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Floris van Ruitenbeek, BSc Student EE, University of Twente

Abstract—Compliant robotics has the potential to further auto-
mate the agri-food industry by allowing delicate interaction with
products of varying types and sizes. Compliant gripper designs
often require non-linear springs to vary compliance/stiffness of
the system. Springs with prescribed force-deflection curves are
not readily available. This paper presents a variable stiffness
mechanism based on a variable radius pulley placed in series with
a linear spring. The mechanism is designed for use in a tendon-
based gripper prototype of which previous non-linear springs
did not perform well. An iterative, feedback-based method for
generating a pulley profile following a desired force-deflection
curve is constructed. Other symbolic and performance-metric-
based approaches are discussed. Mathematical approximations
limit the expected accuracy of generated profiles. A proof-of-
concept setup is built to test a range of generated profiles.
Resulting measurements show strong correlation between desired
and measured force-deflection curves. Error, likely resulting
from mathematical approximations and material deformation,
is mainly present at the higher non-linearity profiles, where the
measurements deviate further from the desired values. Further
focus on eliminating the mathematical approximations should
result in a promising design that is easy to customize, simple to
construct, and low friction.

I. INTRODUCTION

THE agri-food industry requires delicate grasping with
varying types of products. Challenges arise when factors

between products change, like weight, size and compliance.
In automation, most robotic grippers are optimized to work
with predictable/similar objects, instead of a wide range of
varying objects. More automation in this sector requires re-
search towards a new approach; active compliant grippers.
Unlike most common grippers, active compliant grippers can
vary joint stiffness when required to. Fragile objects can be
carefully grasped (high compliance), while grasped objects
can resist external forces (low compliance). This extra level
of adjustment makes (active) compliant grippers suitable for
handling varying and fragile objects.
Many variable stiffness mechanisms have been designed al-
ready. R. V. Ham et al. [1] review several active and passive
controllable stiffness actuators. Methods like the agonist-
antagonist setup require combining series-elastic actuation
(SEA) with non-linear elements to vary stiffness. Mechanism-
based examples include the basic cam-follower approach by
S.A. Migliore et al. [2]. A set of guided "rollers", distanced
by a linear spring, move over a contour. By increasing dis-
tance between rollers, a specific force-deflection relation is
created. The cam-follower method is tunable by altering these
cams/contours. In addition to this, several designs are made
using a "variable-cam pulley" approach. N. Schmit et al. [3]
describe a nonlinear rotational spring, formed by connecting

Fig. 1: Several views of the realised non-linear spring test-
setup

a translational spring to a tendon from a variable-cam pul-
ley. C.B. Yigit et al. [4] show several complex algorithms,
analytical and iterative, to create a nonlinear translational
spring, using a torsion spring instead. J. Malzahn et al. [5]
present a fixed passive rolling flexure design utilizing the
change of length of a flexure. Other methods include material
or magnetism-based approaches using rubber or magnets to
create non-linear elements [6][7][8].
A MSc-thesis paper by M. Bluiminck [9] showcasing a
promising prototype which utilizes variable compliance is
looked at. The prototype features an 2-DoF tendon-driven
finger-based gripper. An agonist-antagonist approach is used to
create variable stiffness and position control on the phalanges.
This approach requires the use of nonlinear springs (NLS)
in the mechanism, to allow for variable stiffness. The design
currently utilises the basic cam-follower mechanism men-
tioned above. This NLS design suffers from deviation between
ideal and realistic behaviour, and is large in size. These non-
idealities cause deviations between simulated and measured
gripper states, lowering gripper performance. Measured force-
deflection curves of the current NLS implementation follow
the desired spring behaviour closely. However, especially
towards higher tensile forces, measurements show stick-slip-
like behaviour. Possible causes include high friction, printing
defects and binding. More broadly, the high friction nature of
the spring mechanism has the potential to cause differences
between simulated and realistic gripper states.
This paper focuses on designing an improved NLS mech-

anism, both to increase performance and reduce size. This
design should be customizable to fit a wider range of spring-
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deflection curves, such that the approach used can be adopted
for other applications requiring NLS’s. The presented design
uses the previously mentioned variable-cam pulley principle.
A tendon connected to a non-circular pulley is deflected,
while a torsion spring is placed between the pulley axle
and base/ground (see Fig. 2). The pulley and spring together
form the nonlinear spring mechanism. When implemented into
e.g. the gripper prototype, the torsion spring connects to a
servo instead of ground, which enables variable/controllable
equilibrium and stiffness of the phalanges in the agonist-
antagonist system. The pulley-approach is used due to its
mechanically simple nature, little moving parts, and low
friction properties. Also presented is a test setup (Fig. 1) used
to compare performance of several synthesized spring profiles
to their simulated counterparts. Several assumptions are made
in the analysis of the system, which should result in deviations
from simulated data. The research question for this project is
as follows;
"How to design a spring with prescribed non-linear force-
deflection to be compact and low friction?”
This paper is organized as follows; Sec. II lists requirements,
explains the NLS mechanism in more detail and evaluates
several methods to calculate a pulley-cam from a desired
force-deflection curve. Sec. III discusses two different NLS
implementations, including a realised test-setup and the ex-
periments to be carried out. Sec. IV lists the corresponding
results, and Sec. V and VI subsequently provide a discussion
and conclusion to the paper.

II. CONCEPT AND ANALYSIS

This section lists design requirements, and explains the non-
linear spring mechanism in detail. Generating pulley profiles is
of key importance to match desired force-deflection behaviour.
Thus, several methods toward calculating pulley profiles are
evaluated, of which only the third is deemed sufficient and is
used for further design.

A. Requirements

The gripper prototype currently uses 2 NLS’s with vary-
ing strengths (F1(x) and F2(x)). The force-deflection (F-D)
relations of the currently used NLS units are as follows:

F1 = 1.91x2−1.13x+1.53, F2 = 3.81x2−3.24x+2.59 (1)

where Fi denotes the tensile force induced in the tendon,
and x denotes tendon deflection in cm (for better readability
further in the paper). Spring 2 should be twice as strong
as spring 1, to result in the previously mentioned variable
stiffness in the gripper [9]. These curves are used as baseline
for the requirements. The gripper prototype requires springs
to displace approximately 6.5cm. The precise shape of the F-
D curve does not matter for the prototype, as long as they
are scaled with a factor two, equally nonlinear, and have
approximately the same force range.
Additionally, the mechanism should be as low-friction as
possible, since friction could lead to an increase in system
hysteresis. Size restrictions are not clearly stated as future
gripper prototypes would likely change. A side view of one
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Fig. 2: Schematic of variable stiffness mechanism

of the current mechanisms is approx. 12x12cm. A smaller
mechanism is desired.

B. Mechanism

Placing in series a linear spring and non-linear transmission
element, a nonlinear spring mechanism is formed. In this
case a linear torsion spring is placed on the axle of a pulley,
shown in Fig. 2. This pulley varies its radius, thus force-arm,
based on its rotation. This allows the pulley to function as a
modulated transformer. A tendon is wound around the pulley
profile up along the y-axis. The tensile force experienced
in the tendon depends on the force-arm experienced at that
instant. Displacing the tendon results in a change of rotation
of the pulley, thus changing the force-arm. A decrease in
force-arm length results is decreased torque on the axle to
the spring. Thus, a nonlinear spring mechanism is formed.

Fig. 2 shows an overview of the system where; (x, F )
equals the tendon deflection and tensile force, (θ, τ) the
pulley rotation and torque, R(θ) the pulley radius at deflection
angle θ, and krot the torsion spring constant. To decrease
complexity of the mathematics behind the mechanism, some
assumptions/approximations are taken. These approximations
significantly change the accuracy of the calculations, as we
will see later on in Sec. IV. The following list sums up the
approximations taken;

• The tangential/detachment point of the tendon is always
located on the x-axis and does not shift as a result of
variable radius. Thus, R(θ) directly results in the force-
arm experienced by the tendon.

• Tensile force on the tendon always acts at a right angle
to the force arm creating torque.

• Tensile force in the tendon acts purely on the tangen-
tial/detachment point of the tendon to create torque, and
is not distributed over the profile circumference.

• The tendon always leaves the pulley cam perfectly verti-
cal, independent of length between tendon and end-point,
and pulley orientation.

• The tendon always "sticks" to the pulley profile, thus any
concave shape is not allowed.

The first two approximations listed have the most impact
on the measurements. The detachment point of a tendon on
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a pulley is always located where the tangent is in-line with
the tangent of the pulley surface. On a circular pulley and
assuming a vertical tendon, this will always be on the x-axis.
However, when the pulley varies its radius, this assumption no
longer holds. This means the force arm the pulley experiences
is not exactly equal to radius R at a certain pulley angle θ.
The actual arm over which torque is produced will lag behind
the radius the simulation has generated. In addition, when this
tangent is not at a right angle, the force on the pulley will
be a smaller component of the tensile force on the tendon.
These inaccuracies lead to differences between simulation
and measurements. Measured responses are expected to show
lower force values than simulations. Sec. IV reflects this
behaviour.
Three different approaches to formulate a profile for a cer-
tain desired F-D curve are demonstrated. The third method,
involving an iterative solution, is most flexible and is used to
generate the profiles under Sec. III.

C. Solve Symbolically

Solving the problem symbolically is ideal. This would result
in a solution that can easily be used to convert any desired
curve to a pulley profile, without complications. Given the
previously stated assumptions we can assume that the tensile
force on the tendon is given by:

F (θ) =
1

R(θ)
τ (2)

Subsequently, the torque created by the spring is given by:

τ = krotθ → F (θ) =
1

R(θ)
krotθ (3)

Given a profile, this yields a force-deflection curve. This is
however the inverse of the desired relationship. For a given
F-D curve, a pulley profile should be calculated. To solve this
issue, we set e.g. the following polynomial relation (from now
on "radius equation"):

R(θ) = b− aθ (4)

The displacement of the tendon can be calculated by taking a
line integral (in polar form) on the pulley profile, as follows:

x(θ) =

∫ θ

0

√
r2 + (

dr

dθ
)2dθ (5)

which, given the radius relation (Eq. 4), is further derived to:

x(θ) =

∫ θ

0

√
a2 + b2 + a2θ2 − 2abθdθ (6)

This equation could be rewritten in terms of x, resulting in
θ(x). This could be filled in into F (θ) (Eq. 3) which would
result in F̃ (x). By altering its variables a, b, or changing R(θ)
altogether, this formula could be equated with any desired F-
D curve. However, rewriting Eq. 6 in terms of pulley angle is
not trivial due to the nature of the equation.
This can be explained by drawing the system with bond graph
theory, see Fig. 3, where Sf is the tendon velocity, and MTF
the variable radius pulley. The modulated transformer forms
a feedback loop, making it difficult to solve the system in

Fig. 3: Simple bond-graph representation of mechanism, 20-
Sim

Fig. 4: Bond-graph of performance-metric approach, 20-Sim

the way presented above, since multiple solutions will be
possible. This method heavily depends on the choice of radius
equation, which decreases its flexibility. A certain choice of
radius equation will likely limit the possible force-deflection
solutions to a certain space. A change in desired curve could
require recalculating the whole solution using different radius
equations.

D. Solve using Performance-metric
Due to the difficult nature of the symbolic approach, an

optimization-based approach is looked at, using a performance
metric to find an optimal solution. Using a similar bond-graph
model as before (see Fig. 4), the Mean Squared Error (MSE)
is calculated. Where des_curve is the desired force-deflection
curve, and MSE the calculation of the error value. Integrating
the resulting MSE value results in a performance metric of the
current pulley profile parameters and spring constant value.
The "multiple run" function in 20-Sim forms the optimization
process. It sweeps a set of parameters (e.g. krot, a, b, from Eq.
4) within their respective bounds, and finds the combination
that corresponds to the best performance metric (lowest
integrated MSE). Three variable parameters result in multiple
possible solutions, so one variable is constrained beforehand.
Constraining more variables results in limited solutions.
This should result in an optimal pulley profile following
the selected radius equation (embedded in MTF). A more
detailed continuation of this method is found in appendix A.
In summary, this method is not sufficient for further use due
to its dependency on the initial choice of radius equation.

E. Solve Iterative
The performance-metric approach severely constrains its

application to a narrow range of desired force-deflection
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Fig. 5: Bond-graph of iterative approach, 20-Sim

curves. This is caused by the fact that a radius equation is
set beforehand. Removing the need for such a predefined
relation requires a major redesign. A numeric and iterative
method could start of with a certain initial condition (e.g.
initial pulley radius), and iterate on this radius such that the
resulting F-D response converges to the desired force required
at each deflection value. Such a method can be considered a
feedback system. By adding an additional feedback loop to
the bond-graph model of the NLS, this goal can be achieved.
Given a certain deflection, an error can be produced between
desired and measured force of the current design. Feeding
back this error into the modulated transformer forms the
loop (Fig. 5). By running this simulation for a certain time
and tendon displacement velocity, a pulley profile can be
generated that closely follows the desired NLS behaviour. By
matching the simulation-time and displacement-velocity, we
ensure the pulley supports the displacement range required.
For all following simulations, a (realistic) torsion spring
constant of 0.15 Nm

rad is used.

The F-D curve used by Bluiminck [9] shows initial negative
stiffness. Using this curve in the iterative method can cause
problems, since negative stiffness is not realizable with the
proposed mechanism. As previously mentioned, matching the
specific curve shape is of no importance. Thus we construct
a new approximate curve, similar to F1. Note that we still
take x in cm to make the parameters easier to read. Weaker
F-D curve F1 is chosen to limit tensile forces in the test
setup. Substantial stresses can cause material deformation
resulting in inconsistent results. We initially take the following
approximate:

F̃approx1
= ax2 + bx (7)

This ensures that a deflection of zero (x0) will result in zero
tensile force present. Parameter b shifts the initial radius since
it determines what stiffness is present at x0. b cannot equal to
zero, since the initial profile radius will then diverge to infinity
to eliminate any stiffness at x0. a will shape the non-linearity
of the F-D curve. For this use-case, a = 1.6, b = 1.0 are set
and form the approximate desired F-D curve. From these initial
parameters b is increased, sweeping various curves, shown in
Fig. 7. The corresponding profiles are shown in Fig. 6. What
can be observed is that a decrease in b results in higher initial
radius. A sharp edge at the initial angle of the pulley is present,
which is not desirable for manufacturing and operation. Note
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the initially concave shape of the pulley, which is not allowed
due to the approximations taken in Sec. II-B. An alternative
curve approximation can be taken:

F̃appr2 = ax3 + bx (8)

which, due to the higher order, is able to increase b further
without losing non-linearity. For this use case a = 0.2 and
b = 2.5 are chosen. The resulting pulley profile and F-D curve
can be seen in Fig. 9, among others discussed in Sec. III-B.
A lower a and higher b causes much faster increase in initial
stiffness. No sharp edge nor convex shape is present anymore.
With this result, this method can be concluded sufficient for
further use. Note that the systems time to converge to desired
curve is near instant, and removed from the profile data for
manufacturing purposes. The simulation uses a proportional
gain of 50, for fast convergence. Higher gain leads to an
irregular profile surface due to unstable behaviour.

III. DESIGN

Applying the theoretical approach on a realized NLS mech-
anism allows us to evaluate the method on real-world imple-
mentations. This section discusses both a realised implemen-
tation in a test-setup, the experiments to be carried out, and
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Fig. 8: Various views of the test-setup, SolidWorks

a theoretical implementation of the mechanism in the gripper
prototype.

A. Test-Setup design

Verifying F-D curves from generated profiles requires mea-
surements of tensile force in and deflection of the tendon.
Unlike in the gripper prototype, dynamically altering spring
deflection directly with an extra actuator is not necessary. A
spring between pulley profile and ground is sufficient. This
static testing simplifies the test-setup. Fig. 8 shows the 3D-
CAD model of the setup, along with clarifying annotations.
Using the MX-64AR servo with a circular pulley, the tendon
can be displaced. A TAL220 load-cell with HX711 amplifier
measures the tensile force present within the tendon. The servo
rests on a plastic platform that connects to a metal base via
the load-cell/strain-gauge. Located in-line with the tendon, it
measures the tensile force in said tendon. Pulley rotation data
is acquired through the servo. Displacement of the tendon
is derived from this data. A tendon connects the circular
pulley to the variable pulley. A larger circular pulley with
extension spring is placed on the axle of the variable pulley
(Fig. 8). Due to the difficult installation of torsion springs
an equivalent extension spring is used. The extension spring
constant is 0.23 N

mm , which in combination with the circular
pulley, is equivalent to a torsion spring constant of 0.15Nm

rad . A
second tendon connects circular pulley and spring. Note that
finding springs with sufficient specifications (max. deflection,
size, spring constant, etc.) can be difficult, as they are often
either too large, or do not offer the range of tension required.
The model shows a the fully extended state of the spring. An
Arduino Uno with Dynamixel Shield controls the servo, and
receives rotation and load-cell measurements. Fig. 1 shows the
realized setup. A specific wire (Spiderwire Dura 4 0.25mm) is
used that is resistant to stretching under load. A MarkForged
Mark II printer with Onyx CF Nylon is used to fabricate all
printed parts, preventing material bending and deformation as
much as possible.
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Fig. 9: Various generated pulley profiles for further measure-
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B. Experiments

Two experiments are carried out with the test-setup. As
previously stated, the first experiment will verify generated
profiles by measuring tensile force and deflection, resulting
in F-D curves. Four different profiles are generated, with
decreasing exponential factor a and constant b. This results
in a profile shape going from the shape shown in Fig. 6 to
a circular (linear spring behaviour) profile. This linear spring
profile creates an opportunity to verify the system, without
influence of several of the approximations taken. The array of
profiles should show an incremental decrease in error between
profiles originating from the tangent drift (Sec. II-B). Initial
non-linear behaviour of the extension springs is circumvented
by preloading the system at approximately 5N .
The second experiment analyzes system hysteresis. Changes
to behaviour depending on previous states (e.g. a switch of
deflection direction) decreases consistency of the mechanism,
which is undesired. Measuring both tensioning and loosening
of the system provides a measure of hysteresis. The previous
experiment is repeated, while also measuring the return to
initial state. Lower servo RPM is used in this experiment to
increase resolution, at the cost of more time spent in a high-
stress environment.

C. Gripper Implementation

Following verification of the NLS unit, the mechanism
should be integrated into the gripper prototype. This requires
an altered configuration, due to the addition of an actuator
that can dynamically change the torsion spring deflection. Due
to time constraints this configuration has not been realized.
A suggested implementation for integration is presented in
Fig. 10. Limited space within the gripper requires minimizing
space occupation. A force-sensor is no longer required. The
extension spring is replaced with a torsion spring, lowering
design size. This torsion spring directly connects to the pulley
profile and servo axle. The axle holding the pulley is supported
on two sides, to withstand the high forces from the tendon.



6

Fig. 10: Theoretical implementation of mechanism for gripper
prototype, SolidWorks

A pair of the presented NLS mechanisms forms an agonist-
antagonist setup, and deflection of the torsion springs using
the servos results in variable compliance and position control
of the gripper phalanges. The footprint of this mechanism
is approximately 20x10cm, and approximately equal to the
height of the servo. Size is drastically reduced compared to
the currently implemented mechanism. Note that the spring
model shown is not representative of any particular spring
specification, as no torsion spring is used in the test-setup
variant. Dynamixel MX-64 servos are used within the gripper
prototype and 3D-CAD model.

IV. RESULTS

A. Force-Deflection Curves of Several Profiles

Force-Deflection measurements of an assortment of profiles
are shown in Fig. 11. Each plot features the original F-
D curve (F1 [9]) for reference, followed by the simulated
(desired) curve and its corresponding measured curve. The
figure shows that increased F-D non-linearity corresponds to
increased deviations between simulated and measured values.
This corresponds to the expected results in Sec. II-B. The cir-
cular profile (bottom-right) closely follows desired behaviour.
Finally, it should be noted that the preload on the system is
not constant between experiments, and was manually tuned
between every measurement.

B. Measured System Hysteresis

Results of the hysteresis experiment are shown in Fig.
12. Note that for both plots the (initial) bottom-side of the
measured curves is the return to initial state and that this
orientation switches at high deflection. At high deflection
the linear response starts to deviate considerably from the
simulation. This is also present in the previous linear curve
measurement, but not clearly visible in the figure. Both profiles
show a similar deviation between tensioning and loosening F-
D curves. The worst-case displacement hysteresis measured on
the linear and non-linear profiles is 0.17cm (2.6%) and 0.36cm
(5.5% of total range) respectively. Deviation is less present
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toward higher deflection. The platform that connects servo to
load-cell was observed to be slightly bending upwards while
under high stresses for longer durations, suggesting material
creep. Note that the hysteresis measurements were consistent
across several experiments.

Measured hysteresis of two pulley profiles
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V. DISCUSSION

A. Force-Deflection Curves of Several Profiles

The measured force-deflection curves show a large deviation
between simulations, especially higher non-linearity profiles.
Close to zero deviation is present at the circular profile
response. Thus, the main source of deviation is likely the
tangent location approximate. However, other factors could
have influenced the results. The 5N preload is not taken into
account while generating profiles. Additionally, the specified
2.59N initial force requirement set by the spring manufacturer
is not sufficient to eliminate all undesired initial behaviour of
the system. This difference points to other non-idealities in
the system, such as knot tightening. Moreover, the gradual
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decrease in preload in between measurements suggests mate-
rial creep of plastic parts, or loosening of knots. Flexing of
the servo-base could result in a decrease in measured tensile
force, since the load-cell setup requires rigid plates and joints
for accurate measurements. Surface deformation is visible in
areas where the tendon contacts 3D printed parts at a sharp
angle. Note that irregular behaviour towards higher deflection,
mostly apparent in the first plot, is caused by a lower load-cell
sample-rate from a bug in the Arduino code.

B. Measured System Hysteresis

The main deviation between the tensioning and loosening
phase (hysteresis) is likely a result of the non-idealities
mentioned above. Loosening of tendons due to material creep
or improper knots will lower the measured tensile force
during the returning phase. The higher worst-case hysteresis
of the non-linear profile is likely attributed to the higher
forces present, thus causing more tendon loosening. The
observed sudden deviation of the linear profile can be a result
of material creep. The same behaviour is likely present in the
non-linear profile measurement, but visually obstructed by
the curve shape.
The rough surface finish of the several pulley "side-rails"
showed signs of damaging the tendons, contributing to
overall friction. This friction is likely a factor in causing the
orientation switch of the tightening and loosening phases
seen at higher deflection.

VI. CONCLUSION

In this paper, a design of a variable stiffness mechanism
is presented, using a variable cam pulley and spring. A
promising method to generate pulleys profiles to create non-
linear springs is demonstrated. By using a feedback system,
a pulley profile is generated that follows a desired force-
deflection curve. Due to its iterative nature, realising a larger
range of different desired curve is possible. Measurements on
the test-setup show a promising realization of the concept,
with measured profiles following intended force-deflection
behaviour. Deviations between practical experiments and sim-
ulations can be attributed to both theoretical approximations
like the tangent location shift, and practical non-idealities such
as material creep and knot tightening. Accounting for the
tangent location of the tendon on the pulley profile would
likely improve performance. Additionally, a design suitable
for gripper integration is presented. The low-friction nature of
the mechanism, mechanical simplicity and minimized space
occupation make the design a promising choice for future
integration.

A. Future Work

Higher stiffness materials (e.g. machined aluminium or
3D-printed metals), and more effective ways to attach tendons
to components could lead to more consistent measurements.
Taking into account current approximations into the simulated
model will increase the accuracy simulations, thus generate

better performing profiles. The 20-sim model can be more
refined to reflect real-world operation by adding e.g. a
tangent-solving system to the feedback loop. Considering the
relative position of profile and servo is another aspect to be
looked at.
Measurements to analyze hysteresis only measured a single
deflection-cycle. Future experiments could increase the
number of cycles, or vary the deflection speed, to allow
for more extensive analysis on both creep and hysteresis of
similar designs. Improving the quality of measured data with
better sensors or improved serial logging could lead to more
conclusive results.
Future implementations (possibly within the gripper prototype)
could face difficulties acquiring torsion springs with sufficient
parameters, since these might impose further constraints
on the design and thus available profiles. To allow for a
broader range of springs, a 3D helix-shape could be looked
at, enabling usage of more than just 360◦ of pulley profile
rotation. Additionally, this will increase the profile’s length,
allowing for increased deflection without sacrificing space
occupation. Due to the small tendon diameter (0.25mm), a
helix shape could be designed to be very flat. This might
limit increased friction on the "side-rails" to a negligible
level, keeping the low-friction nature of the mechanism as
low as possible.
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APPENDIX A
CONTINUATION OPTIMIZATION-BASED METHOD

Three different exemplary parameter sweeps are shown to discuss the quality of the result, and the limits of this method.
The initial radius (b) is locked at 5cm, to ensure realistic pulley dimensions. Several different radius equations are used. The
change in radius equation means parameter bounds are varied as well (to prevent simulation errors from number overflow).
All sweep settings and corresponding results are listed in Tab. I.

TABLE I: Overview of three optimized sweeps

Sweep a ∈ b krot ∈ R(θ) = a krot

1 [1, 18]e-3 0.05 [0.1, 2.5] b− aθ 0.015 1.912
2 [1, 2.5]e-3 0.05 [0.1, 2.5] b− a

√
θ 0.021 1.172

3 [0.1, 12]e-3 0.05 [0.1, 3] b− aθ2 0.010 2.605

See resulting pulley shapes in Fig. 13, and F-D curves in Fig. 14. As shown in the figures, the optimized results do not
overlap with the desired curve. A likely cause might be that the desired curve is not within the solution space of any of the
presented radius equations. The equation required is most likely a rather complex and specific function, not easily found with
an estimation. A change from

√
θ to θ2 does not affect the resulting curve significantly. Note that the optimization function

cannot sweep all parameters at once, nor over a large range. Many parameter combinations result in an error (likely numerical
overflow) due to the Backward Differentiation Formula used by 20-Sim. This method, utilizing a parameter sweep to find the
optimal result, is not deemed sufficient for further use. Any change in desired curve requires finding a different suitable radius
equation, if one can be found at all.
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