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ABSTRACT

Land Surface Temperature (LST) is significant for climatological and environmental studies. LST
products acquired from satellites, however, suffer from the tradeoff between spatial and temporal
resolution. Spatial downscaling has emerged as a well explored field aiming to overcome limitations
arising from this tradeoff. Previous research on regression based LST downscaling models focused
on utilizing predictors derived from optical imagery for constructing such spatial downscaling
models. Weather-dependent nature of optical imagery data, however, can influence downscaling
models and render them ineffective during bad weather conditions like high cloud cover. To
cope with this issue, in this research, we involve predictors derived from the weather-independent
Sentinel-1 Synthetic Aperture Radar (SAR) imagery to downscale Landsat-8 LST and MODIS LST
products. In this context, we propose to use machine learning techniques, namely Random Forest
(RF) and Convolutional Neural Networks (CNN) as base regression algorithms to develop radar-
based LST downscaling models. To demonstrate the applicability and performance of the proposed
method, extensive experimental analyses were conducted over Zuid-Holland in the Netherlands.
From the experiments, we found that the results obtained with radar predictors were comparable
both quantitatively and qualitatively to those achieved using optical predictors. This confirms that
the proposed method indeed paves a new way for mapping LST using SAR images.

In addition to the aforementioned contributions, we present innovative methodologies for engi-
neering features from SAR and land cover datasets, aiming to enhance the performance of base
models. Through conducting various experiments with distinct feature sets, we found out that
these engineered features effectively address limitations stemming from the inherent ‘noisy’ na-
ture of SAR images. Consequently, they contribute to the improvement of downscaling models’
performance.

Moreover, we propose a novel CNN-based architecture for downscaling LST. Through quantita-
tive comparison with the widely adopted RF model, we have determined that the CNN-based
downscaling architecture outperforms RF. However, upon conducting a qualitative assessment of
the downscaled images generated by the CNN-based approach, we identified certain performance
shortcomings associated with the architecture’s design. In light of these findings, we recommend
specific modifications to the proposed architecture with the aim of addressing the aforementioned
shortcomings. By implementing these modifications, we anticipate further increase in performance
and capabilities of the proposed CNN-based downscaling methodology.
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Chapter 1

Introduction

This chapter is divided into seven main sections: ‘Background’ (Section 1.1), ‘Introduction to
Downscaling’ (Section 1.2), ‘Literature Review’ (Section 1.3), ‘Research Gap’ (Section 1.4), ‘Research
Objectives and Questions’ (Section 1.5), ‘Contributions’ (Section 1.6), and ‘Thesis Structure’
(Section 1.7). The chapter commences with Section 1.1, emphasizing the significance of high
spatio-temporal Land Surface Temperature (LST) products and the constraints encountered in their
attainment. This sets the foundation for Section 1.2, where the process of ‘Spatial Downscaling’ is
introduced as a solution to address the constraints in achieving high spatio-temporal LST products.
Section 1.3 delves into noteworthy studies conducted in the field of LST downscaling, which
subsequently aids in identifying the research gap discussed in Section 1.4. Drawing inspiration from
Section 1.4, Section 1.5 establishes the groundwork for formulating the research objectives and the
corresponding research questions. Lastly, the chapter concludes by highlighting the contributions
made by this research in Section 1.6 and providing a description of the thesis structure to the reader
in Section 1.7.

1.1 BACKGROUND

LST holds significant importance in comprehending and simulating the energy distribution on
the Earth’s surface. It serves as a valuable variable for predicting the effects of climate change and
land use-land cover alterations on energy budgets at both global and local scales. The analysis
of LST provides crucial insights into the distribution and transfer of thermal energy within the
Earth’s system. One noteworthy application of LST data lies in the monitoring and analysis of
urban heat islands (Zakšek & Oštir, 2012). Urban areas exhibit higher temperatures compared
to their surrounding rural regions, primarily due to human activities and the built environment.
Through the examination of LST patterns, researchers can evaluate the extent and intensity of
urban heat islands. This assessment plays a pivotal role in urban planning, the design of heat
mitigation strategies, and the enhancement of overall comfort and well-being for urban residents.
Furthermore, LST data also proves to be beneficial in studying soil moisture (Bai et al., 2019;
Zhang et al., 2014). The correlation between LST and soil moisture content aids researchers in
understanding water availability in different areas. By estimating soil moisture through LST data,
researchers can monitor agricultural productivity, assess drought conditions, and make informed
decisions regarding irrigation practices, crop management, and water resource allocation. Drought
monitoring (Wan et al., 2004) represents another critical application of LST information. LST data
provides insights into the intensity and spatial extent of drought events, facilitating timely and
targeted mitigation measures. Through the analysis of LST patterns, researchers and policymakers
can assess the severity of drought conditions, anticipate potential impacts on agriculture and
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Table 1.1 Spatial and Temporal characteristics of some widely-used TIR-based satellites

Satellite Spatial Resolution (Bands) Temporal Resolution

MODIS
500m (VIS, NIR, SWIR)

1000m (TIR)
1 day

Sentinel-3 SLSTR
500m (solar reflectance bands)

1000m (TIR)
1 day

Landsat-8
30m (VIS, NIR, SWIR)

100m (TIR)
16 days

ecosystems, and implement appropriate measures to manage water resources and minimize socio-
economic consequences. LST data also enables the study of vegetation dynamics as highlighted
by Julien and Sobrino (2009). Alterations in LST patterns indicate variations in plant growth,
phenology, and overall vegetation health. By correlating LST with vegetation indices derived from
satellite imagery, researchers can monitor vegetation productivity, assess the impact of climate
change on ecosystems, and enhance our understanding of the Earth’s carbon cycle. In addition to
these applications, LST data is instrumental in estimating heat loss from individual buildings. By
analyzing temperature differences between building surfaces and the surrounding environment,
researchers can evaluate energy efficiency, identify areas of heat loss, and optimize building design
and insulation strategies to reduce energy consumption.

While conventional ground weather stations have traditionally been used to collect LST data, their
spatial distribution often exhibits sparsity, limiting their effectiveness in large-scale LST mapping
(Z. L. Li et al., 2013). To overcome this limitation, satellite-derived LST data has gained prominence.
Satellites equipped with thermal sensors have the capability to capture LST measurements over
vast areas, providing detailed information at both spatial and temporal scales. This satellite-based
remote sensing approach facilitates comprehensive monitoring, modeling, and analysis of LST,
thereby enabling a wide range of applications across various scientific disciplines and environmental
management practices. This space-based LST information can be retrieved using both Thermal
Infrared (TIR) and Passive Microwave (PMW) satellites (Hu et al., 2023); however, the majority of
space-based LST information is derived via TIR-based satellites.

Within the domain of space-based data, the Moderate Resolution Imaging Spectroradiometer
(MODIS) has emerged as the most extensively investigated source for deriving LST products.
MODIS provides daily satellite images with a spatial resolution of 500 m for Visible (VIS), Short-
Wave Infrared (SWIR), and Near Infrared (NIR) bands, and 1000 m for the TIR band. Another
viable option for computing LST products, offering similar spatial and temporal characteristics to
MODIS, is the Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR), developed by
the European Space Agency (ESA). In the context of finer spatial resolution, Landsat-8 offers an
appealing alternative, presenting a TIR channel with a spatial resolution of 100 m for computing
LST information. However, it is worth noting that Landsat-8 exhibits a temporal resolution of
16 days, resulting in less frequent data acquisitions compared to MODIS and Sentinel-3 SLSTR.
Table 1.1 provides information on the spatial and temporal characteristics of these satellite products.
As seen from Table 1.1, currently available, and operational remote sensing sensors produce TIR
products (e.g., LST) at a much coarser resolution than VIS, NIR, and SWIR products (e.g., spectral
indices) from the same satellite. The main reason of this disparity in the band resolutions is that
the TIR bands capture radiation at longer wavelengths (Guo et al., 2022). Also, as the emitted wave
from the ground surface (TIR) carries less energy compared to the reflected wave (VIS) from the
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VISible region, the spatial resolution of TIR channels is often coarse in order to get enough level of
emitted energy at each pixel.

Furthermore, retrieving LST information through remote sensing techniques often encounters
a fundamental trade-off between spatial and temporal resolution. The acquisition of high spatial
resolution LST products from space-based platforms generally comes at the expense of reduced
temporal resolution, and vice versa. Consequently, irrespective of the chosen LST product, users are
confronted with uncertainties arising from either the spatial or temporal domain. To alleviate this
conflict, aerial methods, such as airborne or Unmanned Aerial Vehicles (UAVs), can be employed
to collect LST data as needed. Nevertheless, these approaches tend to be costly and often lack
practicality for large-scale applications. Alternatively, image processing techniques offer optimal
solutions to tackle the inherent trade-off between spatial and temporal resolutions associated with
space-based LST products. A particular class of image processing techniques, known as Spatial
Downscaling (SD) methods, have demonstrated effectiveness in overcoming these constraints. SD
methods employ statistical and mathematical algorithms to downscale LST data from coarser spatial
resolutions to finer resolutions, thereby enhancing the level of detail and precision. The application
of SD methods enables a more comprehensive understanding of LST patterns and processes at finer
scales, thereby facilitating enhanced analysis and decision-making across various domains, including
urban planning, agriculture, hydrology, and climate studies. By effectively addressing the trade-off
between spatial and temporal resolutions inherent in space-based LST products, SD methods serve
as valuable tools to bridge the gap between detailed spatial information and frequent temporal
coverage. Ultimately, the integration of these techniques serves as a catalyst for the advancement of
our understanding and utilization of LST data.

1.2 INTRODUCTION TO DOWNSCALING

Spatial downscaling can be defined as the process of translating spatial information from coarse to
fine spatial resolutions. Figure 1.1 provides a simple intuition of the spatial downscaling process. By
utilizing spatial downscaling techniques, users can overcome the inherent trade-offs between spatial
and temporal resolutions, thereby attaining high spatio-temporal LST information. This capability
holds particular significance in urban studies, where the demand for precise and detailed LST
products is of utmost importance. Urban areas are characterized by their intricate and diverse land
surface properties, with built-up regions exhibiting high heterogeneity in terms of land cover types,
surface materials, and anthropogenic activities. Consequently, these variations often correspond to
substantial variability in LST (Z. L. Li et al., 2013). To effectively comprehend and analyze the
thermal behavior of urban environments, acquiring LST data with high spatio-temporal resolution
becomes imperative.

High spatio-temporal resolution LST data facilitates the observation and monitoring of LST changes
across distinct land covers within urban areas at both fine spatial and temporal resolution. Whether it
pertains to fields, roads, or buildings, each land cover type exhibits its unique thermal characteristics,
contributing to the overall thermal dynamics of the urban landscape. By capturing these nuanced
variations through fine-scale LST data, researchers and policymakers can derive valuable insights
into the temporal patterns and changes in LST across different land covers. Conversely, LST
products derived from coarse spatial resolutions, such as those with the resolution of 1000 m,
encounter limitations in accurately capturing LST variations across various land covers. The lack
of spatial detail in these coarse-resolution products tends to obscure the distinct thermal signatures

3



DOWNSCALING LAND SURFACE TEMPERATURE USING SAR IMAGES: A MACHINE LEARNING FRAMEWORK

Figure 1.1: A simple representation of the ‘Downscaling’ process. Here, Ic refers to image at coarse
resolution, whereas, If refers to image at fine resolution. ‘×4’ denotes the downscaling factor (in
this case: ‘4 times’)

associated with different land cover types. Consequently, conducting detailed assessments of LST
patterns and their relationship to specific land covers becomes challenging.

In light of these challenges, spatial downscaling techniques assume a critical role in improving
the spatial resolution of LST products. By augmenting the spatial detail, these techniques enable
a comprehensive analysis of thermal behavior within urban areas. The application of spatial
downscaling methods serves to overcome the ambiguities and limitations of coarse-resolution
LST products, ensuring that fine-scale LST variations across diverse land covers can be accurately
captured and analyzed.

Spatial downscaling methods can be divided into various categories such as: physical models (Hu
et al., 2023), spatio-temporal fusion models (Weng et al., 2014; Zhu et al., 2010), and regression-based
models (Agam et al., 2007; Hutengs & Vohland, 2016; W. Li et al., 2019).

1.3 LITERATURE REVIEW

This section briefly introduces various developed techniques in the context downscaling LST. Here,
the section on regression-based models (1.3.3) has been provided in greater detail as compared to
sections on physical (1.3.2) and spatio-temporal fusion models (1.3.1), as the scope of this thesis is
limited to regression-based modelling.

1.3.1 Spatio-temporal Fusion Models

Spatio-temporal fusion models are a class of downscaling techniques that attempts to leverage the
fine spatial qualities of fine spatial resolution LST products and the fine temporal qualities of the
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coarse spatial resolution LST products collected from different sensors, to construct fine spatio-
temporal LST products. The base of these models lie in pixel mixture theory where the reflectance
of a mixed coarse spatial resolution pixel can be decomposed into weighted linear combination of
the reflectance of overlapping fine spatial resolution endmembers. After a series of assumption, the
reflectance value of a fine spatial resolution pixel at time tp is found to be dependent upon:

1. the reflectance value of the same fine resolution pixel at time to

2. the reflectance value of the resampled coarse resolution pixel at time to

3. the reflectance value of the resampled coarse resolution pixel at time tp

4. conversion coefficient obtained by fitting a linear regression model between the same end-
member reflectance change from time tm to time tn and the coarse resolution reflectance
change from time tm to time tn

The above short summary forms the base of Zhu et al. (2010) and Weng et al. (2014). It is also
worth noting that unlike the physical and regression models (discussed in Sections 1.3.2 and 1.3.3),
spatio-temporal fusion models directly address the enhancement of temporal resolution. This is
evident from the above explanation where the model directly incorporates changes in reflectance
values over time as it’s parameters. Furthermore, since the process of obtaining the conversion
coefficient parameter listed above is distinct from that of other parameters, the time t is labelled in
a different manner.

1.3.2 Physical Models

Physical downscaling models are a class of spatial downscaling techniques that incorporate physical
principles and processes to estimate high-resolution variables based on coarser-resolution data.
These models have proven particularly valuable in the context of downscaling LST, as they lever-
age knowledge of energy transfer, heat conduction, radiation, and other physical phenomena to
accurately estimate LST values at finer spatial resolutions. To achieve this, physical downscaling
models take into account various factors that influence thermal patterns, including land cover
characteristics, topography, atmospheric conditions, and surface energy balance components. By
incorporating these factors into their algorithms, these models simulate the intricate fine-scale
variations of LST, providing detailed estimations that reflect the underlying physical mechanisms
at play (X. Li et al., 2022).

It is important to acknowledge that physical downscaling models also have their limitations. One
notable challenge is the inherent complexity and demanding computational requirements associated
with their design. Implementing these models often requires advanced expertise and substantial
computational resources, which can be a barrier to their widespread adoption. Furthermore, since
the incorporated physical processes are governed by a lot of meteorological and physical variables,
these models require multiple data inputs which extends the complexity of these models.
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1.3.3 Regression Models

Regression-based models are a type of spatial downscaling models that aim to establish a statistical
relationship between input predictors and a target variable at a coarse resolution. The primary
objective of these models is to leverage this established relationship to predict the target variable at
a more detailed spatial resolution, utilizing fine-resolution predictors as inputs. The underlying
assumption of regression-based models is scale-invariance, which suggests that the relationship
between predictors and the target variable remains consistent despite spatial scale variations. In
practical terms, researchers typically train regression-based models using data collected at a specific
spatial resolution denoted as X. After model training and validation at spatial resolution X, it can be
utilized to estimate the target variable at a different spatial resolution, denoted as Y (where X>Y).
This transferability of the model across resolutions constitutes a key advantage of regression-based
downscaling, enabling the estimation of the target variable in regions or time periods where only
coarse-resolution data is available.

In context of downscaling LST, various predictors are commonly employed by researchers to
capture the relationship between these predictors and LST. These predictors typically include
spectral indices derived from remote sensing data. Additionally, terrain factors such as elevation,
slope, and aspect, as well as land use and land cover information, are also often integrated as
predictors in these models. The inclusion of such predictors aims to account for and model as much
variability as possible in the target variable, LST. However, one of the challenges in regression-based
downscaling is the selection of appropriate predictors. Since the choice of predictors is usually
subjective, uncertain, and specific to the application (Hu et al., 2023), researchers must carefully
consider which predictors to include in the model. The selection process may involve expert
knowledge, statistical analysis, and exploration of previous studies.

Nevertheless, regression-based modeling remains the most commonly adopted and experimented
method in downscaling LST studies (X. Li et al., 2022). The success of regression models can
be attributed to their practical ease of implementation compared to other methods (Hutengs &
Vohland, 2016).

Extensive research has been undertaken in the field of regression-based LST downscaling models
during the last two decades. Kustas et al. (2003) proposed a technique called DisTrad, which utilized
least square regression between Normalized Difference Vegetation Index (NDVI) and LST. This
approach aimed to downscale MODIS LST products from a resolution of 1000 m to MODIS NDVI
resolution of 250 m. Subsequently, Agam et al. (2007) refined the DisTrad algorithm and introduced
a new method called TsHARP. In TsHARP, fractional vegetation cover was used as a predictor
instead of NDVI, which reduced the DisTrad algorithm’s Root Mean Square Error (RMSE) from
1.5 °C to a range of 0.67–1.35 °C. These methods demonstrated good performance in areas with
high vegetation cover. However, their effectiveness in urban areas was limited due to the absence
of predictors associated with urban LST variability. To address this limitation, both NDVI and
surface albedo were utilized as predictors by Dominguez et al. (2011) in the development of a
new method called High-Resolution Thermal Sharpener (HUTS) with a focus on urban areas.
Comparative analysis between HUTS and TsHARP revealed superior performance of HUTS.
This observation highlights that the inclusion of additional predictors correlated with LST in
downscaling models tends to enhance their performance. Nonetheless, it is important to note that
assuming a linear relationship between all incorporated predictors and LST would be erroneous.
This underscores the necessity of employing regression models capable of capturing non-linear and
complex relationships between predictors and the target variable.
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Given the advantages of machine learning methods in image processing and image regression, in the
last decade several studies explored the benefits of applying such advanced techniques to downscale
LST images. For example, Yang et al. (2010) employed Artificial Neural Network (ANN) to
downscale LST from a resolution of 360 m to 90 m. This ANN-based downscaling approach
outperformed the DisTrad method in all conducted experiments. Bindhu et al. (2013) proposed a
Non-Linear DisTrad (NL-DisTrad) algorithm, which combined a hot edge model with an ANN.
The NL-DisTrad algorithm achieved an RMSE of less than 0.96 °C for the task of downscaling
MODIS LST. Similar to previous statistical methods, NL-DisTrad utilized NDVI as a predictor
for LST downscaling. Hutengs and Vohland (2016) employed Random Forest (RF) regression,
a well-known machine learning algorithm, to downscale LST. Their approach incorporated
surface reflectances (red, blue, green, short-wave infrared, and near-infrared channels), topography
variables derived from Digital Elevation Model (DEM), and a land use map as predictors for the
downscaling model. Furthermore, W. Li et al. (2019) applied popular machine learning algorithms
such as RF and Support Vector Machines (SVM) to downscale MODIS LST. The achieved RMSE
values ranged from 2 to 3 °C. Their study leveraged multi-source predictors derived from land
use land cover components, terrain factors, and different spectral indices. The selected machine
learning techniques outperformed the TsHARP method. R. Wang et al. (2020) also observed a
similar trend where the RF model outperformed the Multiple Linear Regression (MLR) model
and TsHARP. These findings support the conclusion that non-linear models capable of capturing
complex relationships between predictors and LST, particularly in urban areas, are necessary to
achieve optimal downscaling performance.

The aforementioned studies have predominantly utilized global models, which do not explicitly
consider spatial non-stationarity. However, considering the spatially varying nature of LST, it
becomes evident that models accounting for spatial non-stationarity are necessary. Consequently,
regression models that accomodate this aspect in LST downscaling have been seldom proposed. For
instance, Duan and Li (2016) employed Geographically Weighted Regression (GWR) to downscale
MODIS LST from 990 m to 90 m. In this approach, NDVI and Digital Elevation Model (DEM)
were employed as predictors for the GWR model. GWR, proposed by Fotheringham et al. (2003),
extends ordinary least square regression by fitting localized regression models using weighted
neighboring data points, enabling the modeling of spatial non-stationarity by considering varying
relationships between variables across different locations. To account for spatial autocorrelation
in addition to spatial non-stationarity, S. Wang et al. (2020) proposed a Geographically Weighted
AutoRegressive (GWAR) model to downscale MODIS LST from 1000 m to 100 m. GWAR extends
GWR by incorporating a spatial autoregressive component to account for spatial autocorrelation or
dependence. The GWAR model, utilizing Normalized Difference Building Index (NDBI) and DEM
as predictors, exhibited superior performance compared to the GWR model. Furthermore, Xu
et al. (2021) proposed the Multi-Factor Geographically Weighted Machine Learning (MFGWML)
downscaling approach, which extends the concept of GWR by incorporating multiple predictors
and leveraging the non-linear nature of machine learning algorithms. A common limitation of
models based on the concept of GWR is the a priori assumption of the weight distribution function
(Du et al., 2020). To address this issue, Du et al. (2020) proposed the Geographically Neural Network
Weighted Regression (GNNWR), which employs a neural network to estimate the spatial weights
based upon the input spatial distances within a neighborhood. Subsequently, Liang et al. (2023)
utilized GNNWR to downscale Landsat-8 LST, incorporating predictors such as NDVI, NDBI,
DEM, and slope data.

In summary, the application of machine learning methods like ANN, SVM, and RF in LST
downscaling has yielded promising outcomes, outperforming traditional statistical approaches.
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The flexibility of these techniques to model non-linear relationships between predictors and LST
proves advantageous, particularly in urban areas. Furthermore, the discussed studies highlight the
necessity of regression models that account for spatial non-stationarity. GWR, GWAR, MFGWML,
and GNNWR represent notable advancements in addressing this concern and have showcased
improved performance in capturing the complex spatial relationships between predictors and LST.
Figure 1.2 displays the chronological progression of all the mentioned studies in this section.

1.4 RESEARCH GAP

As outlined in Section 1.3, regardless of the employed method—be it statistical, machine learning,
or deep learning techniques—the primary predictors utilized for downscaling LST include surface
reflectances and spectral indices (such as: NDVI, NDBI, Bare Soil Index (BSI), and more) derived
from optical images. However, these predictors derived from optical data possess a significant
drawback: their dependence on clear weather conditions and their inability to provide observations
during night-time. Cloudy conditions often result in a substantial portion of the optical images
being obscured by clouds, which can pose limitations when constructing a downscaling model
and when using the model to estimate fine-scale LST. In a nutshell, the aforementioned models
fail to produce accurate results under cloudy conditions and during night-time due to the inherent
characteristics of optical imagery.

1.5 RESEARCH OBJECTIVES AND QUESTIONS

In this research, a solution is proposed to address the aforementioned research gap by employing
Synthetic Aperture Radar (SAR) data for deriving predictors in order to downscale LST images.
SAR systems utilize active imaging mode and microwave electromagnetic waves, enabling them to
penetrate through clouds and acquire information from the Earth’s surface during both daytime
and night-time, irrespective of weather conditions (J. Li et al., 2018). The influence of radar
parameters such as incidence angle, wavelength, and polarization, as well as surface parameters
including surface roughness, soil moisture, and surface dielectric constant, on radar backscatter
has been extensively studied by Benallegue et al. (1995), Hoeben et al. (1997), and Ulaby (1974).
Notably, models such as the ‘Oh’ Model (Oh et al., 1992) and the ‘IEM’ model (Fung et al.,
1992) have been thoroughly researched for soil moisture retrieval studies. Additionally, a Radar
Vegetation Index (RVI) analogous to NDVI has been developed by Kim and van Zyl (2001). As
vegetation cover influences SAR backscatter, NDVI can also be estimated from SAR backscatter
(Filgueiras et al., 2019; Veloso et al., 2017). These studies rely on backscattering coefficients derived
from different polarization modes (HH, VV, HV, VH), where polarization modes denote the
direction of the electric field of the radar signal (i.e., V for Vertical and H for Horizontal). The
aforementioned parameters of vegetation cover and soil moisture are critical factors explaining the
variation in surface LST (Song et al., 2018; Sun & Kafatos, 2007; Zhang et al., 2014). Consequently,
it is reasonable to assume the existence of a relationship between the backscattering coefficients
obtained from different polarization channels of SAR and LST. Therefore, the backscattering
coefficients derived from SAR can be modelled as predictors to elucidate the variability in LST.
This anticipated relationship between radar-derived surface parameters and temperature motivates
exploration of SAR images’ potential for downscaling LST products. Leveraging the advantages of
SAR data, the proposed utilization of predictors derived from SAR has the potential to significantly
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Figure 1.2: Chronological progression of the regression-based LST downscaling studies discussed
in the Literature Review section
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impact LST mapping and monitoring, potentially replacing or supplementing optical images in
delivering high spatio-temporal LST data.

This brings us to the primary research objective, i.e., to downscale LST from 1000 m spatial
resolution to 100 m spatial resolution using SAR data.

Furthermore, it is essential to acknowledge that LST is a complex phenomenon that cannot be
adequately modeled using a single data source. Consequently, many downscaling studies discussed
in the literature review section aim to integrate multiple sources of information correlated with LST
to achieve more accurate estimations. Consistent with this approach, this research incorporates
land cover information as additional predictors for the downscaling models. However, instead
of following the conventional approach of integrating land cover information directly into the
downscaling model, this research utilizes a novel approach to integrate land cover information as
predictors into these models. This novel approach is discussed in Section 3.2.3.

In addition to utilizing ancillary data such as land cover information to account for maximum
possible variation in LST, it is also intriguing to explore whether additional features can be engi-
neered from the primary data source, i.e., SAR, to address this issue and subsequently improve the
performance of the downscaling models.

As emphasized in the literature review section, traditional machine learning algorithms have been
extensively studied in the context of downscaling LST. In line with these studies, RF, proposed by
Breiman (2001), is selected as the base regression algorithm for the developed downscaling models
in this research. The RF algorithm functions by constructing an ensemble of decision trees that
are trained on random subsets of data. The predictions generated by these individual trees are
subsequently combined through voting or averaging methods, resulting in the final prediction. The
choice of RF regression is motivated by its success in LST downscaling studies (Hutengs & Vohland,
2016; W. Li et al., 2019; X. Li et al., 2022; Njuki et al., 2020; R. Wang et al., 2020), as well as the
advantages highlighted in these studies, such as its non-linear and non-parametric nature, reduced
risk of overfitting, ability to handle high-dimensional datasets, incorporation of both continuous
and categorical variables, and efficient computation time.

In addition to the RF model, this research also employs Convolutional Neural Networks (CNN)
to downscale LST. CNN belong to a class of deep learning models that have been significantly
experimented with in the fields of computer VISion and image processing (Krizhevsky et al., 2012;
Lecun et al., 2015). These networks adopt a hierarchical approach, progressively learning low-level
features, such as edges and textures, in initial layers and gradually advancing to higher-level concepts
like shapes and objects in deeper layers. CNN have emerged as the preferred choice for various
tasks such as, object detection, image classification, and image segmentation. It is noteworthy that
CNN are not solely restricted to classification tasks but can also be effectively utilized for regression
problems, such as the regression-based downscaling considered in this study. By modifying the
architecture and output layer of a CNN, it becomes adept at predicting continuous values instead
of discrete class labels. In contrast to RF, CNN excels in extracting spatial information from input
data. CNN possess an inherent ability to learn and exploit the spatial relationships present in the
data, rendering them particularly valuable for downscaling tasks. The convolutional layers of a
CNN capture local patterns and features from the input, while subsequent layers, such as fully
connected layers, facilitate the regression process by making predictions based on these learned
features. The integration of deep learning, in general, into the domain of LST downscaling has
been relatively limited. Studies like Yang et al. (2010) and Liang et al. (2023) have integrated neural
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networks for downscaling LST, however, these studies are based on fully connected networks
and do not incorporate CNN for regression-based downscaling. It is important to note that a
super-resolution convolutional neural network architecture (Dong et al., 2016), which employs
CNN to learn the end-to-end mapping between input images, has been utilized for downscaling
NDVI in the study conducted by Nomura and Oki (2021). However, to the best of our knowledge,
the incorporation of a regression-based CNN architecture for LST downscaling has not yet been
investigated. In light of this, this research proposes a novel regression model for downscaling LST
based on the CNN architecture with the aim of incorporating intrinsic spatial patterns that are
pertinent to the downscaling process. The developed architecture is compared with the well-studied
RF model to assess its performance. This proposed novel architecture is discussed in Section 3.3.

Finally, to evaluate the effectiveness of the predictors derived from SAR data, the performance of
the developed downscaling models with predictors derived from optical data is used as a benchmark.
In summary, the preceding paragraphs describing the research can be outlined in terms of its
objectives and the corresponding research questions as follows:

1.5.1 Main Objective

To downscale LST using predictors derived from SAR data

1.5.2 Sub-Objectives

1. To utilize RF regression algorithm as the base model for downscaling LST

• What new features can be engineered from the SAR data to achieve better performance
for the task of downscaling?

2. To integrate land cover information into the developed downscaling models

• How does the proposed novel approach of incorporating land cover information into
the downscaling models perform compared to the traditional approach?

3. To downscale LST with the proposed Convolutional Neural Network (CNN)-based regres-
sion architecture

• How effective is the proposed novel CNN-based architecture for the task of downscal-
ing?

4. To downscale LST using predictors derived from optical data

• How does the performance of SAR-based LST downscaling models compare to the
performance of optical-based LST downscaling models?

1.6 CONTRIBUTIONS

Based on the above described research objectives (Section 1.5), the contributions made by this
research can be summarized as follows:
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1. We propose a novel way of estimating fine-scale LST from coarse-scale LST using SAR data

2. We engineer innovative features from SAR dataset to increase the performance of base models

3. We propose a novel way of incorporating land cover information into LST downscaling
models

4. We propose a novel CNN-based regression architecture for LST downscaling

1.6.1 Highlights

1. Preliminary results from this research were presented at the Nederlands Aardwetenschappelijk
Congres (NAC) GEO conference held in Utrecht on March 2023 under the title of ‘Spatial
Downscaling of Land Surface Temperature (LST) using radar data’

2. A part of this research was submitted for publication in Remote Sensing (MDPI) on June
2023. The preprint (Patel et al., 2023) is available at: https://www.preprints.org/manuscript/
202306.1391/v1

3. To contribute to the advancement of open source academia, the code corresponding to all the
developed and implemented models is hosted on GitHub: https://github.com/ohheynish/
DWNSCL_LST_MSc.

1.7 THESIS STRUCTURE

This thesis, excluding ‘Introduction’ (Chapter 1), consists of five other chapters: ‘Study Area,
Datasets, and Tools’ (Chapter 2), ‘Methodology’ (Chapter 3), ‘Results’ (Chapter 4), ‘Discussion’
(Chapter 5), and ‘Conclusion’ (Chapter 6). The study area and the datasets utilized in this research
are introduced in Chapter 2. The proposed methodology for experimentation is described in
Chapter 3, whereas the experimental results are provided in Chapter 4. The discussion of the
achieved results is presented in Chapter 5. Finally, Chapter 6 is dedicated to the conclusion of the
thesis.
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Chapter 2

Study Area, Datasets, and Tools

This chapter serves as an introduction to the study area, datasets, and tools that have been taken
into account for this research. The sections are correspondingly titled Study Area (Section 2.1),
Datasets (Section 2.2), and Tools (Section 2.3). The Datasets section is subsequently divided into
four sub-sections, providing a comprehensive description of the use case (Section 2.2.1), the data
collection procedure (Section 2.2.2), the undertaken pre-processing steps (Section 2.2.3), and the
selection of dates of interest for the research (Section 2.2.4).

2.1 STUDY AREA

As shown in Figure 2.1, the considered study area for this research is Zuid-Holland province
in the Netherlands. Zuid-Holland covers an area of approximately 3400 km2 and it is one of
the most densely populated and urbanized regions in the country, with a population of over
3.5 million people. Based upon the global surface temperature data collected by the world bank
(https://climateknowledgeportal.worldbank.org/), in 2020, Zuid-Holland province experienced
an annual minimum temperature of approximately 281 K, an annual maximum temperature of
289 K, and an annual mean temperature of 285 K. These statistics provide a broad overview of the
temperature regime in the region, but it is important to note that the LST is measured in a different
way than the Global Surface Temperature. The statistics for LST over Zuid-Holland collected from
Landsat-8 LST at 100 m for the selected dates of interest are shown in Table 2.1. Furthermore, it is
also important to note that the actual temperature dynamics at the local scale can vary significantly
depending on factors such as topography, land cover, and urbanization.

According to the ESA world cover dataset i.e., ‘ESA WorldCover v100’, the landscape of Zuid-
Holland province is primarily characterized by grassland and built-up areas, accounting for approx-
imately 52 % and 17 % of the total land area, respectively. Cropland and tree cover also contribute
significantly to the land cover, each covering approximately 14 % of the total land area. Bare/sparse
vegetation and herbaceous wetland are relatively less abundant, each covering approximately 1 %
of the total land area. The province is also characterized by a coastal zone, polders, and river deltas.
The coastline of Zuid-Holland is about 70 km long and consists of sandy beaches, dunes, and tidal
flats. The polders in the province are low-lying areas that have been reclaimed from the sea and
are used for agriculture and horticulture. The river deltas of the Rhine and Maas rivers are also
important features of the landscape of Zuid-Holland. Such a variety of land covers in the study
case can expectedly change LST from region to region. High spatio-temporal resolution remote
sensing images offer the possibility to track these LST changes, enabling a better understanding of
the temperature dynamics in Zuid-Holland.
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Figure 2.1: Map showing the study area: Zuid-Holland province (left) and various municipalities in
Zuid-Holland province (right)

Table 2.1 Summary statistics for Landsat-8 LST (100 m) acquired on 25/03/2020, 10/04/2020, and
28/05/2020

Landsat-8 Level 2, Collection 2, Tier 1 LST (100 m)
25/03/2020 10/04/2020 28/05/2020

Minimum 275.60 267.68 276.61
Maximum 302.02 313.16 319.19
Mean 286.59 291.94 299.60
Standard deviation 3.30 6.19 6.08
1st quartile 284.48 290.97 296.36
3rd quartile 287.37 313.16 303.61
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2.2 DATASETS

2.2.1 Dataset Description and Use Case

To accomplish the primary objective of this research, which is to downscale LST using SAR
images, various sets of satellite remote sensing data were employed. The utilized datasets consist of
Landsat-8 LST (100 m), MODIS LST (1000 m), Sentinel-1 Ground Range Detected (GRD) SAR
(10 m), Sentinel-2 Multi Spectral Instrument (MSI) (10 m), and ESA WorldCover v100 land type
information (10 m).

As indicated by the research objectives, the downscaling models developed in this study can be
categorized into two types: radar-based and optical-based. Radar-based models utilize predictors
derived from radar data as inputs, while optical-based models utilize predictors derived from optical
data.

For the construction of radar-based downscaling models, Landsat-8 LST data was employed as the
target and reference variable, and Sentinel-1 GRD SAR data served as the basis for deriving the
predictor variables. The models were trained using the coarse resolution version of both datasets
where the datasets were aggregated to a spatial resolution of 1000 m. Subsequently, the constructed
models were used to produce a high-resolution radar-derived LST image using the available high-
resolution SAR images. Additionally, for subsequent experiments, ESA WorldCover data was
also incorporated as a predictor variable in the radar-based downscaling models. To assess the
efficacy of radar-derived predictors for the task of downscaling, the performance of the radar-based
models was evaluated and compared with downscaling models constructed based on the optical
datasets. In this regard, Sentinel-2 MSI optical data was used as the basis for deriving the predictor
variables. Furthermore, the use of aggregated Landsat-8 LST data as a target variable does not
correspond to a practical real-world scenario, as Landsat-8 LST is not originally collected at a coarse
spatial resolution. Consequently, the experiments were repeated using MODIS LST (1000 m) as
the target variable, which aligns better with real-world conditions. Further details regarding this
are elaborated in Section 3.4. The use case for all the considered datasets in this research is provided
in Table 2.2.

It is worth noting that the acquired Landsat-8 LST product was sourced from Landsat-8 Level-2
Collection-2 Tier-1 dataset. The ‘Level-2’ refers to products that have undergone atmospheric
correction and have been converted to surface reflectance values from digital numbers (Level-1
product). ‘Collection-2’ denotes the reprocessed collection of Landsat products, characterized by
improved data quality compared to Collection-1 (which has been discontinued by USGS since
December 30, 2022). Finally, ‘Tier-1’ data signifies products that meet predetermined geometric and
radiometric quality requirements. As previously mentioned, the radar data was obtained from the
Sentinel-1 GRD SAR product. GRD data represents a multi-looked and ground range projected
version of the Single Look Complex (SLC) data collected by the Sentinel-1 SAR satellite. The GRD
product does not retain the phase information present in the raw SLC data. Essentially, the Sentinel-
1 GRD data comprises two bands: VV and VH, with pixel values corresponding to the measured
backscattering coefficient. Lastly, the Sentinel-2 MSI data used for the optical-based downscaling
model also originated from a Level-2A dataset, where ‘Level-2A’ refers to atmospherically corrected
data derived from Level-1C products. Further information about the utilized products can be
found on their respective Google Earth Engine (GEE) pages. The GEE tags of all the datasets used
in this research are provided in Table 2.3.
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Table 2.2 Overview of the datasets used in this research (Part 1)

Dataset Original Spatial Resolution Use Case

Landsat-8 LST 100 m

Target variable (Aggregated
1000 m LST)

Validation data (Original 100 m
LST)

MODIS LST 1000 m Target Variable
Sentinel-1 SAR 10 m Predictor variable
Sentinel-2 MSI 10 m Predictor Variable

ESA WorldCover v100 10 m Predictor Variable

Table 2.3 Overview of the datasets used in this research (Part 2)

Dataset GEE Tag Acquisition Date and
Time

Landsat-8
LST

‘LANDSAT/LC08/C02/T1_L2’
25-03-2020 (T-10:33)
10-04-2020 (T-10:33)
28-05-2020 (T-10:33)

MODIS
LST

‘MODIS/061/MOD11A1’
25-03-2020 (T-11:30)

-
-

Sentinel-1
SAR

‘COPERNICUS/S1_GRD’
25-03-2020 (T-17:25)
11-04-2020 (T-17:33)
29-05-2020 (T-17:33)

Sentinel-2
MSI

‘COPERNICUS/S2_SR_HARMONIZED’
26-03-2020 (T-10:46)

-
-

ESA
WorldCover

‘ESA/WorldCover/v100’

-
One image for the entire

year of 2020
-
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2.2.2 Google Earth Engine

All the aforementioned datasets were collected and processed using the GEE Python Application
Programming Interface (API). GEE is a powerful platform extensively utilized by researchers to
analyze satellite data for a wide range of applications. It offers an extensive collection of geospatial
data and a robust processing infrastructure, enabling users to explore, visualize, and extract valuable
insights from satellite imagery. Furthermore, GEE facilitates the direct transfer of coarse resolution
data to Python data structures, eliminating the need for data download and storage, thus enhancing
the reproducibility of the data collection process. However, there are certain limits imposed by
GEE on transferring large volumes of data. Consequently, the fine resolution images utilized in this
research had to be downloaded separately. Nonetheless, GEE also provides a convenient method
for direct data download via Google Drive. Another notable advantage of utilizing GEE as a data
repository is the ability to work directly with pre-processed datasets. For instance, in the case of
Sentinel-1 GRD SAR data, several crucial pre-processing steps, such as applying orbit file, border
noise removal, thermal noise removal, and terrain correction, are necessary whenever analyzing
this dataset. Fortunately, these pre-processing steps are inherently incorporated within the GEE
processing pipeline. Therefore, Sentinel-1 GRD SAR images downloaded or queried through GEE
do not require additional implementation of these pre-processing steps.

2.2.3 Pre-processing

Since this research aims to develop models using data or images acquired from multiple sources,
certain pre-processing steps are crucial to ensure accurate function approximation across the
images. These pre-processing steps include essential procedures such as clipping, resampling,
and reprojection of the datasets, which are performed to achieve proper coregistration between
the datasets. For the purpose of clipping all the datasets to the same extent, the ‘Zuid-holland’
feature from the Global Administrative Unit Layers (GAUL) feature collection was utilized as the
boundary/extent mask. Additionally, all the datasets were reprojected to the European Petroleum
Survey Group (EPSG):4326 coordinate system to ensure consistency. This coregistration procedure
is fundamental for establishing an accurate correspondence between the predictor variables and the
target variables in the downscaling models.

Furthermore, noise removal is another fundamental process that was implemented in the pre-
processing stage. All the acquired datasets except ‘ESA WorldCover v100’ were filtered using a
median filter with 3 × 3 kernel to remove noise.

2.2.4 Selection of Dates of Interest

Another important aspect to consider for ensuring accurate function approximation between
images is their date of acquisition. A closer proximity in acquisition dates enhances the accuracy of
the approximated function. However, one significant challenge in achieving this is the presence of
cloud contamination in LST and optical images. To address this issue, dates with low cloud cover
were initially identified based on the MODIS quality indicator band (‘QC’). Subsequently, from
this subset of dates, only those dates where all the considered satellites acquired data were selected
as the dates of interest for the analysis.
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From Table 1.1, it is evident that Landsat-8 acquires images every 16 days, while MODIS acquires
images on a daily basis. Furthermore, the temporal resolution of Sentinel-1 is 5 days, whereas that
of Sentinel-2 is 10 days. Due to these temporal configurations and the weather-dependent nature of
LST and optical images, finding intersecting acquisition dates among these satellites is rare. In cases
where intersecting dates were absent, a one-day buffer was considered as the criteria to select the
dates of interest. Following this approach, the selected dates of interest for Landsat-8 LST products
were determined as 25th March, 2020, 10th April, 2020, and 28th May, 2020. Correspondingly, the
selected dates of interest for Sentinel-1 SAR products were identified as 25th March, 2020, 11th

April, 2020, and 29th May, 2020. Here, the SAR images collected on 25th March, 11th April and
29th May map to the LST images collected on 25th March, 10th April, and 28th May, respectively.
For the optical-based downscaling experiment, only one image acquired on 26th March, 2020, was
considered, and this image was mapped to the LST image acquired on 25th March, 2020. Similarly,
for the downscaling LST experiment using MODIS LST, only one MODIS LST image acquired
on 25th March, 2020, was considered. The selected acquisition dates for the datasets utilized in this
research are summarized in Table 2.3.

2.3 TOOLS

The data collection process and the associated pre-processing steps, including clipping, resampling,
and reprojection, were performed utilizing the GEE Python API. The downscaling models were
developed and quantitatively evaluated using the Python programming language. As for qualitative
evaluation purposes, QGIS software was employed. It is noteworthy that all Python scripts were
developed and tested on the CRIB geospatial computing platform.
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Chapter 3

Methodology

This chapter introduces the methodology devised for this research. Section 3.1 introduces the
fundamental downscaling algorithm, while Sections 3.2 and 3.3 describe the adopted methodologies
for utilizing RF and CNN as downscaling models, respectively. In Section 3.4, a brief overview is
provided regarding the utilization of MODIS LST as the target variable instead of the aggregated
Landsat-8 LST. Finally, Section 3.5 introduces the adapted quantitative evaluation framework to
assess the performance of the developed models. The entirety of this chapter’s methodology can be
succinctly summarized by referring to the flowchart displayed in Figure 3.1.

As depicted in Figure 3.1, the initial step involves aggregating the datasets considered for this
research to either a spatial resolution of 100 m or 1000 m, depending on their specific use-case.
To achieve this, median-based aggregation was employed. Subsequently, the datasets utilized as
features or predictors are separated from the target variable (LST). The predictor datasets then
undergo certain data transformations and feature engineering processes, resulting in the creation of
two distinct sets: training features and prediction features. The training features are employed to
train the model using the coarse spatial resolution (1000 m) target variable (LST). Conversely, the
prediction features are used during the inference stage to estimate the target variable (LST) at a finer
spatial resolution (100 m). Further elaboration on this methodology can be found in subsequent
sections of this chapter.

3.1 BASIC SPATIAL DOWNSCALING ALGORITHM

As previously illustrated, Figure 1.1 depicts a fundamental spatial downscaling process. This process
can be decomposed into several mathematical equations, beginning with:

Mc = f(Pc, Tc) (3.1)

where:

Mc = regression model between the sets of predictors Pc and the target values Tc

f = mapping function approximated by training the model Mc with predictors Pc

and the target values Tc

Pc = predictors collected at coarse spatial resolution
Tc = target values collected at coarse spatial resolution

Equation 3.1 describes the process of training the regression model, denoted as Mc, using the
predictors and target variables obtained at a coarse spatial resolution. Here, the subscript ‘c’ denotes
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Figure 3.1: Methodology Flowchart
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the coarse resolution. In the context of downscaling LST, the variable Tc represents the target LST
to be downscaled, while Pc refers to the predictor variables collected from radar, optical, or other
ancillary datasets.

Once the model Mc is trained at the coarse resolution, it can be utilized to generate or estimate the
target values at a fine spatial resolution using the predictors collected at that resolution. This can
be expressed as:

Tf = Mc(Pf ) (3.2)

where:

Mc = trained regression model from equation 3.1
Pf = predictors collected at fine spatial resolution
Tf = target values estimated by the trained regression model Mc

Equations 3.1 and 3.2 embody the ‘scale-invariance’ assumption of regression-based downscaling
models. In practical terms, it is assumed that the model trained at a coarse resolution can estimate
the target variable at a fine resolution, presuming that the relationship between the predictors and
target variables remains invariant across different scales.

Moreover, typical regression models employed for downscaling often fail to capture all the variation
present in the target variable. To address this issue, a residual correction procedure was introduced
by Kustas et al. (2003), which can be described as:

∆T = Tfc − Tc (3.3)

where:

Tfc = reaggregated Tf from fine spatial resolution to coarse spatial resolution
Tc = target values collected at coarse spatial resolution
∆T = residuals collected at coarse spatial resolution

Once these residuals are collected at the coarse spatial resolution, they are added back to the
overlapping pixels at fine spatial resolution. In other words, the estimates of all the fine spatial
resolution pixels covering one coarse spatial resolution pixel are adjusted by the corresponding
coarse spatial resolution residual value.

Finally, the downscaled target value, denoted as T ′
f , can be estimated as:

T
′
f = Tf +∆T (3.4)

where:

T
′
f = residual-corrected downscaled target variable

The set of equations: 3.1, 3.2, 3.3, and 3.4, collectively represents the entire spatial downscaling
process. Although the specific predictors ‘P ’, target variable ‘T ’, coarse resolution ‘c’, fine resolution
‘f ’, and regression model ‘M ’ may vary across different studies, the underlying algorithm remains
the same.
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3.2 RANDOM FOREST

In accordance with sub-objective 1 (1.5.2-1), this research utilizes RF as the fundamental model for
achieving the main objective (1.5.1), i.e., to downscale LST using radar data. This section is organized
into three subsections, each focusing on a specific aspect of the developed downscaling models.
These subsections delve into the radar-based downscaling model, the optical-based downscaling
model, and the integration of land cover information into both models, respectively.

3.2.1 Radar-based RF downscaling model

As outlined in Section 1.5, the downscaling models developed in this research can be classified into
two main categories: radar-based models and optical-based models. Furthermore, this research
attempts to downscale LST from 1000 m spatial resolution to 100 m spatial resolution. Conse-
quently, in the context of this research, the Equations 3.1, 3.2, 3.3, and 3.4 can be reformulated for
the radar-based downscaling models as follows:

RF1000 = f(SAR1000, LST1000) (3.5)

LST100 = RF1000(SAR100) (3.6)

∆LST1000 = LST100−>1000 − LST1000 (3.7)

DLST100 = LST100 +∆LST1000 (3.8)

where:

RF1000 = random forest regression model trained at 1000 m coarse resolution

SAR1000 = radar predictors collected from the aggregated 1000 m coarse resolution Sentinel-
1 SAR dataset

LST1000 = 1000 m aggregated coarse resolution LST from Landsat-8 LST dataset

SAR100 = radar predictors collected from the aggregated 100 m fine resolution Sentinel-1
SAR dataset

LST100 = LST estimated at 100 m fine resolution from the trained RF1000 model
LST100−>1000 = reaggregated LST1000 from 100 m fine resolution to 1000 m coarse resolution
∆LST1000 = LST residuals collected at 1000 m coarse resolution
DLST100 = downscaled LST at 100 m fine resolution

As stated in the above description regarding the variables used in the radar-based RF downscaling
model, the predictor variables SAR1000 and SAR100 are derived from the Sentinel-1 GRD SAR
dataset. Specifically, the VV and VH bands available in the dataset were utilized as predictors
(SAR1000 and SAR100) for the initial downscaling experiments. Due to the distinct scattering
mechanisms of radar waves, even minor alterations in ground features’ structure or intrinsic
characteristics can lead to significant variations in backscattering values for both VV and VH bands.
This inherent limitation of radar data results in spatial patterns observed in radar images being less
smooth compared to those observed in optical or LST images (Figure 5.1).

One approach to address this challenge is to apply excessive spatial filtering. However, this can
potentially lead to information loss, hindering the model’s ability to capture all the variations
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Figure 3.2: Representation of inclusion of neighboring values as features for the downscaling
models. Here, ‘Connection A’ in the image illustrates conventional pixel-to-pixel mapping between
coarse resolution predictor image Pc and coarse resolution target image Tc, whereas, ‘Connection B’
illustrates pixel-to-(5 × 5)patch mapping between coarse resolution predictor image Pc and coarse
resolution target image Tc

in the target LST. To mitigate this limitation, an additional feature engineering technique was
employed, incorporating the neighboring values of all pixels within a 5 × 5 patch for both VV and
VH channels as supplementary predictors for the downscaling model. Figure 3.2 visually illustrates
this concept of feature inclusion and engineering.

To further address the limitation of noisy spatial patterns in radar data, a novel radar homogeneity
index was proposed and employed as an additional predictor for the radar-based downscaling
experiments. This radar homogeneity index can be described mathematically as:

H.I.(X) = |{xi : xi ∈ X, i ∈ [1, n]}|
|{xj : xj ∈ A, j ∈ [1, N ]}|

(3.9)

where:

H.I.(X) = homogeneity index value of a patch X
x = pixel value

X = a 10 × 10 patch in an image A

n = Total number of pixel values in a patch X

N = Total number of pixel values in an image A
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As represented by Equation 3.9, the value of the homogeneity index H.I.(X) is calculated for a
10 × 10 patch. When overlapping a 1000 m image with a 100 m image, a 10 × 10 patch from the
100 m image covers a single pixel in the 1000 m image. Leveraging this concept, the homogeneity
index for the patch or the 1000 m coarse resolution pixel can be computed by dividing the total
number of distinct pixel values within the patch by the total number of distinct pixel values in
the entire image. The underlying assumption being that homogeneous patches would yield lower
values for this index, while heterogeneous patches would result in higher values. This process is
repeated using patches extracted from the original 10 m Sentinel-1 SAR image to facilitate inference
at the finer 100 m spatial resolution.

In summary, the radar-based RF downscaling model encompassed three key experiments:

1. with VV and VH bands as predictors

2. with (5 × 5) VV and (5 × 5) VH bands as predictors

3. with (5 × 5) VV, (5 × 5) VH, and homogeneity index as predictors

Correspondingly, the feature dimension of the first experiment is 2 (VV and VH band), the second
experiment is 50 (25 values from both VV and VH bands), and the third experiment is 52 (25 values
from both VV and VH bands + 2 homogeneity index features corresponding to VV and VH band).

All the conducted radar-based downscaling experiments were validated both quantitatively and qual-
itatively using the Landsat-8 LST data collected at 100 m original fine resolution. The corresponding
results are displayed in Section 4.1.1.

3.2.2 Optical-based RF downscaling model

In order to evaluate the effectiveness of the radar-based RF downscaling model, a comparison was
made with an optical-based RF downscaling model. Previous studies, as seen in Section 1.3.3, have
demonstrated that many research efforts in downscaling LST rely on predictors derived from optical
data. Consequently, the RF downscaling model constructed using optical predictors was employed
as a benchmark for comparing the results obtained by the radar-based RF downscaling model.
Specifically, six optical bands, namely Red, Blue, Green, SWIR1, SWIR2, and NIR, extracted from
the Sentinel-2 MSI data, were utilized as predictors to develop the optical-based RF downscaling
model. In this context, Equations 3.1 and 3.2 can be rewritten as:

RF1000 = f(S21000, LST1000) (3.10)

LST100 = RF1000(S2100) (3.11)

where:

RF1000 = random forest regression model trained at 1000 m coarse resolution

S21000 = optical predictors collected from the aggregated 1000 m coarse resolution
Sentinel-2 MSI dataset

LST1000 = 1000 m aggregated coarse resolution LST from Landsat-8 LST dataset

S2100 = optical predictors collected from the aggregated 100 m fine resolution Sentinel-2
MSI dataset

LST100 = LST estimated at 100 m fine resolution from the trained RF1000 model
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It is important to highlight that the modification introduced in this case pertains to the utilization
of a distinct set of predictors. As a result, the remaining equations, specifically 3.7 and 3.8, can
also be employed in this scenario, enabling the generation of an optical-based downscaled LST at a
resolution of 100 m. The results derived from this particular experiment are provided in Section
4.1.2.

3.2.3 Integration of Land Cover information

It is crucial to acknowledge that LST is a complex phenomenon that cannot be adequately modeled
using a single source of data like optical or radar. Consequently, in many downscaling studies,
researchers strive to integrate multiple sources of information that are correlated with LST to
achieve more accurate estimations. In line with this approach, this research also incorporates
land cover information as predictors for the radar-based downscaling models. However, instead
of adopting the conventional approach, which involves aggregating the land cover image to a
coarser resolution and training a model as indicated by Equation 3.1, this research introduces
a novel method for incorporating land cover information as a feature. The proposed approach
calculates the proportion of land cover classes within a coarse spatial resolution pixel, aiming to
provide a more precise representation of the inclusion of land cover information. The primary
distinction between the proposed approach and the conventional approach in incorporating land
cover information lies in the handling of discretization. In the conventional approach, the estimated
LST is discretized due to the discrete nature of the features extracted from the land cover information
(i.e., different land cover classes). In contrast, the proposed method transforms these discrete classes
into a continuous representation, which is assumed to be comparatively more accurate. Before
integrating the proportion of land cover classes as features into both the radar-based and optical-based
downscaling models, the performance of this approach is evaluated. A comparison is made against
the conventional approach of utilizing land cover information as predictors. The corresponding
results of the land cover experiments are presented comprehensively in Section 4.1.3.

The process of calculating the proportion of land cover information is visually depicted in Figure
3.3. As illustrated in Figure 3.3, a 4 × 4 patch extracted from a 12 × 12 land cover image covers or
overlaps a single pixel in a 3 × 3 image (Figure 3.3a). In the context of this research, considering the
land cover image’s spatial resolution of 10 m and the coarse-scale LST’s spatial resolution of 1000 m,
a 100 × 100 patch extracted from the land cover image would correspond to a single 1000 m coarse
resolution LST pixel. Within this patch, the proportion of each land cover class is computed. For
example, if 2000 pixels out of the 100 × 100 patch correspond to land cover class A, the proportion
of this class is calculated as 2000/10000 = 0.2. Subsequently, this value is utilized as a feature value
for the respective coarse resolution pixel. This process is applied to all available land cover classes
in the ESA WorldCover v100 image. Furthermore, this process is repeated with a patch size of
10 × 10 to facilitate inference at the finer spatial resolution of 100 m (represented by Figure 3.3b in
context of a 12 × 12 image).

3.3 CONVOLUTIONAL NEURAL NETWORKS

As seen in Section 1.5, there is a gap in terms of integration of deep learning to the domain of
downscaling LST. This gap lead us to establish one of the sub-objectives of this research (1.5.2-3),
i.e., to downscale LST using CNN. Our proposed regression-based CNN architecture aims to
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(a) (b)

Figure 3.3: Representation of integration of land cover proportion as features to the downscaling
models. Here, ‘Connection A’ highlighted in (a) illustrates a pixel-to-patch mapping where Po

represents the original land cover image collected at 10 m spatial resolution and Tc refers to the
coarse resolution target image. ‘Connection B’ in (b) demonstrates the same concept but at a fine
resolution to facilitate inference. Here, Tf refers to the target image to be estimated by the model
during inference

establish a mapping between a coarse resolution target image and fine resolution predictor images.
To achieve this, the predictor images derived from radar, land cover, and optical imageries are
initially aggregated from their original 10 m resolution to 100 m resolution. Subsequently, 10 × 10
patches, covering the corresponding 1000 m target pixel are generated, and considered as inputs for
the model. Once the model is trained, the 10 × 10 patches are generated again from the original 10
m predictor images and fed into the trained model to generate the corresponding 100 m target LST
image. Thus, the model receives inputs with a dimension of 10 × 10 × k, where k represents the
number of predictors. For each input patch, the output of the model is a singular value representing
the downscaled temperature.

The model architecture commences with a stack of convolutional layers. The initial convolutional
layer consists of 32 filters of size 10 × 10, matching the input patch size. The subsequent two
convolutional layers employ 32 filters of size 3 × 3 with consistent activation and padding settings.
Rectified Linear Unit (ReLU) activation function is employed in each convolutional layer, intro-
ducing non-linearity into the architecture. Max pooling is then applied with a pool size of 2 × 2 to
downsample the feature maps. After max pooling, a similar pattern is followed by the subsequent
block of convolutional layers. The block begins with a convolutional layer containing 64 filters of
size 5 × 5, followed by two convolutional layers with 64 filters of size 3 × 3. The final block of
convolutional layers comprises three convolutional layers with 16 filters of size 3 × 3. Another
round of max pooling is performed to further downsample the feature maps. The output of the
convolutional layers is then flattened into a 1-dimensional vector. This vector passes through a
series of fully connected (dense) layers. The first dense layer consists of 512 units with the ReLU
activation function. Dropout regularization with a rate of 0.2 is applied after this layer. The
subsequent two dense layers have 128 and 64 units, respectively, with ReLU activation and dropout
layers utilizing the same dropout rate. Finally, the output layer is a dense layer with a single unit,
representing the regression prediction. The model is compiled using the Adam optimizer and
the Mean Squared Error (MSE) loss function. The learning rate is set to 0.001 and the number of
epochs for training is set to 30. Furthermore, to ensure numerical stability in the model, all the
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Figure 3.4: proposed CNN-based downscaling architecture

feature and target values were normalized between 0 and 1 using min-max normalization. The
model architecture is presented in Figure 3.4.

In summary, the proposed CNN architecture attempts to capture spatial patterns in images through
convolutional layers and utilizes dense layers for higher-level abstraction and regression prediction.
Figure illustrates the representation of this regression-based CNN architecture for downscaling
LST.

Consistent with the RF experiments, the experiments from CNN-based downscaling model utilized
SAR (VV and VH) and optical (six bands) images collected from Sentinel-1 GRD and Sentinel-2
MSI datasets, respectively as predictor images for training. Thus, for the CNN-based downscaling
model, two main experiments were conducted:

1. with VV and VH images as predictors

2. with six bands of optical images as predictors

The results obtained from the CNN-based downscaling experiments are presented in Section 4.2.

3.4 MODIS LST AS A TARGET

As outlined in Sections 3.2 and 3.3, the downscaling models developed in this study employed the
aggregated 1000 m Landsat-8 LST as the target variable to generate downscaled LST products at 100
m resolution. However, it is worth noting that this aggregated version of LST, derived from data
originally collected at 100 m resolution, does not reflect a practical scenario. To address this concern,
all the models and experiments were retrained and conducted using MODIS LST as the target
variable. Unlike Landsat-8 LST, MODIS acquires daily LST images at 1000 m spatial resolution,
which can be utilized within the developed downscaling framework to generate fine-resolution
LST products at 100 m. Nevertheless, a challenge arises in selecting suitable 100 m validation LST
data to assess the performance of the models trained using MODIS LST as the target variable. In
the case of models and experiments employing the aggregated Landsat-8 LST as the target variable,
Landsat-8 LST at 100 m resolution was used for validation. However, using Landsat-8 LST to
validate the performance of models trained with MODIS LST can introduce errors, as differences
can arise due to distinct sensor characteristics. This challenge or limitation is further discussed in
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Section 5.5. The results obtained by utilizing the 1000 m MODIS LST as the target variable are
presented in Section 4.3.

3.5 EVALUATION FRAMEWORK

The evaluation framework for this research encompasses the utilization of three key metrics: 1)
Root Mean Square Error (RMSE), 2) Correlation Coefficient (r), and 3) Coefficient of Deter-
mination (R2). These metrics serve as comprehensive measures to assess the performance and
accuracy of the proposed research methodology. RMSE quantifies the average deviation between
the predicted values and the ground truth values, providing an insight into the model’s overall
predictive accuracy. The correlation coefficient (r) evaluates the strength and direction of the linear
relationship between the predicted and actual values, enabling an assessment of how well the model
captures the underlying patterns in the data. Additionally, the coefficient of determination (R2)
offers a measure of the proportion of the variance in the target variable that can be explained by the
model, indicating the goodness of fit. Together, these evaluation metrics provide a robust frame-
work to gauge the effectiveness and reliability of the generated downscaled LST products, enabling
valuable insights into the performance and predictive capabilities of the proposed downscaling
models. In the context of downscaling LST, these metrics can be expressed as:

RMSE =

√√√√√ n∑
i=1

(T ′
f − Tv)2

n
(3.12)

r =

n∑
i=1

(Tv − T̄v)(T ′
f − T̄

′
f )√

n∑
i=1

(Tv − T̄v)2
n∑

i=1
(T ′

f − T̄
′
f )2

(3.13)

R2 = 1 −

n∑
i=1

(Tv − T
′
f )2

n∑
i=1

(Tv − T̄v)2
(3.14)

where:

T
′
f = final residual corrected downscaled LST (100 m)

T̄
′
f = mean of T

′
f

Tv = validation data obtained from Landsat-8 LST (100 m)

T̄v = mean of Tv

n = number of pixels

It is crucial to acknowledge that the aforementioned metrics provide quantitative insights into the
performance of the developed models. As for qualitative assessment, the generated downscaled
images were visually evaluated in comparison to the validation images.
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Chapter 4

Results

This chapter is dedicated to presenting the results obtained from a series of LST downscaling exper-
iments. The chapter consists of three main sections: ‘Random Forest’ (Section 4.1), ‘Convolutional
Neural Networks’ (Section 4.2), and ‘Application to MODIS LST’ (Section 4.3). As indicated
by their respective titles, the ‘Random Forest’ and ‘Convolutional Neural Networks’ sections
showcase the outcomes achieved using RF and CNN as the downscaling models, respectively. The
final section, titled ‘Application to MODIS LST’ focuses on the results obtained by employing
MODIS LST (1000 m) as the target variable instead of aggregated Landsat-8 LST (1000 m).

4.1 RANDOM FOREST

This section presents the results obtained from the experiments conducted using the RF regression
model as the primary model for the downscaling process. The section is divided into three subsec-
tions, corresponding to the experiments performed with different datasets, namely radar, optical,
and land cover.

4.1.1 Radar-based downscaling

As explained in Section 3.2.1, the initial radar-based downscaling experiment considered three main
cases. These cases were designed to address the research question associated with sub-objective 1
(1.5.2-1). These cases can be labelled as follows:

• Case 1: Utilizing VV and VH bands as predictors.

• Case 2: Utilizing (5 × 5) VV and (5 × 5) VH bands as predictors.

• Case 3: Utilizing (5 × 5) VV, (5 × 5) VH, and homogeneity index as predictors.

Table 4.1 presents the quantitative metrics achieved for downscaling aggregated Landsat-8 LST from
a coarse spatial resolution of 1000 m to a finer spatial resolution of 100 m for all these cases. As
mentioned earlier, the experiments were repeated for three selected dates of interest (25/03/2020,
10/04/2020, and 28/05/2020), and the metrics were obtained by validating the downscaled LST
(100 m) against the original Landsat-8 LST (100 m).
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Table 4.1 Evaluation metrics for ‘Case 1’, ‘Case 2’, and ‘Case 3’ of the radar-based RF downscaling
experiments performed on all selected dates of interest

25/03/2020 10/04/2020 28/05/2020
Case

1
Case

2
Case

3
Case

1
Case

2
Case

3
Case

1
Case

2
Case

3
RMSE 1.44 1.25 1.22 2.10 1.93 1.83 2.76 2.61 2.64
r 0.89 0.92 0.92 0.94 0.95 0.95 0.89 0.91 0.90
R2 0.80 0.84 0.85 0.88 0.90 0.91 0.80 0.82 0.82

Table 4.2 RMSE of ‘Case 1’, ‘Case 2’, and ‘Case 3’ downscaling experiments (date of interest:
25/03/2020) for all the land cover classes in the study area

25/03/2020
Case 1 Case 2 Case 3

Tree Cover 1.73 1.51 1.43
Shrubland 3.11 3.03 2.89
Grassland 1.14 1.00 0.95
Cropland 1.61 1.42 1.36
Built-Up 1.83 1.62 1.60
Bare/sparse vegetation 2.81 2.58 2.53
Permanent water bodies 1.37 1.09 1.04
Herbaceous wetland 1.93 1.65 1.57

The downscaled LSTs (100 m) obtained for all these cases were quantitatively validated for each
land cover class derived from the ‘ESA WorldCover v100’ dataset. The corresponding RMSE
values for each land cover class in the study area, for the selected dates of interest, are presented in
Tables 4.2, 4.3, and 4.4.

After examining Tables 4.1, 4.2, 4.3, and 4.4, it is evident that Case 3, which incorporates the
highest number of radar features, outperforms the other cases. Consequently, Figure 4.1 illustrates
the downscaled LST images (100 m), the Landsat-8 LST used for validation (100 m), as well as the
corresponding histograms and scatterplots pertaining to Case 3. The results obtained for the other
cases (i.e., Case 1 and Case 2) are presented in a similar manner in Figures A.1 and A.2, respectively.
Another observation from examining these tables is that the downscaling models built for the dates
of 10/04/2020 and 28/05/2020 exhibit poorer performance compared to the model for 25/03/2020.
This discrepancy could be attributed to the greater temporal difference between the acquisition
of LST and radar images for the dates of 10/04/2020 and 28/05/2020 (1 day) compared to that of
25/03/2020 (same day).

4.1.2 Optical-based downscaling

As discussed in Section 3.2.2, the optical-based RF downscaling experiment considered six bands
(red, blue, green, SWIR1, SWIR2, and NIR) of the optical image as predictors for the downscaling
model. Table 4.5 presents the quantitative metrics achieved for downscaling aggregated Landsat-8
LST from a resolution of 1000 m to 100 m using these six bands as predictors. Additionally, Table
4.6 displays the obtained RMSE values for each land cover class in the study area. Unlike the
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Table 4.3 RMSE of ‘Case 1’, ‘Case 2’, and ‘Case 3’ downscaling experiments (date of interest:
10/04/2020) for all the land cover classes in the study area

10/04/2020
Case 1 Case 2 Case 3

Tree Cover 2.30 2.19 2.01
Shrubland 4.41 4.48 4.10
Grassland 1.67 1.56 1.47
Cropland 2.55 2.18 2.02
Built-Up 2.25 2.22 2.14
Bare/sparse vegetation 3.22 3.14 2.97
Permanent water bodies 2.31 2.01 1.95
Herbaceous wetland 2.88 2.68 2.58

Table 4.4 RMSE of ‘Case 1’, ‘Case 2’, and ‘Case 3’ downscaling experiments (date of interest:
28/05/2020) for all the land cover classes in the study area

28/05/2020
Case 1 Case 2 Case 3

Tree Cover 3.19 3.14 3.04
Shrubland 6.52 6.60 5.37
Grassland 2.35 2.19 2.14
Cropland 3.34 3.32 3.30
Built-Up 2.81 2.76 3.40
Bare/sparse vegetation 4.85 4.47 4.28
Permanent water bodies 2.77 2.45 2.27
Herbaceous wetland 3.39 3.07 2.88
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.1: Results of the ‘Case 3’ radar-based RF downscaling experiment. Here, (a), (b), and (c)
refer to validation Landsat-8 LST (100 m) acquired on 25/03/2020, 10/04/2020, and 28/05/2020,
respectively. (d), (e), and (f) refer to the achieved downscaled LST images (100 m) for 25/03/2020,
10/04/2020, and 28/05/2020, respectively. (g), (h) and (i) refer to the histograms and (j), (k), and (l)
refer to the scatterplots obtained on comparing downscaled LST images (100 m) to the Landsat-8
validation LST images (100 m)
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Table 4.5 Evaluation metrics for the optical-based RF downscaling experiment. Here, six bands
from the optical dataset were used as predictors

25/03/2020
RMSE 1.12
Correlation Coefficient (r) 0.93
Coefficient of Determination (R2) 0.87

Table 4.6 RMSE of the optical-based RF downscaling experiment for each land cover class in the
study area. Here, six bands from the optical dataset were used as predictors

25/03/2020
Tree Cover 1.22
Shrubland 2.10
Grassland 0.95
Cropland 0.96
Built-Up 1.68
Bare/sparse vegetation 1.81
Permanent water bodies 0.92
Herbaceous wetland 1.68

radar-based downscaling experiment, the optical-based downscaling experiment was conducted
only for a single date of interest due to the unavailability of cloud-free optical images for the other
selected dates.

Furthermore, Figure 4.2 presents the downscaled LST image (100 m), the Landsat-8 LST used for
validation (100 m), and the corresponding histograms and scatterplots related to the optical-based
RF downscaling experiment.

To address sub-objective 4 (1.5.2-4), a comparison is required between the quantitative metrics of
the radar-based downscaling experiment and the optical-based downscaling experiment. Upon
reviewing Tables 4.1 and 4.5, it becomes apparent that the radar-based downscaling model exhibits
slightly inferior performance compared to the optical-based downscaling model. Furthermore,
from Tables 4.2, 4.3, and 4.4, it becomes apparent that the RMSE values for various land cover
classes exhibit similar trends across all radar-based RF downscaling models. The shrubland class
consistently yields the highest error, while the grassland class demonstrates the lowest error. This
pattern is also observed in the optical-based RF model (Table 4.6); however, the lowest error for
this model occurs in the permanent water bodies class. This can be attributed to the fact that LST
over water bodies varies smoothly, aligning with the smooth spatial patterns observed in the optical
images. Conversely, the absence of this smoothness over water surfaces in radar images could
contribute to higher error values. Notably, the radar-based RF downscaling model outperforms the
optical-based RF downscaling model for built-up areas, a finding consistent with the CNN-based
downscaling model. However, the observed increase in performance is not significant, making it
challenging to attribute this characteristic to a specific reason. Section 5.1 discusses various reasons
associated with the suboptimal performance of the radar-based downscaling model when compared
with the performance of the optical-based downscaling model.
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(a) (b)

(c)

(d)

Figure 4.2: Results of the optical-based RF downscaling experiment. Here, (a) refers to Landsat-8
validation LST (100 m) (acquistion date: 25/03/2020), (b) refers to the achieved downscaled LST
(100 m), (c) refers to the histograms of (a) and (b), and (d) refers to the scatterplots between (a) and
(b)
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Table 4.7 Evaluation metrics achieved by comparing RF model estimate with the original target
LST image at 1000 m. Here, ‘Conventional Approach’ refers to utilizing aggregated or upscaled

version of land cover image as a predictor, whereas, ‘Proposed Approach’ refers to utilizing
proportion of land cover classes as predictors

Conventional Approach Proposed Approach
RMSE 1.6 0.69
Correlation Coefficient (r) 0.83 0.97

Table 4.8 Evaluation metrics achieved by integrating land cover information to ‘Case 3’ of the
radar-based RF downscaling experiment

25/03/2020 10/04/2020 28/05/2020
RMSE 1.20 1.66 2.33
r 0.93 0.96 0.92
R2 0.86 0.93 0.86

4.1.3 Integration of Land Cover information

In order to evaluate the efficacy of the proposed approach of utilizing the proportion of land cover
as a feature, compared to the conventional method (described in Section 3.2.3), it is necessary
to conduct a preliminary test before integrating the land cover dataset with the developed radar
and optical downscaling models (as discussed in subsection 3.2.3). Visualizing and comparing
the performance of these predictors at coarse resolution (Equation 3.1) can aid in assessing their
effectiveness. The traditional approach employs discrete class labels as predictors, resulting in a
discretized representation of the target LST map, which does not accurately reflect the continuous
nature of LST variations. Upon reviewing Figure 4.3, it can be concluded that this assumption
is indeed valid. Furthermore, the quantitative metrics obtained by comparing the model esti-
mates/predictions at a coarse resolution of 1000 m to the aggregated Landsat-8 LST (1000 m) (Table
4.7) support the finding that the proposed method of incorporating land cover information into
the downscaling models outperforms the conventional approach.

Having established the superiority of the proposed approach, the land cover information was
integrated with the developed radar-based and optical-based downscaling models. The subsequent
sub-subsections present the results obtained for these cases.

4.1.3.1 Incorporating land cover proportion features to radar-based RF downscaling model

As suggested by the title of the sub-subsection, this experiment involves integrating the land cover
information into the developed radar-based downscaling model that utilizes (5 × 5) VV, (5 × 5)
VH, and homogeneity index as predictors. The corresponding quantitative results are presented in
Tables 4.8 and 4.9. Additionally, Figure 4.4 illustrates the achieved results in a similar manner to
Figure 4.1.
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(a) (b) (c)

(d) (e)

Figure 4.3: Results displaying the efficacy of different land cover integration approaches. Here, (a)
refers to the aggregated Landsat-8 LST (1000 m), (b) refers to the RF model estimation (1000 m) with
the conventional approach, and (c) refers to the RF model estimation (1000 m) with the proposed
approach. (d) and (e) displays the histograms of (b) and (c) in comparison to (a), respectively. Here,
‘Conventional Approach’ refers to utilizing aggregated or upscaled version of land cover image as
a predictor, whereas, ‘Proposed Approach’ refers to utilizing proportion of land cover classes as
predictors

Table 4.9 RMSE achieved by integrating land cover information to ‘Case 3’ of the radar-based RF
downscaling experiment for all the land cover classes in the study area

25/03/2020 10/04/2020 28/05/2020
Tree Cover 1.20 1.65 3.10
Shrubland 2.30 2.49 3.07
Grassland 0.96 1.39 1.98
Cropland 1.05 1.66 2.92
Built-Up 2.00 2.22 2.86
Bare/sparse vegetation 2.08 2.76 3.39
Permanent water bodies 1.04 1.70 1.68
Herbaceous wetland 1.35 1.88 2.16
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.4: Results achieved by integrating land cover information to ‘Case 3’ of the radar-based RF
downscaling experiment. Here, (a), (b), and (c) refer to validation Landsat-8 LST (100 m) acquired
on 25/03/2020, 10/04/2020, and 28/05/2020, respectively. (d), (e), and (f) refer to the achieved
downscaled LST images (100 m) for 25/03/2020, 10/04/2020, and 28/05/2020, respectively. (g), (h)
and (i) refer to the histograms and (j), (k), and (l) refer to the scatterplots obtained on comparing
downscaled LST images (100 m) to the Landsat-8 validation LST images (100 m)
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Table 4.10 Evaluation metrics achieved by integrating land cover information to the optical-based
RF downscaling experiment

25/03/2020
RMSE 1.10
Correlation Coefficient (r) 0.94
Coefficient of Determination (R2) 0.88

Table 4.11 RMSE achieved by integrating land cover information to the optical-based RF
downscaling experiment for all the land cover classes in the study area

25/03/2020
Tree Cover 1.20
Shrubland 1.89
Grassland 0.93
Cropland 0.80
Built-Up 1.78
Bare/sparse vegetation 1.53
Permanent water bodies 0.97
Herbaceous wetland 1.28

4.1.3.2 Incorporating land cover proportion features to optical-based RF downscaling model

In this case, the land cover information was integrated into the developed optical-based downscaling
model that utilizes six optical bands as predictors. The corresponding quantitative metrics are
presented in Table 4.10. Furthermore, Figure 4.5 demonstrates the achieved results in a similar
manner to Figure 4.2.

After comparing Table 4.8 with 4.1 and Table 4.10 with 4.5, it becomes apparent that integrating
land cover information into both the radar-based and optical-based downscaling models leads
to improved performance. The specific advantages offered by the incorporation of land cover
information are further discussed in Section 5.3.

4.2 CONVOLUTIONAL NEURAL NETWORKS

This section presents the results obtained from the downscaling experiments conducted using the
proposed CNN-based downscaling architecture. The section is further divided into two subsections
corresponding to the radar-based and optical-based downscaling.

4.2.1 Radar-based Downscaling

In the primary radar-based CNN downscaling experiment, the VV and VH bands from the radar
imagery were utilized as predictors. The achieved quantitative metrics are presented in Table 4.12.
Additionally, Figure 4.6 illustrates the achieved results in a similar manner to Figure 4.1.
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(a) (b)

(c)

(d)

Figure 4.5: Results achieved by integrating land cover information to the optical-based RF downscal-
ing experiment. Here, (a) refers to Landsat-8 validation LST (100 m) (acquistion date: 25/03/2020),
(b) refers to the achieved downscaled LST (100 m), (c) refers to the histograms of (a) and (b), and (d)
refers to the scatterplots between (a) and (b)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.6: Results of the radar-based CNN downscaling experiment. Here, (a), (b), and (c)
refer to validation Landsat-8 LST (100 m) acquired on 25/03/2020, 10/04/2020, and 28/05/2020,
respectively. (d), (e), and (f) refer to the achieved downscaled LST images (100 m) for 25/03/2020,
10/04/2020, and 28/05/2020, respectively. (g), (h) and (i) refer to the histograms and (j), (k), and (l)
refer to the scatterplots obtained on comparing downscaled LST images (100 m) to the Landsat-8
validation LST images (100 m)

40



DOWNSCALING LAND SURFACE TEMPERATURE USING SAR IMAGES: A MACHINE LEARNING FRAMEWORK

Table 4.12 Evaluation metrics for the radar-based CNN downscaling experiment. Here, VV and
VH images from the radar dataset were utilized as predictors for the CNN downscaling model

25/03/2020 10/04/2020 28/05/2020
RMSE 1.21 1.68 2.33
r 0.92 0.96 0.92
R2 0.85 0.93 0.86

Table 4.13 Evaluation metrics for the optical-based CNN downscaling experiment. Here, six
bands from the optical dataset were utilized as predictors for the CNN downscaling model

25/03/2020
RMSE 1.09
Correlation Coefficient (r) 0.94
Coefficient of Determination (R2) 0.88

Upon comparing the quantitative metrics from Tables 4.1 and 4.12, it is evident that the CNN
models outperform the RF model. However, upon analysing the downscaled LST obtained through
the proposed CNN architecture without residual correction, certain shortcomings related to the
proposed architecture are revealed. These shortcomings are discussed in Section 5.4.

4.2.2 Optical-based Downscaling

In the primary optical-based CNN downscaling experiment, six optical bands were utilized as
predictors. The achieved quantitative metrics are presented in Table 4.13. Additionally, Figure 4.7
illustrates the achieved results in a similar manner to Figure 4.2.

Similar to the observation made for the radar-based CNN downscaling experiment, the CNN
model outperforms the RF model in the optical-based downscaling experiment (Tables 4.13 and
4.5).

4.3 APPLICATION TO MODIS LST

As mentioned in Section 3.4, all the experiments were conducted again utilizing MODIS LST (1000
m) as the target variable to demonstrate the applicability of the developed methods in practical
scenarios. The achieved results exhibited similar trends to those obtained using aggregated Landsat-8
LST (1000 m) as the target variable and have not been included here to avoid redundancy. However,
to illustrate for the reader, the example results achieved for two RF-based MODIS LST downscaling
experiments, namely utilizing (5 × 5) VV, (5 × 5) VH, homogeneity index, and land cover as
predictors, and utilizing six bands of optical imagery and land cover as predictors, are displayed in
Figure 4.8 and presented in Table 4.14.

As can be seen in Table 4.14, utilizing MODIS LST (1000 m) as the target variable yields identical
quantitative performance for radar-based and optical-based experiments. This contrasts with the
findings reported in Tables 4.8 and 4.10, where a noticeable difference in performance is evident
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(a) (b)

(c)

(d)

Figure 4.7: Results of the optical-based CNN downscaling experiment. Here, (a) refers to Landsat-8
validation LST (100 m) (acquistion date: 25/03/2020), (b) refers to the achieved downscaled LST
(100 m), (c) refers to the histograms of (a) and (b), and (d) refers to the scatterplots between (a) and
(b)
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.8: Results of the downscaling experiments conducted using MODIS LST as the target
variable. Here, (a) refers to the Landsat-8 validation LST (100 m) (acquistion date: 25/03/2020),
(b) refers to the achieved downscaled LST (100 m) using (5 × 5) VV, (5 × 5) VH, homogeneity
index, and land cover as predictors, and (c) refers to the achieved downscaled LST (100 m) using six
optical bands as predictors. (d) and (e) displays the histograms of (b) and (c) in comparison to (a),
respectively, whereas, (f) and (g) displays the scatterplot comparision between the downscaled LST
(100 m) and the Landsat-8 validation LST (100 m)
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Table 4.14 Evaluation metrics for the downscaling experiments conducted with MODIS LST as
the target variable

with
(5 × 5) VV,
(5 × 5) VH,
homogene-
ity index,
and land
cover as

predictors

with six
optical

bands and
land cover

as
predictors

RMSE 1.92 1.92
Correlation Coefficient r 0.56 0.56
Coefficient of Determination (R2) 0.31 0.31

between the radar-based and optical-based downscaling experiments. Moreover, the quantitative
performance achieved by performing the same experiments utilizing aggregated Landsat-8 LST
as target (Tables 4.8 and 4.10) demonstrates superiority compared to that shown in Table 4.14.
It is important to emphasize that the predictors and the downscaling model remain the same
for the experiments presented in Tables 4.8, 4.10, and 4.14. The decline in performance when
using MODIS LST (1000 m) as the target variable can be attributed to the differences in sensor
characteristics between MODIS and Landsat-8. Specifically, since the sensor characteristics are
distinct, it may be erroneous to directly compare the performance of downscaled MODIS LST
(100 m) to Landsat-8 LST (100 m). Section 5.5 delves further into the details of this matter.
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Chapter 5

Discussion

The objective of this chapter is to offer insights into both the advantages and shortcomings of the
overall research and propose potential avenues to pursue in order to achieve enhanced performance.
The insights presented in Section 5.1 focus specifically on radar data in general, while Section 5.2
provides insights into the effectiveness of the innovative features derived from the radar dataset.
Section 5.3 highlights the benefits attained by incorporating land cover information into the
downscaling model. Furthermore, Section 5.4 is dedicated to discussing the limitations of the
proposed CNN-based downscaling model and suggests potential modifications to its architecture to
improve performance. The discrepancy between MODIS and Landsat-8 LST products is examined
in Section 5.5, and finally, Section 5.6 addresses the challenge of modeling the temporal aspect in
regression-based downscaling frameworks.

5.1 EFFICACY OF RADAR DATA IN LST DOWNSCALING

The primary objective of this research was to evaluate the efficacy of radar-derived predictors in
downscaling LST (1.5.1). The quantitative evaluation metrics presented in Table 4.1 demonstrate
the effectiveness of using the VV and VH bands of Sentinel-1 GRD data as predictors for LST
downscaling. The downscaled LST maps generated using the radar-based RF downscaling model
exhibit favorable agreement with the validation data, as depicted in Figure 4.1. This observation
remains consistent in the case of a CNN-based downscaling model, as evidenced by the results
presented in Table 4.12 and Figure 4.6. When comparing the performance of the predictors derived
from the Sentinel-1 radar dataset (Tables 4.1 and 4.12) with those derived from the Sentinel-2 optical
dataset (Tables 4.5 and 4.13), it becomes evident that the downscaling models based on optical data
display a slightly superior performance when compared to their radar-based counterparts.

Several factors may contribute to the optical dataset outperforming the radar dataset. Firstly, radar
images typically display more pixel value variations over local regions, whereas optical bands exhibit
smoother variations in pixel values (Figure 5.1). Although efforts were made to address this issue
by incorporating neighboring values of radar bands as features, datasets with inherent smooth
patterns generally yield better results compared to those without such patterns. Additionally, as
can be inferred from Figure 5.1, the boundary delineation observed in the pixel values of optical
images between different features in the study area, such as urban and green areas, aligns with
the spatial patterns of observed differences in LST values; however, the same cannot be observed
for radar images. Another characteristic that may contribute to the slightly better performance
of the optical dataset is the difference in sensor characteristics between radar and optical data,
particularly the disparity in viewing geometry. Sentinel-1 SAR satellites collect images using a
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side-looking geometry, whereas both Landsat-8 LST and Sentinel-2 optical data are acquired using
a nadir-looking geometry, which may introduce some spatial pattern mismatches and limit the
performance of the radar dataset for downscaling.

Furthermore, as highlighted in Section 1.3.3, LST downscaling studies commonly employ spectral
indices, such as NDVI derived from optical datasets as predictors, rather than individual spectral
bands. It should be noted that similar spectral indices can also be calculated using radar datasets, such
as Sentinel-1. For instance, Mandal et al. (2020) derived a dual-pol Radar Vegetation Index (dpRVI)
for the Sentinel-1 SAR dataset, and observed a strong correlation with biophysical variables such
as Dry Biomass (DB), Plant Area Index (PAI), and Vegetation Water Content (VWC). However,
the calculation of such indices relies on the covariance matrix, which can only be computed from
the Sentinel-1 SLC dataset. In this study, the Sentinel-1 GRD dataset was employed, which lacks
phase information, thus preventing the calculation of these indices for use as features. Additionally,
notable attempts have been made, such as those by Bhogapurapu et al. (2022), to compute the Radar
Vegetation Index (RVI) from Sentinel-1 GRD data for soil moisture estimation. Incorporating
such information in the developed downscaling models could potentially lead to improved results.
Moreover, since the Sentinel-1 satellite is dual-pol, it only offers VV and VH polarization channels.
The inclusion of quad-pol datasets, providing four polarization channels (VV, VH, HH, and HV),
may further enhance the outcomes.

5.2 EFFICACY OF ENGINEERED RADAR FEATURES IN LST DOWNSCALING

As seen through Tables 4.1 and 4.8, the incorporation of feature engineering techniques, such
as including neighboring values and radar-based homogeneity index enhances the quantitative
performance of the radar-based RF downscaling models and yields improved qualitative results.
Figure 5.2 depicts the impact of feature inclusion within the radar-based downscaling framework.
From Figure 5.2, it can be inferred that the downscaled LST image (100 m), generated by incorpo-
rating neighboring values (Figures 5.2d and 5.2e), exhibits smoother and more gradual variations
compared to the version without such inclusion (Figure 5.2c). However, the difference observed
in the downscaled LST, generated by including the radar-based homogeneity index (Figure 5.2e),
compared to the version without this inclusion (Figure 5.2d), is not significantly substantial. As
discussed before, the feature dimension increases from 2 (VV and VH bands) to 50 (5 × 5 VV,
5 × 5 VH) between Figures 5.2c and 5.2d, and subsequently from 50 (5 × 5 VV, 5 × 5 VH) to
52 (5 × 5 VV, 5 × 5 VH, VV homogeneity index, and VH homogeneity index) between Figures
5.2d and 5.2e. Hence, the performance increase between Figures 5.2c and 5.2d is expected to be
more significant compared to that between Figures 5.2d and 5.2e. This qualitative observation
is consistent with the findings presented in Table 4.1, where the performance increase between
‘Case 1’ and ‘Case 2’ is more substantial than that between ‘Case 2’ and ‘Case 3’. Furthermore,
the inclusion of neighboring values and radar-based homogeneity index also mitigates numerous
false high LST estimates that may arise from elevated values of the backscattering coefficient. It is
important to note that high backscatter values do not necessarily correspond to high LST values,
as the raw radar backscatter is influenced by various variables beyond LST alone.

Although the quantitative performance gains achieved through the inclusion of these features in
the models are not substantial, qualitatively, these engineered features effectively address several
important challenges.
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(a) (b)

(c) (d)

Figure 5.1: Comparison between the spatial patterns exhibited by different datasets. Here, the
red box in (a) shows the location of the zoomed-in images. (b) refers to the Landsat-8 LST (100
m) acquired on 25/03/2020, (c) refers to the VV band image of Sentinel-1 GRD dataset (100 m)
acquired on 25/03/2020, and (d) refers to the optical true color composite of Sentinel-2 MSI dataset
(100 m) acquired on 26/03/2020. As can be inferred through the images, in terms of spatial patterns,
(d) shows a better agreement with (b) as compared to (c). Moreover, (c) demonstrates a higher
presence of pixel value variations over local regions, such as homogeneous green areas, in contrast
to (d)
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(a) (b)

(c) (d) (e)

Figure 5.2: Comparison between the downscaled LST images (100 m) obtained by different feature
inclusion cases. Here, the red box in (a) shows the location of the zoomed-in images. (b) refers to the
Landsat-8 LST (100 m) acquired on 25/03/2020, (c) refers to the downscaled LST (100 m) obtained
by utilizing VV and VH bands as predictors, (d) refers to the downscaled LST (100 m) obtained by
utilizing (5 × 5) VV and (5 × 5) VH patches as predictors, and (e) refers to the downscaled LST (100
m) obtained by utilizing (5 × 5) VV patch, (5 × 5) VH patch, and homogeneity index as predictors
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Table 5.1 Quantitative metrics without and with residual correction process for radar-based RF
downscaling experiments (date of interest: 25/03/2020)

Case 1 Case 2 Case 3
without
∆T

with
∆T

without
∆T

with
∆T

without
∆T

with
∆T

RMSE 1.80 1.44 1.63 1.25 1.60 1.22
Correlation Coefficient (r) 0.82 0.89 0.85 0.92 0.86 0.92
Coefficient of Determination (R2) 0.67 0.80 0.72 0.84 0.73 0.85

It is worth noting that the residual correction process, as described by Equations 3.3 and 3.4,
effectively addresses certain challenges mentioned above. However, it is important to acknowledge
that the application of this process can introduce boxy patterns in regions where the model’s
predictive capability is limited. These boxy patterns are also visible in Figure 5.2. This occurs
because the residuals are obtained at a coarser scale, and the corresponding fine-scale pixels are
adjusted using a constant residual value. The significance of this issue varies depending on the
practical use of these downscaled products. Consequently, it is generally preferable to enhance
predictive power through the incorporation of additional features rather than relying heavily on the
residual correction method. Table 5.1 offers insights into the performance improvement achieved
through the residual correction process.

5.3 INTEGRATION OF LAND COVER INFORMATION

In radar imagery, urban regions typically exhibit high backscatter values due to complex scattering
interactions, while green areas tend to show lower backscatter values. However, it should be
noted that high backscatter values do not necessarily correspond to high LST values, as the raw
radar backscatter is influenced by various variables beyond LST alone. Consequently, during the
training process, as most of the high backscattering values originate from urban regions, they tend
to be associated with high LST values. This situation introduces errors when dealing with ground
features that exhibit high backscatter values but do not align with high LST values, as is the case
with forested areas.

Forested areas typically demonstrate high backscatter values due to various scattering mechanisms,
while their LST values remain low. To address this issue, integrating land cover information into the
downscaling models becomes necessary. Figure 5.3 illustrates the impact of incorporating land cover
information within the proposed framework. As depicted in Figure 5.3, the inclusion of land cover
features successfully resolves the issue related to forested areas (compare Figure 5.3d with Figure
5.3e and Figure 5.3f with Figure 5.3g). Additionally, incorporating land cover features aids in better
boundary delineation between different land cover categories, addressing a limitation observed
when using predictors derived solely from Sentinel-1 GRD data (VV and VH). Furthermore, land
cover information is relatively static and independent of weather conditions. Therefore, integrating
land cover information into downscaling models does not pose significant processing challenges.

Comparing Figure 5.3f with Figure 5.3d , it can be observed that residual correction attempts to
solve this issue of false mapping without the incorporation of land cover information. However,
since the predictive capacity of the model is low the area looks more boxy as compared to Figure
5.3g.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 5.3: Impact of incorporating land cover information into the downscaling framework. Here,
the red box in (a) shows the location of the zoomed-in images. (b) shows the tree cover class from
the ‘ESA WorldCover’ dataset (green color) and (c) refers to the Landsat-8 LST (100 m) acquired on
25/03/2020. (d) and (f) refer to the achieved downscaled LST (100 m) by utilizing (5 × 5) VV patch,
(5 × 5) VH patch, and homogeneity index as predictors, whereas (e) and (g) refer to the achieved
downscaled LST (100 m) by utilizing (5 × 5) VV patch, (5 × 5) VH patch, homogeneity index,
and land cover as features. Here, (d) and (e) are achieved downscaled LST images without residual
correction, whereas, (f) and (g) with residual correction
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Table 5.2 RMSE values of radar (VV and VH) and optical (six bands) based RF and CNN
downscaling experiments before and after residual correction

RF CNN
without
∆T

with
∆T

without
∆T

with
∆T

with VV and VH as predictors 1.80 1.44 2.93 1.21
with six bands of optical dataset as predictors 1.39 1.12 1.35 1.09

5.4 CNN: SHORTCOMINGS AND POTENTIAL ARCHITECTURE MODIFICATIONS

In addition to the conventional RF downscaling model, this research also introduced a CNN-based
regression architecture for LST downscaling. The primary objective was to establish an end-to-end
mapping between coarse-scale target values and fine-scale predictor values. As indicated by Tables 4.5
and 4.13, the CNN-based architecture exhibits slightly better quantitative performance compared
to the random forest model when utilizing the same optical input. However, the difference in
performance is not substantial. From a qualitative standpoint, the CNN-based downscaling model
preserves the structural characteristics of features within the study area, in contrast to the RF-based
model. Consequently, there are minimal drastic variations observed in the CNN-based downscaled
LST values across local regions (Figure 4.7b). A noteworthy observation is that when using VV
and VH bands as predictors without residual correction, the evaluation metrics for the CNN-
based downscaling model are inferior to those of the RF-based downscaling model (Table 5.2).
For optical data, before applying the residual correction, the evaluation metrics for both RF and
CNN downscaling models exhibit similarities, with CNN displaying slightly superior performance
compared to RF. This discrepancy might be attributed, in part, to the fact that the feature inputs
for the radar-based RF downscaling model, i.e., the neighbors and the homogeneity index do not
correlate with the features learned by the convolution layers. Consequently, it may be erroneous to
directly compare these models. However, this discrepancy could also be attributed to the fact that
incorporation of any images that exhibit noisy spatial patterns like the radar dataset would always
result in bad estimates due to the nature of the developed architecture. Specifically, the proposed
CNN architecture attempts to map the intrinsic fine structure obtained from the predictor image to
the value of corresponding coarse resolution target pixel. Consequently, inputs lacking a smoothly
varying pattern can pose challenges for the proposed CNN downscaling architecture in identifying
appropriate features. If this hypothesis holds true, it highlights a limitation in the developed
architecture and suggests the need for modifications.

One potential modification could involve increasing the number of convolutional layers in the
architecture. This adjustment could enhance the architecture’s ability to identify intricate features
from a complex data source like radar. However, it is worth noting that the proposed architecture
takes a 10 × 10 patch of predictor images as input. Consequently, utilizing a deeper network might
prove redundant since there may not be sufficient pixels remaining to convolve after pooling.

Another potential modification could involve integrating a fully connected network that functions
as a traditional downscaling regression algorithm, where the inputs consist of the coarse-resolution
predictors and target images, akin to the random forest regression algorithm. Combining this ap-
proach with the proposed CNN-based regression architecture, which excels at preserving structures,
in some form of a weighted output may yield improved results. However, definitive conclusions
cannot be drawn without conducting further experimentation.
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The primary objective behind employing a CNN architecture was to enable the model to learn
and understand the spatial relationships present in the data. However, it is worth noting that
the proposed architecture, as it stands, does not explicitly consider the spatial structure of the
target variable, namely LST. In other words, there is no direct mapping between the spatial
structure of the predictor image and the spatial structure of the target image. As a consequence, the
performance of the proposed CNN architecture may be limited in capturing the intricate spatial
dependencies crucial for accurate LST downscaling. In this context, a fully convolutional neural
network architecture can be adapted alongside the proposed CNN architecture to learn the spatial
relationship between predictor and target images.

By considering the above mentioned modifications, future iterations of the proposed CNN archi-
tecture can potentially achieve superior results for the task of LST downscaling.

5.5 APPLICATION TO MODIS LST: SHORTCOMINGS AND A POTENTIAL CORRECTION PROCEDURE

According to the data presented in Table 4.14, the performance of the developed RF downscaling
framework on MODIS LST (1000 m) was found to be inferior compared to the results obtained
from aggregated Landsat-8 LST (1000 m) (Tables 4.8 and 4.10). As discussed in Section 4.3, this
difference can be partly attributed to the distinct sensor characteristics of MODIS and Landsat-8.
Therefore, comparing the downscaled MODIS LST with Landsat-8 validation data is incorrect.
The issue of spatial pattern mismatch between MODIS LST (1000 m) and aggregated Landsat-8
LST (1000 m) on the same day is highlighted in Figure 5.4. Additionally, it is worth mentioning
that MODIS and Landsat-8 LST images were acquired at different time, as indicated in Table 2.3.
This temporal disparity could also contribute to the observed differences.

(a) (b)

Figure 5.4: Comparison between (a) MODIS LST (1000 m) and (b) aggregated Landsat-8 LST (1000
m). The correlation coefficient r between (a) and (b) is 0.56
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Table 5.3 Evaluation metrics for the RF based downscaling experiment conducted with MODIS
LST as the target variable before and after residual correction

with (5 × 5) VV,
(5 × 5) VH,

homogeneity index, and
land cover as predictors
without ∆T with ∆T

RMSE 1.67 1.92
Correlation Coefficient (r) 0.70 0.56
Coefficient of Determination (R2) 0.48 0.31

Moreover, since the spatial patterns of the two datasets differ (Figure 5.4), the process of resid-
ual correction (Equation 3.3) would yield poorer performance. This assertion is supported by
quantitative evidence presented in Table 5.3.

To address this disparity and obtain a more representative validation set for MODIS LST at 100
m, a possible solution is to employ linear regression correction between the MODIS and Landsat-
8 datasets. The basic spatial downscaling algorithm described in Section 3.1 can facilitate the
implementation of this correction procedure. Similar to this study’s approach of utilizing aggregated
radar data at 1000 m as a predictor to model the variability in the target LST variable, the aggregated
Landsat-8 LST (1000 m) can be used as a predictor, and MODIS LST (1000 m) can serve as the target
to train a linear regression model. Considering that both the predictor and target variables are LST,
a linear relationship between them is reasonable, justifying the selection of linear regression as the
downscaling model. Once the model is trained, it can be utilized to generate a MODIS equivalent
dataset at 100 m using the original Landsat-8 LST (100 m) as the input for the model.

However, it is essential to note that the suggested correction procedure is not without uncertainties,
as it does not directly address the issue of spatial pattern mismatch. Therefore, applying the
suggested correction process does not guarantee improved results.

5.6 CHALLENGE IN MODELLING TIME

A crucial challenge in generating fine-scale LST data from coarse-scale predictors is the temporal
aspect. The main assumption underlying this research is that the high temporal resolution of
satellites like MODIS, which acquire LST products at coarse spatial resolution, allows spatial
downscaling models to be applied over time for accurate temporal estimation. However, this
assumption faces practical challenges in real-life applications. The primary challenge arises from
the weather dependency of TIR-based satellites. Consequently, building accurate models on a daily
basis becomes infeasible as the daily data quality of the LST products acquired from TIR-based
satellites could be affected due to bad weather conditions. Even if daily data is transformed using
interpolation or other processing techniques to improve its quality, training models daily with new
data can render the models unscalable. While this approach of constructing daily models using
changing data may be practical, it would be more advantageous to develop an architecture that
explicitly incorporates the temporal aspect.

Recurrent Neural Networks (RNNs), Long Short Term Memory (LSTM) networks, and similar
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architectures could serve as potential candidates for addressing the temporal aspect. However,
the challenge remains that TIR-based LST products are weather dependent, which may limit the
availability of sufficient data to train these architectures effectively.

On the other hand, radar data is independent of weather conditions, suggesting that a spatial down-
scaling model trained on multi-temporal radar data could potentially provide accurate estimations
over time. However, the temporal variations in LST values may not necessarily correlate with
the temporal changes in predictors derived from radar datasets such as Sentinel-1 GRD images.
To overcome this temporal challenge, one approach could involve considering the incorporation
of phase information available in the Sentinel-1 SLC product. By mapping the phase disparity
between two images acquired at different time, it may be possible to capture differences in LST
values over time. Unfortunately, the phase information is not retained in the Sentinel-1 GRD
product. Thus, addressing this limitation presents an avenue for future research exploration.
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Chapter 6

Conclusion

In order to conclude this thesis, this chapter comprises of three sections that address the research
questions (Section 6.1), provide future recommendations (Section 6.2), and offer a conclusion
(Section 6.3).

6.1 RESEARCH QUESTIONS - ANSWERED

Q1: What new features can be engineered from the SAR data to achieve better performance for
the task of downscaling?

Considering the Sentienl-1 GRD SAR dataset employed in this research, two innovative features,
namely neighboring values and the homogeneity index, were engineered to enhance the performance
of the RF-based downscaling models. The results, presented in Section 4.1.1 and further discussed
in Section 5.2 demonstrate that the incorporation of these features indeed leads to improved
performance. Alternatively, the utilization of the Sentinel-1 SLC SAR dataset could offer additional
features, such as spectral indices, dielectric constant, and others, due to its retention of phase
information. These features could be considered in the development of radar-based LST downscaling
models.

Q2: How does the proposed novel approach of incorporating land cover information into the
downscaling models perform compared to the traditional approach?

As detailed in Section 3.2.3, this research introduced a novel approach to incorporate land cover
information into the downscaling models. The results presented in Section 4.1.3 clearly demonstrate
that the performance of the proposed approach surpasses that of the traditional approach. However,
it is important to acknowledge that this novel approach has a limitation in its robustness, as it
is only applicable when downscaling LST to a resolution coarser than 10 m (>10), which is the
original spatial resolution of the ‘ESA WorldCover v100’ dataset. This limitation arises from the
fact that the proposed approach aims to calculate the proportion of land cover within a pixel. At a
resolution of 10 m, there are no further overlapping higher resolution pixels available to accurately
calculate the proportions of different land cover classes. While practically, the approach can still be
adapted for downscaling to a fine resolution of 10 m, the underlying significance of the approach
may get compromised.

Q3: How effective is the proposed novel CNN-based architecture for the task of downscaling?

As outlined in Section 4.2, the quantitative results obtained from the proposed novel CNN-based
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downscaling architecture exhibited a slight superiority compared to the RF-based downscaling
approach. However, upon conducting analysis of the downscaled images without residual correc-
tion, certain limitations stemming from the design of the architecture were identified. Potential
modifications aimed at enhancing the proposed architecture were discussed in Section 5.4.

Q4: How does the performance of SAR-based LST downscaling models compare to the perfor-
mance of optical-based LST downscaling models?

This research endeavors to forge a new path in the development of LST downscaling models utilizing
SAR or radar data. Consequently, answering the above question is of utmost importance to this
study. Despite the acknowledged limitations associated with radar data, as deliberated in Section
5.1, the performance of LST downscaling models employing predictors derived from radar data
only falls a bit short of the performance achieved by predictors derived from optical data. As a
result, by sacrificing only a negligible degree of performance, the utilization of radar data renders
LST downscaling models independent of weather conditions. This performance is expected to
witness improvement in future investigations through the incorporation of more comprehensive
radar datasets, such as Sentinel-1 SLC or even quad-pol radar datasets.

Moreover, radar data can serve as a supplementary dataset to the optical dataset, potentially leading
to enhanced performance. This notion was informally tested in one of the experiments and
the attained performance of the fusion of optical and radar datasets fell somewhere between the
performance derived from individual radar and optical datasets. It is worth noting, however, that
rigorous testing is required to conclusively support this assertion, which is why it was not included
as part of the thesis.

6.2 FUTURE RECOMMENDATIONS

Based on the answers of Section 6.1 and the overall content of Chapter 5, the future recommenda-
tions can be summarized as:

1. Incorporate additional features obtained from the Sentinel-1 SLC SAR dataset, such as RVI,
dielectric constant, soil moisture, and others, to enhance the construction of LST downscaling
models.

2. Enhance the proposed CNN architecture by integrating a fully connected neural network
that performs a basic downscaling algorithm, thereby improving the model’s capabilities.

3. Refine the proposed CNN architecture by incorporating a CNN architecture that aims to
capture the spatial structure of LST in relation to the predictor variables, leading to improved
downscaling performance.

4. Explore the use of advanced architectures, such as RNNs and LSTM, to model the temporal
aspect of LST in combination with the spatial downscaling models.

5. Utilize the phase information derived from the Sentinel-1 SLC dataset to effectively model
the temporal behavior of LST, enabling a more accurate representation of temporal changes
over time.
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These recommendations serve as valuable insights for future research endeavors, aiming to enhance
the performance and applicability of LST downscaling models.

6.3 CONCLUSION

This research introduced a novel approach for estimating LST using SAR data. Two machine
learning techniques, namely Random Forest and Convolutional Neural Networks, were employed
to downscale coarse-resolution LST images from 1000 m to 100 m. The Sentinel-1 SAR images were
utilized as predictors, enabling the generation of high-resolution LST images. The performance
of the developed models was evaluated against Landsat-8 LST data at 100 m spatial resolution.
Furthermore, innovative feature engineering techniques were proposed, including the incorporation
of neighboring values and a radar-based homogeneity index, to address limitations observed in
preliminary radar-based downscaling experiments.

Moreover, a comparison was made between the performance of the proposed radar-based downscal-
ing method and an optical-based approach. Remarkably, despite the inherent limitations of radar
data, the downscaling models built using radar predictors achieved comparable performance to
those constructed using optical predictors. Notably, radar data exhibits the advantage of weather
independence, making the downscaling models resilient to the effects of weather conditions.

To further enhance the downscaling models, a novel approach for incorporating land cover infor-
mation was introduced. This approach successfully addressed one of the main limitations of radar
data, which is the potential for inaccurate estimation of LST for specific land cover classes due to
the wrong approximation between LST and radar backscatter.

The proposed CNN-based downscaling architecture demonstrated promising results, although
certain modifications are required to address observed limitations.

Further, to improve the performance of radar-based downscaling models, it is recommended to
incorporate additional information from more comprehensive radar datasets, such as Sentinel-1
SLC.

One of the primary challenges in generating high-resolution LST data from coarse-scale predictors
is the temporal aspect. While radar images have shown potential for spatial downscaling, they
are not suitable for accurate temporal estimation. Temporal variations in LST values may not
align with changes in predictors derived from Sentinel-1 GRD intensity images. To overcome this
issue, incorporating phase information from the Sentinel-1 SLC product can help capture temporal
disparities in LST values over time.

In conclusion, this research contributes a new perspective to the field of LST estimation by lever-
aging SAR data. The findings highlight the suboptimal performance of radar-based downscaling
models, emphasize the advantages of radar data in terms of weather independence, and propose
strategies for further improvement. By considering the recommendations and addressing the
identified limitations, future studies can advance the accuracy and applicability of radar-based LST
downscaling models.
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Appendix A

Other figures
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.1: Results of the ‘Case 1’ radar-based RF downscaling experiment. Here, (a), (b), and (c)
refer to validation Landsat-8 LST (100 m) acquired on 25/03/2020, 10/04/2020, and 28/05/2020,
respectively. (d), (e), and (f) refer to the achieved downscaled LST images (100 m) for 25/03/2020,
10/04/2020, and 28/05/2020, respectively. (g), (h) and (i) refer to the histograms and (j), (k), and (l)
refer to the scatterplots obtained on comparing downscaled LST images (100 m) to the Landsat-8
validation LST images (100 m)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure A.2: Results of the ‘Case 2’ radar-based RF downscaling experiment. Here, (a), (b), and (c)
refer to validation Landsat-8 LST (100 m) acquired on 25/03/2020, 10/04/2020, and 28/05/2020,
respectively. (d), (e), and (f) refer to the achieved downscaled LST images (100 m) for 25/03/2020,
10/04/2020, and 28/05/2020, respectively. (g), (h) and (i) refer to the histograms and (j), (k), and (l)
refer to the scatterplots obtained on comparing downscaled LST images (100 m) to the Landsat-8
validation LST images (100 m)
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