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Abstract 

The current pilot study proposed a theoretical model to investigate the relationship 

between Take-Over Request (TOR) difficulty and success rate, concurrently assessing the 

influence of trust, mental workload, state anxiety, and sleepiness. As highly autonomous 

vehicles become more widely available, insights into autonomous vehicle (AV) take-overs 

could help guide safety measures and guidelines. The main predictions of the current study 

were that TOR difficulty negatively affects its success, moderated by the driver’s trust in the 

AV. Using a driving simulator and VR headset the participants completed six scenarios, each 

consisting of three take-over events. Each event was followed by verbal evaluations by a 

male researcher acting as a conversational agent, while each complete scenario was followed 

by a questionnaire. 

Findings suggest a strong fit of the theoretical model and analyses support the 

collection of multiple verbal evaluations after each event rather than measuring only the final 

event or using a questionnaire. Results suggest that handover time and trust in the AV 

increases sleepiness, mental workload negatively affects TOR success, and that sleepiness 

correlates with mental workload and state anxiety. Contrary to existing literature however, 

lower handover time increased driver trust towards the AV. Given the small sample size the 

results should be taken with caution. Further investigations should explore alternative 

variable relationships.  
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A Pilot Study Exploring the Effect of Handover at Different Levels of Difficulty on 

Trust, Workload, Anxiety, and Sleepiness, Measured with a Conversational Agent 

Over the past century there have been continuous interests in the creation and 

advancement of Automated Vehicles (AVs; Bimbraw, 2015). From the first radio-controlled 

car in 1926 to the Autonomous Land Vehicle (ALV) project of the 1980s, AVs have 

increased in complexity and capability. In more recent years, technological developments 

have allowed AVs to evolve into intelligent machines, able to understand their environment, 

adhere to traffic laws, and exchange information with other devices (Parekh et al., 2022). The 

adoption of AVs is predicted to have wide-ranging consequences, including impacts on future 

mobility, urban design, and city infrastructure (Golbabaei et al., 2020; Yigitcanlar et al., 

2019). The current study aims to investigate the way humans and AVs interact in situations 

where the automation is unable to act appropriately, which may help guide respective safety 

regulations. 

Levels of Automation and Take-Over Requests 

In line with the growing relevance of AVs, a necessity grew to differentiate between 

the different levels of automation in AVs (Hopkins & Schwanen, 2021). Whereas some 

vehicles imply no need for human intervention, others are limited in their autonomous 

capabilities. Accordingly, the Society of Automotive Engineers (SAE) has developed a 

framework that can be used to categorize AVs according to their level of automation (SAE, 

2021). The SEA taxonomy consists of 6 levels, with level 0 connotating to no driving 

automation, and level 5 signifying full driving automation (see Figure 1; Synopsys, n.d.). 

Furthermore, each level in-between represents a significant step in either driver support or 

automated driving. While the three lowest levels emphasize the need for the driver to monitor 

the driving environment, the three highest levels rely on the autonomous system to perform 

this job. 
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Figure 1 

Diagram of the Different Levels of Automation 

 

A concept that is specifically relevant to levels 1 through 4 of the framework is the 

Take-Over Request (TORs; H. Clark et al., 2017; J. R. Clark et al., 2019; Eriksson & Stanton, 

2017). These requests occur when an AV encounters a situation in which it is unable to 

respond appropriately. These situations can vary greatly in urgency, which is largely reflected 

in the construct of handover time, alternatively known as take-over time, response time, or 

lead time (Bazilinskyy et al., 2018). This term refers to the amount of time available for a 

driver to respond to the situation by taking over control of the vehicle, which is integral in 

determining the success rate of the take-over (Wan & Wu, 2018). 

Purpose of the Study 

The current study is concerned with investigating the relationship between the 

difficulty of a TOR and its success, taking into account the trust, mental workload, sleepiness, 

and anxiety of the driver. Although no widespread fully automated driving systems exists, 

vehicles with high degrees of autonomy are expected to enter the market in the near future 

(European Commission & Joint Research Centre, 2019). Moreover, as the level of 
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automation increases a respective growth in AV adoption is expected, both for commercial 

and industrial ends. Until widespread full automation is achieved, TORs will play an integral 

role in road safety. As such, the next section will elaborate on the aforementioned factors 

influencing the success rate of TORs, explaining the concepts themselves and how they 

contribute to the success overall. 

Modelling Take-Over Requests 

While handover time has been linked to both the rate and quality of success, there are 

a lot of other factors that influence this relationship (Du et al., 2020; Wan & Wu, 2018). 

Although there are external variables that contribute to the outcome of a TOR, such as the 

level of automation and the context of situation, a large part of the possible success of a TOR 

is attributed to psychological factors surrounding the driver. 

Trust in Automation 

One such factor is trust in automation, defined by Körber et al. (2018) as the 

willingness of a person to delegate an important task to an autonomous system, in spite of the 

possible repercussions. This same study shows that such trust is related to poorer take-over 

performance. It was found that, when transitioning from a Non-Driving Related Task 

(NDRT) to taking control of the vehicle, higher trust in the autonomous vehicle generally 

increases the time necessary to take-over, leading to more dangerous situations (Körber et al., 

2018). A study by Yousfi et al. (2021), in turn, found that trust in AVs is dictated by the 

amount of time available for a driver to respond to a TOR, with longer lead times being 

associated with higher levels of trust. Moreover, trust has also been shown to influence 

mental workload, sleepiness, and state anxiety, each of which have their own interaction with 

hand-over time and success rate (Kundinger et al., 2019; Lu et al., 2022; Yousfi et al., 2021). 
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Mental Workload 

Mental workload represents how much of one’s information processing capacity is 

occupied by neurophysiological, perceptual, and cognitive processes (Silva, 2014). Moreover, 

a study by Dogan et al. (2019) found that the mental workload experienced by the driver of 

an autonomous vehicle depends on the task they are requested to take over, with more critical 

situations being associated with higher mental workloads. Subsequently, higher mental 

workloads are linked to longer take-over times and worse take-over quality, though the extent 

of this effect depends on the specific source of the cognitive load (Bueno et al., 2016; Gold et 

al., 2016). Similarly, a study by Du et al. (2020) found that high cognitive load and short 

TOR lead time are associated with lower readiness and worse take-over performance. 

Moreover, Yousfi et al. (2021) found that the driver’s level of trust also affects their mental 

workload, with increased trust leading to lower levels of physical, cognitive, and temporal 

workload. 

State Anxiety 

Similarly, evidence also exists for a relation between trust and state anxiety of the 

driver (Lu et al., 2022). Whereas trait anxiety describes a person’s propensity towards feeling 

anxious, state anxiety represents the temporary physiological, mental, and emotional effects 

resulting from a person’s worries regarding an event or state (Spielberger & Smith, 1966). In 

the context of AVs, more demanding take-over situations have been linked to higher levels of 

anxiety (Schmidt-Daffy, 2013). Likewise, concerning the aforementioned dynamic between 

state anxiety and trust however, a study by Lu et al. (2022) found that the two constructs are 

related. Specifically, research indicates that increased levels of anxiety are predictive of lower 

trust in the automated driving system (Kraus et al., 2020; Lu et al., 2022; Miller et al., 2021). 
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Sleepiness 

Another construct that was found to influence the relation between TOR lead time and 

success rate is sleepiness. A study by Vogelpohl et al. (2019) found that driving in an AV 

increases fatigue experienced by the driver faster than when driving non-automated vehicles. 

The same study found that increased sleepiness causes drivers to react more slowly to TORs. 

Similar to the previous constructs, sleepiness has also been linked to trust. A study by 

Kundinger et al. (2019) showed that drivers with higher levels of trust in an AV exhibit more 

intense signs of drowsiness, consequently worsening the driver’s TOR performance. 

Research Question 

As of the current study, there is a gap in existing literature when it comes to 

integrating all of the previous constructs into a single model. As such, the current paper is 

concerned with the following research question: 

How do situational trust, mental workload, state anxiety, and sleepiness affect drivers’ 

autonomous vehicle take-over success in VR as measured through a chatbot? 

Taking into account the aforementioned literature, a model of the different constructs 

and their relationships was created (see Figure 2). While no previous studies inform us about 

the possible relation between mental workload, sleepiness, and state anxiety, we will be 

exploring whether one exists in the context of the model. In a similar sense, since trust and 

anxiety have been found to correlate, it was decided to explore the possible effect of 

situational trust on anxiety.  
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Figure 2 

Relational Model of the Constructs Relevant to Take-Over Requests and Their Success 

 

Prediction 1 (a): There will be a significant positive effect between handover time and 

situational trust, moderating the relationship between handover time and success. 

Prediction 2 (b): There will be a significant negative effect between situational trust 

and success, moderating the relationship between handover time and success. 

Prediction 3 (c): There will be a significant negative effect between handover time 

and success. 

Prediction 4 (d1): There will be a significant negative effect of handover time on 

mental workload, moderating the relationship between handover time and success. 

Prediction 5 (d2): There will be a significant effect of handover time on sleepiness, 

moderating the relationship between handover time and success. 

Prediction 6 (d3): There will be a significant negative effect of handover time on state 

anxiety, moderating the relationship between handover time and success. 
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Prediction 7 (e1): There will be a significant negative effect of mental workload on 

success, moderating the relationship between handover time and success. 

Prediction 8 (e2): There will be a significant negative effect of sleepiness on success, 

moderating the relationship between handover time and success. 

Prediction 9 (e3): There will be a significant effect of state anxiety on success, 

moderating the relationship between handover time and success. 

Prediction 10 (f1): There will be a significant negative effect of situational trust on 

mental workload, moderating the relationship between situational trust and success. 

Prediction 11 (f2): There will be a significant positive effect of situational trust on 

sleepiness, moderating the relationship between situational trust and success. 

Prediction 12 (f3): There will be a significant negative effect of situational trust on 

state anxiety, moderating the relationship between situational trust and success. 

Prediction 13 (g1): There will a significant negative correlation between mental 

workload and sleepiness. 

Prediction 14 (g2): There will be a significant negative correlation between sleepiness 

and state anxiety. 

Prediction 15 (g3): There will be a significant positive correlation between mental 

workload and state anxiety. 

 

In terms of methodology, the current study aims to include a conversational agent as a 

means of gathering data on the subjective measures. With legislative entities trying to 

implement monitoring features capable of providing frequent and timely data about the 

driver’s state, conversational agents may prove capable of performing this task (Regulation 

2019/2144; Stay Aware For Everyone Act, 2021). Since driving involves comparatively less 
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processing of auditory information compared to visual information, conversational agents 

may provide a good way to collect relevant data continuously without interfering much with 

the driving task itself (Wang et al., 2020). As such, it was decided to use a conversational 

agent to gather data while driving, alongside a questionnaire after the driving task is finished, 

to determine the best approach for collecting data about the driver.  

Methods 

Participants 

A total of 6 participants were gathered through convenience sampling, a portion of 

which received credits in exchange for their participation through the University of Twente’s 

participant pool management system for the Behavioural, Management, and Social Sciences 

(BMS) faculty (utwente.sona-systems.com). The current report uses a subset of participants 

from a larger set of individuals collected as a joint effort with two other researcher 

performing separate research on autonomous driving in VR. 

Materials 

For the experiment itself, various equipment was used (see Appendix A). The 

environment of the driving task consisted of a driving simulator and a Vario VR-3 headset. 

Furthermore, a tablet was used to fill in a questionnaire at end of each trail/scenario of the 

experiment. Moreover, the participants were verbally provided with information and a set of 

instructions regarding the experiment (see Appendix B), in addition to an information sheet 

that was handed to the participants afterwards (see Appendix C). 

A questionnaire was constructed based on the included scales to measure a number of 

variables over time throughout the experiment (see Appendix D). Additionally, a set of 

questions and statements for measuring the subjective factors verbally was created (see 

Appendix E). 
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In terms of the scales used for the subjective measures, firstly the Karolinska 

Sleepiness Scale (KSS) was adapted to measure sleepiness (Åkerstedt & Gillberg, 1990). It 

consists of a 9-point Likert-scale ranging from “Extremely alert” to “Very sleepy, great effort 

to keep awake, fighting sleep”. In terms of validity, the scale shows significant correlation 

with EEG, behavioural, and other subjective measures of sleepiness, in addition to 

considerable reliable (Kaida et al., 2006). Furthermore, an adapted version of the Rating 

Scale Mental Effort (RSME) was used to measure mental workload. It consists of a sliding 

scale from 0 (“Absolutely no effort”), to 35 – 57 (“Some effort to rather much effort”), to 150 

(“Extreme effort”). On the whole, the scale is reliable (𝑟 = .78) and displays good validity 

through high correlation with measures of subjective effort (r > .55; Zijlstra, 1993). Next, an 

adapted form of the trust and anxiety items from Lu et al. (2022) was used to measure trait 

anxiety, state anxiety and situational trust. All four and three items were included for 

measuring trait and state anxiety respectively, while one of four total items was included to 

measure trust. Each of these are scored on a 7-point Likert scale ranging from “Strongly 

disagree” to “Strongly agree”. Regarding its psychometric properties, the items for trait (𝛼 =

.90) state anxiety (𝛼 = .95), and trust (𝛼 = .83) were shown to have good reliability and 

satisfactory aggregation validity (Lu et al., 2022). Lastly, the Cybersickness in Virtual Reality 

Questionnaire (CSQ-VR) was employed from Kourtesis et al. (2023) was adapted to measure 

cybersickness. The questionnaire consists of 6 items on nausea, vestibular, and oculomotor 

cybersickness, scored on a 7-point Likert scale ranging from “Absent Feeling” to “Extreme 

feeling”. In terms of internal consistency it has good reliability (α = .87), while its scores 

also correlate strongly with those of the VRSQ (𝑟 = .77), supporting its convergent and 

construct validity (Kourtesis et al., 2023). 
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Procedure 

At the onset of each experiment the participant was greeted and provided with an 

explanation of the experiment and what their role would be, in addition to specific 

instructions about how to operate within the driving simulator (see Appendix B). After this 

initial explanation, they were also handed an information sheet with a more succinct 

overview of the experiment and the relevant instructions. The participant was then handed the 

tablet with the questionnaire, where they would fill in the informed consent, the demographic 

questionnaire, and a pre-emptive cybersickness questionnaire. When finished, the VR headset 

was mounted on the participant’s head, after which the initial training scenario would ensue. 

Including the training scenario, the participant would be presented with a total of 

seven scenarios, each of which was followed by a questionnaire (see Appendix D), conducted 

on the tablet after removing the headset, measuring both cybersickness and the other 

subjective measures (see Figure 3). Each scenario itself contained three take-over events (two 

in the training scenario) where the participant had to react to one of three prompts with the 

appropriate action in the allotted time. These actions included a right-hand turn, a stop, and a 

lane switch, each of which occurred once in each scenario, except for the training scenario 

which only included two events. The amount of time for the participants to perform these 

actions depended on the allotted handover time of the scenario, with the training scenario 

allowing 25 seconds, the easy scenarios allowing 5 seconds, the moderate scenarios allowing 

3 seconds, and the hard scenarios allowing 1 second to react. Besides the training scenario, 

the participants completed two scenarios of each difficulty level. Following each take-over 

event, the participants received verbal questions on their subjective measures (see Appendix 

E). These questions were asked by a male researcher, simulating a conversational agent with 

a consistent manner of speech. To summarize, besides the training scenario, each participant 

completed six scenarios, each containing three take-over events (see Figure 3). Each event 
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was followed by verbal questions regarding their situational trust, mental workload, state 

anxiety, and sleepiness. Lastly, at the end of each scenario, the participants would fill in a 

questionnaire also containing questions on these subjective measures, in addition to a 

cybersickness scale and a question to check for manipulation. 

Between each scenario the researchers also urged the participant to notify them any 

possible nausea or dizziness, as well as allowing the participant to take a short break 

whenever they desired. At the end of the experiment the participant was thanked for their 

participation and led out of the experiment room. 

Figure 3 

Overview of the Scenario Procedure

 

Data Analysis 

The entirety of the data analysis was performed in R-Studio (version 4.3.0; see 

Appendix F). The data was first loaded into R-Studio using the “readxl” package (v1.4.2; 

Wickham & Bryan, 2023). After this the data was prepared for analysis, removing the 

training scenario data, reversing negatively phrased items, combining multi-item constructs 

into a single value, and creating success scores for each scenario. 

Descriptive statistics were performed regarding the demographic information of the 

sample using the “dyplr” package (v1.1.2; Wickham et al., 2023), consisting of the mean and 

standard deviation of the participants’ age, driving experience, trait anxiety, and 

cybersickness. Subsequently, a manipulation check was performed to check for differences 
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between the different difficulty conditions. To this end the relationship between the 

scenario’s handover time and its respective perceived difficulty was examined using a linear 

model, looking for statistically significant regression coefficients. 

To answer our research question, we used a Structural Equation Modelling (SEM) 

approach, which combes elements of factor-, regression-, and path-analysis to test the 

predictions and validate the initially constructed model. More specifically, a model selection 

was employed, intended as an exploratory and comparative approach aiming to identify the 

best model to fit the data (Hoyle, 2023). To this end, three models were created. The first 

model used the average scores of all the verbal measures taken in each scenario. This model 

encompasses all the participants’ changes throughout the events, under the assumption that 

each event is equally representative. The second model used the verbal measures of only the 

final event of each scenario. Compared to the first model, the second model only takes into 

account data from the participants after they have been driving for an extended time. Lastly, 

the third model used the scores retrieved from the questionnaire at the end of each scenario. 

Contrary to the previous two models, model three is based on data from a different modality, 

employing data from a questionnaire instead of a conversational agent. 

The models were compared using five different parameters: the Comparative Fit 

Index (CFI), the Tucker-Lewis Index (TLI), the Root Mean Square Error of Approximation 

(RMSEA), the Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC). Each of these fit indices assess how well the observed data fits the proposed model, 

though each using a different approach. While the RMSEA assesses how well the model fits 

the data in terms of an absolute score, the CFI and TLI evaluate the fit of the model by 

comparing it to alternative models. The RMSEA represents the average discrepancy between 

the model and the observed data with lower RMSEA values indicating better fit and values 

below 0.05 being considered indicative of good fit. The CFI and TLI on the other hand, 
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evaluate how well the model reproduces the observed data patterns, with values closer to 1 

indicating a better fit. Finally, the AIC and the BIC are known as parsimony fit indices. These 

parameters take into account the complexity of the model and penalize models which are 

overly complex, with lower values indicating better fit. 

After selecting the best-fitting model, bootstrapping was used to obtain more robust 

estimates of the model parameters and to compensate for the small sample size. 

Bootstrapping enables robust analysis without strict assumptions about data distribution. It 

does this by generating multiple resampled datasets that mimic the properties of the original 

data, overcoming limitations associated with small samples in traditional SEM methods. Both 

the regular – for the purpose of model selection - and bootstrapped SEM models were ran and 

examined with the “lavaan” package (v0.6-15; Rosseel, 2012). In terms of parameters, the 

bootstrapped versions of both models specifically using a sample size of 5000 and a 

confidence interval of 95%. 

Results 

Participant characteristics can be found in Table 1. The sample consisted of 6 

individuals with an average age of 23 (𝑆𝐷 = 2.19) and an equal distribution of male and 

female participants. 

Table 1 

Participant Characteristics 

Variable Mean SD 

Driving experience 4.33 2.50 

Trait anxiety 3.33 0.44 

Cybersickness 1.33 0.59 

Note. Driving experience refers to the number of years the participant has had their driver’s licence. 

Trait anxiety and cybersickness are both based on a 7-point Likert scale. 
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A manipulation check was conducted using linear regression analysis to examine the 

influence of the experimental manipulation condition, the handover time of the path on 

perceived difficulty. The results of the linear regression revealed a significant effect of the 

manipulation condition on perceived difficulty, 𝐹(2, 33) = 6.43, 𝑝 = .004. Specifically, a 

handover time of 1 second was perceived as significantly less easy, 𝛽 = −1.67, 𝑆𝐸 =

0.57, 𝑡 = −2.95, 𝑝 = .006, while a handover time of 3 seconds did not show a significant 

effect compared to a handover time of 5 seconds, 𝛽 = 0.17, 𝑆𝐸 = 0.57, 𝑡 = 0.30, 𝑝 = .770. 

This is most clear when mapped against mental workload (see Figure 4). The overall model 

accounted for 28.03% of the variance in perceived difficulty (𝑅2 = 0.28) indicating a 

moderate effect size. 

Figure 4 

Distributions of Mental Workload Across Handover Time 

 

These findings provide support for the successful manipulation of scenario difficulty 

across different conditions, demonstrating that the manipulation had the intended impact on 

participants' perception of task difficulty. 
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To examine the optimal fit for the data, three alternative structural equation models 

were compared. Model 1 and 2 used the data gathered through the conversational agent, 

model 1 using the average verbal measures, while model 2 used the verbal measures of each 

scenario’s final event. Lastly, model 3 used the data collected from each scenario’s 

questionnaire. See Table 2 for an overview of the indices used to compare the models. 

Table 2 

Overview of the Fit Indices of the Models 

Index Model 1 Model 2 Model 3 

CFI 1.00 1.00 1.00 

TLI 1.00 1.00 1.00 

RMSEA 0.00 0.00 0.00 

AIC 155.84 452.57 444.41 

BIC 173.65 484.24 476.08 

 

Though no differences were found between the models’ CFI and TLI scores, each 

indicate strong alignment between the proposed model and the observed data. Similarly, the 

RSMEA values of the models were all the same, each suggesting a perfect fit between the 

proposed model and the observed. However, differences were found between the models’ 

AIC and BIC scores. While the model 2 and 3 performed similarly, model 1 exhibited a 

superior fit to the data as evidenced by its lower AIC and BIC values. As such, the best-

fitting model was determined to be model 1, using the average verbal measures collected by 

the conversational agent throughout the entirety of each scenario. 

Model 1 was assessed using a bootstrapped SEM approach. However, it should be 

noted that the model is overfit and suggests saturation as indicated by the perfect CFI, TLI 

and RMSEA criteria. Overfitting occurs when a model captures random noise or 

idiosyncrasies in the data, resulting in excessive complexity that may not generalize well to 
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new data. Saturated models perfectly reproduce the observed data, fitting it with no residual 

discrepancies. Given the combination of a saturated model, perfect fit indices, and a small 

sample size, caution must be exercised when interpreting the results due to overfitting. 

The results of the analysis of the selected model and the answer to the predictions are 

reported in Table 3. 

Results show that, in terms of the direct effects, only the effect of difficulty on trust 

was significant. However, contrary to the expectations, handover time negatively affected the 

level of trust. In terms of moderation, handover time showed a significant positive effect on 

sleepiness. Regarding the indirect effects, there was a significant relationship between trust 

and sleepiness, with trust increasing the level of sleepiness. In terms of predictors of success, 

the mental workload was the only subjective measure to significantly influence success, with 

higher workloads leading to lower rates of success. Lastly, regarding correlations, the level of 

sleepiness was found to correlate to both the mental workload and state anxiety. 

As such predictions 5, 7, 11, 13, and 15 are confirmed, while prediction 1 is rejected, 

though the limited generalizability of the model should be kept in mind when interpreting 

these results. The remainder of the predictions cannot conclusively be confirmed based on the 

current data. 

Table 3 

Regression Effects and Respective Predictions of Model 1 (Bootstrapped) 

Prediction Relation 
Model 

Label 
Estimate SE 

z-

value 

p-

value 

Prediction 

Outcome 

1 Handover Time → 

Trust 

a -0.62 0.18 3.45 .001 Rejected 

2 Trust → Success b -0.27 0.20 -1.39 .166  

3 Handover Time → 

Success 

c -0.15 0.15 0.97 .334  

4 Handover Time → 

MWL 

d1 -0.14 0.33 0.42 .675  

5 Handover Time → 

Sleepiness 

d2 0.70 0.18 -3.84 <.001 Confirmed 
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6 Handover Time → 

State Anxiety 

d3 -0.33 0.29 1.11 .267  

7 MWL → Success e1 -0.57 0.13 -4.59 <.001 Confirmed 

8 Sleepiness → Success e2 0.22 0.20 1.09 .274  

9 State Anxiety → 

Success 

e3 -0.09 0.12 -0.75 .454  

10 Trust → MWL f1 -0.42 0.36 -1.15 .250  

11 Trust → Sleepiness f2 0.73 0.22 3.35 .001 Confirmed 

12 Trust → State Anxiety f3 -0.43 0.34 -1.26 .207  

13 Sleepiness ↔ MWL g1 0.30 0.11 2.87 .004 Confirmed 

14 State Anxiety ↔ 

MWL 

g2 -0.02 0.15 -0.11 .910  

15 State Anxiety ↔ 

Sleepiness 

g3 -0.29 0.13 -2.25 .024 Confirmed 

Note. MWL refers to mental workload 

Discussion 

The current study sought to investigate the relationship between the difficulty of a 

TOR and its possible success, taking into account the trust, mental workload, sleepiness, and 

anxiety of the driver. Moreover, a conversational agent was used alongside a questionnaire to 

collect data about these constructs to determine the best approach for doing so. 

The results of the current study show evidence in support of five out of the fifteen 

predicted relationships in the proposed model. In line with existing literature, it was found 

that higher mental workloads led to longer take-over times and lower rates of take-over 

success (Bueno et al., 2016; Du et al., 2020; Gold et al., 2016). Moreover, similar to the 

findings of Kundinger et al. (2019), the current study found that higher levels of trust in the 

AV resulted in more experienced sleepiness. 

To our knowledge this study was the first one to attempt to assess the effect of TOR 

difficulty on sleepiness in AVs. In this regard, our findings align with the indications coming 

from Drummond et al. (2004) which suggested that an increase in task difficulty results in a 

more wakeful state. Similarly, the current study is the first to investigate the correlation of 

mental workload, sleepiness, and state anxiety in TORs. To this end, sleepiness was found to 
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correlate with both mental workload and state anxiety, though no direct link between mental 

workload and state anxiety was found. 

Lastly, it was expected that TOR difficulty would negatively affect the driver’s trust 

in the autonomous vehicle, as suggested by the results of Yousfi et al. (2021). Contrary to 

this, our findings indicate that the difficulty increases the trust of the driver in the AV. 

Although this may be the result of methodological differences, it is possible that the 

relationship between TOR difficulty and driver trust may be more complex than assumed by 

the current model. While complexities such as additional moderating variables or non-linear 

patterns could explain the discrepancy, further research is needed to clarify the relationship 

between TOR difficulty and driver trust. 

Overall, the proposed model should be tested with more participants and a different 

operationalization for the level of difficulty. Currently, the difference between two of the 

three level of difficulties is not significant and two of the three main direct effects were not 

significant. This prevented us from discussing the rejected predictions, as the present pilot 

was not powerful enough nor was the design optimal to provide a meaningful analysis. 

Overall, the proposed model seems powerful and valid, but present data should be treated 

with caution. 

In any case, the current analysis suggests that when the model is fed with data 

collected through repeated verbalisations via a conversational agent, the fit is better than 

when data are collected less frequently or through a questionnaire. This suggests that 

conversational agents could be a viable means of collecting frequent and timely data about 

the state of the driver. In turn, this may make conversational agents a good solution for driver 

monitoring in AVs as urged by legislative entities (Regulation 2019/2144; Stay Aware For 

Everyone Act, 2021). That said, as of yet it is still unclear if and how conversing with the 

agent may affect the driving task or TORs, showing a need for further research. 
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Limitations and Future Recommendations 

Turning to limitations of the current study, there are various issues that may have 

negatively impacted the validity and reliability of the results. To start, the sampling validity is 

lacking in both quality and quantity. The current sample, consisting of six young adults, fails 

to meet the recommended size for investigating the proposed model, which would be 10 

participants per examined relationship. Moreover, while amongst the group most likely to 

adopt autonomous vehicles, young adults comprise only a portion of the population expected 

to use AVs in the future (Lee et al., 2017; Rovira et al., 2019). 

Regarding methodological limitations of the current study, technical issues with the 

simulation led to TOR success being measured through observation, as opposed to 

determining success computationally in the simulation itself. Additionally, there were also a 

number of problems in the fidelity of the simulation, namely limited visual quality, shakiness 

throughout the driving experience, a visual square in the centre of the participant’s field of 

view, the car crashing at the end of each path, random freezing of the simulation, and a lack 

of side mirror reflections. Moreover, the current study only collected qualitative data and 

subjective ratings. In future research, it is recommended to also include objective measures to 

increase objectivity, improve reliability, and aid in cross-validating the results. Lastly, in 

terms of the procedure, since participants were informed about their success or failure in the 

TOR event before being queried about their subjective measures, it is possible that their 

responses were influenced by their knowledge of the outcome of the task. 

Regarding the data analysis, constraints in time and resources limited the scope of the 

current study in terms of exploring different models. The inclusion of additional constructs 

such as situational awareness, which has been shown to affect reaction speed, may have 

revealed more complex relationships or lead to improved explanatory and/or predictive 

ability (H. Clark et al., 2017; J. R. Clark et al., 2019). Likewise, additional exploration of 
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model configurations may have led to more representative models or new found construct 

interactions altogether. 

As for recommendations of future research, it is worth reinvestigating the proposed 

model as limitations in the current study prevented it from discovering conclusive results. 

Besides that, it may be valuable to investigate how additional constructs such as driving 

experience and situational awareness further influence the relationship between TOR 

difficulty and success. Moreover, additional research into the use of conversational agents for 

AV driver monitoring may lead to recommendations regarding the tone of voice, use of 

language, or other factors possibly relevant in collecting driver data. In terms of research into 

methodologies for studies investigating the interaction of people with autonomous vehicles, it 

could be worth looking into how factors like simulation fidelity and VR reflect on real-world 

settings. 

Conclusion 

The current pilot study sought to investigate the relationship between the difficulty of 

a TOR due to unexpected events and people’s success in taking over, by also considering the 

role of situational trust, mental workload, sleepiness, and state anxiety of the driver. Based on 

existing literature a model was constructed, which was later tested and analysed through a 

SEM. In line with literature, the difficulty of a TOR was found to decrease the driver’s 

sleepiness, while their trust in the AV increased their sleepiness. Moreover, a higher mental 

workload was found to lead to lower rates of TOR success. Additionally, sleepiness was 

discovered to correlate with both mental workload and state anxiety. Contrary to existing 

literature however, the results showed that higher take-over difficulty increased the trust of 

the driver towards the AV. Lastly, of the included measurement modalities, the 

conversational agent that collected subjective measures the most frequently throughout each 

scenario resulted in data with the best fit to the proposed model. While limitations in the 
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current study restrict its generalizability, the model that we tested seems a good theoretical 

basis for future investigations that aim to concurrently test multiple interconnected (e.g., trust, 

sleepiness, etc.) aspects during unexpected tasks of taking over from an autonomous vehicle.  
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Appendix A 

Figure 1 

Driving Simulator Entire Rig 

 

Figure 2 

Driving Simulator Steering Wheel 
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Figure 3 

Driving Simulator Pedals 

 

Figure 4 

Vario VR-3 Headset 
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Figure 5 

Tablet Used for the Post-Trail Questionnaires 
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Appendix B 

Verbal Instruction   
  
Dear participant, thank you for participating this study on assessing the importance 
of trust in autonomous vehicles. The whole experiment will take approximately 90 
minutes.  
  
(Exclusive to SONA participants) This study is worth 2 SONA credits, you will receive 
your SONA credit after you have completed the study. 
  
This study involves the use of a VR headset together with a simulator in which you 
might be experiencing motion sickness (e.g., dizziness, feeling to vomit), please 
immediately report to us if you experience any discomfort before, during and after 
the experiment. 
  
You will have the right to withdraw this experiment at any moment without any 
reason, your data will also be removed. If you wish to have a copy of the informed 
consent, please inform us. If you have any questions up to this point, please let us 
know. 
  
In this study, you will be experiencing Level 3 autonomous vehicles, with by simple 
definition the vehicle will mainly be controlled by the automation system and you as a 
driver are expected to take over when needed. So, in this study you will be asked to 
respond to the task displayed on the screen on your right-hand side. You can 
respond by turning the steering wheel in the direction of left or right. You can step in 
the middle paddle to stop. The entire experiment contains 7 scenarios. After each 
scenario you will be filling in a questionnaire. Do you have any questions for now? 

 

Participant guide   
Before we begin, we would like to address a few things:  
Please kindly put your phone on silence mode and place it away from your pocket, 
so it will not hinder you during the experiment. 

- You can adjust the sitting position that best suits you by pulling the bar 
underneath the chair.  

- Please relax and sit back during the experiment.  
- Please kindly place your dominant feet on the middle paddle to stop the car.  
- Please make sure you are in a sitting position + VR position where you can 

clearly and fully see the steering wheel and the monitor at your right-hand 
side in VR environment, you can also request us to adjust if these 
visualisations are unclear for you.  

- Please note that there will be a certain level of shakiness in the vision due to 
technical difficulties we encounter, please don’t let in concern you.  

- During the experiment you will be seeing a light grey square, it was used to 
perform eye tracking, please don’t let it concern you  

- At the end of the experiment, the vehicle will continue to run, it may crash, or 
go off the road due to technical difficulties, please do not let it concern you as 
well.  

- The program might pause or glitch due to the unity program, this will not affect 
the experiment, so don’t let it concern you   
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- Once again, if you felt uncomfortable during the experiment, please report to 
us immediately. We don’t wish that participant to feel sick during the 
experiment, therefore you are free to withdraw anytime.  

- You don’t need to steer the steering to the max or to the hard end but make 
sure your action was obvious and visible to the researchers, you can relax 
your arm and place it on your lap or other places, please do not place it on the 
steering wheel due to the setting of L3 autonomous cars 

- We will verbally notify you whether you fail or successfully complete the task   
o Success -> You are have successfully taken over   
o Fail -> You missed the takeover moment   

- The instruction to “take over” will appear at the screen of your right-hand side, 
please respond to it as soon as you see the instruction.  

- Lastly, please remember that there is no intention of assessing your driving 
behaviour, the aim is to assess the driving system, therefore, if you fail to 
perform the takeover, you don't have to worry about it (say this at the 
beginning of the experiment and in between, or whenever the participants 
seem stressed about their performance)  
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Appendix E 

Prompts to read for the first instruction in each scenario:  

  
Please indicate how much effort it took you to complete the task from 0 to 150, 0 is 

absolutely no effort, 57 is rather much effort, and 150 is extreme effort.  
  
Now, please indicate how sleepy you are from 1 to 9, 1 is extremely alert, 5 is neither alert 

nor sleepy and 9 is very sleepy.  
  
Please rate how much you agree with the following statements.  
I trust the automation in this situation from 1 to 7, 1 is strongly disagree and 7 is strongly 

agree.  
I feel calm from 1 to 7, 1 is strongly disagree and 7 is strongly agree.  
I feel nervous from 1 to 7, 1 is strongly disagree and 7 is strongly agree.  
I am tense from 1 to 7, 1 is strongly disagree and 7 is strongly agree.  
  
Prompts to read on the following instructions in each scenario:  

  
You rated your previous effort it took you to complete the task as (X) from 0 absolutely no 

effort to 150 extreme effort. How much would you rate it now?   
  
You rated your sleepiness as (X) from 1 extremely alert to 9 very sleepy. How much would 

you rate it now?  
  
You rated your trust in the automation as (X) from 1 lowest trust to 7 is highest trust. How 

much would you rate it now?  
  
You rated your calmness (X) from 1 lowest calmness to 7 highest calmness. How much 

would you rate it now?  
  
You rated your nervousness as (X) from 1 lowest nervousness to 7 highest nervousness. How 

much would you rate it now?  
  
You rated your tensity as (X) from 1 lowest tensity to 7 highest tensity. How much would 

you rate it now?  
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Appendix F 

--- 

editor_options: 

  markdown: 

    wrap: 72 

output: 

  html_document: 

    df_print: paged 

  word_document: default 

--- 

 

#Section A. #Packages and Libraries 

```{r} 

require(tidyverse) 

library(readxl) 

library(broom) 

library(ggplot2) 

library(ggpubr) 

library(broom) 

library(AICcmodavg) 

library(lavaan) 

library(mediateP) 

library(dplyr) 

library(rmarkdown) 

library(lavaan) 

library(blavaan) 

library(psych) 

library(gridExtra) 

library(semPlot) 

library(car) 

library(lme4) 

library(flexmix) 

library(loo) 

library(rstan) 

``` 

 

```{r} 

options(scipen=999) 

theme_set(theme_bw()) 

``` 

 

#Loading the data in excel format and transforming into data frames 

 

```{r} 

data_demographics <- read_excel('Data/demographics.xlsx') #This is the data for demographic 
information 
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data_chatbot <- read_excel('Data/chatbot_verbal.xlsx') #This is the data for chatbot 
group's verbal measurements 

data_after_scenarios <- read_excel('Data/qualtrics.xlsx') #This is the data for both 
group's qualtrics answers and success RATES 

data_D <-as.data.frame(data_demographics) 

data_C <- as.data.frame(data_chatbot) 

data_Q <- as.data.frame(data_after_scenarios) 

``` 

 

#Creating a success variable in data from qualtrics 

 

```{r} 

data_Q$Success <- (data_Q$I_1 + data_Q$I_2 + data_Q$I_3) / 3 

``` 

 

#Take out Training 

 

```{r} 

data_C <- subset(data_C, Path != 'Training') 

``` 

 

```{r} 

data_Q <- subset(data_Q, Path != 'Training') 

``` 

 

#Trait Anxiety 

 

```{r} 

data_D <- data_D %>%  

  mutate(TraitAnxiety = rowMeans(select(data_D, starts_with("TA")))) 

``` 

 

#CSQ_VR before the experiment 

 

```{r} 

data_D <- data_D %>%  

  mutate(CSQ_VR = rowMeans(select(data_D, starts_with("CSQ_VR")))) 

``` 

 

#Demographics 

 

```{r} 

demographics <- data_D %>% 

  group_by(ID) %>% 

  summarize(age = first(Age), 

            sex = first(Sex), 

            experience = first(Experience), 

            trait_anxiety = first(TraitAnxiety), 
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            csq_vr = first(CSQ_VR), 

            group = first(Group)) 

``` 

 

```{r} 

print(demographics) 

``` 

 

```{r} 

summary(demographics) 

``` 

 

```{r} 

sd(demographics$age) 

``` 

 

```{r} 

sd(demographics$experience) 

``` 

 

```{r} 

sd(demographics$trait_anxiety) 

``` 

 

```{r} 

sd(demographics$csq_vr) 

``` 

 

#CSQ_VR (Cybersickness) changes ##Creating an average of CSQ_VR data 

 

```{r} 

data_Q <- data_Q %>%  

  mutate(CSQ_VR = rowMeans(select(data_Q, starts_with("CSQ_VR")))) 

``` 

 

##Visualizing changes in CSQ_VR - ? Maybe - substitute this for three 

boxplots - look for a good visualization for ? 

 

```{r} 

temp_data <- data_Q 

temp_data$ID <- as.factor(temp_data$ID) 

 

ggplot(temp_data, aes(x = Path, y = CSQ_VR, group = ID, color = ID)) + 

  geom_point() + 

  geom_line(size = 1) + 

  geom_hline(aes(yintercept = CSQ_VR), color = "gray", alpha = 0.5) + 

  labs(x = "Path", y = "Cybersickness", color = "ID") + 

  scale_x_discrete(limits = c("Easy", "Moderate", "Hard")) 
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``` 

 

##Regression analysis on CSQ_VR and Group (Chatbot and form) 

 

```{r} 

lm(CSQ_VR ~ Group, data = data_Q)%>% 

  summary() 

``` 

 

##Regression analysis on CSQ_VR and Level of difficulty 

 

```{r} 

lm(CSQ_VR ~ Path, data = data_Q)%>% 

  summary() 

``` 

 

#State Anxiety ##First we need to reverse the first item (Calmness) 

 

```{r} 

data_C$SA_1 <- 8 - data_C$SA_1 

StateAnxiety <- rowSums(cbind(data_C$SA_1, data_C$SA_2, data_C$SA_3)) 

data_Q$SA_1 <- 8 - data_Q$SA_1 

StateAnxiety <- rowSums(cbind(data_Q$SA_1, data_Q$SA_2, data_Q$SA_3)) 

``` 

 

##Averaging the data from State Anxiety items into one variable 

 

```{r} 

data_C <- data_C %>%  

  mutate(StateAnxiety = rowMeans(select(data_C, starts_with("SA")))) 

``` 

 

```{r} 

data_Q <- data_Q %>% 

  mutate(StateAnxiety = rowMeans(select(data_Q, starts_with("SA")))) 

``` 

 

###Regression analysis on State Anxiety and Trait Anxiety ##Qualtrics 

(all groups) 

 

```{r} 

data_QD <- left_join(data_Q, data_D, by = "ID") 

``` 

 

```{r} 

lm(StateAnxiety~TraitAnxiety, data=data_QD)%>% 

  summary() 

``` 
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##Chatbot verbal 

 

```{r} 

data_CD <- left_join(data_C, data_D, by = "ID") 

``` 

 

```{r} 

lm(StateAnxiety~TraitAnxiety, data=data_CD)%>% 

  summary() 

``` 

 

#Section B. 

 

#Checking for manipulation effect (Perceived easiness x Level of 

difficulty) 

 

```{r} 

lm(Easiness~Path, data=data_Q)%>% 

  summary() 

``` 

 

#Comparing the differences between chatbot group's verbal and form 

measurements ##Seperating chatbot and form groups' form answers 

 

```{r} 

data_chatbotQ <- filter(data_Q, Group %in% c(1)) 

``` 

 

###Adding colums to data sheet and marking them as chatbot or form 

(Within chatbot group) 

 

```{r} 

data_C$`Administration` <- 1 

data_chatbotQ$`Administration` <- 0 

``` 

 

####Merging two datasets 

 

```{r} 

data_CG <- bind_rows(data_C, data_chatbotQ) 

data_CG$`Group` <- 1 

``` 

 

#####Performing MANOVA 

 

```{r} 
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model_chatbot <- manova(cbind(Effort, Sleepiness, Trust, StateAnxiety) ~ Administration, 
data = data_CG) 

summary(model_chatbot) 

 

# Perform post-hoc tests (Wilks' Lambda) for pairwise comparisons 

summary.aov(model_chatbot) 

``` 

 

#Comparing the differences between chabot group's last verbal answer and 

average of the verbal measurements ##Reading a new data set + adding a 

StateAnxiety item 

 

```{r} 

data_final_verbal <- read_excel('Data/chatbot_verbal_final.xlsx') #This is the data for 
chatbot group's final verbal answer 

data_DF <-as.data.frame(data_final_verbal) 

``` 

 

```{r} 

data_DF$SA_1 <- 8 - data_DF$SA_1 #Inverting SA to be correct 

StateAnxiety <- rowSums(cbind(data_DF$SA_1, data_DF$SA_2, data_DF$SA_3)) 

``` 

 

```{r} 

data_DF <- data_DF %>%  

  mutate(StateAnxiety = rowMeans(select(data_DF, starts_with("SA")))) 

``` 

 

###Creating a new dataset for chatbot group's averaged verbal 

measurements 

 

```{r} 

data_CA <- data_C %>% 

  group_by(ID, Path) %>% 

  summarize(across(c(Success, Effort, Sleepiness, Trust, StateAnxiety), mean)) 

``` 

 

####Combining datasets 

 

```{r} 

data_DF$`Type` <- 0 

data_CA$`Type` <- 1 

data_CA$`Group` <- 1 

``` 

 

```{r} 

data_CG_1 <- bind_rows(data_CA, data_DF) 

``` 
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#####Performing MANOVA 

 

```{r} 

model_chatbot_1 <- manova(cbind(Effort, Sleepiness, Trust, StateAnxiety) ~ Type, data = 
data_CG_1) 

summary(model_chatbot_1) 

 

# Perform post-hoc tests (Wilks' Lambda) for pairwise comparisons 

summary.aov(model_chatbot_1) 

``` 

 

#Correlation Matrix between groups (Chatbot and form group) ##Combining 

chatbot group's form and averaged verbal measurements 

 

```{r} 

data_full_ca <- data_CA # Using the average verbal measures 

data_full_cf <- data_DF # Using the final verbal measures 

data_full_cq <- data_chatbotQ 

``` 

 

#Section D. 

 

#Testing Hypotheses 

 

##Model 1. This is without 'Group' as an IV.  

 

```{r} 

M1 <- " 

#Direct effects 

z_Trust ~ a*Path 

Success ~ b*z_Trust 

Success ~ c*Path 

  

#TotSuccess=Success affected by Path and mediated by Trust 

Totab:=a*b 

TotSuccess:=Totab+c 

  

#indirect effects of path (difficulty levels) on subvariables 

z_MentalWorkload ~ d1*Path 

z_Sleepiness~ d2*Path 

z_StateAnxiety~ d3*Path 

  

#indirect effects of trust on subvariables 

z_MentalWorkload ~ e1*z_Trust 

z_Sleepiness~ e2*z_Trust 

z_StateAnxiety~ e3*z_Trust 

  



67 

 

#indirect effects of on subvariables on success 

Success ~ f1*z_MentalWorkload 

Success ~ f2*z_Sleepiness 

Success ~ f3*z_StateAnxiety 

  

#effects of path and trust on subvariables 

Tot1:=d1*e1 

Tot2:=d2*e2 

Tot3:=d3*e3 

  

#effects of path and trust on success madiated by the subvariables 

Tot4:=Tot1+f1 

Tot5:=Tot2+f2 

Tot6:=Tot3+f3 

  

TotSuccess2:= Tot4+Tot5+Tot6 

Overallmodel:=TotSuccess+TotSuccess2 

  

#Covariance 

z_MentalWorkload ~~ z_Sleepiness 

z_MentalWorkload ~~ z_StateAnxiety 

z_Sleepiness ~~ z_StateAnxiety 

" 

``` 

 

###-- AVERAGE --### #Calculating z scores of variables 

 

```{r} 

data_c_bsem_ca <- data_full_ca %>%  

  mutate(z_MentalWorkload = scale(Effort)) %>%  

  mutate(z_StateAnxiety = scale(StateAnxiety)) %>%  

  mutate(z_Trust = scale(Trust)) %>%  

  mutate(z_Sleepiness = scale(Sleepiness)) 

``` 

 

#SEM Analysis ##M1 ###Chatbot group  

 

```{r} 

cg_sem_m1_ca <- sem(M1, data = data_c_bsem_ca) 

parameterEstimates(cg_sem_m1_ca, ci=TRUE, level=0.95, boot.ci.type="perc") 

summary(cg_sem_m1_ca, fit.measures = TRUE, rsquare = TRUE) 

``` 

 

#Model Fitness (bic, dic, waic, looic) ##M1 ###Chatbot group  

 

```{r} 

fitMeasures(cg_sem_m1_ca) 

``` 
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#SEM Analysis ##M1 ###Chatbot group  

 

```{r} 

cg_BOOST_m1_ca <-sem(M1,data=data_c_bsem_ca, se = "bootstrap", bootstrap = 5000) 

parameterEstimates(cg_BOOST_m1_ca, ci=TRUE, level=0.95, boot.ci.type="perc") 

summary(cg_BOOST_m1_ca, fit.measures=TRUE, rsquare=TRUE) 

``` 

 

###-- FINAL --### #Calculating z scores of variables 

 

```{r} 

data_c_bsem_cf <- data_full_cf %>%  

  mutate(z_MentalWorkload = scale(Effort)) %>%  

  mutate(z_StateAnxiety = scale(StateAnxiety)) %>%  

  mutate(z_Trust = scale(Trust)) %>%  

  mutate(z_Sleepiness = scale(Sleepiness)) 

``` 

 

#SEM Analysis ##M1 ###Chatbot group  

 

```{r} 

cg_sem_m1_cf <- sem(M1, data = data_c_bsem_cf) 

parameterEstimates(cg_sem_m1_cf, ci=TRUE, level=0.95, boot.ci.type="perc") 

summary(cg_sem_m1_cf, fit.measures = TRUE, rsquare = TRUE) 

``` 

 

#Model Fitness (bic, dic, waic, looic) ##M1 ###Chatbot group  

 

```{r} 

fitMeasures(cg_sem_m1_cf) 

``` 

 

#SEM Analysis ##M1 ###Chatbot group  

 

```{r} 

cg_BOOST_m1_cf <-sem(M1,data=data_c_bsem_cf, se = "bootstrap", bootstrap = 5000) 

parameterEstimates(cg_BOOST_m1_cf, ci=TRUE, level=0.95, boot.ci.type="perc") 

summary(cg_BOOST_m1_cf, fit.measures=TRUE, rsquare=TRUE) 

``` 

 

###-- QUESTIONNAIRE --### #Calculating z scores of variables 

 

```{r} 

data_c_bsem_cq <- data_full_cq %>%  

  mutate(z_MentalWorkload = scale(Effort)) %>%  

  mutate(z_StateAnxiety = scale(StateAnxiety)) %>%  

  mutate(z_Trust = scale(Trust)) %>%  
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  mutate(z_Sleepiness = scale(Sleepiness)) 

``` 

 

#SEM Analysis ##M1 ###Chatbot group  

 

```{r} 

cg_sem_m1_cq <- sem(M1, data = data_c_bsem_cq) 

parameterEstimates(cg_sem_m1_cq, ci=TRUE, level=0.95, boot.ci.type="perc") 

summary(cg_sem_m1_cq, fit.measures = TRUE, rsquare = TRUE) 

``` 

 

#Model Fitness (bic, dic, waic, looic) ##M1 ###Chatbot group  

 

```{r} 

fitMeasures(cg_sem_m1_cq) 

``` 

 

#SEM Analysis ##M1 ###Chatbot group 

 

```{r} 

cg_BOOST_m1_cq <-sem(M1,data=data_c_bsem_cq, se = "bootstrap", bootstrap = 5000) 

parameterEstimates(cg_BOOST_m1_cq, ci=TRUE, level=0.95, boot.ci.type="perc") 

summary(cg_BOOST_m1_cq, fit.measures=TRUE, rsquare=TRUE) 

``` 


