs concolic execution, i.e., running a program with symbolic
execution techniques using concrete input data, which helps find as many exe-
cution paths as possible without affecting the fuzzing performance. The goal is
to combine the strengths of fuzzing and symbolic execution.

The main Driller components are as follows:

1. Input test cases - no input test cases are required, but having test cases
can speed up the initial fuzzing step by guiding the fuzzer toward specific
compartments.

2. Fuzzing - execution of fuzzing engine when initially started, which explores
the first compartment of the application until it reaches the first complex
check on a specific input. Subsequently, the fuzzing engine stalls and cannot
identify inputs to search for new paths in the program.

3. Concolic execution - activating its selective concolic execution component
upon stalling the fuzzing engine. This component restricts user input to the
unique inputs discovered in the preceding stage of fuzzing. The constraint-
solving engine of the concolic execution component then pinpoints inputs
that could force execution down unexplored paths.

16 M. Macarie

4. Repeat - when the concolic execution component identifies additional in-
puts, the fuzzing component resumes mutation on these inputs to fuzz the
newly identified compartments. Until discovering a test input that causes an
application crash, Driller alternates between fuzzing and concolic execution.

VUzzer VUzzer [35] is an evolutionary smart fuzzer without using symbolic
execution but using AFL-like principles. When mutating inputs, VUzzer prior-
itizes deep paths in the software and deprioritizes frequently traversed paths.
Also, the fuzzer identifies where and how to alter the test inputs.

VUzzer contains components that work together to deliver an efficient fuzzing
process that uncovers vulnerabilities through rigorous testing, as follows:

1. Dynamic Taint Analysis - the core component of the fuzzer tracks input flow
in a program while identifying relevant memory locations and registers.

2. Magic-Byte detection - recognizes various input types (e.g., a valid JPG
file) by using fixed byte values at specific offsets in the input, which helps
generate valid input types for testing.

3. Basic Block Weight Calculation - the fuzzer rewards achieving difficult-to-
reach code segments within nested control structures for optimal coverage.

4. Error-Handling Code Detection - assists in deprioritizing inputs leading the
program towards an error code.

5. Fitness Calculation - similar to AFL, but the basic block weight determines
if some paths are more attractive than others.

6. Input Generation - there are two types of input generation: crossover - which
generates new child inputs from two-parent inputs, and mutation - which
directly changes existing inputs.

QSym QSym [58] is a hybrid fuzzer that incorporates novel fuzzing techniques
and symbolic execution. The fuzzer features a fast concolic execution engine with
improved emulation performance, increased repetitive testing efficiency, concrete
environment efficiency, and novel heuristics explicitly designed for hybrid fuzzers.
Its authors claim that it surpassed Driller in performance during testing.

QSym has four major features:

1. Instruction-level execution - compared to other concolic execution engines,
QSym only executes specific instructions at the instruction level when com-
pared to other engines

2. Concrete environment modelling - uses concrete values to model external
environments and avoids solving incompletely generated problems.

3. Optimistic Solving - attempts to solve only a part of a path constraint if it
is incapable of entirely solving it.

Fuzzing Android Automotive’s CAN interface 17

4. Basic block pruning - eliminates redundant work by identifying similar basic
blocks and utilizing only one block for generating path constraints.

libFuzzer LibFuzzer [22] is an evolutionary, in-process, coverage-guided fuzzer.
The main features of libFuzzer include the following:

1. Coverage-guided fuzzing - compiler instrumentation that tracks each execu-
tion of code blocks with different inputs, monitoring the execution of different
code sections for each input.

2. In-Process fuzzing - linking the target code to the fuzzer and executing both
in the same process provides performance benefits due to decreased inter-
process communication overhead.

3. Evolutionary input generation - libFuzzer uses a genetic algorithm to evolve
the inputs of the target function.

4. Dictionary support - storage of relevant inputs in a dictionary for increasing
the efficacy of fuzzing.

5. Value-Profile-Guided fuzzing - extends the coverage-guided fuzzing for mea-
suring specific values variables can take, leading to more comprehensive tar-
get testing.

Comparison of the presented fuzzers By comparing the fuzzers presented
in Section 3.2, we divide the fuzzers into two categories: fuzzers that use symbolic
execution and fuzzers that do not use symbolic execution. Driller, VUzzer, and
Qsym represent fuzzers that use symbolic execution, while AFL(++), libFuzzer
and Angora do not use symbolic execution.

Even if we categorize these fuzzers, there are still differences among them. Driller
uses fuzzing and symbolic execution to reach hard-to-reach code sections. VUzzer
uses techniques of dynamic taint analysis, magic-byte detection, basic block
weight calculation, error-handling code detection and fitness function inspired
by AFL. QSym employs instruction-level concolic execution and concrete en-
vironment modelling. AFL uses coverage feedback and optimizations, such as
minimizing test case sizes. Angora executes path constraints in different con-
texts and tracks input bytes that affect the path constraint. Finally, libFuzzer
uses in-process fuzzing and evolutionary input generation.

3.3 Fuzzing technologies in automotive

Researchers have come up with solutions for fuzzing automotive systems in recent
years. These solutions include fuzzing in a hardware-in-the-loop environment us-
ing identical test hardware components – one for fuzzing and one as a reference
to contrast the behaviour of the fuzzed device. To be more detailed, the re-
searchers have two identical vehicle dashboards: fuzzed and running normally. If
the fuzzed dashboard displays malfunction lights, the researchers know that the

18 M. Macarie

fuzzer has encountered an input that triggered a system crash. This experiment
indicates errors like system crashes and losing control of systems [59].

In addition, Radu et al. [60] develop a grey-box approach for fuzzing ECUs using
control-Flow Graph extraction from the firmware, which leads to some crashes
in the units under test.

Furthermore, researchers fuzz essential protocols used in the automotive indus-
try, such as CAN. By crafting malicious CAN packets, ”Malfunction Indicator
Lights (MIL) illumination, warning sounds and erratic gauge needles” occur in a
test vehicle while fuzzing the interfaces [19, 61, 62]. Additionally, other research
papers describe using fuzzers like beStorm [63], Defensics [64], CANoe/bool-
Fuzz [65], and Peach [33] for research related to CAN protocol fuzzing.

Also, researchers adjust traditional fuzzing tools such as beStorm [63] to work
with the improved version of CAN, CAN-FD, which enables higher through-
put rates. However, Nishimura et al. [41] focus more on processing times than
discovering new vulnerabilities or bugs using fuzzing.

Besides the academic approach, commercial tools for automotive security testing,
including fuzzing, are available for automotive makers. Huracan by Riscure [66],
an automotive security tool, enables developers to perform ECUs fuzzing. More-
over, the automotive industry can also use fuzzing-as-a-service options, such as
Block Harbor [67].

4 Why the CAN interface?

In our research, we look at the CAN interface and explain why in this section.
Android Automotive has many input interfaces of interest regarding fuzzing.
However, we choose only one interface, the CAN interface, for our research be-
cause our time is limited. Therefore, we made a ranking for the most relevant
interfaces in the automotive industry and Android Automotive environment in
Table 1.

The importance of these interfaces mentioned in Table 1 is determined by their
relevance for the fuzzing process. We have assessed their risk of security vulner-
abilities and applicability to the automotive systems realm.

The top choice for our research is the Controller Area Network (CAN) interface,
which plays a crucial role in the communication between Electronic Control
Units (ECUs) in modern vehicles. Previous academic research has highlighted
the importance of securing this interface, making it a good candidate for fuzzing.
However, its age makes it both interesting and not interesting for new research
because modern vehicles still use this protocol. In addition, the simulation of
a CAN bus in a virtualized environment takes more effort because we simulate
devices that communicate on the bus, thus making the fuzzing process more
challenging.

Fuzzing Android Automotive’s CAN interface 19

Furthermore, other interfaces, such as Vehicle Manager, Remote Access, and
External Vision System (EVS), have critical data management and control func-
tions. Still, their lower vulnerability to input attacks makes them less interesting
for fuzzing.

Interfaces like WiFi, Bluetooth and GPS are more vulnerable to internal and
external cyber-attacks. Still, given that they are not specific to automotive sys-
tems, they have been rated lower in fuzzing priority.

Finally, we rank Media Oriented Systems Transport (MOST) and Local Inter-
connect Network (LIN) the last due to their lower risk of remote cyber-attacks or
specific implementation limitations in the Android Open Source Project (AOSP).

Table 1: Input interfaces in Android Automotive

Ranking Interface Why to fuzz it? Why not fuzz it? Existent
fuzzer in
AOSP

1 CAN Responsible for critical
communication be-
tween ECUs, research
on security aspects has
been done, commonly
used, protocol-specific
fuzzing tools ex-
ist, vehicle-specific
interface

Remote/outside at-
tack less likely, older
technology, probably
harder to fuzz using
virtual environment

Yes

2 Vehicle Man-
ager

Potential memory leak
found using existent
libFuzzer harness,
manages and con-
trols data like vehicle
speed, fuel level, en-
gine temperature, and
tire pressure, vehicle-
specific interface

Not entirely an input
interface

Yes

3 Remote Ac-
cess

Control car over a net-
work remotely, vehicle-
specific interface

Not entirely an input
interface

Yes

4 EVS Malfunction can dis-
turb drivers, critical
in self-driving cars,
vehicle-specific inter-
face

Probably harder to
fuzz (requires 2D/3D
maybe)

Yes

20 M. Macarie

5 SV - Sound
and Volume

Malfunction can dis-
turb drivers, vehicle-
specific interface

Not necessarily an in-
put interface

Yes

6 Audio Malfunction can dis-
turb drivers, vehicle-
specific interface

Not critical component Yes

7 Occupant
awareness

Privacy issues in
case of a security
breach, vehicle-specific
interface

Contains only AIDL
definitions, not critical
component

No

8 WiFi/4G/5GNewer technology,
susceptible to re-
mote/outside attacks,
researchers have
researched the secu-
rity aspects already,
protocol-specific
fuzzing tools exist

Part of base Android
project (not Automo-
tive specific)

No

9 Bluetooth Newer technology,
susceptible to re-
mote/outside attacks,
researchers have re-
searched the security
aspects already, com-
monly used, protocol-
specific fuzzing tools
exist

Part of base Android
project (not Automo-
tive specific), older
technology

Yes

10 GPS Susceptible to re-
mote/outside attacks,
protocol-specific
fuzzing tools exist

Part of base Android
project (not Automo-
tive specific), older
technology

No

11 USB Commonly used,
susceptible to re-
mote/outside attacks,
research on security
aspects have been
done

Older technology,
part of base An-
droid project (not
Automotive specific)

No

Fuzzing Android Automotive’s CAN interface 21

12 Ethernet Newer technology,
susceptible to re-
mote/outside attacks,
protocol-specific
fuzzing tools exist,
researchers have re-
searched the security
aspects already

Probably harder to
fuzz using a virtual
environment, older
technology

No

13 MOST Commonly used,
vehicle-specific inter-
face

Mainly used for non-
critical applications,
remote outside/attack
less likely, probably
harder to fuzz using a
virtual environment,
implementation in
the kernel but not
automobile-specific

No

14 LIN Responsible for crit-
ical communication
between ECUs, newer
technology, vehicle-
specific interface

Less commonly used,
remote outside/attack
less likely, probably
harder to fuzz using
a virtual environment,
no implementation in
AOSP

No

5 Methodology

We aim to discover how we can use fuzzers with Android Automotive and how
to use fuzzing to detect software vulnerabilities in hardware input interfaces.
Further, we present our way of pursuing these goals.

In our research, we use white-box fuzzing because we have access to the source
code of our targets. In addition, if we fuzz a library and not a standalone target,
we link the library and fuzzer to the library to guide the fuzzer, which we define
as a fuzzing harness. Our methodology consists of the following parts:

1. Compilation of the target’s source code using code instrumentation

2. Preparing the initial input seeds

3. Fuzzing process

4. Analyzing and reporting the finding of the fuzzing process

The first step is compiling the source code of the target using code instrumen-
tation. Code instrumentation is necessary for compiling the source code of the

22 M. Macarie

target before starting the fuzzing process. Each fuzzing engine has its way of per-
forming this instrumentation. We integrate instrumentation and building steps
into the environment’s building configuration, where the target’s fuzzing pro-
cess occurs. If the fuzzing process occurs in an emulated environment, cross-
compilation is required.

The second step is preparing the initial input seeds. We use entirely random
inputs and random inputs based on the standard inputs the target usually uses
in normal operations. The fuzzer needs these initial input seeds as a starting
point for the fuzzing process.

The third step is the fuzzing process. While the fuzzing process is running, the
fuzzer loops through the input seeds and constantly observes the behaviour of the
target using these seeds. These observations mainly comprise checking the code
coverage using each input and system abnormalities, such as crashes, timeouts
and memory leaks.

Based on these observations, the fuzzer creates new input seeds using mutation,
generation and evolutionary algorithms to increase further the code coverage
and the chances of discovering new system abnormalities. If the newly-discovered
input seed does not lead to a new path in the target or does not create instability
in the system, the fuzzer discards the input seed. When the fuzzer finds an input
seed that increases the coverage or crashes the target, the fuzzer uses this input
as a base for further input generation. We design a fuzzing harness based on the
original harness with several tweaks to improve the fuzzing performance. The
fuzzer records its performance and status in log files and the inputs that make
the target crash.

The fourth and last step is analyzing and reporting the finding of the fuzzing
process. When the fuzzer completes the fuzzing process, we check the input seeds
that the fuzzer considered that made the target unstable, if there are any. We run
the target using these inputs to confirm whether these inputs make the target
unstable.

6 Implementation

This section discusses how we implement fuzzing in the AOSP environment and
prepare the fuzzing experiments.

6.1 Android Open Source Project (AOSP) setup

Before we perform any fuzzing experiments, we need to download and build the
AOSP source code. After downloading the source, we compiled the code source
using a specific configuration for Android Automotive present in AOSP. We use
the AOSP product configuration sdk_car_portrait_x86_64-userdebug. We
choose a configuration that allows us to emulate the x86 64 architecture and
control entirely the emulator system, e.g. root access and full R/W rights on the
system partitions.

Fuzzing Android Automotive’s CAN interface 23

6.2 Running and using AOSP emulator

After successfully compiling AOSP from sources, we run the Android Emula-
tor using the following options: enable writable /system partition and disable
showing the emulator window. We want to have complete R/W control over the
emulator. In addition, we do not use the emulator’s window because we run our
commands using the terminal, and our server’s resources are limited.

We provide root privileges to the emulator for full access to the system files. In
addition, we need to remount the system partitions on the emulator and sync
the files on the emulator.

The next step we take is running multiple emulators in parallel to make our re-
search more efficient. We use the avdmanager and sdkmanager tools to manage
this. Firstly, we download a system image with similar specifications (UpSide-
DownCake version, x86-64) using sdkmanager and then copy the .img files from
our compiled AOSP emulator images. Then, we create the necessary emulators
using avdmanager create avd command. Finally, as stated above, we use the
emulator command, but we also specify what AVD we use by adding the pa-
rameter @avd_name.

6.3 Choosing the fuzzing frameworks used in the research

We focus on the following fuzzing frameworks in this research: libFuzzer and
AFL++ (referred further simply as ”AFL”). We present the technical and sci-
entific considerations that guided us in our choice.

We do not use fuzzers that use symbolic execution due to the high resources
necessary for running them. Android Automotive is usually running on limited
hardware, and also, due to limited virtualization capabilities, we are concerned
that our setup can not handle these fuzzing engines.

On a high level, these two fuzzers have different ways of functioning. AFL is
appealing because it works with an instrumented binary of the target and typi-
cally requires manually writing a harness in the form of writing main alternative
functions. However, we can run AFL without performing source code modifica-
tions. Having the source allows us to understand the code better and tweak the
fuzzing process. LibFuzzer requires a harness which calls the specific functions
linked to the original code using the compiler’s linker.

Furthermore, initial input data requirements differ for each fuzzer: AFL requires
pre-existing data, but libFuzzer can start without it. Therefore, we generate
initial input data for a meaningful comparison between experiments, regardless
of libFuzzer’s capability to run without initial data.

In our experiments, we use white-box fuzzers. Thus, LibFuzzer and AFL can both
deal with white-box systems. Furthermore, the fuzzers use mutation, genetic and
evolutionary techniques to create input seeds which fit our requirements.

24 M. Macarie

Technically, AOSP developers have integrated libFuzzer and AFL into the AOSP
build system, which helps set up our research environment. However, we have
encountered issues while setting up AFL for our experiments. Also, both fuzzers
can fuzz the C/C++ code in our harnesses.

Finally, we only choose these two fuzzing frameworks because choosing more in-
creases the research complexity and our time is limited for this research. Adding
other fuzzers needs complex changes to the Android build system. The fuzzers
we select are already in the AOSP ecosystem. Even though AOSP integrated
AFL, we still have to change the build files to compile the harnesses because of
compilation errors caused by duplicate symbols during the linkage part of the
compilation. We have spent considerable time developing a fix for this issue, de-
scribed in Section 6.4. Thus, integrating a fuzzer that has never been integrated
into the AOSP ecosystem requires even more time and effort.

6.4 Fuzzing harness compilation and running

The fuzzing library harnesses, part of the AOSP source code, are designed explic-
itly for libFuzzer, and we notice developers have written the hardware interfaces
implementations in C/C++.

In the latest versions of the AOSP, including the one we use, we can configure the
fuzzing framework by just setting the FUZZ_FRAMEWORK environmental variable
to libfuzzer or afl. If we do not set the variable explicitly, it defaults to
using libFuzzer. Additionally, AFL provides a driver that instruments existing
libFuzzer harness targets for fuzzing using AFL. However, the AFL integration
is incomplete, and we have to modify the build files, as shown in Appendix A.1.

Before starting the fuzzing process, we manually populate the ”inputs” folder
with initial corpora. After completing this step, we start the fuzzing process.

When we use libFuzzer, we use fork mode while running libFuzzer because we do
not want the fuzzer to stop when a crash is detected. Furthermore, we disable the
memory leak detection in libFuzzer because it interferes with the fuzzing process.
In some of our cases, a memory leak causes the fuzzer to detect a crash right
at the start, preventing any further fuzzing from being conducted. Furthermore,
memory leaks are not generally a severe security vulnerability.

When using AFL, we use the default settings, except the timeout set to 5000ms
and enable the deterministic mode for fuzzing for increased fuzzing efficiency.
The deterministic mode is more efficient because it does not repeat test cases,
has a systematic approach to increasing code coverage, and the results are easier
to reproduce.

6.5 Modified CAN interface harness

Our experiments use a modified version of the original CAN interface fuzzing
harness shipped with the AOSP source code. In Table 2, we present for which

Fuzzing Android Automotive’s CAN interface 25

libraries we introduced direct calls in the modified version and the reasons for
these choices. In this modified version, we have introduced direct calls to the
following libraries: CanController, CanBusNative, CanBusSlScan, CanBusVir-
tual, and CanSocket. We omit the CanBus library, as the other libraries have
already called all its relevant functions. Based on the call graph shown in Figure 2
and manual source code inspection, we have decided on what direct calls we add
in the modified harness. We present the call graph of the modified (improved)
harness in Figure 3.

Table 2: List of added direct calls in modified harness

Library name Function Reason to include direct calls
in the improved harness

CanController

getIfaceName Not directly fuzzed, but it might
get fuzzed data. The function takes
the path to a serial interface in
/sys [68] as a parameter.

readSerialNo Not directly called and fuzzed
in the original harness. Takes
the path to serial interface from
/sys/devices/ as a parameter
[68].

findUsbDevice Called but not fuzzed. The param-
eter of the function represents ”a
list of serial number (suffixes) from
the HAL config” [68].

getSupportedInterfaceTypes Not directly called and fuzzed in
the original harness. The function
takes as a parameter a return call-
back [68].

isValidName Not directly called and fuzzed in
the original harness. The parame-
ter is a simple string [68].

CanBusSlcan

All

Not called directly. Most functions
take the following parameters
interface’s name on the system as
a string and the bitrate as a
32-bit unsigned integer [68].

CanBusVirtual

CanBusNative
CanSocket Not directly called and fuzzed in

the original harness. The functions
here usually take parameters such
as callbacks, interface names, and
CAN frames [68].

AOSP developers have already included the CanController library in the har-
ness. Still, we include direct calls to the following helper functions: findUsbDe-

26 M. Macarie

vice, readSerialNo, getIfaceName, and isValidName. We choose these func-
tions because they are not directly fuzzed in the original harness but might get
called using fuzzed data. To make these functions accessible to our harness, we
modify the source code of CanController.cpp: we remove the static keyword.
We add the definitions for these functions in the header file CanController.h.

The following library brought into discussion is CanBusNative. This library is
not originally directly included in the harness, but we introduce a direct call
to this library to its preUp function. Similarly, we proceed with the libraries
CanBusVirtual and CanBusSlcan.

Fig. 2. Call graph of the original harness

Lastly, we introduce more direct calls for the CanBusSocket library because
the harness does not directly include it. The functions included in this library
might benefit from direct calls with fuzzed data, so we potentially increase the
coverage. We modify the header file to have more direct access and remove the
private keyword for the functions defined. Firstly, we define two mock callbacks

Fuzzing Android Automotive’s CAN interface 27

in the header file: ReadCallback and ErrorCallback. Then, we open a CAN
socket. If we successfully open the CAN socket and there is still available fuzzed
data, an object with fuzzed data is sent to the opened CAN socket.

28 M. Macarie

Fig. 3. Call graph of the improved harness

Fuzzing Android Automotive’s CAN interface 29

6.6 Initial corpora data

We need initial corpora data, also known as ”seed inputs”, to run the fuzzing
experiments. This corpora data is essential because they provide a starting point,
especially for AFL. In our experiments, we define two types of corpora data:
simple and complex.

The simple initial corpora data consists of the string A. We choose this string
because it is simple enough to start the fuzzing process with libFuzzer and AFL.

We also define complex initial corpora data that consists of the three files repre-
senting different CAN message types: standard CAN message, CAN FD message,
and a message that only represents a Remote Transmission Request (defined in
the source code). We create these inputs based on the variables and structures
of the original harness. Each file contains the following messages:

• id - CAN message that is a standard ID (11 bits) or an extended ID (29
bits), represented in HEX

• payload - actual data carried by a CAN message, which has a length between
0-8 bytes for standard CAN, and up to 64 bytes for CAN FD, represented
in HEX as well

• timestamp - time since boot measured in nanoseconds

• remoteTransmissionRequest - a boolean variable that determines data re-
trieval request from another CAN network ECU, which, when it is set to 0,
there is no payload set

• isExtendedId - sets either the message using standard ID (value is 0) or
extended ID (value is 1)

Below, we present the actual content of these three files:

• Standard CAN message, 11-bit ID, 8-byte payload:

id : 0x012F
payload : 01 02 03 04 05 06 07 08
timestamp : 0
remoteTransmiss ionRequest : 0
i sExtendedId : 0

• CAN FD message, 11-bit ID, 15-byte payload:

id : 0x012F
payload : 01 02 03 04 05 06 07 08 09 0A 0B 0

C 0D 0E 0F
timestamp : 0
remoteTransmiss ionRequest : 0
i sExtendedId : 0

• Remote Transmission Request, 11-bit ID, no payload:

30 M. Macarie

id : 0x012F
payload :
timestamp : 0
remoteTransmiss ionRequest : 1
i sExtendedId : 0

6.7 Fuzzing metrics measurement

We re-run the corpora generated by the experiments using the libFuzzer through
the afl-showmap tool to measure the coverage using the AFL-instrumented bi-
nary. In addition, we do the same with AFL-generated corpora. We perform this
operation because libFuzzer does not provide comparable coverage data with
AFL.

The upside of using afl-showmap for AFL and libFuzzer results is that the cov-
erage results are comparable across fuzzers. The downside of this uniformization
of results is that libfuzzer may do great at optimizing its coverage according to
libfuzzer, and it looks bad when using afl-showmap because AFL uses a different
way to measure coverage.

6.8 Emulators provided by the car manufacturers

Besides the emulator we compiled from the AOSP source code, we run experi-
ments on emulators offered by car manufacturers. We have discovered that Gen-
eral Motors (GM), Volvo, Polestar, and Honda offer these for developers. In our
research, we use the ones using Android 11 from GM and Honda. We only use
Android 11 or higher emulators because, upon source code inspection, the others
do not come with a CAN hardware interface source code.

We present the car emulators used in our research below:

• GM2

• MY24 CADILLAC Lyriq Freeform SUV3

• MY24 GM SUV4

• Honda5

We also need root access to have complete control over the emulators provided by
car manufacturers. We can easily do that using ADB commands in the standard
Android Automotive emulator we compile directly from the source code. How-
ever, the car manufacturers build the provided emulators in production mode,
so the adb root command is blocked.

2 https://developer.gm.com/docs/gm-emu-downloads (requires account creation)
3 https://developer.gm.com/downloads/final ff 05302022 emulator.xml
4 https://developer.gm.com/downloads/final 31XX 06272022 emulator.xml
5 https://global.honda/cars-apps/index.html

https://developer.gm.com/docs/gm-emu-downloads
https://developer.gm.com/downloads/final_ff_05302022_emulator.xml
https://developer.gm.com/downloads/final_31XX_06272022_emulator.xml
https://global.honda/cars-apps/index.html

Fuzzing Android Automotive’s CAN interface 31

We root the virtual images using the rootAVD6 tool. The instructions on in-
stalling and using the tool are present there, including some special notes for
Android Automotive images and devices with QEMU images. In addition, we
configure Magisk, so we always grant root access without showing the SuperSu
prompt.

Compared to the original AOSP emulator image, we enable root access by using
the su command in the terminal shell of the emulator. In addition, we cannot
use the commands adb remount and adb sync with the rooted emulators: we
first need to copy the files to a location on the emulator freely accessible, and
then use the shell with root rights, we copy them to our location of choice.

Furthermore, the CAN interface implementation in Android 11 does not have
a fuzzing harness. Thus, we use the original harness used in the experiments
with the AOSP emulator, and we adapt the source code and build files of the
harnesses to match the implementation of the CAN interface in Android 11.
We have replaced the calls to features not present in the Android 11 Native
Development Kit (NDK). The source code is available in the Appendix A.

7 Experiments

This section covers the experimental setup, experiments, and their results.

For our first experiment, we evaluated libFuzzer and AFL performance on the
default and improved harness using the simple input corpus. We used libFuzzer
and AFL to test both the default and upgraded CAN interface harnesses for 24
hours, five times, on the original AOSP emulator. Our experiment test Hypothe-
sis 1, which states that harness complexity correlates with code coverage and the
number of crashes detected in the source code. We expect AFL to outperform
libFuzzer in discovering crashes.

The second experiment repeats the previous one, wherein the default and im-
proved CAN interface harnesses are run five times for 24 hours on the original
emulator built from AOSP sources, using libFuzzer and AFL. The distinction in
this experiment is that we use the complex corpus presented in Section 6.6. Using
this experiment, we test Hypothesis 1 and Hypothesis 2. With these hypotheses,
we aim to show that increasing the harness’s complexity also increases the source
code’s code coverage or the number of crashes found and that libFuzzer detects
fewer crashes than AFL.

The final experiment comprises running the first and second experiments on
GM and Honda’s emulators. These emulators use different Android versions
compared to the original AOSP emulator. During these experiments, we test
Hypothesis 1 and Hypothesis 3. With these hypotheses, we aim to prove that
the number or type of crashes is influenced by the Android version, besides the
experimental goals of the first and second experiments. However, due to the lack

6 https://github.com/newbit1/rootAVD

https://github.com/newbit1/rootAVD

32 M. Macarie

of AFL integration in the Android 11 build system, we do not test Hypothesis
2.

7.1 Experiment set-up

We perform the experiments on a Ubuntu 22.04.2 LTS server with the following
specifications:

• CPU: 2 x Intel Xeon CPU E5-2620 v3 @ 2.40GHz, with 12 threads on each
core

• RAM: 64 GB DDR4

• Storage units: 1 x Samsung SSD 850 and 2 x WDC WD4001FFSX-6

We perform the fuzzing processes on Android Automotive Emulators running
Android UpSideDownCake codename with an x86-64 architecture, one CPU core
and 2GB RAM. We chose x86-64 as the processor architecture because we have
noticed that all the emulators published by the car manufacturers use either
x86-64 or x86. In addition, we can only have emulators with a single virtual core
because of the limited CPU virtualization features of our server and Android
emulation ecosystem.

7.2 Running both default and improved CAN interface harnesses
five times for 24h with both libFuzzer and AFL

Our first experiment consists of fuzzing the following harnesses: the original
AOSP one and the modified harness. We use libFuzzer and AFL on the official
AOSP emulator for this experiment. We run the compiled targets for libFuzzer
and AFL for 24 hours, five times each, using the simple initial corpora data
defined in Section 6.6, and we run the experiments on the server in 5 different
instances of the original AOSP Android Automotive x86-64 emulators.

In Figure 4, we present our coverage measurements from fuzzing the default CAN
interface harness and the modified (”improved”) one with libFuzzer. Looking at
the default harness coverage, we notice that libFuzzer achieved higher coverage
than AFL. However, the situation is different when looking at the improved
harness: AFL has a significantly higher coverage rate than libFuzzer. If we com-
pare the results overall, we notice that the enhanced harness performs similarly
or slightly worse than the default harness when we use libFuzzer as a fuzzing
framework but has an outstanding higher coverage performance than the default
harness when we use AFL. We think this happens due to the non-determinism
of libFuzzer, which brings unpredictability and non-reproducibility in results.

The next metric we used in comparing the harnesses and the fuzzing framework
is the number of detected unique crashes (according to AFL) for each harness
and each framework, presented in Figure 5. In both the default and improved
harness, libFuzzer fails to detect crashes. On the other hand, AFL manages to

Fuzzing Android Automotive’s CAN interface 33

Original harness
(AFL)

Original harness
(libFuzzer -

AFL-measured)

Improved harness
(AFL)

Improved harness
(libFuzzer -

AFL-measured)

0

200

400

600

800

1000

1200

1400

1600

Co
ve

ra
ge

 (A
FL

-m
ea

su
re

d)

libFuzzer vs AFL - Coverage in default vs improved CAN
harness with AFL-measured coverage

Original harness
(AFL)
Original harness
(libFuzzer -
AFL-measured)
Improved harness
(AFL)
Improved harness
(libFuzzer -
AFL-measured)
Mean and
standard deviation

Fig. 4. libFuzzer vs AFL - Coverage in default vs improved CAN harness with AFL-
measured coverage

Original harness
(AFL)

Original harness
(libFuzzer)

Improved harness
(AFL)

Improved harness
(libFuzzer)

0

20

40

60

Cr
as

he
s

libFuzzer vs AFL - Crashes detected number in default vs
improved CAN harness

Original harness
(AFL)
Original harness
(libFuzzer)
Improved harness
(AFL)
Improved harness
(libFuzzer)
Mean and
standard deviation

Fig. 5. libFuzzer vs AFL - Crashes detected number in default vs improved CAN
harness

discover crashes using all of the harnesses. Furthermore, in 2 out of 5 runs, the
improved harness has better results than the original one. By modifying the
harness, we think AFL had to perform more operations within 24h than with
the default harness. Furthermore, we have replicated some of the crashes found
by AFL and all of them have a similar pattern:

ex t e rna l / l i b cxx / inc lude / sstream : 5 6 2 : 2 8 : runtime e r r o r
: imp l i c i t conver s i on from type ’ in t type ’ (aka ’

34 M. Macarie

int ’) o f va lue 255 (32−bit , s i gned) to type ’
char type ’ (aka ’ char ’) changed the value to −1
(8−bit , s i gned)

Thus, they occur in the same place and maybe false-positive crashes. AFL con-
siders these crashes unique because the tested and resulted values differ.

In addition, verbose logs of AddressSanitizer show memory leaks at the end
of each fuzzing run. However, the fuzzer does not generate specific crash files to
replicate these leaks. Thus, we think that these leaks are bugs of the Address-

Sanitizer running on the emulator.

Original harness Improved harness
0

500

1000

1500

2000

2500

3000

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

libFuzzer-measured coverage in default vs improved harness

Original harness
Improved harness
Mean and
standard deviation

Fig. 6. libFuzzer-measured coverage in default vs improved harness

Also, we present a comparison of measured coverage using libFuzzer between the
default harness and modified harness in Figure 6. In the case of libFuzzer, the
coverage represents the number of code blocks or edges found. It is noticeable
that in 3 runs out of 5, the improved harness has slightly better coverage than
the default one. This overall performance increases due to the added calls in the
improved harness. However, the lower performance in some of the runs is due to
the non-deterministic behaviours of the fuzzer.

Figure 7 and Figure 8 shows the coverage evolution versus time. The data pre-
sented in 7 correlates with data shown in Figure 6 and confirms the abovemen-
tioned observations. In addition, when testing the default harness, one of the
runs features a sudden increase in coverage around 20000 seconds timestamp,
which occurs due to fuzzing non-deterministic behaviour. We also observe that

Fuzzing Android Automotive’s CAN interface 35

0 20000 40000 60000 80000
Time (s)

0
500

1000
1500
2000
2500
3000

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

Coverage vs time using default and improved
harness using libFuzzer

Default harness run
Improved harness run

Fig. 7. Coverage vs time using default and improved harness using libFuzzer

0 20000 40000 60000 80000
Time (s)

0
250
500
750

1000
1250
1500

Co
ve

ra
ge

 (A
FL

)

Coverage vs time using default and improved
harness using AFL

Default harness run
Improved harness run

Fig. 8. Coverage vs time using default and improved harness using AFL

36 M. Macarie

the libFuzzer achieves most of the coverage initially. Over time, most of the cov-
erage curves saturate around 50000 seconds. We think that libFuzzer achieves
such performances due to its coverage-focused algorithms. Thus, fuzzing for 24
hours may be too much in this case.

We also analyze the coverage evolution versus when using AFL in Figure 8.
Again, the data presented in 4 correlates with data shown in Figure 4 and con-
firms the abovementioned observations. We observe that the coverage curve when
using AFL is slow. AFL achieves these coverage curves with a more deterministic
approach and improved fuzzing algorithms. In addition, the improved harness
can benefit from running the fuzzer longer than 24 hours.

7.3 Use complex initial corpus and rerun experiment #1

The second experiment is similar to the previous one, but we attempt to use the
complex initial corpus files defined in Section 6.6. Besides the different initial
corpus, we run the experiments the same way as in the previous experiment in
Section 7.2.

Original harness
(AFL)

Original harness
(libFuzzer -

AFL-measured)

Improved harness
(AFL)

Improved harness
(libFuzzer -

AFL-measured)

0

200

400

600

800

1000

Co
ve

ra
ge

 (A
FL

-m
ea

su
re

d)

libFuzzer vs AFL - Coverage in default vs improved CAN
harness with complex corpus

Original harness
(AFL)
Original harness
(libFuzzer -
AFL-measured)
Improved harness
(AFL)
Improved harness
(libFuzzer -
AFL-measured)
Mean and
standard deviation

Fig. 9. libFuzzer vs AFL - Coverage in default vs improved CAN harness with complex
corpus

Further, we compare libFuzzer and AFL using the default and improved harness
in terms of coverage in Figure 9. The improved harness has better coverage than
the default one for libFuzzer and AFL in all five runs.

When we look at libFuzzer-measured coverage in Figure 10, the improved harness
outperforms the original harness in all of the runs. Furthermore, the standard
deviation among the runs in the improved harness is higher than in the original.
We think this happens because the higher complexity of the improved harness
also makes the non-deterministic behaviour of the fuzzer more prominent.

Fuzzing Android Automotive’s CAN interface 37

Original harness Improved harness
0

500

1000

1500

2000

2500

3000

3500

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

libFuzzer-measured coverage in default vs improved harness - complex corpus

Original harness
Improved harness
Mean and
standard deviation

Fig. 10. libFuzzer-measured coverage in default vs improved harness - complex corpus

Original harness
(AFL)

Original harness
(libFuzzer)

Improved harness
(AFL)

Improved harness
(libFuzzer)

0

20

40

60

Cr
as

he
s

libFuzzer vs AFL - Crashes detected number in default vs
improved CAN harness with complex corpus

Original harness
(AFL)
Original harness
(libFuzzer)
Improved harness
(AFL)
Improved harness
(libFuzzer)
Mean and
standard deviation

Fig. 11. libFuzzer vs AFL - Crashes detected number in default vs improved CAN
harness with complex corpus

In Figure 11, we compare libFuzzer and AFL regarding the crashes detected
number in default and improved CAN harness while we use the complex corpus.
Again, libFuzzer fails to find any crashes. Another interesting observation is that
AFL detects fewer crashes using the improved harness than the default one in 3
out of 5 runs.

Furthermore, we present coverage evolution versus time using the complex cor-
pus in Figure 12 and Figure 13. The data presented in 12 correlates with data
shown in Figure 10 and confirms the abovementioned observations. Furthermore,
libFuzzer achieves most of the coverage initially. Over time, most of the coverage
curves saturate around the end of the fuzzing seconds. We think that libFuzzer
achieves such performances due to its coverage-focused algorithms. Finally, the

38 M. Macarie

0 20000 40000 60000 80000
Time (s)

0
500

1000
1500
2000
2500
3000
3500

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

Coverage vs time using default and improved
harness with complex corpus using libFuzzer

Default harness run
Improved harness run

Fig. 12. Coverage vs time using default and improved harness with complex corpus
using libFuzzer

improved harness can benefit from running the fuzzing process longer than 24
hours, but not much.

Using AFL in Figure 13, we also analyze the coverage evolution versus time.
Results from Figure 9 correlate with results presented in Figure 9 and confirms
our previous observations. We observe that the coverage curve when using AFL
is slow. Especially when fuzzing the improved harness, we see that the curve
still has ascending trend at the end of the fuzzing process. Thus, the improved
harness can benefit from running the fuzzer longer than 24 hours. AFL achieves
these coverage curves due to a more deterministic fuzzing approach.

7.4 Running fuzzers on different emulators from car manufacturers

The third experiment represents running Experiments 1 and 2 on emulator im-
ages provided by car manufacturers for developers, provided by GM and Honda.
These emulators use Android 11. In addition, the build system does not include
AFL in this version, so our experiments only include fuzzing with libFuzzer.

Regarding results, libFuzzer fails to detect crashes regardless of the Android
version and emulator used. This failure might happen for potential reasons:
libFuzzer’s fuzzing mechanism, harness not reaching one or more vulnerable
areas, improper corpus, or even faulty libFuzzer implementation in the Android
ecosystem.

Fuzzing Android Automotive’s CAN interface 39

0 20000 40000 60000 80000
Time (s)

0

200

400

600

800

1000
Co

ve
ra

ge
 (A

FL
)

Coverage vs time using default and improved
harness with complex corpus using AFL

Default harness run
Improved harness run

Fig. 13. Coverage vs time using default and improved harness with complex corpus
using AFL

Honda We present the coverage measurements using libFuzzer in default vs
improved CAN harness using the Honda emulator in Figure 14. The improved
harness shows improved coverage over the original harness. However, when using
the simple corpus, the standard deviation shows much difference between runs in
the improved harness. The fuzzer’s non-deterministic behaviour and using a less
precise initial corpus can explain this difference. In addition, the standard devia-
tion of the runs of the original harness shows that all the runs have achieved the
same coverage. We think this happens because the fuzzer achieves the maximum
achievable coverage of the harness or because the corpora generated do not lead
to new paths in the harness.

In Figure 15, we present results of coverage vs time using the simple corpus on the
Honda emulator. We observe that the improved harness coverage curves stabilize
around 60000s. In comparison, the default harness curve stabilizes at around
20000 seconds. The improved harness takes longer to achieve curve saturation
due to the increased complexity of the harness itself but also due to the more
complex initial input. As a result, the improved harness can benefit from fuzzing
for longer than 24 hours.

We inspect the coverage over time using the complex corpus on the Honda
emulator shown in Figure 16. We observe that the improved harness coverage
curves continue to increase towards the end of the fuzzing process. In comparison,
the default harness curve stabilizes around 50000 seconds. Again, the improved

40 M. Macarie

Original harness Improved harness Original harness
(with complex

corpus)

Improved harness
(with complex

corpus)

0

200

400

600

800

1000

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

libFuzzer - Coverage in default vs improved CAN harness using
Honda emulator

Original harness
Improved harness
Original harness
(with complex
corpus)
Improved harness
(with complex
corpus)
Mean and
standard deviation

Fig. 14. libFuzzer - Coverage in default vs improved CAN harness using Honda emu-
lator

0 20000 40000 60000 80000
Time (s)

0

200

400

600

800

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

Coverage vs time using default and improved
harness using libFuzzer on Honda emulator

Default harness run
Improved harness run

Fig. 15. Coverage vs time using default and improved harness using libFuzzer on Honda
emulator

Fuzzing Android Automotive’s CAN interface 41

harness takes longer to achieve curve saturation due to the increased complexity
of the harness itself but also due to the more complex initial input. As a result,
the improved harness can benefit from fuzzing for longer than 24 hours.

0 20000 40000 60000 80000
Time (s)

0

200

400

600

800

1000

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

Coverage vs time using default and improved
harness using libFuzzer using complex corpus on

Honda emulator

Default harness run
Improved harness run

Fig. 16. Coverage vs time using default and improved harness using libFuzzer using
complex corpus on Honda emulator

GM Lyriq When we observe the libFuzzer’s results using the GM MY24
CADILLAC Lyriq Freeform SUV (abbreviated as GM Lyriq) emulator using
simple and complex corpus, depicted in Figure 17, our comments are similar
with the ones from the similar experiment performed using the Honda emulator
in Figure 14.

We show the coverage over time using the simple corpus on the GM Lyriq em-
ulator in Figure 18. We must mention that we have lost some data on three
improved harness runs due to technical issues. The improved harness coverage
curves saturate in the 50000 and 60000 seconds, while the default harness curves
reach most of their limit around 20000 seconds. Again, due to increased com-
plexity, the improved harness takes longer to achieve curve saturation and may
benefit from fuzzing for longer than 24 hours.

We show the coverage over time when using the complex corpus on the GM
Lyriq emulator in Figure 19. We must mention that we have lost some data
on one of the improved harness runs due to technical issues. We observe that
most curves saturate between 20000 seconds and 40000 seconds. The harness’s

42 M. Macarie

Original harness Improved harness Original harness
(with complex

corpus)

Improved harness
(with complex

corpus)

0

200

400

600

800

1000

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

libFuzzer - Coverage in default vs improved CAN harness using
GM Lyriq emulator

Original harness
Improved harness
Original harness
(with complex
corpus)
Improved harness
(with complex
corpus)
Mean and
standard deviation

Fig. 17. libFuzzer - Coverage in default vs improved CAN harness using GM Lyriq
emulator

0 20000 40000 60000 80000
Time (s)

0

200

400

600

800

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

Coverage vs time using default and improved
harness using libFuzzer on GM Lyriq emulator

Default harness run
Improved harness run

Fig. 18. Coverage vs time using default and improved harness using libFuzzer on GM
Lyriq emulator

Fuzzing Android Automotive’s CAN interface 43

0 20000 40000 60000 80000
Time (s)

0

200

400

600

800

1000

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

Coverage vs time using default and improved
harness using libFuzzer using complex corpus on

GM Lyriq emulator

Default harness run
Improved harness run

Fig. 19. Coverage vs time using default and improved harness using libFuzzer using
complex corpus on GM Lyriq emulator

increased complexity and the more complex initial corpora make it harder for
the fuzzer to reach maximum coverage. Again, the improved harness can benefit
from fuzzing for longer than 24 hours.

GM SUV In Figure 20, we present the coverage results using the GM SUV
emulator. We observe that the results of the original harness are very similar
when using the both simple and complex initial corpus. Again, the improved
harness results better when the complex corpus is used. Furthermore, the stan-
dard deviation is minimal in all the results presented in the figure.

Further, we look again at the coverage vs time when using the simple corpus
on the GM SUV emulator in Figure 18. The improved harness coverage curves
saturate close to 80000 seconds, while the last default harness curve reaches
saturation at around 70000 seconds. Due to increased complexity, the improved
harness takes longer to achieve coverage saturation and may benefit from fuzzing
for longer than 24 hours.

Lastly, we present our coverage vs time results using the complex corpus on the
GM SUV emulator in Figure 19. The default harness curves saturate at most
around 65000 seconds into the process. Again, the last improved harness coverage
curves saturate close to 80000 seconds. Again the improved harness can benefit
from fuzzing for longer than 24 hours.

44 M. Macarie

Original harness Improved harness Original harness
(with complex

corpus)

Improved harness
(with complex

corpus)

0

200

400

600

800

1000

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

libFuzzer - Coverage in default vs improved CAN harness using
GM SUV emulator

Original harness
Improved harness
Original harness
(with complex
corpus)
Improved harness
(with complex
corpus)
Mean and
standard deviation

Fig. 20. libFuzzer - Coverage in default vs improved CAN harness using GM SUV
emulator

0 20000 40000 60000 80000
Time (s)

0

200

400

600

800

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

Coverage vs time using default and improved
harness using libFuzzer on GM SUV emulator

Default harness run
Improved harness run

Fig. 21. Coverage vs time using default and improved harness using libFuzzer on GM
SUV emulator

Fuzzing Android Automotive’s CAN interface 45

0 20000 40000 60000 80000
Time (s)

0

200

400

600

800

1000

Co
ve

ra
ge

 (l
ib

Fu
zz

er
)

Coverage vs time using default and improved
harness using libFuzzer using complex corpus on

GM SUV emulator

Default harness run
Improved harness run

Fig. 22. Coverage vs time using default and improved harness using libFuzzer using
complex corpus on GM SUV emulator

8 Discussion

In this section, we discuss and compare the results presented in Section 7. In
addition, we state whether our results confirm or not the hypotheses defined
in Section 1.2 and discuss their relationship with the research questions from
Section 1.1.

The experiment outcomes presented in Section 7.2 showcase that AFL yielded
better results than libFuzzer overall regarding coverage. However, when observ-
ing default and modified harness versions using AFL-measured coverage, lib-
Fuzzer exhibits inferior performance with a modified harness during several runs.
In contrast, AFL is continuously surprising with its performance regarding cover-
age for a modified harness in all runs. When we compare the coverage measured
by libFuzzer among the harnesses, we see that in most cases libFuzzer also bene-
fited from a modified harness. Consequently, modifying the harness can increase
complexity and impact results. Thus, we confirm Hypothesis 1 in the case of the
experiment from Section 7.2.

In addition, the initial corpus used can also negatively affect coverage, depending
on the used fuzzer, as we can see when comparing Figures 4 and 9. In this case,
AFL has achieved lower coverage when using the improved harness with the
complex corpus. However, libFuzzer has achieved higher coverage when fuzzing
the improved harness using the complex corpus.

46 M. Macarie

Our findings regarding crash detection in the experiment described in Section
7.2 show that AFL detects some crashes unless they are false positives. Dif-
ferences in their mechanisms account for these divergent outcomes - AFL has
a genetic algorithm-focused approach, whereas libFuzzer places greater empha-
sis on coverage guidance. Thus, the experiment in 7.2 makes our Hypothesis 2
inconclusive.

When we compare the results from the experiments presented in Section 7.2 and
7.3, the coverage results of the experiment in 7.3 show that the improved harness
has better coverage than the default one for libFuzzer and AFL in all five runs.
A more complex input seed helps the fuzzer further explore the source code,
combined with a harness with higher complexity. Also, the modified harness
again shows improved performance with both fuzzers. Finally, we prove our
Hypothesis 1 again in the experiment from 7.3.

In the experiment from Section 7.3, libFuzzer fails to detect crashes. Compared to
the experiment from Section 7.2, AFL detects fewer crashes using the improved
harness than the default one in most runs. We think this happened because of
the increased complexity of the input seeds. The fuzzers do more work processing
these in the same amount of time. This explication could be testable by running
the more complicated harness for longer. Therefore, we again state that our
Hypothesis 2 is inconclusive.

The results on coverage increase over time presented in the experiments from
Section 7.2, 7.3, and 7.4 show that each fuzzing tool has different coverage in-
crease curves. LibFuzzer excels in achieving coverage fast, but the curve becomes
saturated quickly, suggesting it exhausts accessible paths quickly and fuzzing for
an extended period is unnecessary in most cases. AFL shows more gradual and
consistent coverage growth, especially with the improved harness. Thus, AFL
should run longer, especially when fuzzing using more complex harnesses and
initial inputs.

Experiments with the Honda emulator described in Section 7.4 show increased
code coverage with the improved CAN harness. The improved harness allows
for more crash detection—LibFuzzer’s non-deterministic behaviour cause the
improved harness to have a higher standard deviation. The non-determinism in-
troduces randomness in how fuzzing discovers new code paths to increase cover-
age. This randomness leads to unpredictability and harder-to-reproduce results.
Identical coverage across all runs shows possible coverage ceiling or ineffective
corpora. We observe a similar trend with the complex corpus, further solidifying
our findings. The improved harness shows the potential to reach higher code
coverage. Optimization of corpus selection could improve the fuzzer’s effective-
ness. Thus, the experiments performed on the Honda emulator are consistent
with Hypothesis 2.

Further, the experiments performed on the GM Lyriq and GM SUV show similar
trends compared to the results obtained on the Honda emulator. These trends

Fuzzing Android Automotive’s CAN interface 47

are similar because all these emulators use Android 11, and the differences among
car manufacturers’ emulators are insignificant in these cases.

When we compare the results between all the experiments, we observe that
coverage in the experiments in Section 7.4 is much lower compared to the other
experiments. This difference occurs due to the different implementations of the
CAN interface in Android 11. Furthermore, libFuzzer fails to discover crashes in
all the experiments. As a result, we confirm our Hypothesis 3.

Introducing existing fuzzers or custom-built fuzzers requires extensive AOSP
structure and build system knowledge, as we explain in Section 2.2. Luckily,
the build system already integrates libFuzzer and AFL, but they sometimes
still require tweaking to compile the fuzzing harnesses or programs under test
successfully.

Finally, we confirm our hypotheses 1, 2 and 3 in all of our experiments. Thus,
we can answer our sub-research questions 1.1, 1.2, and 1.3, and thus, our main
research. Firstly, we answer the research sub-question 1.1 by saying that a more
complex harness increases code coverage but not necessarily the number of de-
tected crashes. Secondly, we answer the research sub-research question 1.2 by
saying our findings are inconclusive. Thirdly, the different CAN interface im-
plementations among Android Automotive emulators affect the code coverage
measured, answering the sub-research question 1.3. Finally, we answer the main
research question 1 by stating that fuzzing in an Android Automotive environ-
ment performs well, which we can further improve.

9 Limitations

We note some limitations in our research when comparing fuzzing metrics, such
as coverage and the number of crashes identified by AFL or libFuzzer. Each
framework’s performance results in variations for these metrics, so we make
comparisons cautiously. Notably, utilizing the ”afl-showmap” tool for coverage
measurement might add some error in evaluating the results.

Another limitation involves using emulator environments instead of barebone
hardware which can affect both the speed and crash detection of a fuzzer like AFL
or libFuzzer. So far, no hardware development platform under AOSP presently
supports x86(-64). Moreover, the emulation of both the operating system and
Android can impact the operation of fuzzing frameworks. For example, coverage
tracking might be partially compatible with virtualized environments. These
incompatibilities show why we have disabled memory leak detection for libFuzzer
for this research.

The hardware we use has limited virtualization features, thus the limited re-
sources for the emulators. This limitation prevents us from using more than one
CPU core per emulator. These limitations can impact the speed and efficiency
of fuzzing. Fuzzing can benefit from a higher CPU frequency, larger CPU cores,
and high SSD I/O speeds.

48 M. Macarie

The Android OS and AOSP environment limits the introduction of new fuzzing
frameworks. Introducing new fuzzing engines into the AOSP ecosystem requires
extensive modifications in the build system and cross-compilation rules for An-
droid OS. In addition, we need tools such as GDB, Valgrind or cppcheck for
extensive investigation of the crashes and memory leaks. These do not come
with Android Automotive OS by default and often require cross-compilation,
which sometimes becomes technically complex.

Another limitation is not using AFL in the experiments from Section 7.4. We
have not been able to use AFL because AOSP developers do not integrate it
into the Android 11 build system. Integrating AFL manually requires extensive
build system modifications.

Finally, initial input corpora affect the fuzzing process. Thus, our choice of initial
inputs might limit our results.

10 Contributions

During our research, we have informed AOSP maintainers or any other related
stakeholders about any potential issues identified in AOSP and helped the main-
tainers.

We have sent updates to the AFL repository that belongs to the AOSP, includ-
ing new building rules for afl-tmin7 and afl-gotcpu8. We are pleased that the
maintainers of the AOSP repositories have integrated these changes for the AFL
tools mentioned above.

In addition, we have reported the crash found by AFL to the Android Security
team. However, at the time of publishing this thesis, they are still reviewing it.

11 Future Work

Researchers could undertake future work to overcome the limitations mentioned
in Section 9. This future work might include exploring different ways of stan-
dardizing metrics across fuzzing frameworks and running fuzzing experiments
on barebone hardware to see if it affects the speed of fuzzing and the number of
crashes detected.

In our Related work section, we described some novel fuzzing frameworks such
as Angora, Driller, VUzzer and QSym that we do not use in our research. We
would use them but do not because integrating them into the AOSP build system
requires a deep understanding. It poses a technical challenge as each fuzzing
framework needs specific building rules to implement its binary instrumentation

7 https://android-review.googlesource.com/c/platform/external/AFLplusplus/+/
2475667

8 https://android-review.googlesource.com/c/platform/external/AFLplusplus/+/
2475026

https://android-review.googlesource.com/c/platform/external/AFLplusplus/+/2475667
https://android-review.googlesource.com/c/platform/external/AFLplusplus/+/2475667
https://android-review.googlesource.com/c/platform/external/AFLplusplus/+/2475026
https://android-review.googlesource.com/c/platform/external/AFLplusplus/+/2475026

Fuzzing Android Automotive’s CAN interface 49

steps. Secondly, some of the fuzzing frameworks need to be more relevant to
the experiments done. Finally, some of these fuzzers benefit from experimental
setups with better specifications. However, researchers may investigate Android
Automotive input interfaces using additional fuzzing frameworks.

As explained in Section 8, our experiments can benefit from fuzzing for an ex-
tended time, longer than 24 hours. We recommended repeating our experiments
with fuzzing times of at least 48 hours.

Finally, more input interfaces presented in Table 1 should be used for fuzzing
experiments. There are more critical interfaces that are of interest regarding
fuzzing. Our prioritization of interfaces can be used as a guide in future research.

12 Conclusions

As others describe and show, cyber-physical systems bring new cybersecurity
risks to the automotive industry. Researchers have found that systems used for
road sign detection and lane departure correction have various threats [2,3,4,5].

The increasing adoption of Android Automotive, an Android OS variant for in-
vehicle use, by car manufacturers motivates us to investigate the security aspects
of this OS further. Android Automotive interacts with critical vehicle protocols
and systems, such as the Controller Area Network (CAN), making any potential
vulnerabilities a severe threat.

We use fuzzing techniques to examine the cybersecurity of Android Automotive,
focusing on the CAN interface. Our goal is to assess the reliability and safety of
the Android Automotive OS and to report any issues discovered to the relevant
stakeholders.

The CAN interface is a priority in our research. Our experiments compare dif-
ferent fuzzing engines and emulators. We also contribute to the Android Open
Source Project (AOSP) by introducing building rules for two AFL binaries.

In conclusion, our results confirm Hypotheses 1, 2, and 3, and as a result, answer-
ing our Sub-research questions 1.1, 1.2 and 1.2. Ultimately, these sub-research
questions help us answer the main question 1.

Our experiments demonstrate the improved harness’s ability to boost fuzzing
performance, thus confirming Hypothesis 1 and answering sub-research question
1.1 by saying that increasing the harness’s complexity increases the source code’s
code coverage or the number of crashes found. AFL’s detected potentially false-
positive crashes makes Hypothesis 2 inconclusive, and we answer sub-research
question 1.2 by stating that our results cannot answer the question.

Moreover, libFuzzer’s failure to detect crashes in all experiments further substan-
tiates this hypothesis. Finally, the differences in results across different emulators
confirm Hypothesis 3. We answer the sub-research question 1.3 by saying that

50 M. Macarie

the different Android Automotive emulators used influences the source code’s
coverage or the number or type of crashes.

Finally, we answer the main research question 1 by stating that fuzzing in an
Android Automotive environment performs well, which we can improve using
complex harnesses, meaningful initial inputs, and the right fuzzing tools.

Fuzzing Android Automotive’s CAN interface 51

A Appendix

The interface source code, including the build files, is also available on GitHub9.

A.1 AFL additional steps

The problem is that we run into ”multiple symbols defined” linking errors. We
add the following lines in Android.bp files of the harnesses when we compile
them for AFL usage:

1 ldflags: [

2 "-Wl ,--allow -multiple -definition",

3 "-Wl ,--exclude -libs=libclang_rt.fuzzer -x86_64 -

android.a",

4],

A.2 Modified CAN hardware interface fuzzing harness source
code [11]

Source file:

1 /*

2 * Copyright (C) 2022 The Android Open Source Project

3 *

4 * Licensed under the Apache License , Version 2.0 (the

"License ");

5 * you may not use this file except in compliance with

the License.

6 * You may obtain a copy of the License at:

7 *

8 * http ://www.apache.org/licenses/LICENSE -2.0

9 *

10 * Unless required by applicable law or agreed to in

writing , software

11 * distributed under the License is distributed on an "

AS IS" BASIS ,

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either

express or implied.

13 * See the License for the specific language governing

permissions and

14 * limitations under the License.

15 *

16 */

17 #include "AutomotiveCanV1_0Fuzzer_Integrated.h"

9 https://github.com/mihaimacarie98/fuzzing aa can interface.git

https://github.com/mihaimacarie98/fuzzing_aa_can_interface.git

52 M. Macarie

18

19 namespace android :: hardware :: automotive ::can::V1_0::

implementation :: fuzzer {

20

21 constexpr CanController :: InterfaceType

kInterfaceType [] = {

22 CanController :: InterfaceType ::VIRTUAL ,

23 CanController :: InterfaceType ::SOCKETCAN ,

24 CanController :: InterfaceType ::SLCAN

25 };

26 constexpr FilterFlag kFilterFlag [] = {FilterFlag ::

DONT_CARE , FilterFlag ::SET , FilterFlag :: NOT_SET

};

27 constexpr size_t kInterfaceTypeLength = std::size(

kInterfaceType);

28 constexpr size_t kFilterFlagLength = std::size(

kFilterFlag);

29 constexpr size_t kMaxCharacters = 30;

30 constexpr size_t kMaxPayloadBytes = 64;

31 constexpr size_t kMaxFilters = 20;

32 constexpr size_t kMaxSerialNumber = 1000;

33 constexpr size_t kMaxBuses = 10;

34 constexpr size_t kMaxRepeat = 5;

35

36 void CanBusSlcanFuzzer ::fuzz() {

37 preUp ();

38 }

39

40 void CanBusVirtualFuzzer ::fuzz() {

41 preUp ();

42 }

43

44 void CanBusNativeFuzzer ::fuzz() {

45 preUp ();

46 }

47

48 void CanSocketFuzzer ::fuzz(FuzzedDataProvider*

mFuzzedDataProvider) {

49 CanSocket :: ReadCallback rdcb =

50 [](const struct canfd_frame& frame , std:: chrono

:: nanoseconds ns) {

51 #pragma unused(frame ,ns)

52 };

53

54 CanSocket :: ErrorCallback errcb =

Fuzzing Android Automotive’s CAN interface 53

55 [](int errnoVal) {

56 #pragma unused(errnoVal)

57 };

58

59 std:: string ifname = mFuzzedDataProvider ->

ConsumeRandomLengthString(

mFuzzedDataProvider ->remaining_bytes () / 2)

;

60 auto can_socket = CanSocket ::open(ifname , rdcb ,

errcb);

61 if (can_socket && mFuzzedDataProvider ->

remaining_bytes () > 0) {

62 struct canfd_frame frame;

63 std:: memset (&frame , 0, sizeof(frame));

64

65 auto data = mFuzzedDataProvider ->

ConsumeBytes <uint8_t >(std::min(sizeof(

frame.data), mFuzzedDataProvider ->

remaining_bytes ()));

66 std:: memcpy(frame.data , data.data(), data.

size());

67 can_socket ->send(frame);

68 }

69 }

70

71 Bus CanFuzzer :: makeBus () {

72 ICanController :: BusConfig config = {};

73 if (mBusNames.size() > 0 && mLastInterface <

mBusNames.size()) {

74 config.name = mBusNames[mLastInterface ++];

75 } else {

76 config.name = mFuzzedDataProvider ->

ConsumeRandomLengthString(

kMaxCharacters);

77 }

78 config.interfaceId.virtualif ({

mFuzzedDataProvider ->

ConsumeRandomLengthString(kMaxCharacters)})

;

79 return Bus(mCanController , config);

80 }

81

82 void CanFuzzer :: getSupportedInterfaceTypes () {

83 hidl_vec <CanController :: InterfaceType >

iftypesResult;

54 M. Macarie

84 mCanController ->getSupportedInterfaceTypes(

hidl_utils ::fill(& iftypesResult));

85 }

86

87 hidl_vec <hidl_string > CanFuzzer :: getBusNames () {

88 hidl_vec <hidl_string > services = {};

89 if (auto manager = hidl:: manager ::V1_2::

IServiceManager :: getService (); manager) {

90 manager ->listManifestByInterface(ICanBus ::

descriptor , hidl_utils ::fill(& services)

);

91 }

92 return services;

93 }

94

95 void CanFuzzer :: invokeUpInterface () {

96 const CanController :: InterfaceType iftype =

97 kInterfaceType[mFuzzedDataProvider ->

ConsumeIntegralInRange <size_t >(

98 0, kInterfaceTypeLength - 1)];

99 std:: string configName;

100

101 if (const bool shouldInvokeValidBus =

mFuzzedDataProvider ->ConsumeBool ();

102 (shouldInvokeValidBus) && (mBusNames.

size() > 0)) {

103 const size_t busNameIndex =

104 mFuzzedDataProvider ->

ConsumeIntegralInRange <size_t

>(0, mBusNames.size() - 1);

105 configName = mBusNames[busNameIndex];

106 } else {

107 configName = mFuzzedDataProvider ->

ConsumeRandomLengthString(

kMaxCharacters);

108 }

109 const std:: string ifname = mFuzzedDataProvider

->ConsumeRandomLengthString(kMaxCharacters)

;

110

111 ICanController :: BusConfig config = {.name =

configName };

112

113 if (iftype == CanController :: InterfaceType ::

SOCKETCAN) {

Fuzzing Android Automotive’s CAN interface 55

114 CanController :: BusConfig :: InterfaceId ::

Socketcan socketcan = {};

115 if (const bool shouldPassSerialSocket =

mFuzzedDataProvider ->ConsumeBool ();

116 shouldPassSerialSocket) {

117 socketcan.serialno(

118 {mFuzzedDataProvider ->

ConsumeIntegralInRange <

uint32_t >(0,

kMaxSerialNumber)});

119 } else {

120 socketcan.ifname(ifname);

121 }

122 config.interfaceId.socketcan(socketcan);

123 } else if (iftype == CanController ::

InterfaceType ::SLCAN) {

124 CanController :: BusConfig :: InterfaceId ::

Slcan slcan = {};

125 if (const bool shouldPassSerialSlcan =

mFuzzedDataProvider ->ConsumeBool ();

126 shouldPassSerialSlcan) {

127 slcan.serialno(

128 {mFuzzedDataProvider ->

ConsumeIntegralInRange <

uint32_t >(0,

kMaxSerialNumber)});

129 } else {

130 slcan.ttyname(ifname);

131 }

132 config.interfaceId.slcan(slcan);

133 } else if (iftype == CanController ::

InterfaceType :: VIRTUAL) {

134 config.interfaceId.virtualif ({ ifname });

135 }

136

137 const size_t numInvocations =

138 mFuzzedDataProvider ->

ConsumeIntegralInRange <size_t >(0,

kMaxRepeat);

139 for (size_t i = 0; i < numInvocations; ++i) {

140 mCanController ->upInterface(config);

141 }

142 }

143

144 void CanFuzzer :: invokeDownInterface () {

56 M. Macarie

145 hidl_string configName;

146 if (const bool shouldInvokeValidBus =

mFuzzedDataProvider ->ConsumeBool ();

147 (shouldInvokeValidBus) && (mBusNames.

size() > 0)) {

148 const size_t busNameIndex =

149 mFuzzedDataProvider ->

ConsumeIntegralInRange <size_t

>(0, mBusNames.size() - 1);

150 configName = mBusNames[busNameIndex];

151 } else {

152 configName = mFuzzedDataProvider ->

ConsumeRandomLengthString(

kMaxCharacters);

153 }

154

155 const size_t numInvocations =

156 mFuzzedDataProvider ->

ConsumeIntegralInRange <size_t >(0,

kMaxRepeat);

157 for (size_t i = 0; i < numInvocations; ++i) {

158 mCanController ->downInterface(configName);

159 }

160 }

161

162 void CanFuzzer :: invokeController () {

163 getSupportedInterfaceTypes ();

164 invokeUpInterface ();

165 invokeDownInterface ();

166 }

167

168 void CanFuzzer :: invokeBus () {

169 const size_t numBuses = mFuzzedDataProvider ->

ConsumeIntegralInRange <size_t >(1, kMaxBuses

);

170 for (size_t i = 0; i < numBuses; ++i) {

171 if (const bool shouldSendMessage =

mFuzzedDataProvider ->ConsumeBool ();

shouldSendMessage) {

172 auto sendingBus = makeBus ();

173 CanMessage msg = {.id =

mFuzzedDataProvider ->

ConsumeIntegral <uint32_t >()};

174 uint32_t numPayloadBytes =

Fuzzing Android Automotive’s CAN interface 57

175 mFuzzedDataProvider ->

ConsumeIntegralInRange <

uint32_t >(0,

kMaxPayloadBytes);

176 hidl_vec <uint8_t > payload(

numPayloadBytes);

177 for (uint32_t j = 0; j <

numPayloadBytes; ++j) {

178 payload[j] = mFuzzedDataProvider ->

ConsumeIntegral <uint32_t >();

179 }

180 msg.payload = payload;

181 msg.remoteTransmissionRequest =

mFuzzedDataProvider ->ConsumeBool ();

182 msg.isExtendedId = mFuzzedDataProvider

->ConsumeBool ();

183 sendingBus.send(msg);

184 } else {

185 auto listeningBus = makeBus ();

186 uint32_t numFilters =

187 mFuzzedDataProvider ->

ConsumeIntegralInRange <

uint32_t >(1, kMaxFilters);

188 hidl_vec <CanMessageFilter > filterVector

(numFilters);

189 for (uint32_t k = 0; k < numFilters; ++

k) {

190 filterVector[k].id =

mFuzzedDataProvider ->

ConsumeIntegral <uint32_t >();

191 filterVector[k].mask =

mFuzzedDataProvider ->

ConsumeIntegral <uint32_t >();

192 filterVector[k].rtr =

193 kFilterFlag[

mFuzzedDataProvider ->

ConsumeIntegralInRange <

size_t >(

194 0,

kFilterFlagLength

- 1)];

195 filterVector[k]. extendedFormat =

196 kFilterFlag[

mFuzzedDataProvider ->

58 M. Macarie

ConsumeIntegralInRange <

size_t >(

197 0,

kFilterFlagLength

- 1)];

198 filterVector[k]. exclude =

mFuzzedDataProvider ->

ConsumeBool ();

199 }

200 auto listener = listeningBus.listen(

filterVector);

201 }

202 }

203 }

204

205 void CanFuzzer :: deInit () {

206 mCanController.clear();

207 if (mFuzzedDataProvider) {

208 delete mFuzzedDataProvider;

209 }

210 mBusNames = {};

211 }

212

213 void CanFuzzer :: process(const uint8_t *data , size_t

size) {

214 mFuzzedDataProvider = new FuzzedDataProvider(

data , size);

215 invokeController ();

216 invokeBus ();

217 // added direct calls

218 findUsbDevice ({ mFuzzedDataProvider ->

ConsumeIntegralInRange <uint32_t >(0,

kMaxSerialNumber)});

219 std:: string testString = mFuzzedDataProvider ->

ConsumeRandomLengthString(kMaxCharacters);

220 readSerialNo(testString);

221 getIfaceName(testString);

222 isValidName(testString);

223 // CanBusNativeFuzzer

224 const std:: string ifname = mFuzzedDataProvider

->ConsumeRandomLengthString(kMaxCharacters)

;

225 const uint32_t bitrate = mFuzzedDataProvider ->

ConsumeIntegral <uint32_t >();

226 CanBusNativeFuzzer canFuzzer(ifname , bitrate);

Fuzzing Android Automotive’s CAN interface 59

227 canFuzzer.fuzz();

228 // CanBusSlcan

229 CanBusSlcanFuzzer canFuzzer2(ifname , bitrate);

230 canFuzzer2.fuzz();

231 // CanBusVirtual

232 CanBusVirtualFuzzer canFuzzer3(ifname);

233 canFuzzer3.fuzz();

234 // CanSocket

235 CanSocketFuzzer canFuzzer4;

236 canFuzzer4.fuzz(mFuzzedDataProvider);

237 }

238

239 bool CanFuzzer ::init() {

240 mCanController = sp <CanController >:: make();

241 if (! mCanController) {

242 return false;

243 }

244 mBusNames = getBusNames ();

245 return true;

246 }

247

248 extern "C" int LLVMFuzzerTestOneInput(const uint8_t

*data , size_t size) {

249 if (size < 1) {

250 return 0;

251 }

252 CanFuzzer canFuzzer;

253 if (canFuzzer.init()) {

254 canFuzzer.process(data , size);

255 }

256 return 0;

257 }

258 } // namespace android :: hardware :: automotive ::can::V1_0

:: implementation :: fuzzer

60 M. Macarie

Header file:

1 /*

2 * Copyright (C) 2022 The Android Open Source Project

3 *

4 * Licensed under the Apache License , Version 2.0 (the

"License ");

5 * you may not use this file except in compliance with

the License.

6 * You may obtain a copy of the License at:

7 *

8 * http ://www.apache.org/licenses/LICENSE -2.0

9 *

10 * Unless required by applicable law or agreed to in

writing , software

11 * distributed under the License is distributed on an "

AS IS" BASIS ,

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either

express or implied.

13 * See the License for the specific language governing

permissions and

14 * limitations under the License.

15 *

16 */

17 #ifndef __AUTOMOTIVE_CAN_V1_0_FUZZER_INTEGRATED_H__

18 #define __AUTOMOTIVE_CAN_V1_0_FUZZER_INTEGRATED_H__

19 #include <CanController.h>

20 #include <CanBusNative.h>

21 #include <CanBusVirtual.h>

22 #include <CanBusSlcan.h>

23 #include <android/hidl/manager /1.2/ IServiceManager.h>

24 #include <fuzzer/FuzzedDataProvider.h>

25 #include <hidl -utils/hidl -utils.h>

26

27 namespace android :: hardware :: automotive ::can::V1_0::

implementation :: fuzzer {

28

29 using :: android ::sp;

30 struct CanSocketFuzzer{

31 public:

32 void fuzz(FuzzedDataProvider*

mFuzzedDataProvider);

33 };

34 struct CanBusVirtualFuzzer: public CanBusVirtual{

35 public:

Fuzzing Android Automotive’s CAN interface 61

36 CanBusVirtualFuzzer(const std:: string& ifname)

: CanBusVirtual(ifname) {};

37 void fuzz();

38 };

39 struct CanBusSlcanFuzzer: public CanBusSlcan{

40 public:

41 CanBusSlcanFuzzer(const std:: string& uartName ,

uint32_t bitrate) : CanBusSlcan(uartName ,

bitrate) {};

42 void fuzz();

43 ~CanBusSlcanFuzzer () { postDown (); }

44 };

45 struct CanBusNativeFuzzer: public CanBusNative{

46 public:

47 CanBusNativeFuzzer(const std:: string& ifname ,

uint32_t bitrate) : CanBusNative(ifname ,

bitrate) {};

48 void fuzz();

49 };

50

51 struct CanMessageListener : public can::V1_0::

ICanMessageListener {

52 DISALLOW_COPY_AND_ASSIGN(CanMessageListener);

53

54 CanMessageListener () {}

55

56 virtual Return <void > onReceive(const can::V1_0

:: CanMessage& msg) override {

57 std:: unique_lock <std::mutex > lock(

mMessagesGuard);

58 mMessages.push_back(msg);

59 mMessagesUpdated.notify_one ();

60 return {};

61 }

62

63 virtual ~CanMessageListener () {

64 if (mCloseHandle) {

65 mCloseHandle ->close();

66 }

67 }

68

69 void assignCloseHandle(sp <ICloseHandle >

closeHandle) { mCloseHandle = closeHandle;

}

70

62 M. Macarie

71 private:

72 sp<ICloseHandle > mCloseHandle;

73

74 std:: mutex mMessagesGuard;

75 std:: condition_variable mMessagesUpdated

GUARDED_BY(mMessagesGuard);

76 std::vector <can::V1_0:: CanMessage > mMessages

GUARDED_BY(mMessagesGuard);

77 };

78

79 struct Bus {

80 DISALLOW_COPY_AND_ASSIGN(Bus);

81

82 Bus(sp <ICanController > controller , const

ICanController :: BusConfig& config)

83 : mIfname(config.name), mController(

controller) {

84 const auto result = controller ->upInterface

(config);

85 const auto manager = hidl:: manager ::V1_2::

IServiceManager :: getService ();

86 const auto service = manager ->get(ICanBus ::

descriptor , config.name);

87 mBus = ICanBus :: castFrom(service);

88 }

89

90 virtual ~Bus() { reset(); }

91

92 void reset() {

93 mBus.clear();

94 if (mController) {

95 mController ->downInterface(mIfname);

96 mController.clear ();

97 }

98 }

99

100 ICanBus* operator ->() const { return mBus.get()

; }

101 sp<ICanBus > get() { return mBus; }

102

103 sp<CanMessageListener > listen(const hidl_vec <

CanMessageFilter >& filter) {

104 sp<CanMessageListener > listener = sp<

CanMessageListener >:: make();

105

Fuzzing Android Automotive’s CAN interface 63

106 if (!mBus) {

107 return listener;

108 }

109 Result result;

110 sp<ICloseHandle > closeHandle;

111 mBus ->listen(filter , listener , hidl_utils ::

fill(&result , &closeHandle)).assertOk ()

;

112 listener ->assignCloseHandle(closeHandle);

113

114 return listener;

115 }

116

117 void send(const CanMessage& msg) {

118 if (!mBus) {

119 return;

120 }

121 mBus ->send(msg);

122 }

123

124 private:

125 const std:: string mIfname;

126 sp<ICanController > mController;

127 sp<ICanBus > mBus;

128 };

129

130 class CanFuzzer {

131 public:

132 ~CanFuzzer () { deInit (); }

133 bool init();

134 void process(const uint8_t* data , size_t size);

135 void deInit ();

136

137 private:

138 Bus makeBus ();

139 hidl_vec <hidl_string > getBusNames ();

140 void getSupportedInterfaceTypes ();

141 void invokeBus ();

142 void invokeController ();

143 void invokeUpInterface ();

144 void invokeDownInterface ();

145 FuzzedDataProvider* mFuzzedDataProvider =

nullptr;

146 sp<CanController > mCanController = nullptr;

147 hidl_vec <hidl_string > mBusNames = {};

64 M. Macarie

148 unsigned mLastInterface = 0;

149 };

150 } // namespace android :: hardware :: automotive ::can::

V1_0:: implementation :: fuzzer

151

152 #endif // __AUTOMOTIVE_CAN_V1_0_FUZZER_INTEGRATED_H__

Fuzzing Android Automotive’s CAN interface 65

Build file:

1 /*

2 * Copyright (C) 2022 The Android Open Source Project

3 *

4 * Licensed under the Apache License , Version 2.0 (the

"License");

5 * you may not use this file except in compliance with

the License.

6 * You may obtain a copy of the License at:

7 *

8 * http ://www.apache.org/licenses/LICENSE -2.0

9 *

10 * Unless required by applicable law or agreed to in

writing , software

11 * distributed under the License is distributed on an "

AS IS" BASIS ,

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND , either

express or implied.

13 * See the License for the specific language governing

permissions and

14 * limitations under the License.

15 *

16 */

17

18 package {

19 // See: http ://go/android -license -faq

20 // A large -scale -change added ’

default_applicable_licenses ’ to import

21 // all of the ’license_kinds ’ from "

hardware_interfaces_license"

22 // to get the below license kinds:

23 // SPDX -license -identifier -Apache -2.0

24 default_applicable_licenses: ["

hardware_interfaces_license"],

25 }

26

27 cc_fuzz {

28 name: "automotiveCanV1 .0 _fuzzer_integrated",

29 vendor: true ,

30 defaults: ["android.hardware.automotive.

can@defaults"],

31 // ldflags: [

32 // "-fsanitize=address ,undefined ,fuzzer",

33 // "-Wl ,--allow -multiple -definition",

66 M. Macarie

34 // "-Wl ,--exclude -libs=libclang_rt.fuzzer -x86_64

-android.a",

35 //],

36 // cflags: [

37 // "-fsanitize=address ,undefined ,fuzzer",

38 // "-fsanitize -coverage=trace -pc -guard",

39 //],

40

41 cflags: [

42 "-fno -omit -frame -pointer",

43],

44

45 srcs: [

46 "AutomotiveCanV1_0Fuzzer_Integrated.cpp",

47 ":automotiveCanV1 .0 _sources",

48],

49 header_libs: [

50 "automotiveCanV1 .0 _headers",

51 "android.hardware.automotive.can@hidl -utils -lib

",

52],

53 shared_libs: [

54 "android.hardware.automotive.can@1 .0",

55 "libhidlbase",

56],

57 static_libs: [

58 "android.hardware.automotive.can@libnetdevice",

59 "android.hardware.automotive@libc ++fs",

60 "libnl ++",

61],

62 fuzz_config: {

63 cc: [

64 "android -media -fuzzing -reports@google.com",

65],

66 componentid: 533764 ,

67 },

68 }

Fuzzing Android Automotive’s CAN interface 67

References

1. GmbH, R.B.: CAN Specification Version 2.0 (1991)

2. New cyber security and software update rules in the automotive industry
in 2022 (Jun 2022), https://www.engage.hoganlovells.com/knowledgeservices/
viewContent.action?key=Ec8teaJ9VapgpeSCnunnmsxgHJMKLFEppVpbbVX%
2B3OXcP3PYxlq7sZUjdbSm5FIetvAtgf1eVU8%3D&nav=
FRbANEucS95NMLRN47z%2BeeOgEFCt8EGQ0qFfoEM4UR4%3D&
emailtofriendview=true&freeviewlink=true, [Online; accessed 14. Jun. 2022]

3. Contributors to Wikimedia projects: Advanced driver-assistance system -
Wikipedia (Jun 2022), https://en.wikipedia.org/w/index.php?title=Advanced
driver-assistance system&oldid=1095051291, [Online; accessed 26. Jun. 2022]

4. 3 noteworthy automotive system trends for 2022 and beyond - Tuxera (Apr
2022), https://www.tuxera.com/blog/3-automotive-system-trends-2022-beyond,
[Online; accessed 26. Jun. 2022]

5. Kim, K., Kim, J.S., Jeong, S., Park, J.H., Kim, H.K.: Cybersecurity for au-
tonomous vehicles: Review of attacks and defense. Computers & Security 103,
102150 (2021). https://doi.org/https://doi.org/10.1016/j.cose.2020.102150, https:
//www.sciencedirect.com/science/article/pii/S0167404820304235

6. Protalinski, E.: Google opens android automotive to app
developers (May 2019), https://venturebeat.com/business/
google-opens-android-automotive-to-app-developers/, accessed: 2023-06-19

7. Building infotainment system powered by android auto-
motive os — infopulse, https://www.infopulse.com/blog/
how-to-build-a-customer-tailored-infotainment-system-powered-by-android-automotive-os,
(Accessed on 06/23/2022)

8. Project, A.O.S.: Initializing a build environment (2023), https://source.android.
com/docs/setup/start/initializing, accessed: 2023-06-04

9. What is Android Automotive? | Android Open Source Project (Jun 2022), https://
source.android.com/devices/automotive/start/what automotive, [Online; accessed
11. Jun. 2022]

10. Pese, M., Shin, K., Bruner, J., Chu, A.: Security analysis of android automo-
tive. SAE International Journal of Advances and Current Practices in Mobil-
ity 2(4), 2337–2346 (apr 2020). https://doi.org/https://doi.org/10.4271/2020-01-
1295, https://doi.org/10.4271/2020-01-1295

11. Project, A.O.S.: Automotivecanv1 0fuzzer (2023), https://cs.android.com/
android/platform/superproject/+/master:hardware/interfaces/automotive/can/
1.0/default/tests/fuzzer/, accessed: 2023-07-02

12. ISO 26262: The ISO Standard for Functional Safety (Mar 2022), https://
securityboulevard.com/2022/03/iso-26262-the-iso-standard-for-functional-safety,
[Online; accessed 14. Jun. 2022]

13. UN Regulation No. 155 - Cyber security and cyber security management
system | UNECE (Jun 2022), https://unece.org/transport/documents/2021/03/
standards/un-regulation-no-155-cyber-security-and-cyber-security, [Online; ac-
cessed 14. Jun. 2022]

14. UN Regulation No. 156 - Software update and software update management
system | UNECE (Jun 2022), https://unece.org/transport/documents/2021/03/
standards/un-regulation-no-156-software-update-and-software-update, [Online;
accessed 14. Jun. 2022]

https://www.engage.hoganlovells.com/knowledgeservices/viewContent.action?key=Ec8teaJ9VapgpeSCnunnmsxgHJMKLFEppVpbbVX%2B3OXcP3PYxlq7sZUjdbSm5FIetvAtgf1eVU8%3D&nav=FRbANEucS95NMLRN47z%2BeeOgEFCt8EGQ0qFfoEM4UR4%3D&emailtofriendview=true&freeviewlink=true
https://www.engage.hoganlovells.com/knowledgeservices/viewContent.action?key=Ec8teaJ9VapgpeSCnunnmsxgHJMKLFEppVpbbVX%2B3OXcP3PYxlq7sZUjdbSm5FIetvAtgf1eVU8%3D&nav=FRbANEucS95NMLRN47z%2BeeOgEFCt8EGQ0qFfoEM4UR4%3D&emailtofriendview=true&freeviewlink=true
https://www.engage.hoganlovells.com/knowledgeservices/viewContent.action?key=Ec8teaJ9VapgpeSCnunnmsxgHJMKLFEppVpbbVX%2B3OXcP3PYxlq7sZUjdbSm5FIetvAtgf1eVU8%3D&nav=FRbANEucS95NMLRN47z%2BeeOgEFCt8EGQ0qFfoEM4UR4%3D&emailtofriendview=true&freeviewlink=true
https://www.engage.hoganlovells.com/knowledgeservices/viewContent.action?key=Ec8teaJ9VapgpeSCnunnmsxgHJMKLFEppVpbbVX%2B3OXcP3PYxlq7sZUjdbSm5FIetvAtgf1eVU8%3D&nav=FRbANEucS95NMLRN47z%2BeeOgEFCt8EGQ0qFfoEM4UR4%3D&emailtofriendview=true&freeviewlink=true
https://www.engage.hoganlovells.com/knowledgeservices/viewContent.action?key=Ec8teaJ9VapgpeSCnunnmsxgHJMKLFEppVpbbVX%2B3OXcP3PYxlq7sZUjdbSm5FIetvAtgf1eVU8%3D&nav=FRbANEucS95NMLRN47z%2BeeOgEFCt8EGQ0qFfoEM4UR4%3D&emailtofriendview=true&freeviewlink=true
https://en.wikipedia.org/w/index.php?title=Advanced_driver-assistance_system&oldid=1095051291
https://en.wikipedia.org/w/index.php?title=Advanced_driver-assistance_system&oldid=1095051291
https://www.tuxera.com/blog/3-automotive-system-trends-2022-beyond
https://doi.org/https://doi.org/10.1016/j.cose.2020.102150
https://www.sciencedirect.com/science/article/pii/S0167404820304235
https://www.sciencedirect.com/science/article/pii/S0167404820304235
https://venturebeat.com/business/google-opens-android-automotive-to-app-developers/
https://venturebeat.com/business/google-opens-android-automotive-to-app-developers/
https://www.infopulse.com/blog/how-to-build-a-customer-tailored-infotainment-system-powered-by-android-automotive-os
https://www.infopulse.com/blog/how-to-build-a-customer-tailored-infotainment-system-powered-by-android-automotive-os
https://source.android.com/docs/setup/start/initializing
https://source.android.com/docs/setup/start/initializing
https://source.android.com/devices/automotive/start/what_automotive
https://source.android.com/devices/automotive/start/what_automotive
https://doi.org/https://doi.org/10.4271/2020-01-1295
https://doi.org/https://doi.org/10.4271/2020-01-1295
https://doi.org/10.4271/2020-01-1295
https://cs.android.com/android/platform/superproject/+/master:hardware/interfaces/automotive/can/1.0/default/tests/fuzzer/
https://cs.android.com/android/platform/superproject/+/master:hardware/interfaces/automotive/can/1.0/default/tests/fuzzer/
https://cs.android.com/android/platform/superproject/+/master:hardware/interfaces/automotive/can/1.0/default/tests/fuzzer/
https://securityboulevard.com/2022/03/iso-26262-the-iso-standard-for-functional-safety
https://securityboulevard.com/2022/03/iso-26262-the-iso-standard-for-functional-safety
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-155-cyber-security-and-cyber-security
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-155-cyber-security-and-cyber-security
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-156-software-update-and-software-update
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-156-software-update-and-software-update

68 M. Macarie

15. Moiz, A., Alalfi, M.H.: An approach for the identification of information leakage in
automotive infotainment systems. In: 2020 IEEE 20th International Working Con-
ference on Source Code Analysis and Manipulation (SCAM). pp. 110–114 (2020).
https://doi.org/10.1109/SCAM51674.2020.00017

16. What is code coverage and how to measure it? code
coverage benefits. https://www.codegrip.tech/productivity/
everything-you-need-to-know-about-code-coverage, (Accessed on 07/08/2022)

17. Dechand, S.: The Magic Behind Feedback-Based Fuzzing. Code
Intelligence (Jun 2022), https://www.code-intelligence.com/blog/
the-magic-behind-feedback-based-fuzzing

18. Contributors to Wikimedia projects: Instrumentation (computer program-
ming) - Wikipedia (Dec 2020), https://en.wikipedia.org/w/index.php?title=
Instrumentation (computer programming)&oldid=997174211, [Online; accessed
23. Jun. 2022]

19. Lee, H., Choi, K., Chung, K., Kim, J., Yim, K.: Fuzzing can pack-
ets into automobiles. In: 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications. pp. 817–821 (2015).
https://doi.org/10.1109/AINA.2015.274

20. Fioraldi, A., Maier, D., Eißfeldt, H., Heuse, M.: AFL++ : Combining incremen-
tal steps of fuzzing research. In: 14th USENIX Workshop on Offensive Tech-
nologies (WOOT 20). USENIX Association (Aug 2020), https://www.usenix.org/
conference/woot20/presentation/fioraldi

21. Zalewski, M.: American fuzzy lop - whitepaper (2016), https://lcamtuf.coredump.
cx/afl/technical details.txt, [Online; accessed 24. Jun. 2022]

22. libFuzzer – a library for coverage-guided fuzz testing. — LLVM 15.0.0git doc-
umentation (Jun 2022), https://llvm.org/docs/LibFuzzer.html, [Online; accessed
24. Jun. 2022]

23. Fuzzing: Common Tools and Techniques — coalfire.com. https://www.coalfire.
com/the-coalfire-blog/fuzzing-common-tools-and-techniques, [Accessed 14-Jun-
2022]

24. Zeller, A., Gopinath, R., Böhme, M., Fraser, G., Holler, C.: Greybox fuzzing.
In: The Fuzzing Book. CISPA Helmholtz Center for Information Security
(2022), https://www.fuzzingbook.org/html/GreyboxFuzzer.html, retrieved 2022-
05-17 18:23:54+02:00

25. Fuzzing techniques - the generator menace - coders kitchen. https://www.
coderskitchen.com/fuzzing-techniques/, (Accessed on 06/22/2022)

26. Godefroid, P., Levin, M.Y., Molnar, D.: Sage: Whitebox fuzzing for security
testing: Sage has had a remarkable impact at microsoft. Queue 10(1), 20–27
(jan 2012). https://doi.org/10.1145/2090147.2094081, https://doi.org/10.1145/
2090147.2094081

27. Aki Helin / radamsa · GitLab (Jun 2022), https://gitlab.com/akihe/radamsa, [On-
line; accessed 24. Jun. 2022]

28. RootUp: BFuzz (Jun 2022), https://github.com/RootUp/BFuzz, [Online; accessed
24. Jun. 2022]

29. ClusterFuzz (Jun 2022), https://google.github.io/clusterfuzz, [Online; accessed 30.
Jun. 2022]

30. Coverage guided vs blackbox fuzzing (Jun 2022), https://google.github.io/
clusterfuzz/reference/coverage-guided-vs-blackbox, [Online; accessed 24. Jun.
2022]

31. Blackbox fuzzing (Jun 2022), https://google.github.io/clusterfuzz/
setting-up-fuzzing/blackbox-fuzzing, [Online; accessed 24. Jun. 2022]

https://doi.org/10.1109/SCAM51674.2020.00017
https://www.codegrip.tech/productivity/everything-you-need-to-know-about-code-coverage
https://www.codegrip.tech/productivity/everything-you-need-to-know-about-code-coverage
https://www.code-intelligence.com/blog/the-magic-behind-feedback-based-fuzzing
https://www.code-intelligence.com/blog/the-magic-behind-feedback-based-fuzzing
https://en.wikipedia.org/w/index.php?title=Instrumentation_(computer_programming)&oldid=997174211
https://en.wikipedia.org/w/index.php?title=Instrumentation_(computer_programming)&oldid=997174211
https://doi.org/10.1109/AINA.2015.274
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://llvm.org/docs/LibFuzzer.html
https://www.coalfire.com/the-coalfire-blog/fuzzing-common-tools-and-techniques
https://www.coalfire.com/the-coalfire-blog/fuzzing-common-tools-and-techniques
https://www.fuzzingbook.org/html/GreyboxFuzzer.html
https://www.coderskitchen.com/fuzzing-techniques/
https://www.coderskitchen.com/fuzzing-techniques/
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1145/2090147.2094081
https://gitlab.com/akihe/radamsa
https://github.com/RootUp/BFuzz
https://google.github.io/clusterfuzz
https://google.github.io/clusterfuzz/reference/coverage-guided-vs-blackbox
https://google.github.io/clusterfuzz/reference/coverage-guided-vs-blackbox
https://google.github.io/clusterfuzz/setting-up-fuzzing/blackbox-fuzzing
https://google.github.io/clusterfuzz/setting-up-fuzzing/blackbox-fuzzing

Fuzzing Android Automotive’s CAN interface 69

32. american fuzzy lop (Jun 2022), https://lcamtuf.coredump.cx/afl, [Online; accessed
24. Jun. 2022]

33. Peach Fuzzer (Mar 2021), https://peachtech.gitlab.io/peach-fuzzer-community,
[Online; accessed 24. Jun. 2022]

34. k0retux: fuddly (Jun 2022), https://github.com/k0retux/fuddly, [Online; accessed
24. Jun. 2022]

35. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: VUzzer
: Application - aware Evolutionary Fuzzing, p. 14. NDSS’17, NDSS’17 (2017).
https://doi.org/10.14722/ndss.2017.23404

36. TechTarget Contributor: fuzz testing (fuzzing). SearchSecurity (Mar 2010), https:
//www.techtarget.com/searchsecurity/definition/fuzz-testing

37. Perl, H.: What Bugs Can You Find With Fuzzing? Code Intelligence (Jun 2022),
https://www.code-intelligence.com/blog/what-bugs-can-you-find-with-fuzzing

38. Automotive | Android Open Source Project (Jun 2022), https://source.android.
com/devices/automotive, [Online; accessed 14. Jun. 2022]

39. Vehicle properties — android open source project. https://source.android.com/
devices/automotive/vhal/properties, (Accessed on 06/23/2022)

40. Road vehicles – controller area network (can) – part 1: Data link layer and physical
signalling (2015)

41. Nishimura, R., Kurachi, R., Ito, K., Miyasaka, T., Yamamoto, M., Mishima, M.:
Implementation of the can-fd protocol in the fuzzing tool bestorm. In: 2016 IEEE
International Conference on Vehicular Electronics and Safety (ICVES). pp. 1–6
(2016). https://doi.org/10.1109/ICVES.2016.7548161

42. Contributors to Wikimedia projects: ISO 26262 - Wikipedia (Apr 2022), https://
en.wikipedia.org/w/index.php?title=ISO 26262&oldid=1084731619, [Online; ac-
cessed 14. Jun. 2022]

43. What Is ISO 26262? Overview and ASIL | Perforce Software (Jun 2022), https:
//www.perforce.com/blog/qac/what-is-iso-26262, [Online; accessed 14. Jun. 2022]

44. UN Regulation No 155 & how to comply? What you
need to know (Jun 2022), https://www.cyres-consulting.com/
un-regulation-no-155-requirements-what-you-need-to-know/#What are the
UN R155 requirements, [Online; accessed 14. Jun. 2022]

45. White Paper: UNECE Cybersecurity Regulation (R155) | Secura (Jun 2022), https:
//www.secura.com/nl/whitepapers/unece-r155, [Online; accessed 14. Jun. 2022]

46. UNECE Vehicle Regulation for Cyber Security & Soft-
ware Updates (Nov 2021), https://conti-engineering.com/
unece-vehicle-regulation-for-cyber-security-software-updates, [Online; accessed
14. Jun. 2022]

47. Helix qac for c and c++ — perforce. https://www.perforce.com/products/
helix-qac, (Accessed on 07/08/2022)

48. Mayhem for code — forallsecure. https://forallsecure.com/mayhem-for-code, (Ac-
cessed on 07/08/2022)

49. Rouf, I., Miller, R., Mustafa, H., Taylor, T., Oh, S., Xu, W., Gruteser,
M., Trappe, W., Seskar, I.: Security and privacy vulnerabilities of In-Car
wireless networks: A tire pressure monitoring system case study. In: 19th
USENIX Security Symposium (USENIX Security 10). USENIX Association, Wash-
ington, DC (Aug 2010), https://www.usenix.org/conference/usenixsecurity10/
security-and-privacy-vulnerabilities-car-wireless-networks-tire-pressure

50. Emura, K., Hayashi, T., Moriai, S.: Toward securing tire pressure monitoring sys-
tems: A case of present-based implementation. In: 2016 International Symposium
on Information Theory and Its Applications (ISITA). pp. 403–407 (2016)

https://lcamtuf.coredump.cx/afl
https://peachtech.gitlab.io/peach-fuzzer-community
https://github.com/k0retux/fuddly
https://doi.org/10.14722/ndss.2017.23404
https://www.techtarget.com/searchsecurity/definition/fuzz-testing
https://www.techtarget.com/searchsecurity/definition/fuzz-testing
https://www.code-intelligence.com/blog/what-bugs-can-you-find-with-fuzzing
https://source.android.com/devices/automotive
https://source.android.com/devices/automotive
https://source.android.com/devices/automotive/vhal/properties
https://source.android.com/devices/automotive/vhal/properties
https://doi.org/10.1109/ICVES.2016.7548161
https://en.wikipedia.org/w/index.php?title=ISO_26262&oldid=1084731619
https://en.wikipedia.org/w/index.php?title=ISO_26262&oldid=1084731619
https://www.perforce.com/blog/qac/what-is-iso-26262
https://www.perforce.com/blog/qac/what-is-iso-26262
https://www.cyres-consulting.com/un-regulation-no-155-requirements-what-you-need-to-know/#What_are_the_UN_R155_requirements
https://www.cyres-consulting.com/un-regulation-no-155-requirements-what-you-need-to-know/#What_are_the_UN_R155_requirements
https://www.cyres-consulting.com/un-regulation-no-155-requirements-what-you-need-to-know/#What_are_the_UN_R155_requirements
https://www.secura.com/nl/whitepapers/unece-r155
https://www.secura.com/nl/whitepapers/unece-r155
https://conti-engineering.com/unece-vehicle-regulation-for-cyber-security-software-updates
https://conti-engineering.com/unece-vehicle-regulation-for-cyber-security-software-updates
https://www.perforce.com/products/helix-qac
https://www.perforce.com/products/helix-qac
https://forallsecure.com/mayhem-for-code
https://www.usenix.org/conference/usenixsecurity10/security-and-privacy-vulnerabilities-car-wireless-networks-tire-pressure
https://www.usenix.org/conference/usenixsecurity10/security-and-privacy-vulnerabilities-car-wireless-networks-tire-pressure

70 M. Macarie

51. Kulandaivel, S., Jain, S., Guajardo, J., Sekar, V.: Cannon: Reliable and
stealthy remote shutdown attacks via unaltered automotive microcontrollers.
In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 195–210 (2021).
https://doi.org/10.1109/SP40001.2021.00122

52. Antonioli, D., Payer, M.: On the insecurity of vehicles against protocol-level blue-
tooth threats. In: IEEE (ed.) WOOT 2022, 17th Workshop On Offensive Technolo-
gies, co-located with IEEE S&P, 26 May 2022, San Francisco, CA, USA. San
Francisco (2022), © 2022 IEEE. Personal use of this material is permitted. How-
ever, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

53. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.: Bias: Bluetooth impersonation
attacks. In: Proceedings of the IEEE Symposium on Security and Privacy (S&P)
(May 2020)

54. Antonioli, D., Tippenhauer, N.O., Rasmussen, K.B.: The KNOB is broken: Exploit-
ing low entropy in the encryption key negotiation of bluetooth BR/EDR. In: 28th
USENIX Security Symposium (USENIX Security 19). pp. 1047–1061. USENIX
Association, Santa Clara, CA (Aug 2019), https://www.usenix.org/conference/
usenixsecurity19/presentation/antonioli

55. Sun, J., Cao, Y., Chen, Q.A., Mao, Z.M.: Towards robust lidar-based perception
in autonomous driving: General black-box adversarial sensor attack and counter-
measures (2020). https://doi.org/10.48550/ARXIV.2006.16974, https://arxiv.org/
abs/2006.16974

56. Chen, P., Chen, H.: Angora: Efficient fuzzing by principled search (2018).
https://doi.org/10.48550/ARXIV.1803.01307, https://arxiv.org/abs/1803.01307

57. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta,
J., Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Driller: Augmenting
fuzzing through selective symbolic execution. In: NDSS 2016 (01 2016).
https://doi.org/10.14722/ndss.2016.23368

58. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: QSYM : A practical concolic execution
engine tailored for hybrid fuzzing. In: 27th USENIX Security Symposium (USENIX
Security 18). pp. 745–761. USENIX Association, Baltimore, MD (Aug 2018), https:
//www.usenix.org/conference/usenixsecurity18/presentation/yun

59. Fujikura, T., Kurachi, R., Oka, D.: Shift left: Fuzzing earlier in the automotive
software development lifecycle using hil systems. In: escar Europe 2018 (11 2018)

60. Radu, A.I., Garcia, F.D.: Grey-box analysis and fuzzing of automotive electronic
components via control-flow graph extraction. In: Computer Science in Cars
Symposium. CSCS ’20, Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3385958.3430480, https://doi.org/10.1145/
3385958.3430480

61. Fowler, D.S., Bryans, J., Shaikh, S.A., Wooderson, P.: Fuzz testing for automo-
tive cyber-security. In: 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W). pp. 239–246 (2018).
https://doi.org/10.1109/DSN-W.2018.00070

62. Werquin, T., Hubrechtsen, M., Thangarajan, A., Piessens, F., Muehlberg, J.: Au-
tomated fuzzing of automotive control units (02 2021)

63. Dynamic application security testing software — beyond security. https://www.
beyondsecurity.com/solutions/bestorm-dynamic-application-security-testing.
html, (Accessed on 07/08/2022)

https://doi.org/10.1109/SP40001.2021.00122
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://www.usenix.org/conference/usenixsecurity19/presentation/antonioli
https://doi.org/10.48550/ARXIV.2006.16974
https://arxiv.org/abs/2006.16974
https://arxiv.org/abs/2006.16974
https://doi.org/10.48550/ARXIV.1803.01307
https://arxiv.org/abs/1803.01307
https://doi.org/10.14722/ndss.2016.23368
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://doi.org/10.1145/3385958.3430480
https://doi.org/10.1145/3385958.3430480
https://doi.org/10.1145/3385958.3430480
https://doi.org/10.1109/DSN-W.2018.00070
https://www.beyondsecurity.com/solutions/bestorm-dynamic-application-security-testing.html
https://www.beyondsecurity.com/solutions/bestorm-dynamic-application-security-testing.html
https://www.beyondsecurity.com/solutions/bestorm-dynamic-application-security-testing.html

Fuzzing Android Automotive’s CAN interface 71

64. Defensics fuzz testing tool & services — synopsys. https://www.synopsys.com/
software-integrity/security-testing/fuzz-testing.html, (Accessed on 07/08/2022)

65. boofuzz: Network protocol fuzzing for humans — boofuzz 0.4.1 documentation.
https://boofuzz.readthedocs.io/en/stable/, (Accessed on 07/08/2022)

66. Huracan: Automotive Security Testing Tool - Riscure (Dec 2021), https://
www.riscure.com/security-tools/huracan-automotive-security-tools, [Online; ac-
cessed 15. Jun. 2022]

67. Fuzzing | Block Harbor Cybersecurity | Vulnerability Bruteforcing (Nov 2021),
https://blockharbor.io/services/fuzzing, [Online; accessed 15. Jun. 2022]

68. Project, A.O.S.: Can interface source code (2023), https://cs.android.com/
android/platform/superproject/+/master:hardware/interfaces/automotive/can/
1.0/default/tests/fuzzer/, accessed: 2023-07-02

https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html
https://boofuzz.readthedocs.io/en/stable/
https://www.riscure.com/security-tools/huracan-automotive-security-tools
https://www.riscure.com/security-tools/huracan-automotive-security-tools
https://blockharbor.io/services/fuzzing
https://cs.android.com/android/platform/superproject/+/master:hardware/interfaces/automotive/can/1.0/default/tests/fuzzer/
https://cs.android.com/android/platform/superproject/+/master:hardware/interfaces/automotive/can/1.0/default/tests/fuzzer/
https://cs.android.com/android/platform/superproject/+/master:hardware/interfaces/automotive/can/1.0/default/tests/fuzzer/

	Introduction
	Research questions
	Hypotheses
	Research challenges

	Background
	Fuzzing
	Android Automotive and Controller Area Network (CAN)
	Current guidelines in automotive cybersecurity

	Related work
	Security in automotive
	Commonly-used fuzzers
	AFL(++)
	Angora
	Driller
	VUzzer
	QSym
	libFuzzer
	Comparison of the presented fuzzers

	Fuzzing technologies in automotive

	Why the CAN interface?
	Methodology
	Implementation
	Android Open Source Project (AOSP) setup
	Running and using AOSP emulator
	Choosing the fuzzing frameworks used in the research
	Fuzzing harness compilation and running
	Modified CAN interface harness
	Initial corpora data
	Fuzzing metrics measurement
	Emulators provided by the car manufacturers

	Experiments
	Experiment set-up
	Running both default and improved CAN interface harnesses five times for 24h with both libFuzzer and AFL
	Use complex initial corpus and rerun experiment #1
	Running fuzzers on different emulators from car manufacturers
	Honda
	GM Lyriq
	GM SUV

	Discussion
	Limitations
	Contributions
	Future Work
	Conclusions
	Appendix
	AFL additional steps
	Modified CAN hardware interface fuzzing harness source code fuzzer

	References

