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ABSTRACT 

Urban change detection plays a critical role in many domains such as city planning, infrastructure 

development, risk assessment, and land-use planning. However, the accurate classification of different 

types of changes in a 3D urban environment remains a challenging task. Conventional methods, which 

typically involve transforming the data into a DSM or Voxels, often fall short in managing the complexity 

of point clouds. On the other hand, more complex deep learning models have shown promise but still 

face challenges in real-world applications.  

 

In this Master's thesis, we address these challenges by implementing and evaluating three models: Random 

Forest, Fully Connected Neural Network, and Convolution Neural Network. Our approach builds on the 

foundational success of 2D change detection methods. We are confident that these proven techniques 

when adapted and extended to the 3D realm, can provide a simplified, efficient, and precise detection 

method. We utilize two datasets: the simulated Urb3DCD dataset, which provides a variety of class labels 

representing different types of changes, and the real-world AHN dataset from the Netherlands, offering a 

real and complex urban landscape. Our research provides a method that could be beneficial for urban 

planning, infrastructure development, and hazard and risk assessment. 

 

Our research begins with an explanation of the pre-processing of the data, chosen models, and their 

implementation. We train and validate these models on our datasets, assessing their ability to accurately 

classify different types of changes. Our findings reveal that while all models demonstrate strong 

performance, each has its strengths and weaknesses. The RF model, for instance, excels in areas that are 

well-represented in the training data, while the deep learning models display superiority in differentiating 

between similar classes. The CNN model adds an extra layer of understanding the data by accounting for 

spatial relationships between points, thus enhancing overall accuracy. The results obtained from the 

simulated dataset were impressive. We then apply these models to the AHN dataset, revealing that the 

model's performance is highly sensitive to feature selection, the quality of training data, and how 

representative the data is. The direct comparison of classes between the simulated and real datasets 

indicates superior results from the simulated dataset, suggesting the need for better-quality training data 

for real-world applications. 

 

One significant insight from our work is the demonstrated potential to leverage simpler methods for 

processing point cloud data, thus bypassing the need for more complex and computationally intensive 

techniques. Furthermore, we shed light on the challenges encountered when applying these models to 

real-world scenarios. This thesis, therefore, not only contributes to the existing body of knowledge on 

urban change detection using 3D point cloud data but also opens up new avenues for future research.  

 

 

 

 

Keywords: Deep Learning, Point Clouds, Change Detection, Aerial Laser Scanning (ASL), Urban 

Environment, Machine Learning, Actueel Hoogtebestand Nederland (AHN), Urb3DCD dataset 
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1. INTRODUCTION 

1.1. Motivation and applications 

 
The process of detecting changes in an object's or phenomenon's condition through repeated 

observation is referred to as change detection (Singh, 1989). Due to limitations in technology and resolution, 
change detection has historically been used to monitor changes in agricultural and land cover (Guerin, Binet, 
& Pierrot-Deseilligny, 2014). With the rapid development of data acquisition technologies in recent years, 
the scope of change detection has broadened, enabling its use in diverse fields such as water conservancy, 
disaster evaluation, illegal building detection, urban change documentation, construction site surveying, and 
city map/model updating (Hebel et al., 2013).  

The growing need for efficient city administration and frequent updates to 3D city models in response 
to rapid urban expansion calls for innovative and effective change detection methods (United Nations, 
2008). Urban change detection plays a vital role in addressing the challenges associated with urban growth, 
promoting sustainable development, and maintaining a high quality of life. By swiftly identifying changes in 
urban areas, spatial planning, damage estimation in natural disasters, and up-to-date city models can be 
ensured (Tran et al., 2018). 

Traditional change detection methods use remotely sensed multi-spectral or optical 2D images, LIDAR 
(light detection and ranging), or RADAR data. While 2D images offer simplicity and reduced computational 
demands, they lack height information and are sensitive to environmental conditions, leading to 
measurement uncertainties (Yadav et al., 2022). In contrast, 3D point clouds (PCs) generated by LIDAR 
systems provide essential height information and preserve the original geometric information in 3D space, 
making them more suitable for urban areas (Guo et al., 2020). 

This research takes place in the Netherlands and uses it’s available point cloud as one of the datasets 
(GeoTiles.nl). The second dataset that we use in this research is a simulated point cloud generated by de 
Gelis et al., 2023. The most common methods for obtaining point clouds in the Netherlands include 
photogrammetry (dense image matching), MLS (mobile laser scanning), and ALS (aerial laser scanning).  

The photogrammetry techniques use multiple images to create a 3D point cloud of the area by dense 
matching. While photogrammetry techniques are cost-effective and easily achievable, they exhibit lower 
accuracy and are prone to occlusion, low resolution, noise, and they are vulnerable to a lot of problems 
when it comes to studying a 3D environment (Remondino et al., 2014) (W. Liu et al., 2019)(Lehtola et al., 
2017). Laser scanners (active sensors) offer an alternative for generating 3D point clouds with high capture 
speed and point density (Vosselman & Maas, 2010).  

The Netherlands' up-to-date height model, Actueel Hoogtebestand Nederland (AHN), is a digital terrain 
model produced jointly by 26 water boards and Rijkswaterstaat. AHN primarily uses aerial laser scanning, 
with measurements taken from helicopters and aircraft (Figure 1). Currently, in its fourth generation (2020-
2022), the AHN has seen increased accuracy and point cloud density with each iteration. However, data 
quality may vary across the country due to different acquisition processes. Despite the availability of rapid 
and reliable 3D point cloud acquisition methods, keeping city models updated for sustainable urban planning 
remains challenging due to the accelerated pace of urban change. Traditional and manual methods are 
insufficient for maintaining up-to-date government databases.  

https://geotiles.nl/
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In this thesis, we will explore and develop two types of deep learning methods (FCNN and CNN) and 

one machine learning method (Random Forest), to address the challenges of urban change detection. These 
models aim to provide a more accurate and efficient solutions for updating city models, detecting changes, 
and classifying them in urban areas. 

To evaluate the performance of our proposed models, we will utilize two distinct datasets: the Actueel 
Hoogtebestand Nederland (AHN) data and the URB3DCD dataset. The AHN data, provides point cloud 
information with labelled classes such as ground, buildings etc. But because of the lack of classes and data, 
we could extract only 3 type of change classes for our algorithm. In contrast, the URB3DCD dataset is a 
more comprehensive resource containing point clouds with seven different change class labels. By 
incorporating both datasets, we aim to thoroughly test the effectiveness of the deep learning methods across 
a range of urban settings and classification tasks. 

Our research will contribute to the development of automated urban change detection solutions by 
leveraging the capabilities of deep learning methods in a raw point cloud dataset. By incorporating state-of-
the-art deep learning techniques and diverse datasets, this thesis aims to advance the field of urban change 
detection and support sustainable urban planning efforts worldwide. This research is inspired by the 
principles of the 2D change detection methods, with the aim of using the accumulated expertise in this field 
to build a model that accurately classifies and detect changes occurring in three dimensions. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 - AHN acquisition methods 

Image reference 
 

https://ieee-dataport.org/open-access/urb3dcd-urban-point-clouds-simulated-dataset-3d-change-detection
https://www.ahn.nl/
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1.2. Research objectives and questions 

1.2.1. Main objective 

 
The main objective of this research is to develop a deep learning change detection and classification 

method for urban areas that uses as its only input point clouds. The research aims to craft an algorithm that 
makes the best use of the point clouds data format by detecting changes in urban areas and classifying them 
through a single network pipeline. The model detects changes and classifies them for the targeted classes, 
and is easily adaptable for every urban area of our choice. 
 

1.2.2. Sub-objective (1): 

 
Design and implement a state-of-the-art DL change detection algorithm that works with raw point 
cloud data. 
 Literature Review based questions: 
- What is the size and type of training data required when using AHN data for change detection? 
- How to prepare and build the dataset for training, testing, and validation for the algorithm? 
- What backbone/main algorithm should be used when detecting changes in 3D raw PC? 
- What hidden layers and activation functions should we use for our algorithm? 
- What should be the features and target labels to input on our CNN? 
- Can we use the idea behind 2D change detection and 3D segmentation to develop the algorithm of 

our research? 
Research-based questions: 
- Is the CNN architecture suitable for our purpose and dataset? 
- How to build the model in order to process raw point cloud data? 
 

1.2.3. Sub-objective (2): 

Analyse the model's performance under various scenarios. 
Research-based questions: 

- What is the accuracy of detecting changes for each urban element? What is the best and worst 
detected object and why? 

- How well does the algorithm performs with different point cloud density/ different areas of the 
Netherlands? 

-  How does the model performs in a real dataset compared to a simulated dataset? What are the 
problems that occur? 

 

1.2.4. Sub-objective (3)  

Evaluate the model compatibility with state-of-the-art. 
Research-based questions: 
- Is this method efficient when it comes to computational time and system requirements?  
- How does the algorithm rank in comparison with other methods? 
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1.3. Contributions 

 
This research explores the potential of point cloud data and its relationship with deep learning 

methods to advance urban change detection. We aim to elevate three-dimensional change detection by 
utilizing teh pre-existing knowledge and proficiency gained from the  two-dimensional change detection. 
Our contributions are as follows: 
 

I) We propose a novel approach to 3D change detection that prevents data loss during pre-
processing, ensuring that valuable information is preserved throughout the process. 

 
II) We develop a versatile change detection algorithm capable of processing raw point cloud data, 

making it applicable across diverse urban environments. 
 

III) Our method avoids complex data transformations and heavy calculations in the pre-processing, 
allowing us to maximize the utility of point cloud data by employing fast straightforward pre-processing 
techniques such as KDtrees. 
 

IV) The algorithm we have designed is fast, reliable, and adaptable to various noise levels and class 
expansions, offering an accessible, editable, and user-friendly solution for urban change detection tasks. 
 

V) Our innovative technique propels the field of raw point cloud-based 3D change detection 
forward. To foster further research and collaboration, we will make all source codes publicly available: 
https://github.com/JorgesNofulla/Point-Cloud-Uraban-Change-detection 
 

To validate the effectiveness of our deep learning-based approach, we will utilize the multi-temporal 
AHN point cloud dataset (AHN3-AHN4) and the URB3DCD dataset for detecting urban changes in 
various urban areas. By combining cutting-edge deep learning techniques with simplistic pre-processing 
techniques on point cloud data, our research aims to significantly contribute to the field of urban change 
detection, supporting sustainable urban planning and development. 

2. RELATED WORKS AND STATE OF THE ART 

Change detection methods can be generally categorized as 2D, 3D, or hybrid approaches. These 
methods process input data from two distinct epochs, utilizing either 2D images, 3D point clouds, or a 
combination of both formats. In this section, we provide an overview of these different methods, discussing 
their underlying principles and applications. 

Figure 2 - Definition of different change types  
Image reference 

https://github.com/JorgesNofulla/Point-Cloud-Uraban-Change-detection
https://www.sciencedirect.com/science/article/pii/S0924271623000163


DEEP LEARNING-BASED CHANGE DETECTION AND CLASSIFICATION FOR AIRBORNE LASER SCANNING DATA 

11 

2.1. 2D change detection 

 
The fundamental idea behind implementing 2D images for change detection is that changes in reflectance, 
value, or texture will result in a detected change in the objects of interest. These methods don’t take into 
consideration height information. Some of the 2D change detection methods are :  

1. 2D image differencing change detection is one of the early change detection methods. It is easy 
to interpret and straightforward to implement. The basic idea is that two images are subtracted from 
each other, pixel by pixel. This method is used in land-cover change detection (Sohl, 1999),  irrigated 
crop monitoring (Manavalan et al., 1995), and change detection of forest conversion (Jha & UNNI, 
1994). Specifically, the univariate image differencing approach, a type of 2D image differencing, 
involves calculating the difference between corresponding pixel values from two images taken at 
distinct time points (Sohl, 1999). This process generates positive, negative, or zero values that 
signify areas of change or stability. Landsat TM was employed for single-band analysis.  
 
The univariate image differencing method can be represented as: 

∆𝑥 = 𝑥1 −  𝑥2 + 𝐶 (1) 
 

where Δx is the change pixel value, 𝑥1 is the pixel value at time 1, 𝑥2 is the pixel value at time 2, 
and C is a constant. 
While it is a relatively simple and straightforward technique, it does not produce detailed change 
information compared to some more advanced methods. Additionally, it requires manual input for 
selecting the threshold value, which could introduce subjectivity into the analysis and limit the 
potential for transfer learning. 
 

2. Vegetation Index change detection method functions similarly to image differencing. It involves 
computing vegetation indices such as the NDVI, PVI, and RVI for each date and subtracting them 
to identify changes. NDVI is calculated using the formula: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 (2) 

 

where NIR is the near-infrared band and R is the red band. PVI is derived using the equation: 

𝑃𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

√𝑎2 + 1
 (3) 

where a is the slope of the soil line in the NIR-R scatterplot. RVI is determined by: 

𝑅𝑉𝐼 =
𝑁𝐼𝑅

𝑅
(4) 

By subtracting these indices, the Vegetation Index change detection methods produce detailed 
change detection information with reduced error impacts from topographic and illumination 
effects, making it particularly effective for applications such as forest canopy change detection 
(Nelson, 1983)  and land cover (Lyon et al., 1998). A common formula for the Vegetation Index 
change detection method is: 

∆𝑉𝐼 = 𝑉𝐼1 − 𝑉𝐼2 (5) 
 

Where ΔVI is the change in the vegetation index, VI1 is the vegetation index at the first date, and 
VI2 is the vegetation index at the second date. However, it should be noted that the Vegetation 
index change detection method can be sensitive to random noises. 
 

3. Principal component analysis (PCA) is a statistical technique used for change detection in multi-
spectral remote sensing images. By transforming the original data into a new set of uncorrelated 
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variables called principal components, PCA effectively reduces data redundancy and utilizes highly 
correlated multi-temporal data. However, if the input variables are not highly correlated, PCA may 
not perform optimally in reducing data dimensionality. Additionally, this method requires 
standardization and relies on expert input for selecting thresholds and key components. Some of 
the purposes for which PCA has been used are forest defoliation change detection (Muchoney & 
Haack, 1994), where PCA was used to identify and quantify temporal changes in forest defoliation 
patterns, and monitoring rapid urban expansion using stacked multi-temporal images (O, 1998). 
PCA effectively discriminated between built-up and non-built-up areas while highlighting urban 
expansion patterns and monitoring urban expansion. 
 

4. Object-based image analysis (OBIA) is a method that segments images into objects, which are 
then classified based on their spectral, spatial, and contextual properties. OBIA has been widely 
applied for change detection in urban areas and forest monitoring (Blaschke, 2010) (Chen et al., 
2012). In OBIA, images are segmented using algorithms like the multiresolution segmentation 
(MRS) that combines pixels into objects based on homogeneity criteria. After segmentation, objects 
are classified using techniques like the nearest neighbor classifier, support vector machines, or 
decision trees, which consider the objects' features and spatial relationships. Figure 3 provides a 
visual representation of the output obtained from the OBIA segmentation process. 

 
However, OBIA's performance is sensitive to the choice of segmentation parameters, and 

the quality of segmentation directly impacts the accuracy of change detection. Proper parameter 
selection is crucial to ensure meaningful and accurate object delineation, which can be challenging 
and often requires expert knowledge. 

 
 

Figure 3 - (a) Aerial photograph of heterogeneous landscape (b) fine-scale segmentation (c) coarse-scale 

segmentation (d) object-based classification of woody cover, resulting in 97% accuracy       

                                 Image Reference 

https://reader.elsevier.com/reader/sd/pii/S0924271609000884?token=3351DFAE696F43F113B0E7FB1F9B19358E29C968D42A4E025321324E84013F828A0F4981B157393C87CBA91C1BE2C030&originRegion=eu-west-1&originCreation=20230426094203
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5. Random Forest (RF) is an machine learning method that has been applied to change detection in 
remote sensing images. RF is based on constructing multiple decision trees, and the final 
classification is determined by the majority vote of the individual trees(Breiman, 2001). Belgiu and 
Drăguţ (2016) present a comprehensive review of the applications of Random Forest in remote 

sensing, including its use in change detection tasks (Belgiu & Drǎguţ, 2016). The authors highlight 
the advantages of using Random Forest for change detection, such as its ability to handle complex 
and noisy data, robustness to overfitting, and capacity to provide variable importance measures. 
They provide examples of studies that have successfully employed Random Forest for change 
detection in various remote sensing applications, such as land cover change, urban expansion, and 
deforestation.  

Im and Jensen (2005) propose a change detection model that combines neighborhood 
correlation image analysis with decision tree classification (Figure 4), which can incorporate 
Random Forest as a classifier (Im & Jensen, 2005). The authors apply their model to detect land 
cover changes in a rapidly urbanizing area, demonstrating the effectiveness of this method in 
capturing complex changes. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4 – Flow diagram of the change detection model 

Image Reference 

https://reader.elsevier.com/reader/sd/pii/S0034425705002919?token=6465F43DD671A4DC75DE45272757CB660105DABE44AE51ABE03D9BFC2352E141BA8830CF9F53746225335E3EB4E38091&originRegion=eu-west-1&originCreation=20230426104114
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6. Artificial Neural Network (ANN) change detection gained popularity and shifted the attention 
of the majority of researchers (Yotov et al., 2023). ANNs consist of interconnected nodes or 
neurons, structured in layers, which process and transmit information in a manner similar to the 
human brain. The ability of ANNs to model complex relationships and learn patterns in data makes 
them well-suited for change detection tasks in remote sensing. Many researches suppose that ANN 
is able to outperform all the previous traditional change detection methods. With the new 
development in technology, the 
resolution of Remote Sensing data has 
greatly improved and so have the 
requirements for accuracy when it comes 
to change detection. ANN is a supervised 
method and can predict the data 
properties based on training samples 
using an activation function like the 
sigmoid function: f(x) = 1 / (1 + e^(-x)). 
It performs well in the cases of urban 
change detection (X. Liu & Jr, 2002) and 
forest change detection (Woodcock et al., 
2001).  
Dalwin et al. (2018) proposed a novel 
feature descriptor for automatic change 
detection in remote sensing images 
(Dalwin et al., 2018). The proposed 
descriptor, aims to provide a more 
comprehensive representation of the 
images. This improved representation 
can then be used in conjunction with an 
ANN classifier to enhance the change 
detection performance in various remote 
sensing applications, such as land cover 
change, urban expansion, and 
deforestation (Figure 5). 

7. Convolutional Neural Network 
(CNN) change detection is a state-of-
the-art method that builds upon the 
principles of ANNs. Unlike ANNs, only 
the last layer of a CNN is fully connected, 
generally resulting in a more powerful 
network. CNNs are applicable to data 
with stationarity, locality, and compositionality properties. Convolutions Neural Networks have 
shown superior performance in 2D image segmentation, including change detection. Siamese 
CNNs, in particular, have gained attention for their effectiveness in analyzing RGB images for 
earthquake-induced building damage assessment (Kalantar et al., 2020). When data are significantly 
different, for example, if images are coming from two types of sensors, weights could be 
independent, leading to the so-called pseudo-Siamese network (Zhan et al., 2017). Recently, 
MSCANet (Figure 6), a CNN-based network, has been developed for 2D change detection (M. Liu 
et al., 2022). This network uses a feature extractor to obtain features from input images and a 
transformer architecture to capture and aggregate multiscale context information from the features, 
resulting in better performance than traditional methods. 
 
 
 
 

Figure 5 - Change detection using ANN 

Image Reference 

https://www.sciencedirect.com/science/article/pii/S1110982317303162
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2.2. 3D change detection 

 
Real-world problems often involve objects that require height information for accurate change 

assessment, such as urban areas or terrain changes. In recent years, numerous studies have focused on the 
development of 3D change detection methods, including those based on point cloud data (Stilla & Xu, 
2023). 3D change detection can be performed using Digital Terrain Models (DTMs), rasterized point clouds, 
voxel point clouds, and various pre-processed point clouds. Among these techniques, simple methods 
continue to be popular due to their fast computational speed, ease of implementation, and effectiveness. 

1. Octrees are a common approach for representing and comparing point clouds in 3D change 
detection These hierarchical data structures efficiently encode the spatial arrangement of points in 
3D space, allowing for fast and robust change detection (Xu et al., 2015). Xu et al. (2015) utilized a 
point-based method to detect changes in buildings and trees using airborne LiDAR data, where 
octrees played a crucial role in the process. The study highlighted the importance of data 
preprocessing, octree generation for non-ground points, and change detection based on the octree 
structure. As show in Figure 7, this approach successfully determined changed areas, such as new 
buildings, changed buildings, demolished buildings, new trees, and removed trees. It distinguished 
between changes in buildings and trees using a classification and clustering method. This paper 
underscores the continued relevance and practicality of simple methods, such as octrees, in modern 
change detection applications. 

 

Figure 6 - MSCANet architecture overview 

Image Reference 

https://ieeexplore.ieee.org/abstract/document/9780164
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2. The Multiscale Model to Model Cloud Comparison (M3C2) algorithm (Lague et al., 2013) is 
another popular technique for comparing point clouds with varying resolutions and densities. It 
computes distances between point clouds at multiple scales by estimating normal vectors at each 
point, projecting the points onto their normal vectors, and calculating the mean and standard 
deviation of the projection distances within a user-defined search radius (Figure 8). This multiscale 
approach allows for a more robust and accurate measure of distances between point clouds. 

 

3. Voxel-based approaches are another class of methods used to compare 3D point clouds. These 
techniques involve dividing the 3D space into a regular grid of voxels and comparing occupancy or 
other attributes between the two epochs (K. Liu et al., 2016). Liu et al. (2016) proposed an efficient 
algorithm for detecting spatial changes using voxel-based representations. Their approach aims to 
automatically identify differences between two point clouds without making assumptions about 
their sampling density and distribution. The algorithm constructs a voxel grid, assigns labels to 
points based on voxel occupancy, and outputs the labeled point clouds. By transforming the point 
clouds into voxel representations, the algorithm avoids computationally expensive operations like 
mesh reconstruction and Hausdorff distance computation. The voxel grid also provides a uniform 
resampling due to its constant voxel size, making the algorithm robust to varying sampling densities. 
Voxel-based methods are sensitive to the choice of voxel size and may result in information loss 

Figure 7 - Change detection results, using Octrees 

Image Reference 

Figure 8 -  Overview of M3C2 algorithm 

Image Reference 

https://www.mdpi.com/2072-4292/7/8/9682
https://www.sciencedirect.com/science/article/pii/S0924271613001184
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due to the discretization of point clouds. However, they effectively address issues of varying point 
densities between epochs and occlusion by combining occupancy analysis with additional 
measurements (Xiao et al., 2012). 

 
 

4. Digital Elevation Models (DEMs) and Digital Surface 
Models (DSMs) are another approach used to compare 
3D point clouds by estimating differences based on 2D 
grid representations. In these methods, height values 
are compared pixel-wise, and changes are identified 
using predefined thresholds and pixel occupancy shifts 
(Stal et al., 2013) (Guerin, Binet, & Deseilligny, 2014). 
By focusing on height values, DEMs and DSMs 
provide a simplified representation of the 3D scene that 
enables efficient comparison and change detection. 
These methods have demonstrated the effectiveness of 
using 2D-grid-based difference estimation in DEMs 
and DSMs for identifying changes between point 
clouds. Their methodology involves converting the 
point clouds into raster representations and comparing 
the height values at each grid cell. Changes are detected 
by examining the differences in height values and 
evaluating them against predetermined thresholds. This 
approach allows for the efficient identification of 
changes between point clouds while still maintaining an 
acceptable level of accuracy. 

 
 
 
 
 
 
 
 
 

Figure 9 - Comparing the geometry of two point clouds using voxels 

Image Reference 

Figure 10 - Workflow of DSM change detection 

method 

Image Reference 

https://discovery.ucl.ac.uk/id/eprint/1539073/
https://ieeexplore.ieee.org/document/6730659
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5. Cserép and Lindenbergh (2022) implemented a comprehensive workflow for nation-wide change 
detection in large airborne laser altimetry point clouds. Their technique, which combines object 
detection, noise filtering, morphological operations, and clustering, demonstrated a significant 
improvement in processing efficiency and accuracy, especially in urban areas. Their methodology, 
applied on the full Dutch altimetry archive, proved that efficient processing and accurate change 
detection on a national scale is possible with high-performance computing environments (Cserép 
& Lindenbergh, 2023). 

 

After discussing various methods for change detection in 3D point clouds, including both traditional 
and more recent techniques, it is important to consider the application of deep learning approaches. These 
cutting-edge methods have demonstrated promising results in detecting changes with higher accuracy and 
efficiency. 

Deep learning is a subfield of machine learning that focuses on artificial neural networks with multiple 
layers, allowing for the automatic extraction and learning of complex patterns and features from raw data. 
In the context of change detection in 3D point clouds, deep learning approaches have emerged as powerful 
tools for building higher-level features without the need for user specification, moving beyond traditional 
distance correspondence in Euclidean space. 

Many deep learning approaches for change detection in 3D point clouds involve rasterizing the point 
clouds into Digital Surface Models (DSMs) or other manageable formats before applying deep learning 
techniques on the resulting images. However, this gridding process can result in point loss and decreased 
accuracy in height measurements. 
 

Figure 11 - The complete overview of the algorithm workflow (Cserép and Lindenbergh) 

Image Ref 

https://www.sciencedirect.com/science/article/pii/S1569843222003624
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To address these limitations, researchers have developed deep learning methods that can directly 
process raw point cloud data for change detection. One such method is PointNet (Qi et al., 2017), a deep 
learning architecture designed to handle unordered point cloud data, enabling the direct classification and 
segmentation of raw point clouds (Figure 12). 

 
 

(Yastikli & Cetin, 2021) have applied PointNet in their method to classifying raw LiDAR point clouds. 
By extracting spatial features directly from the point cloud data, the proposed method avoids the need for 
rasterization or gridding, preserving the accuracy of the original data. The results of the study demonstrate 
the effectiveness of point-based deep learning methods in handling raw LiDAR point clouds for tasks such 
as 3D building reconstruction.  

 
In the context of remote sensing, deep learning Siamese networks have proven to be successful and 

have been widely used (He et al., 2018) (Zhan et al., 2017). A recent study by Iris de Gélis (de Gélis et al., 
2023) proposes a deep learning-based method for 3D change detection using raw point clouds. In this study, 
the authors develop a Siamese architecture that processes and compares point cloud data from two different 
epochs to identify changes in urban environments. Demonstrating the potential of deep learning techniques 
for 3D change detection tasks, their approach outperforms traditional methods in terms of accuracy and 
efficiency. The change detection approach they presented employs the KPConv method, a type of deep 
learning technique specifically designed for point cloud data. KPConv is a geometric deep learning method 
based on convolutional kernel point networks that are capable of extracting high-level features from 3D 
point clouds (Thomas et al., 2019). 

Figure 12 - PointNet Architecture 

Image Reference 

Figure 13 - Siamese KPConv network architecture 

Image Reference 

https://openaccess.thecvf.com/content_cvpr_2017/html/Qi_PointNet_Deep_Learning_CVPR_2017_paper.html
https://www.sciencedirect.com/science/article/pii/S0924271623000394?via%3Dihub
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2.3. Research Gap 

Change detection in 3D point clouds has become increasingly relevant as remote sensing 
technologies advance and provide a wealth of spatial data. Although deep learning methods have gained 
popularity in various fields, including computer vision, speech recognition, and natural language 
processing(Guo et al., 2019), their application to change detection in raw point cloud data remains 
challenging. 

With the development of deep convolutional networks, image, video, voice, and audio processing 
have advanced quickly. Furthermore, deep learning has demonstrated incredible outcomes performing tasks 
related to natural language comprehension (Collobert et al., 2011), classification, sentiment analysis, question 
answering, and language translation (Jean et al., 2014).  

Despite recent advances in automated object detection and segmentation, change detection in raw 
point cloud data still faces significant obstacles (Longbotham et al., 2012)(Hussain et al., 2013). The 
challenges arise from the small scale of available datasets, high dimensionality, and the unstructured nature 
of 3D point clouds. Most of existing deep learning approaches often require pre-processing or data 
transformation, such as rasterizing point clouds to DSMs, which can lead to a loss of information and 
reduced accuracy. However, recent efforts like PointNet (Qi et al., 2017), KPConv (Thomas et al., 2019), 
and the Siamese KPConv (de Gélis et al., 2023) have shown promise in directly processing raw point cloud 
data. These methods, can be computationally demanding and may require large amounts of training data to 
achieve optimal performance, making them less suitable for certain applications or situations with limited 
computational resources. 

When semantic segmentation is performed separately on each point cloud, there's a risk of 
inconsistencies between the two segmentation results. These inconsistencies could be due to variations in 
data quality, differences in the conditions under which the data was collected, or simply the inherent 
uncertainty in any semantic segmentation task. It can lead to errors in the differencing step, potentially 
leading to false positives or false negatives in the change detection results. 

Our proposed method seeks to overcome some of these limitations by combining KD-trees and 
convolutional neural networks in a novel way to process raw point cloud data, aiming for a more efficient 
and accessible solution for change detection tasks in 3D point clouds. By leveraging the strengths of  KD-
trees to order and match the data from two epochs, we can efficiently combine features from both epochs 
extremely fast, despite the high density of the point clouds. Using deep learning networks, we developed an 
algorithm that performs well while being less computationally demanding and more practical for a wider 
range of applications. The process of training and predicting the models uses concepts that have been 
explored and proven successfully in 2D change detection. In this study we explore three different models :  

1. RF algorithm 
2. Fully Connected Neural network 
3. Convolutional Neural Network 
 
This strategy not only takes advantage of the strengths of deep learning methods but also addresses 

the unique challenges associated with 3D point cloud data. Our methodology, which directly compares raw 
point clouds from two epochs using deep learning models, has the potential to capture subtle changes that 
might be missed with segmentation techniques. 

Our research goal is to develop a deep learning algorithm that overcomes the limitations of existing 
methods, is fast, efficient and opens a new avenues for research in the geoinformation science field. 
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3. DATASETS 

This study uses two different point cloud datasets to experiment with our algorithms. The first 
dataset, known as Actueel Hoogtebestand Nederland (AHN), offers comprehensive and exact elevation 
information spanning across the Netherlands, making it an ideal real-world dataset. The second dataset used 
is Urb3DCD,  a simulated 3D city, useful for understanding urban transformations. By using two different 
datasets, we gained a deeper understanding of the characteristics of 3D data which helped us to determine 
the most effective ways to utilize them for our research. Also, it was interesting to compare how our 
algorithms will perform in a real versus a simulated scenario.  

3.1. AHN dataset 

The AHN data can be freely accessed, downloaded, and used. We obtained this data through the 
GeoTiles.nl website (Geotile Source).  This website is a valuable resource that offers color-coded AHN 
point cloud data available in smaller tiles. This tiling system has already proven its worth for TU Delft and 
is now available to everyone. Tiles from the AHN series (AHN 1, 2, 3, and 4) come in a size of 1x1.25 km, 
making them perfect for processing, viewing, and breaking down into smaller tiles as inputs for our 
algorithms. 

Depending on the area, the actual time difference between the AHN2 and AHN3 is between four 
and ten years. The AHN4, collected between 2020 and 2022, offers a faster-paced update for the entire 
Netherlands Our study primarily uses AHN3 and AHN4 data, further elaborated in Table 1 and Table 2. 
Figure 14 illustrates the acquisition plan for both AHN3 and AHN4. 

 
 

 

 
 
 
 
 

Figure 14 - Data acquisition years for AHN3 data (left) and planned years of data acquisition for AHN4 (right) 

https://ieee-dataport.org/open-access/urb3dcd-urban-point-clouds-simulated-dataset-3d-change-detection
https://geotiles.nl/
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Table 1 - AHN dataset properties 

Dataset characteristics 

 Point density Classes Year of acquisition Labels we used 

AHN 3 Average between 6 and 10 
points per square meter 

ground level (ground), 
buildings, works of art, 
water and other. 

2014-2019  
 
x, y, z, red, blue, 
green, intensity, 
number of returns 

AHN 4 10-14 points per square 
meter. The area around 
Schiphol is 20-24 points per 
square meter. 

ground level (ground), 
buildings (limited), 
works of art (limited), 
water and other. 

2020-2022 

 
Table 2 - AHN dataset accuracies 

 
The location of our areas chosen for this study are shown in the Figure 15 below: 

The major distinction between the datasets, as shown in Table 1 and Table 2, is their point density 
and acquisition year. Having said that, this dataset is ideal for our research since we don't have to worry 
about fluctuating accuracy, which might introduce uncertainties in identifying changes. 
 The AHN dataset was collected under time constraints, which inevitably influenced its final quality. 
We were developing a new concept and testing it on two different datasets, which limited our ability to 
gather a larger dataset. While we strived to ensure the data was as complete and accurate as possible, it's 
worth noting that it may not match the level of detail and balance found in the dataset used by Iris de Gelis 
and her team, with which we make most of our comparisons with. Despite these differences, our AHN 
dataset still provides a solid foundation for our research, although it's important to consider these factors 
when comparing our results with those derived from more curated datasets. 

Dataset accuracy 

 Height accuracy Planimetric accuracy 

Systematic error 5 cm 8 cm 
Stochastic error 5 cm 5 cm 
At least 68.2% of the points have a height accuracy of: 5 + 1 * 5 = 10 cm 8 + 1 * 5 = 13 cm 

At least 99.7% of the points have a height accuracy of: 5 + 3 * 5 = 20 cm 8 + 3 * 5 = 23 cm 

Figure 15 - AHN dataset locations 
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3.2. URB3DCD dataset 

Urb3DCD is an open-access 3D point cloud simulated dataset (de Gélis et al., 2021). It consists of 
multi-epoch pairs of point clouds generated through an urban point clouds simulator, which models aerial 
LiDAR surveys over urban areas. This dataset has seven classes of changes available, such as unchanged, 
new building, demolition, new vegetation, vegetation growth, vegetation loss, and mobile objects. There 
isn't any information about the thresholds of “vegetation growth” in the paper by Iris de Gelis or the 
website, but it appears to involve a significant change in the z value. Also, since this is a simulated dataset, 
"unchanged" means there's absolutely no change in height. This would mean that vegetation classified as 
"unchanged" keeps its original height. To verify this, we performed a visual inspection of the data ourselves. 
Changes in the urban landscape, such as building construction or demolition, are introduced by the simulator 
and directly annotated at the point level. Some of the properties of this data are shown in the Table 3 below: 

 
Table 3 - Urb3DCD dataset properties 

Urb3dCD Lidar dataset 

Density (points/m2) 0.5 
Noise range across track () 0.01 
Noise range along track () 0 
Noise scan direction (m) 0.05 
Scan angle () -20 to 20 
Overlapping (%) 10 
Height of flight (m) 700 
Annotation level Point 

The dataset accurately represents the complexity of real-world urban environments, including 
variations in building designs, vegetation, and other urban features. The point cloud pairs represent the same 
area at two different points in time. The location of the simulated dataset is Lyon, France and the total area 
used for training is 3.6 km2, or 10 tiles of 0.36 km2. 
  However, the accuracy of building data labels is not always perfect, which, in a sense, makes it a 
suitable training set for our algorithms. Real-world scenarios rarely present us with immaculately annotated 
data. At times, the indicated changes on the simulated dataset are not entirely precise, as they reflect a general 
change zone rather than the exact delineated shape of the object. The problem arises when this kind of 
labelling persists in the test and validation data (Figure 16) causing uncertainties in our accuracy assessment.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 16 - Noise with the labeling of Urb3DCD data. The change (c) happening from AHN3 (a) to AHN4 (b) is not delineated 
correctly. In (a) and (b), light blue represents the buildings, green is the vegetation and blue is the ground. In (c) we see the shape of the 

building change in colour green which doesn’t represent the correct shape for the actual change. 
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Figure 18 - The location of the simulated datasets (Lyon, France) 

Figure 17 - One of the training tiles of the Urb3DCD dataset 
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In summary, the Urb3dCD dataset provides researchers with a valuable set of training, testing and validation 
data that can be used to develop 3D point cloud change detection algorithms in urban settings. 

Figure 20 - One of the testing tiles of the Urb3DCD dataset 

Figure 19 - One of the validation tiles of the Urb3DCD dataset 
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4. METHODOLOGY AND ALGORITHMS 

The aim of this study is to detect changes in urban areas using labeled point clouds. This process 
includes: pre-processing of datasets, the preparation of data for the developed models, and the development 
of networks for change detection techniques. The change detection and classification of point clouds is a 
complex process, and the considerations and motivations for our methods are detailed in the following 
sections. 

 
 

 
 
 
 

Figure 21 - An overview of the methodology 
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4.1. Concept and Approach 

Our approach starts with two different labeled point cloud datasets: the Actueel Hoogtebestand 
Nederland (AHN) and Urb3DCD datasets. The AHN datasets consist of points labeled as urban elements 
(building, water, ground, etc.), which serve as the basis for generating training data that represents 'changed' 
and 'unchanged' urban areas. Each point in both these datasets is a multi-dimensional feature space, which 
includes x, y, and z coordinates, and additional color attributes such as red, green, and blue. In addition, the 
AHN data includes intensity and number of returns. Figure 22 shows the same area across two epochs, 
AHN3 and AHN4, labeled with the classes mentioned in “Datasets” section. These tiles are our base data 
for the generation of the training, testing, and validation sets. 

The AHN and Urb3DCD datasets require different pre-processing steps due to their inherent 
properties. The Urb3DCD dataset, being a balanced representation of 'changed' and 'unchanged' points 
while also having them labeled and ready for training, requires minimal pre-processing. On the other hand, 
the AHN dataset demands a more hands-on approach and more preprocessing steps due to its very dense 
nature, the imbalance between 'changed' and 'unchanged' points, and the absence of changed labels.   

 

(a) 
 

(b) 
Figure 22 - An (a) AHN3 tile and (b) AHN4 tile used for training 

After getting the data (Figure 22), our process starts by selecting the nearest point or multiple of the 
nearest points between two epochs. In simpler terms, we overlap the tiles from 2 different epochs and match 
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the nearest points with each other. The whole process is done via a Python code, which is available in our 
Github Repository. We adopt this strategy of selecting the nearest point for several reasons: 

 
1. Spatial Relationship Consideration: To begin with, point cloud data contain complex spatial 

relationships that require careful considerations. Selecting the nearest point(s) from one epoch 
to the other takes into account the spatial context, identifying corresponding locations between 
two epochs based on their proximity. It is the simplest and most intuitive way of mapping 
changes between two datasets. 

2. Ensuring Uniform Distribution between epochs: The data from two epochs have uneven 
numbers of points per area, because of point density differences, and the data was collected at 
different times. By pairing points from two epochs one-to-one and discarding unmatched 
points, we resolve this issue and ensure a fairly equal distribution of points per area between 
two epochs. 

3. Data Compatibility for Algorithms: Nearest point selection provides a logical and efficient 
way to combine features from two different point cloud sources into a single input array for 
our algorithms. Machine learning models, such as Random Forest (RF), and deep learning 
models such as Neural Network (NN), and Convolutional Neural Network (CNN), require 
input data in a specific format, usually an array of data points and a corresponding array of 
targets. We make sure that our data is properly formatted for the model input, by pairing the 
closest points and combining their features. 

4. Integration of Temporal Changes: It allows us to integrate the attributes of the nearest 
points from two distinct datasets,  creating a new set of data that captures the changes in urban 
areas over time. Each type of change (new building, new vegetation, etc.) in our dataset will 
have a unique combination of features. Thus combining the features of points from the same 
area in different epochs can lead to an accurate method of detecting changes. 

5. Generating labels for training: By matching the nearest points, we can generate change labels, 
for example, if the point in epoch 1 was a building and the nearest point to this point in epoch 
2 is another class, we label it as “demoliton”. This is a fairly accurate and extremely fast method 
of creating training and validating data. Even though this method is not perfect, since we are 
only generating “unchanged”, “new building” and “demolition” classes, is really easy for us to 
conduct visual inspection of the training, testing and validation data before we feed them into 
the algorithm. Thus, the generated data will be of a really high quality when it comes to labeling, 
so no issues are expected to come from this process. 

4.2. Generation of Training Data 

The next step is to generate training, testing, and validation data from the Nearest Neighbor-
matched datasets. This process includes labeling points as different classes of 'changed' and 'unchanged,' 
which serve as inputs for the change detection models. While the Urb3DCD dataset already contains 7 
unique change labels, for the AHN dataset,  we will be using the Pandas Data Frame in Python to generate 
these labels ourselves. This library is very efficient in working with large tabular data.  

The point clouds from both AHN epochs are uploaded in python and converted to two Pandas 
Data Frames. Then we combine column-wise into a single Data Frame. To generate the target labels for our 
analysis, we apply a custom function on the new Data Frame. This function creates a “change label” column, 
which assigns a label based on the changes in the classification information between the two epochs. For 
example, if the label was “building” on the first epoch and then it’s something else on the second epoch, it 
will be labeled as “demolition”. Figure 23 shows the general logic of how the change labels are generated 
and Figure 24 shows how this data looks after we labelled it.  

Generating balanced training data is one of the challenges of this methodology. While the 
Urb3DCD dataset provides a somewhat balanced representation, the AHN dataset requires careful 
preparation. The urban regions in the Netherlands experienced minimal changes during the interval between 
the collection of AHN3 and AHN4 data, thus the data is unbalanced, with a higher number of 'unchanged' 
points. Due to the big size of the AHN dataset, it is necessary to manually ensure that there is a good balance 
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between 'changed' and 'unchanged' points. This imbalance can be addressed through undersampling 
'unchanged' points, oversampling 'changed' points, or manually cropping the tiles for balanced classes. 

 

 
We choose to proceed by manually cropping our tiles in order to ensure that classes are equally 

represented. This is the fairest way of data representation and keeps the data realistic. The data balance helps 
in avoiding biases in the learning algorithms and improves the accuracy of the change detection results. The 
AHN tiles were selected and cropped manually and then downsampled, reducing the size of the data and 
making it more manageable for processing and analysis. As seen from the example in Figure 24, we manually 
cropped the area to ensure that the number of points in each class is somewhat the same. This process not 
only reduced the data size to make the process computationally possible but also ensured a reasonable 
representation of the urban environment, creating a balanced dataset that mirrors the change dynamics in 
an urban setting. 

 
Figure 24 - A balanced AHN tile used for training. Red is for new buildings, Green is for removed buildings 
and blue is unchanged. 

A change cannot be represented by a singular point or a small number of point clouds, especially 
in the context of very dense point clouds such as AHN. But there still are many small groups of points, 
wrongly labeled as changes after we generate the target labels. To address this issue, we apply a clustering 

Figure 23 - Target Label Generation 
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algorithm to eliminate small outliers mislabelled as changes. Figure 25 and Figure 26 show how this 
clustering helps in getting better training data. 
 
 

Figure 26 - AHN training tile before (left) and after (right) the point cleaning 

Figure 25 - A closer look into the data cleaning. Original (up) and cleaned (down) 
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During the process of preparing our data for change detection with the AHN dataset, we observed 

that a significant portion of the changes were part of the class "new buildings", while instances of 
"demolition” were comparatively very low. To address this imbalance and ensure an equal representation of 
all classes in our training labels, we choose to swap the epochs of some tiles. Meaning that for some tiles we 
used AHN4 as our first epoch and AHN3 as our second epoch, and this way we diversified our dataset and 
balanced the number of points in different categories.  

Before we jump to the models it is important to discuss the features used in AHN dataset. As 
mentioned above, from the original source we get Z, RGB, Intensity and Return Number. Now if we look 
at Figure 27 (a) and (b), notice that even though there were no buildings present in AHN3, the RGB values 
still indicated that. This kind of error is present very often, and during training process we noticed that it 
really lowers our algorithms accuracy and leads to many wrong predictions. Even though RGB as features 
have proven to be really valuable on classification and change detection tasks, we cannot use them for this 
study. In order to add one more feature and somewhat implement a feeling of spatial surrounding to our 
AHN data, we manually crafted the feature called “Point density on 2D plane”. This feature is the total 
amount of points around each point in a 2D radius of 0.8m. The idea behind it is that the point density of 
non-planar objects like trees will be much higher than planar objects like ground or rooftops. This feature 
is expected to increase the performance of our non-spatial models. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 27 - AHN tiles, where (a) and (b) are the same area in the AHN3 with RGB from different points of view. (c) 
and (d) are also the same area but in AHN4 

 
Before feeding the data into the model, we apply feature scaling using the Standard Scaler from the sklearn 
pre-processing module. This step standardizes the data by transforming it so that it has a mean of 0 and a 
standard deviation of 1. Data scaling helps the algorithm converge faster and improves its performance, as 
now all our features are on a comparable scale. 
Now that our data is ready, we have to choose and design our change detection methods. 
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4.3. Change detection models 

 
In this study, we use three change detection methods: Random Forest (RF), Fully Convolutional 

Neural Networks (FCNN), and Convolutional Neural Networks (CNN). Each method was selected for its 
unique strengths and effectiveness in dealing with large data sets, and because they have demonstrated good 
performance in similar tasks. By choosing RF, FCNN, and CNN, we want to experiment with different 
approaches, while also comparing these models under the same conditions. Our method of detecting 
changes is not only applicable to the datasets used in this study but can also be adapted to different datasets 
and urban environments, making it very flexible for urban change detection. 

 The Random Forest was chosen due to its robust performance in handling large datasets, high-
dimensional data, and its ability to deal with the noise and missing data, common in point clouds. We expect 
it to be the fastest model, providing consistent results across various data scenarios. Furthermore, the RF 
algorithm is more interpretable as compared to the deep learning models since it allows the calculation of 
feature importance scores which could give additional insights into the learning process of the algorithm. 
The Fully Connected Neural Network, on the other hand, excels in generating complex hierarchical 
representations and thus was selected for its potential in capturing the data structures within our dataset, 
particularly in instances of complex urban changes. Finally, the Convolutional Neural Network was included 
for its superior ability in handling data with spatial properties, making it the optimal choice for our change 
detection purpose. Together, these models provide a comprehensive approach for change detection in urban 
environments: RF for reliability, FCNN for complexity, and CNN for incorporating spatial structures. 

The sub-sections below will start with an overview of the Random Forest algorithm, followed by 
an explanation of the Fully Connected Neural Network, and finally, we will talk about our most effective 
model, the Convolutional Neural Network. 
 

4.3.1. Change Detection using Random Forest Classifier 

 
Random Forest (RF) is a machine learning algorithm known for its strong performance in 

classification tasks and the ability to handle large amounts of data with high dimensionality (Breiman, 2001). 
Because our data is per-point classified and obtained via an aerial laser scanner, it contains random noise 
and missing information. RF performs really well even with noisy or missing data, making it suitable for our 
purpose. To improve the overall prediction accuracy and avoid overfitting, the random forest classifier 
combines the output of multiple decision trees. Furthermore, RF can estimate the importance of each 
feature and provides a balance between speed and accuracy, making it a versatile choice for a wide range of 
applications. Due to the classification nature of our data, we considered using and testing this algorithm for 
our study.  

The Random Forest classifier used in this study is trained on the pre-processed point cloud data. It 
analyses the pre-processed features extracted from the raw point cloud, such as the height, colour, return 
number, and intensity of the points (depending on the dataset we use). These features are used by the 
individual decision trees to make decisions leading to a final classification for each individual point cloud 
(Figure 28). The Random Forest algorithm does not take into account the spatial relationships between 
points nor considers their neighbours, thus the classification process is based only on individual points. The 
goal of this model is to use it compare how spatial and non-spatial models perform. We could try and add 
features like 2D point density (that we added on the AHN data training) to somewhat represent a special 
relation between points, but it wouldn't be as effective as we'd want. Because this method of introducing “a 
spatial feeling” to the model is less refined compared to CNN models which take all features of nearby 
points into account. So, we'd essentially be inventing only some of the features that the CNN already better 
handles in a more advanced way. Ultimately we will be trying to make a straightforward and simplistic model 
such as RF, more complex to just try and reach a small percentage of what CNN already does. 
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For this algorithm, a set of hyperparameters were tested through a grid search. The grid search 
involves testing multiple combinations of hyperparameters to identify the best-performing configuration. 
Specifically, we experimented with different values for the number of estimators (50, 100, and 200) and 
maximum tree depth (5, 10, and 20). This resulted in a total of 9 combinations. Once the optimal 
hyperparameters were identified, the classifier was trained on the dataset and used for change detection and 
classification tasks. The trained classifier was then validated on the validation point cloud dataset and used 
to predict on a different test dataset.  

 The entire process was implemented in Python, and our code is freely accessible for use on our 
GitHub. The code uses sklearn library, which offers a user-friendly interface for training and using the 
model. The results, accuracies and comparison with the other methods are shown in the “Results and 
Analysis” and “Discussion” sections. 
 
 

4.3.2. Change Detection using Fully Connected Neural Network 

Random Forests can handle complicated datasets and perform well, but they are unable to 
automatically extract higher-level features from our lower-level inputs. The ability of Fully Connected 
Neural Networks (FCNNs) to capture complex representations, in contrast, makes them superior. FCNNs 
are deep learning algorithms, where the input features are initially passed through a series of hidden layers. 
Each layer has a set of neurons and each neuron in a layer is connected to all the neurons in the previous 
layer, forming a fully connected network (Goodfellow et al., 2016). The output of each neuron in a layer is 
a linear combination of the inputs it receives, followed by a non-linear activation function. Thus through 
these hidden layers FCNN combines the low-level features and creates high level, more complex features. 

FCNNs can accept input of any size and generate output of corresponding dimensions, making 
them ideal for handling large-scale data. This makes them particularly effective for large urban environments. 

In this study, FCNNs were used as a point-to-point methods for change detection, without taking 
any spatial relation or neighbourhood point into consideration.  Our FCNN is designed to work with the 
inputs generated from the pre-processed data, which includes features and unique classes for each type of 
urban change. The FCNN architecture was designed, trained and implemented using the Keras library with 

Figure 28 - The model of a Random Forest algorithm used for classification 

Image Reference 

https://www.tibco.com/reference-center/what-is-a-random-forest
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TensorFlow as the backend. The model was trained using the same training dataset, and the performance 
was compared with the other methods to identify the most suitable architecture. In the following paragraph, 
we will discuss the specifics of our FCNN architecture : 

Our FCNN architecture was designed as a deep network and consists of four hidden layers with 
256, 128, 64, and 32 neurons. It has an output layer with 7 neurons, one for each class of change. The FCNN 
architecture uses LeakyReLU and PReLU activation functions in the first two hidden layers, with ReLU 
activations in the remaining hidden layers. The output layer makes use of the softmax activation function 
for multi-class classification. The model also incorporates batch normalization and dropout layers to 
improve generalization. It is compiled using the Adam optimizer and as the loss function we used is sparse 
categorical cross-entropy. These layers were chosen to extract features from the input data, learn non-linear 
relationships between the features, and classify the data into target classes. The specific architecture of the 
model was designed based on common practices in deep learning and an attempt to balance model 
complexity with the risk of overfitting. The full model as shown in Figure 29 represents a visualisation of 
the layers used and an overall idea of how our code looks like. In each row of the figure we show three main 
elements, starting from the left we show the layer name, the type of process per layer (input or output) and 
the number of neurons this layer uses. 
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Figure 29 - Our FCNN model 
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4.3.3. Change Detection using Convolutional Neural Network 

 
Convolutional Neural Networks (CNNs) are a type of Neural Networks designed to work and 

process with data that have spatial properties, such as images or point clouds. This type of network applies 
local filters called convolutions to capture spatial relationships among neighbouring data (Goodfellow et al., 
2016). This feature of CNNs is especially helpful with point cloud data, which contains spatial structures. 
CNNs leverage the spatial context of point clouds, allowing for more effective extraction and learning of 
complex patterns. Two Convolutional Neural Network (CNN) architectures were designed and trained for 
change detection in our point cloud data.  

Our network was designed using the Sequential model from the Keras library. The CNN 
architecture incorporates Batch Normalization and MaxPooling1D layers to improve the model's 
performance. The model has three sets of Conv1D layers with 128, 64, and 32 filters, each followed by 
Batch Normalization, another Conv1D layer, and a Dropout layer with a rate of 0.3. The dropout rate is 
applied between the Dense layers to prevent overfitting. MaxPooling1D layers are added after the first and 
third sets of Conv1D layers. After the Conv1D layers, the model contains a Flatten layer and three Dense 
layers with 128, 64, and 32 units, each followed by Batch Normalization and Dropout layers. The final Dense 
layer has 7 units and the output layers uses a SoftMax activation. The architecture is designed to ensures a 
balance between the model complexity and the ability to learn abstract features from the data. 

In our work, we investigated different neighbouring points numbers for the CNN models, using 5, 
10, and 15 neighbours in Urb3DCD dataset and 10. 20, 50 and 100 neighbours in the AHN dataset. The 
reason for doing so is the huge difference in these datasets density.  The algorithms were executed with two 
different batch sizes, 32 and 64, and tested across 8, 10 and 15 epochs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The diagram above offers a comprehensive overview of our discussions thus far and outlines our 

proposed way forward, specifically focusing on our primary model, the CNN. Previous methods have 

attempted to add features with each other, and recently they tried subtraction (de Gélis et al., 2023). These 

efforts are logical as they aim to integrate features from both epochs, which works well for changes that 

can be described linearly, like variations in point height across two epochs. The subtraction and sum of 

the height feature of a pair of points that didn’t change, will be very different from the case of non-

change. This logic can be extended to all features, as they are represented as real numbers. Operations 

such as multiplication and division would be redundant, as the changes we observe in feature numbers are 

linear, and these operations would not contribute additional meaningful information. 

 

Figure 30 - A summary of the process used for the CNN models 
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Figure 31 - Our CNN model 
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4.4. Experimental Design and Parameters 

 
This section talks about the experiments conducted using different datasets and their parameters. 

In the context of the Urb3DCD dataset, accurate feature representation, and balanced distribution 
of changes allowed us to focus exclusively on fine-tuning models parameters. With regards to Random 
Forest (RF), we experimented with hyperparameters by using a grid search on RF to pinpoint the optimal 
parameters. For the Deep Learning (DL) models, we adjusted epochs, batch sizes and experimented with a 
huge variety of layer combinations. For Convolutional Neural Networks (CNN) we also experimented with 
the number of neighbours. Given that the Urb3DCD data only includes height and RGB information, there 
was no room to experiment with feature combinations. For DL models, we tested batch sizes of 32 and 64 
over 8, 10, and 15 epochs. In the case of CNN training, we also experimented with 5, 10, and 20 neighbours. 

In contrast, the AHN dataset offered substantial potential for more experimentation. Similar to 
Urb3DCD, we conducted a grid search for RF to determine the best hyperparameters. This dataset features 
height, RGB, Intensity, and return number, allowing us to attempt many feature combinations. 
Unfortunately as mentioned above, it was not viable for us to make use of RGB values, and this will for 
sure lower the model expected results as RGB values are really important in classification and change 
detection tasks. We implemented an alternative approach for RF and Neural Networks (NN) by introducing 
new feature ourselves, the number of points within a 2D buffer for each point. This feature was crafted due 
to the lack of utility of RGB values for our AHN model, so an additional feature was needed. Given that 
the point density is significantly greater than the Urb3DCD dataset, we had to expand the number of nearest 
points considered in the CNN, experimenting with 20, 50, and 100 points. For the DL models, we 
experimented with batch sizes of 32 and 64 over 10, 15, and 30 epochs. 

In the next section, we will only discuss our highest-performing models, and share our insights and 
deliberations on them. With that said, our top performers that we will discuss are: 

For Urb3DCD: We utilized all available features (z and RGB). The Random Forest was tuned with 
a max depth of 20 and a number of estimators set at 200. DL models were trained with a batch size of 64 
over 10 epochs, and for the CNN, we chose to use 10 nearest neighbours. 

For Ahn: We chose to make use of only z, intensity, and return number as our features. The RGB 
values were wrong in most of the cases, thus the use of them lowered our accuracy. The Random Forest 
was trained with similar hyperparameters as Urb3DCD - a max depth of 20 and 200 estimators. DL models 
were trained with a batch size of 64 over 10 epochs, and for the CNN, we used 50 nearest neighbours. 

For both: We add and subtract the features with each other (so z1-z2, z1+z2, intensity1-intensity2, 
etc), then before inputting them in the models we use a normalization code to make sure all values of all 
features are on the same range (from zero to one). All the basic features used are the default values that are 
available on the original datasets. 

5. RESULTS AND ANALYSIS 

To properly validate each method, we trained them three times in the simulated dataset: once with 
the complete train dataset and then with each half the train dataset. This approach intends to assess the 
change detection methods’ adaptability in response to various quantities of training data. Since we lack data 
in the real dataset, there we only experiment with the full dataset. In this section we will show results and 
talk only about the numerical statistics while in the “Discussion” section we will analyse everything in details. 
Explanation of the terms used in the tables on the coming sections : 
Accuracy: the percentage of correctly classified samples out of the total number of samples. 
Precision: the ratio of true positives to the total number of positive predictions.  
Recall: the ratio of true positives to the total number of actual positive samples.  
F1 score: the harmonic mean of precision and recall.  
Support: the number of samples in each class in the test set. 
IoU :  Intersection over Union is the ratio of True Positives (TP) to the sum of True Positives, False 
Positives (FP), and False Negatives (FN). 
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5.1. Results for URB3DCD Dataset 

 
In this section, we will talk about the results obtained from our three change detection methods: 

Random Forest (RF), Fully Connected Neural Network (FCNN), and Convolutional Neural Network 
(CNN), applied on the Urb3DCD dataset. The full training dataset consists of 1,638,678 points with the 
following distribution of class labels : 
 
Table 4 - Urb3DCD classes distribution 
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Unchanged 0 672922 685754 1376971 83.57 84.39 84.03 

New Building 1 47198 41978 90472 5.86 5.17 5.52 

Demolition 2 50288 50686 101580 6.25 6.24 6.2 

New Vegetation 3 7896 12901 21389 0.98 1.59 1.31 

Vegetation 
Growth 

4 4288 1479 5891 0.53 0.18 0.36 

Vegetation Loss 5 18760 12846 31721 2.33 1.58 1.94 

Mobile Objects 6 3867 6919 10654 0.48 0.85 0.65         

Total 
 

805219 812563 1638678 
   

 
 

5.1.1. Random Forest Classifier 

  
a. Full dataset trained random forest 

 
 
Table 5 - Accuracies of RF model trained with the full dataset 

Class Class number Precision Recall F1 Score IoU Support 

unchanged 0 0.969 0.958 0.964 0.930 403061 

new_building 1 0.811 0.931 0.867 0.765 27266 

demolition 2 0.848 0.863 0.855 0.747 43722 

new_vegetation 3 0.371 0.926 0.53 0.360 2908 

vegetation_growth 4 0.817 0.454 0.584 0.412 9063 

vegetation_loss 5 0.81 0.733 0.77 0.630 7306 

mobile_objects 6 0.981 1 0.99 0.981 2698  
 

   
 

 

accuraccy  
  

0.936  496024 

macro avg  0.8 0.84 0.79  496024 

weighted avg  0.936 0.936 0.936  496024 
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The model achieved an overall accuracy of  93.59% on the full test dataset. The precision, recall, 
and F1 score for most classes were satisfying. Our random forest model has a good balance between false 
positives and false negatives. Class 0 (unchanged) had the highest support and showed the best results with 
a precision of 96.9%, recall of 95.8%, and F1 score of 96.4%. Class 1 (new building) and class 2 (demolition) 
also showed good results, with F1 scores of 86.7% and 85.5%, respectively. However, class 3 (new 
vegetation) had the lowest F1 score of 53.0%, despite having a high recall of 92.6%. The low precision 
means that it frequently misclassifies this class, while the high recall means that the RF model is able to 
identify most of the instances that do belong to this class. 

Class 4 (vegetation growth) and class 5 (vegetation loss) showed a moderate F1 scores of 58.4% 
and 77.0%, respectively. Class 6 (mobile objects) had the highest precision and recall, both at 100%, resulting 
in an F1 score of 99.0%. 

The macro-averaged precision, recall, and F1 score provide an overall assessment of the model's 
performance across all classes, weighting each class equally. The macro-averaged metrics are all lower than 
the weighted averages, thus the model performs better on the bigger classes. The confusion matrix (Figure 
32) , provides a visual representation of the model's performance on each class.  
 
 

b. Half dataset trained Random Forest classifier 
 

All the accuracies and confusion matrixes for both of the half datasets are available on the “Appendix” 
section. 

For the first half of the dataset, the Random Forest model showed an overall accuracy of 91.6%. 
The performance for each class, in terms of precision, recall, and F1-score, was generally good, although 
there were some disparities. The 'New Vegetation' class showed a relatively low precision but a very high 
recall.  

The Random Forest model's performance on the second half of the dataset was slightly higher that 
the first half, with an overall accuracy of 92%. As in the first half, the 'New Vegetation' class had a low 
precision but high recall. The 'Vegetation Growth' class showed a significantly low recall of 0.18, indicating 
a high number of false negatives. 
 

Figure 32 - Confusion matrix of RF model trained on the full dataset 
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Random Forest Analysis 
 

The model's accuracy decreased from 93.6%  to 92% and 91.6% when we experimented with it in 
the half datasets. This reduction in accuracy suggests that the model relied on a larger quantity of data to 
learn the underlying patterns. The impact that the reduction of the training data caused, was not uniform 
across all classes. The analysis on the paragraphs below is done between the full dataset and the worst 
performing half dataset model. 

Class 2 (demolition) experienced a considerable drop in its recall (from 86.3% to 62.2%), leading to 
a decrease in its F1 score from 85.5% to 72.1%. This indicates that the model had difficulty identifying true 
positives for this class when we trained it on a smaller dataset. As a straightforward model, the Random 
forest heavily relies on input features quality and diversity as it cannot create more complex features out of 
them. This was a very good example to show this limitation. It is really important to train in very similar 
data on what we want to predict. 

Class 4 (vegetation growth) saw a decline in its F1 score from 58.4% to 55.9%. On the other hand, 
class 6 (mobile objects), maintained perfect precision and recall even after we reduced the training data. This 
implies that the model could still learn the patterns associated with this class, despite having less data to 
work with. Meaning that random forest models don’t need a lot of training data, as long as the data is diverse 
enough to cover everything we have to predict. 

We observed that the model's performance in predicting class 3 (new vegetation) was relatively 
consistent, as shown by similar F1 scores for both the full and half datasets. This suggests that even with a 
reduced amount of data, the training set was sufficiently representative to capture all potential feature 
combinations that the model might encounter in the validation dataset. The model struggled with certain 
classes, particularly 'New Vegetation' and 'Vegetation Growth', which had low precision and recall, 
respectively. The model's struggle to accurately classify new vegetation might not be solely due to the size 
of the training data, but could also be attributed to other factors such as feature selection or model 
parameters. 

In summary, the Random Forest Classifier, has shown considerable strengths, particularly in its 
ability to handle large datasets and its robustness to overfitting. The impact of reduction of the training data 
was not the same across the classes. While some classes experienced decline in performance, others 
remained stable or were not affected. This analysis highlights the importance of the selected features, having 
a sufficient amount of training data and the data should representative enough so it covers all possibilities 
we might encounter in the validation and testing dataset. 

Figure 33 - Per-class accuracy of all datasets for the RF model, Urb3DCD 
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5.1.2. Fully Connected Neural Network 

a. Full dataset trained FCNN 
 

Table 6 - Accuracies of FCNN model trained with the full dataset 

Class Class 
number 

Precision Recall F1-score IoU Support 

unchanged 0 0.972 0.957 0.964 0.931 403061 

new_building 1 0.81 0.962 0.88 0.785 27266 

demolition 2 0.846 0.868 0.857 0.750 43722 

new_vegetation 3 0.371 0.926 0.53 0.360 2908 

vegetation_growth 4 0.829 0.438 0.573 0.401 9063 

vegetation_loss 5 0.789 0.764 0.776 0.634 7306 

mobile_objects 6 1 1 1 1 2698      
 

 

accuracy 
   

0.937  496024 

macro avg 0.802 0.845 0.797  496024 

weighted avg 0.943 0.937 0.938  496024 

 
The overall accuracy of the model is 93.7% on the full dataset. The results are as below: 

1. Unchanged (class 0): With a precision of 97.2%, a recall of 95.7% and an F1-score of 96.4%, the 
model showed very good performance in predicting this class. Based on the precision value for this class, 
when a point is predicted to be 'unchanged', it is correct 97.2% of the time. The model is successful in 
identifying 95.7% of the actual 'unchanged' instances.  

2. New building (class 1): While the precision of 81% is relatively good, it is the recall value of 
96.2% that stands out for this class. High recall means that the model is highly sensitive to the 'new building' 
instances and successfully identifies the majority of them. However, the relatively lower precision indicates 
the presence of false positives, with samples from other groups being incorrectly classified as 'new building'. 
This difference in precision and recall results in an F1 a score of 88%, indicating the importance of balance.  

3. Demolition (class 2): The models performance on this class has precision of 84.6%, a recall of 
86.8%, and an F1-score of 85.7%. In this case we have a balance between precision and recall. These results 
show that FCNN is able to predict 'demolition' points in most cases. 

4. New_vegetation (class 3): This class shows the most significant differences between precision 
and recall. A low precision of 37.1% and a very high recall of 92.6% means that there is a significant number 
of false positives present during the prediction. Our FCNN model is overestimating the 'new vegetation' 
class, thus it is misclassifying points that belong to other classes as this class. This imbalance is reflected in 
the F1-score of 53%, suggesting that there is considerable room for improvement.  

5. Vegetation_growth (class 4): The model has a high precision (82.9%) but low recall (43.8%) for 
this class. This suggests that while the model's predictions for 'vegetation growth' are usually accurate, it fails 
to identify a big portion of actual 'vegetation growth' points.  

6. Vegetation_loss (class 5): The precision of 78.9% and recall of 76.4% indicate a fair balance, leading 
to an F1-score of 77.6%. These numbers indicate that the model's performance is relatively consistent.  

7. Mobile_objects (class 6): The model performs flawlessly for this class, achieving perfect precision, 
recall, and F1-score.  
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b. Half dataset trained FCNN 
 
All the accuracies and confusion matrixes for both of the half datasets are available on the “Appendix” 
section. 

Our FCNN model that was trained on the first half of the dataset, demonstrated an overall high 
accuracy of 93.6%. Precision, recall, and F1-score for each class were also generally high. The model 
performed well for this data subset. However, it is important to note the variations across different classes. 
The 'New Vegetation' class, despite its high recall of 0.926, had a low precision of 0.371, indicating a high 
rate of false positives. 'Vegetation Growth' also showed a similar trend, with a high precision of 0.84 but a 
low recall of 0.421, indicating a high number of false negatives. These imbalances may be attributed to the 
uneven distribution of class instances in the dataset. 

The model's performance on the second half of the dataset was slightly lower, with an overall 
accuracy of 93%. The precision, recall, and F1-score for most classes changed only by a small percentage. 
Similar to the results from the first half dataset, the 'New Vegetation' class had a low precision but high 
recall, while 'Vegetation Growth' showed high precision but low recall. 
 
 
 
 
 
 
 
 
 
 

Figure 34 -  Confusion matrix of FCNN model trained on the full dataset 
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Neural Network Analysis 
 

The FCNN model performed very well across all classes, with an overall accuracy above 93% in all 
three experiments. The model demonstrated very high performance for the 'Unchanged' and 'Mobile 
Objects' classes. Even when trained on different subsets of the data, the model consistently achieved high 
accuracy, indicating its ability to generalize well. 

The best results were achieved by class 0 (Unchanged). This class has the highest support value, 
thus the model's high performance on this class could be heavily influenced by it. However, the results also 
highlight areas for potential improvement. In particular, the low precision for the 'New Vegetation' class 
and the low recall for the 'Vegetation Growth' class shows that the model struggles to differentiate 
vegetation-related classes. Looking at the results, the 'Vegetation Growth' class is particularly challenging to 
classify, possibly due to overlapping features with other vegetation classes.  The difference on performance 
between the model trained on the full dataset and those trained on the first and second halves was minimal. 
This indicates that our model is robust to variations in the data quantity. 

Nevertheless, the imbalances in class distribution across the datasets, impacted the model's 
performance for some classes. Future work could explore techniques such as class balancing, better class 
representation and oversampling of minority classes to improve performance across all classes. 
 
 

 
 
 
 
 
 
 
 
 

Figure 35 - Per-class accuracy of all datasets for the FCNN model, Urb3DCD 
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5.1.3. Convolutional Neural Network 

 
a. Full dataset trained CNN 

 
Table 7 - Accuracies of CNN model trained with the full dataset 

Class Class 
number 

Precision Recall F1-score IoU Support 

unchanged 0 0.968 0.971 0.97 0.941 403061 

new_building 1 0.871 0.924 0.897 0.813 27266 

demolition 2 0.954 0.808 0.875 0.778 43722 

new_vegetation 3 0.372 0.925 0.53 0.361 2908 

vegetation_growth 4 0.684 0.661 0.672 0.506 9063 

vegetation_loss 5 0.781 0.768 0.774 0.631 7306 

mobile_objects 6 1 1 1 0.999 2698      
 

 

accuracy 
   

0.946  496024 

macro avg 0.804 0.87 0.817  496024 

weighted avg 0.95 0.945 0.947  496024 

 
 

Overall, the CNN model achieved a high accuracy of 94.6% on the full dataset. The model performed 
well across the classes, as seen by the weighted averages of precision, recall, and F1-score (all values are 
available at Table 7). 

The CNN performed remarkably well for the 'Unchanged' class, which has the highest number of 
training points in the dataset, achieving an accuracy of 0.968 and a recall of 0.971. These values indicate that 
the model was very accurate in predicting this class. 

The model performed very well in both "New Building" and "Demolition" classes, achieving an F1-
scores of 0.897 and 0.875. These results suggest that the CNN was able to learn relevant features from the 
dataset for these classes, leading to a high rate of correct predictions. 

The 'New Vegetation' class had the lowest precision of 0.372 but a high recall of 0.925. The low 
precision shows that the model had many false positives for this class, while the high recall shows that it 
was able to correctly identify a large proportion of the actual 'New Vegetation' instances. 

The 'Vegetation Growth' class didn’t performed that well, with an F1-score of only 0.672. Also with an 
F1-score of 0.774, the 'Vegetation Loss' class showed comparable results. 

The 'Mobile Objects' class showed a perfect performance, however it should be noted that this class 
had the least support in the dataset, which might have contributed to this outcome. 
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b. Half dataset trained CNN 
 
All the accuracies and confusion matrixes for both of the half datasets are available on the “Appendix” 
section. 

The CNN trained on the first half of the dataset performed really well, with an overall accuracy of 
94.5%. The 'Unchanged' class had an F1-score of 0.970, with a high precision and recall. Similar to the full 
dataset results, the model performed well on the 'New Building' and 'Demolition' classes, with F1-scores of 
0.895 and 0.876. The 'New Vegetation' class still had a low precision leading to an F1-score of 0.529. The 
results of 'Vegetation Growth' and 'Vegetation Loss' classes were slightly lower than in the full dataset, while 
the 'Mobile Objects' class maintained perfect performance. 

The performance of the CNN on the second half of the dataset was similar to the first half, with 
an overall accuracy of 94.6%. The 'Unchanged' class performance slightly improved, while the 'New 
Building' and 'Demolition' classes maintained the same F-score as the full dataset. With an F1-score of 0.529, 
the 'New Vegetation' class continued to display a significant difference between the accuracy and the recall. 
While "Vegetation Loss" performed similarly to the first half dataset, with an F1-score of 0.776,  the 
"Vegetation Growth" class did better in this dataset with an enhanced F1-score of 0.606. The 'Mobile 
Objects' class once again showed perfect performance. 
 
 
 
 
 

Figure 36 - Confusion matrix of CNN model trained on the full dataset 
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CNN Analysis 
 
The CNN model showed consistency in its performance across the full, first half, and second half 

datasets. The overall accuracy remained between 94.5% and 94.6%. Our model achieved high F1-scores on 
classes with high support, such as "Unchanged," "New Building," and "Demolition." These results show 
that the model has learned the underlying patterns of the data.  

The improvement in precision, when compared to the other two models, for the 'Vegetation 
Growth' means that the model has learned some distinctive spatial features that the other models were 
unable to. This is an interesting avenue for further investigation, as this was the class with the lowest accuracy 
value. Understanding these features could provide insights into the nature of such classes and  improve their 
detection. 

However, the model struggled with the 'New Vegetation' class, but performed much better than 
other models. The model showed lower accuracy with classes that have fewer instances and it is possible 
that it has bias towards classes with more instances. This is a common issue in machine and deep learning. 
CNN model's complexity, while enabling it to model complex patterns in the data, also makes it more 
susceptible to overfitting. 

In conclusion the CNN model was able to learn from the dataset and make accurate predictions. 
The differences in performance between classes, particularly for the "New Vegetation" and "Vegetation 
Growth" classes, indicate that there may be room for further optimization. 

 

 
 
 
 
 
 
 

Figure 37 - Per-class accuracy of all datasets for the CNN model, Urb3DCD 
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5.2. Results for AHN Dataset 

In this section, we will talk about the results obtained from our three change detection methods: 
Random Forest (RF), Fully Connected Neural Network (FCNN), and Convolutional Neural Network 
(CNN), to the AHN dataset. The objective of these experiments is to evaluate the performance of each 
model.  

However, after a visual investigation of the results on the CloudCompare, we noticed that the 
pattern of the errors for all three of our models was similar to the process of creating the training, validation 
and testing data. Multiple small clusters were misclassified as random changes. So, just as we did during the 
data preparation process, to improve the performance of the classifier, a clustering algorithm was applied 
post-classification. This part of the code was designed to handle the issue of misclassified random points in 
the dataset. Specifically, if a cluster of a certain label was very small, it was reassigned to the closest label 
spatially. We will talk more about this on the “Comparative Analysis and Visualization of the Results” 
section. The following subsections will provide a numerical overview of the results for each method. 
 
Table 8 - AHN classes distribution 

Class Name Class 
Number 

Points in the dataset Counts of elements in 
percentage 

Unchanged 0 641373 76.34% 

New building 1 113756 14% 

Demolition 2 85027 10% 

 

5.2.1. Random Forest Classifier 

 
 
Table 9 -Accuracies of RF model trained on the AHN dataset 

Class precision recall f1-score IoU support 

Unchanged 0.96 0.97 0.97 0.94 1008648 

New building 0.8 0.71 0.75 0.60 62914 

Demolition 0.64 0.63 0.63 0.46 51681 
    

 
 

Accuracy 
  

0.94  1123243 

macro avg 0.8 0.77 0.78  1123243 

weighted avg 0.94 0.94 0.94  1123243 

 
 
 

The RF model that was applied to the AHN dataset, consists of three target classes: Unchanged, 
New Building, and Demolition. The initial accuracy of the RF classifier was 92.38%. After we applied our 
cluster cleaning code, it effectively cleaned up the output of the RF classifier, enhancing the accuracy to 
94.00%. 

The results shown in the Table 9 indicate that the RF classifier, combined with the clustering 
algorithm, performed best on the Unchanged class, with high a precision of 0.96, recall 0.97, and F1-score 
0.97. The performance on the New Building class was also relatively good with a precision of 0.8. However, 
the performance on the Demolition class was low, indicating that the classifier had some difficulty accurately 
identifying this class. 

As this algorithm cannot get more complex features out of the features we provide, it is bound to 
remain relatively simple compared to more sophisticated deep learning models. The RF classifier, when 
combined with a post-classification clustering algorithm, demonstrated strong performance on the AHN 
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dataset, particularly in identifying unchanged areas, but there  is room for improvement in the classification 
of new buildings and demolished areas. The misclassification issue between unchanged trees and changed 
buildings highlights the need for more specialized approaches to handle such challenges in change detection 
tasks. 
 

 

 

 

Figure 39 - Confusion matrix of RF model trained on the AHN dataset 

Figure 38 - Per-class accuracy for the RF model, AHN dataset 
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5.2.2. Fully Connected Neural Network 

 
The FCNN was used to classify three classes in the AHN dataset: Unchanged, New Building, and 
Demolition. After applying a clustering code post-classification, the accuracy of the FCNN increased from 
92.65% to 93.66%. The precision, recall, and F1-score for each class are shown in the Table 10.  

  
 
Table 10 - Accuracies of FCNN model trained on the AHN dataset 

 
 
 
 
For the 'New Building' class, the model achieved a precision of 0.82 and a recall of 0.64, leading to an F1-
score of 0.72. While the precision is relatively high, indicating that a large proportion of instances classified 
as 'New Building' were correct, the lower recall suggests that the model missed a significant number of 'New 
Building' instances. The 'Demolition' class had a precision of 0.60 and a recall of 0.68, resulting in an F1-
score of 0.64. This indicates that the model had some difficulty in correctly classifying 'Demolition' 
instances, with a significant number of instances either being missed (as indicated by the recall) or being 
misclassified (as indicated by the precision). 

The macro average scores were 0.79 for precision, 0.76 for recall, and 0.77 for the F1-score. These 
results show that the model performed similarly across all classes. The 'Unchanged' class had an impact on 
the overall performance, as seen by the weighted average scores, which give more weight to the classes with 
more instances, getting a value of 0.94 for all scores. In summary, the FCNN model performed well on the 
AHN dataset, particularly for the 'Unchanged' class. However, the results also highlight areas for potential 
improvement, particularly for the 'New Building' and 'Demolition' classes. 
 
 
 
 
 
 
 

Class precision recall f1-score IoU support 

Unchanged 0.96 0.97 0.96 0.93 1008648 

New building 0.82 0.64 0.72 0.56 62914 

Demolition 0.6 0.68 0.64 0.47 51681 

accuracy 
  

0.94  1123243 

macro avg 0.79 0.76 0.77  1123243 

weighted avg 0.94 0.94 0.94  1123243 
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Figure 40 - Confusion matrix of FCNN model trained on the AHN dataset 

Figure 41 - Per-class accuracy for the FCNN model, AHN dataset 
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5.2.3. Convolutional Neural Network 

 
After applying a clustering algorithm post-classification, similar to the approach used with the RF 

and FCNN, the accuracy of the CNN increased from 92.25% to 93.79%. The precision, recall, and F1-score 
for each class are shown in the Table 11.  

The most represented class in the dataset, in our case the 'Unchanged' class, had a precision of 0.96 
and a recall of 0.97, and F1-score of 0.97. The CNN model was successful in correctly identifying 
'Unchanged' points and also avoided the misclassification of other classes as 'Unchanged'. 

For the 'New Building' class, the model achieved a precision of 0.79 and a recall of 0.62, resulting 
in an F1-score of 0.69. The relatively high precision indicates a large amount of points classified as 'New 
Building' were indeed correct, while the lower recall indicates that the model failed to identify a significant 
number of 'New Building' points. 

The 'Demolition' class had a precision of 0.63, a recall of 0.77 and an F1-score of 0.69. The model 
had some issues in accurately classifying 'Demolition' instances, with a significant number of points either 
being overlooked or being misclassified. 

The macro average scores, which consider each class equally, were 0.79 for precision, 0.79 for recall, 
and 0.78 for the F1-score. These scores suggest a relatively balanced performance of the model across the 
classes. The weighted average scores, which give more weight to the classes with more instances, were all 
0.94. This shows the strong influence of the 'Unchanged' class on the overall performance.  

 
Table 11 - Accuracies of CNN model for AHN dataset 

Class name Precision Recall F1-score Iou Support 

Unchanged 0.96 0.97 0.97 0.93 1008648 

New building 0.79 0.62 0.69 0.53 62914 

Demolition 0.63 0.77 0.69 0.53 51681     
 

 

accuracy 
  

0.94  
 

macro avg 0.79 0.79 0.78  1123243 

weighted avg 0.94 0.94 0.94  1123243 

 
 

 

Figure 42 - Confusion matrix of CNN model trained on the AHN dataset 
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6. DISCUSSION 

6.1. Comparative Analysis and Visualization of our Results 

6.1.1. URB3DCD Dataset 

 
The Urb3DCD dataset, a simulated 3D point cloud dataset, served as the testing ground for three 

different change detection models: Random Forest (RF), Fully Connected Neural Network (FCNN), and 
Convolutional Neural Network (CNN). Comprising 1,638,678 points (3.6km2 per epoch), the dataset 
includes a variety of class labels that represent diverse types of changes within an urban environment. A 
direct comparison of each class accuracy is illustrated in the Figure 44. 

The RF model, as a traditional machine learning algorithm, relies heavily on the basic and hand-
crafted features, as it does not build higher-level features from the input. The Random Forest algorithm in 
our scenario only utilizes RGB information and the change in height. It is not uncommon to classify changes 
on 2D images based only on their RGB values and they have shown very good results in the past (Nemoto 
et al., 2017). Our theory that the same process can be done in point clouds, looking at the promising results, 
was proved right. The model was able to learn patterns in RGB and z changes and correctly identify almost 
all of the changes in the target elements. It exhibited exceptional performance on classes with high support 
as these classes were well-represented in the training data, which is reflected in the validation results. 
However, it encountered difficulties with the 'New Vegetation' class. This could be attributed to the fact 
that the 'New Vegetation' class and “Vegetation growth’ possesses features that are not easily distinguishable 
by the RF model, as these two classes have majority of feature in common. Their RGB values will remain 
relatively the same and only a small difference in z will be prevalent, which is one of the reasons the algorithm 
had some difficulties with these classes. It is also possible that the training dataset is not representative 
enough of the validation dataset. Therefore, if these features are not sufficiently represented, errors, as 
shown in the Figure 46 (b), will occur. Many trees were not correctly classified, so even though RF works in 
most of the urban elements, there is still room for improvement.  

Figure 43 - Per-class accuracy for the CNN model, AHN dataset 
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The Fully Connected Neural Network (FCNN) model also demonstrated strong performance on 
the Urb3DCD dataset. FCNNs, being a type of neural network, have the ability to learn complex patterns 
in the data. Different from RF, this model was able to craft more complex features out of the input initial 
features we provided. Thus as seen in the Figure 46 (c), even though this algorithm is still misclassifying some 
random points around the buildings or in the ground as changes, it showed a much better understanding of 
different classes and classified the underrepresented classes better. The model did not confuse the similar 
classes and showed very good predicting abilities for different classes. The ability to craft more complex 
features made it possible to find differences and correctly classify even very similar classes. There is a 
considerable decrease in random errors misclassified as change when we compare FCNN with RF. Even 
though we saw an improvement when we jumped from RF to FCNN, they both showed some errors when 
we visualized the output. The result numbers are very satisfying, however, the algorithms' lack of capacity 
to account for spatial relationships presents a significant limitation, particularly in dealing with spatially-
related issues such as those encountered in our study. Despite the spatial aspect of this simulated dataset 
not introducing significant errors, the models' disregard for their surrounding context is still a potential 
source of errors. 

Our FCNN and RF models are trained in a point-wise manner, focusing only on how individual 
points shift from one epoch to another without considering any additional factors. This approach, 
unfortunately, is a significant source of errors, especially in denser datasets where mistakes can occur more 
often. If the model fails to recognize that our data points aren't isolated entities classified in a sequential 
manner, the denser the dataset, the higher the likelihood of errors and misclassifications. For this reason, 
we shift our attention to the CNN approach in the following paragraph, a model designed to also consider 
the surrounding points of our target point to make a more informed prediction. 

The Convolutional Neural Network (CNN) model showed the highest accuracy overall and a 
consistency in its performance. CNNs, unlike FCNNs and RF, can capture the spatial relationships between 
the data points, which could explain their better prediction. As shown in the Figure 46 (d), the trees are 
mostly classified correctly, much better than the other models. Also if we notice in the close up figure, 
almost all the small misclassified errors in the ground or around buildings that the other two models have, 
disappeared in the CNN prediction. As CNN uses spatial information, it is able to understand the properties 
of the surrounding area, thus allowing it to make a better prediction and avoiding a lot of misclassification 
of random points. The model has a better understanding of the element it’s classifying as it is considering 
also how the neighbourhood of each point changed between epochs. It is not only calculating higher-level 
features of the predicted point, but it’s also combining the features of the neighbouring points. Thus even 
though the CNN is a more complex and computationally heavy model, the trade-off is definitely worth it. 

In conclusion, all three models demonstrated strong performance on the URB3DCD dataset, with 
the CNN model showing the highest overall accuracy. However, all models showed room for improvement, 
suggesting that the feature set used for training might need to be expanded or refined to better 
representation. Furthermore, the models could potentially benefit from additional training data for the 
underrepresented classes.  

Figure 44 - Per-class accuracy of all the models, Urb3DCD 
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(a) 

 
(b) 
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(c) 

 
(d) 

Figure 45 - A predicted tile from the Urb3DCD dataset. (a) Ground truth, (b) Random forest, (c) Fully Connected 
NN, and (d) Convolution NN. Blue colour represents non-change, dark green colour is new building, green is 

demolition, light green is new vegetation, , yellow is vegetation growth , orange is missing vegetation, and red is 
mobile object.   
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 46 - Close up view of Urd3DCD dataset results. (a) Ground truth, (b) RF, (c) FCNN, and (d) CNN. Blue 
colour represents non-change, dark green colour is new building, green is demolition, light green is new vegetation, , 

yellow is vegetation growth , orange is missing vegetation, and red is mobile object.    
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6.1.2. AHN dataset 

The Actueel Hoogtebestand Nederland (AHN) dataset, a real-world 3D point cloud dataset, was 
used to test three different change detection methods: Random Forest (RF), Fully Connected Neural 
Network (FCNN), and Convolutional Neural Network (CNN). The dataset consists of three changed 
classes: Unchanged, New Building, and Demolition.  

As mentioned before, after we predict the changes with the algorithms, a cluster cleaning code is 
applied. Figure 47 (a) shows the original output from the model, and its noticeable that a lot of non-changed 
points are misclassified as changes. Figure 47 (b) is the outcome of our cluster cleaning, which changes the 
label of small clusters with the biggest nearest cluster. The idea behind this is that the changes in buildings 
cannot be a small group of points, especially in such a densely populated point cloud. As it can be seen in 
the Figure 47, it was really successful of making the predicted tile better and removing a lot of errors. The 
overall accuracy for all three models was increased by a good amount. As mentioned in the methodology 
section, RGB values were not reliable so we ended up using only the intensity, return number, z and point 
density in 2D as our input features for the models. Even though these values were correct and really showed 
some good results in CNN if we look at the statistical values, they were not enough to ensure a clean 
classification just like in URB dataset where CNN didn’t misclassified random points. 
 

 
(a) 

 
(b) 

Figure 47 – A close look into a predicted test tile of the AHN dataset. (a) Original CNN output and (b) Cleaned 
CNN output. Blue colour represents non-change, yellow/light green represents new buildings. 

The Random Forest (RF) model demonstrated the highest accuracy percentage wise, however if we 
have a closer look into the output, we will notice that this is because of classes imbalance. The unchanged 
class has the highest amount of points, thus it is affecting the overall results more than the other two classes. 
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RF faced the issue of misclassifying unchanged trees, unchanged buildings and ground as changed buildings. 
This is shown in Figure 50 (b), where it is clear that without crafting extra features and taking neighbours 
into consideration, it is really easy to misclassify points if we consider each of them as a standalone. Even 
though we added the number of returns and crafted the feature of the density of point clouds in a 2D radius, 
which in theory should help with this problem, it was still prevalent. This could be attributed to the 
similarities in the feature space between these classes, which might have caused confusion for the classifier. 
This issue points to the limitations of the RF classifier in distinguishing changes between urban elements. 
As mentioned before, the RF and FCNN models classify the points in a one to one manner, thus taking 
into account only the features they “see” on individual points. The 'Unchanged' and 'New Building' classes 
might have features that are not easily distinguishable by the RF model, so it’s source of distinction between 
these classes is very limited. Also we need to consider that we are only using z, intensity, return number and 
point density in 2d as features. The main feature to distinguish all the classes in previous classification tasks 
was RGB, which in our case is missing. So in our case, this role is most likely done by intensity which in 
different parts of the Netherlands will have different values as the roofs of the buildings and the type of the 
vegetation changes, leading to a different value. This can cause errors when trained and tested in two 
locations far away from each other.  

The Fully Connected Neural Network (FCNN) model also demonstrated strong performance on 
the AHN dataset. Even though it still misclassified trees just like RF in many instances, it didn’t misclassify 
buildings, as the higher dimension features it creates did come handy in this scenario. This means that 
crafting more complex features helps a lot in distinction between very similar objects. The problem of the 
trees in this model is most likely the fault of the one-to-one classification. The one to one matching is done 
on a 2D plane, thus there are a lot of instances where tree points of one epoch are matched with ground 
points from the other epoch, causing a  huge difference in the z feature, which leads into many points 
classified as change. This issue however is not seen in CNN model output as seen in Figure 50 (d).  

Finding nearest point in 3D requires much more computational power, and when we have to deal 
with huge and very dense data just like AHN, it will take too much time and additional complexity. Also 
since our main focus was buildings, which change only on planar level, we decided to go with it. Most likely 
3D can potentially work a bit better for the other non-spatial models, but ultimately we wanted to prove the 
efficiency of CNN and keep the model as fast as possible, we choose to go with the 2D matching. While 
the matching process indeed occurs in 2D, based on the closest X and Y values, it doesn't impact the other 
calculations. The X and Y values are just used as an indication of closest points, without any interference 
on how we proceed further. In the context of the CNN model, the identification of neighbouring points 
still considers the full 3D space, taking into account all features of these points. 

The Convolutional Neural Network (CNN) model showed an overall accuracy of 93.79% on the 
AHN dataset. CNNs can capture the spatial relationships between the data points. Unlike the RF and FCNN 
models, the CNN model did not misclassify trees or buildings. Even though as we mentioned there are a 
lot of instances where tree points were matched with ground points, the CNN showed that it can understand 
that there is no change in that area by looking at the neighbouring points. The ability to consider the area 

Figure 48 - Per-class accuracy of all the models, AHN dataset 
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around the points and craft complex features made it possible to have a minimal amount of points 
misclassified. It still missed some points of buildings inside the building cluster but there was no visible error 
in the predicted classes. This suggests that the CNN was more successful in distinguishing between natural 
and built environments compared to the other classifiers.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 49 - Prediction on an AHN tile. (a) Ground truth, (b) RF, (c) FCNN, and (d) CNN. Blue colour represents 
non-change, yellow/ light green represents new buildings and red represents demolition. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 50 - A closer look into the prediction of the AHN tile. (a) Ground truth, (b) RF, (c) FCNN, and (d) CNN. 
Blue colour represents non-change, yellow/ light green represents new buildings and red represents demolition. 
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However we do have some interesting scenarios too. In the Figure 52 we can see that the Random 
Forest model made a much cleaner outline of the buildings than the deep learning models. This is most 
likely because the model was trained in a similar tile where the type of building roofs are very similar to the 
validation data, thus showed the superiority of RF when it comes to predicting well represented areas, while 
CNN tried to overcomplicate the problem and using neighbouring points, and made mistakes on the points 
next to the buildings. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 51 - Prediction on another AHN tile. (a) Ground truth, (b) RF, (c) FCNN, and (d) CNN. Blue colour 
represents non-change, yellow/ light green represents new buildings. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 52 - A closer look at the prediction of the tile. (a) Ground truth, (b) RF, (c) FCNN, and (d) CNN. Blue colour 
represents non-change, yellow/ light green represents new buildings. 
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Another interesting scenario is when we examine an area that significantly differs from the training 
data. As shown in Figure 53, the RF fails to identify the correct changes, while the deep learning models, by 
crafting complex features, understand the problem better and make a more educated prediction. However, 
we can also notice that the CNN, through its utilization of neighbouring points, adds unnecessary 
complexity around the building areas. While this spatial awareness has addressed many issues related to 
other classes, it can also introduce unnecessary complications that result in errors. 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 53 - Predicted AHN tile. (a) Ground truth, (b) RF, (c) FCNN, and (d) CNN. Blue colour represents non-
change and Red colour represents demolition. 
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In conclusion Random forest is a fast and reliable algorithm if we have a well-represented training 

dataset. However, its shortcomings become evident in its inability to comprehend spatial context, poor 
performance in regions that are very different from the training data, and potential confusion between 
similar classes due to the absence of higher-level features. On the other hand, deep learning models 
demonstrate greater robustness, although their complex features can sometimes overcomplicate certain 
scenarios. Out of all models examined, the CNN model stands out as the most reliable and consistent for 
dealing with spatial problems. All three models demonstrated relatively good performance on the AHN 
dataset. The models could potentially benefit from additional training data for the problematic classes. The 
CNN's success in accurately classifying buildings and not misclassifying trees highlights the potential of this 
approach for complex change detection tasks. 
 

6.1.3. Comparison between URB3DCD and AHN Datasets 

 
The Urb3DCD and AHN datasets, while both being 3D point cloud datasets, present different 

challenges and characteristics that affect the performance of the change detection methods. The Urb3DCD 
dataset is a simulated dataset with a variety of class labels representing seven types of changes in an urban 
environment. On the other hand, the AHN dataset is a real-world dataset with three classes: Unchanged, 
New Building, and Demolition. When comparing the performance of the three models we will only consider 
the three common classes between the two datasets, and the observations are as below: 

The RF model showed a higher overall recall on the AHN dataset (94.00%) compared to the 
URB3DCD dataset (93.6%). However, the main reason for this is the big difference in point density and 
distribution of classes. The unchanged class in AHN dataset has much more points and since “Unchanged” 
it’s the most represented class in both training and validation datasets, it has a very high accuracy, which 
lead into an artificial increase of overall accuracy of the model. This is why per-class comparison is a very 
important part of this study. 

 
Table 12 - Validation datasets classes distribution 

Class 
Name 

Class 
Number 

Points in the 
AHN dataset 

Points in the Urb 
dataset 

Urb dataset AHN 
dataset 

Unchanged 0 1008648 403061 85% 90% 

New 
building 

1 62914 27266 6% 6% 

Demolition 2 51681 43722 9% 5% 

 
When applied to the AHN dataset, our model faced considerable challenges, particularly in 

misclassifying many individual points, with unchanged tree points often mislabelled as building changes.  
This issue was also present in the simulated dataset, but at a significantly reduced rate. This discrepancy can 
be attributed to several factors, including the different features used in the two datasets. The value of RGB 
features has been well established in many classification tasks, while the results from using only intensity, 
number of returns, and the manually crafted 2D point density feature remain to be fully evaluated.  

The state of the data itself also plays a crucial role. In the simulated dataset, tree points are only 
present on the outer boundaries, so when matched one-to-one between two epochs, they were mostly 
associated with other tree points, minimizing the likelihood of mismatches with ground point. Our matching 
process is done in 2D, thus in such scenarios as AHN, the possibility of tree points matching with ground 
points is high. This is evident in the Figure 55, which clearly shows the higher point density of the AHN 
dataset, making incorrect point matches more often. 

Moreover, it's worth noting that the simulated dataset's "training, testing, and validation" are all 
situated in the same city (Lyon, France), while our real dataset's training and testing take place in different 
locations for some of its tiles. The direct comparison of classes, shown in the Figure 54, clearly indicates 
superior results from the simulated dataset over the real dataset. This suggests that the model’s performance 
is highly sensitive to feature selection, the quality of training data, and how representative the data is. 
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The FCNN model also strong performance on the Unchanged class on both datasets. Given that 

FCNN and RF are trained in a similar fashion, with the only distinction being that FCNN also generates 
more complex features from the input, the issues addressed in the previous paragraph are relevant here as 
well. The algorithms showed similar improvements in both the datasets when compared to RF, where they 
did a better distinction between classes with similar features. The overall performance was better than RF 
for both the datasets. The per-class comparison between these two models is shown in the Figure 56. 
 
 
 
 

 
(a) 

 
(b) 

Figure 55 -  A closer look at the densities of our datasets. Where (a) is an AHN and (b) a Urb3DCD tile 

Figure 54 - Comparison of AHN results with Urb3DCD. RF model 
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 The CNN model displayed impressive overall accuracy on both datasets. However, a per-class 

comparison is crucial to fully comprehend the true accuracy. Contrary to the RF and FCNN models, the 
CNN model did not misclassify trees or buildings in either the AHN or Urb3DCD dataset. This implies 
that the CNN was more effective in differentiating between natural and built environments compared to 
the other classifiers. The model combines the advantage of creating higher-level features to distinguish 
between similar classes and spatial relationships of points. Just like the other models, the same can be said 
for this model, where Urb3DCD showed an overall better performance. 

Figure 56 - Comparison of AHN results with Urb3DCD. FCNN model 

Figure 57 - Comparison of AHN results with Urb3DCD. CNN model 
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Applying the cluster cleaning to the output of the Urb3DCD dataset wasn't necessary. The 
simulated dataset's lower density compared to the AHN dataset minimizes the potential for errors. 
Furthermore, the combination of RGB values and representative of the training data that Urb3DCD offers, 
led to significantly improved predictions. The quality of the training and validation data for the simulated 
dataset is far more balanced than the AHN one. Additionally, since the point density of the simulated dataset 
is much lower, in scenarios where objects have very few points with substantial distance between them, 
applying cluster cleaning isn't recommended as it can cause problems rather than resolving them. 

In conclusion, while all three models (RF, FCNN, and CNN) showed good performance on both 
datasets, they each demonstrated distinct strengths and weaknesses. The RF model achieved the highest 
overall accuracy on the AHN dataset but struggled with misclassifications and didn't performs as well on 
unseen areas. The FCNN model showed robust performance on both datasets but lacked the ability to 
utilize the spatial relationships between data points. The CNN model excelled in accurately classifying trees 
and buildings, proving to be the most consistent and reliable algorithm across both datasets. These findings 
imply that the choice of model and feature set should be carefully considered. A more representative dataset, 
better feature combination, and consideration of spatial relations are essential for improved prediction. 
Furthermore, the results highlight the potential of deep learning methods for change detection tasks in urban 
environments, and the need for further research to optimize these methods for different types of datasets. 
 

6.2. Comparison with the state of the art ( Urb3DCD) 

 
A useful perspective on the effectiveness of our method can be obtained by a comparison with other state 
of the art change detection methods used on the same Urb3DCD dataset. The models developed in this 
study, Convolutional Neural Networks (CNN), Fully Connected Neural Networks (FCNN), and Random 
Forests (RF) show a strong balance between ease of use, speed, and performance. Since the previous studies 
that are tested on the same dataset used the IoU values to evaluate their models, we will match it and the 
comparison are shown in the Table 13 below: 
 
 
Table 13 -Per-class IoU scores on Urb3DCD–V2 low density LiDAR dataset. All the other model accuracies are 

retrieved from de Gelis et al., 2023 study 

Method Unchanged New 

building 

Demolition New veg. Veg. growth Missing 

veg. 

Mobile 

object 

Convolution Neural 

Network (ours) 

94.12 81.27 77.77 36.10 50.61 63.15 99.96 

Siamese KPConv (de 

Gelis et al., 2023) 

95.82 ± 0.48 86.68 ± 0.47 78.66 ± 0.47 93.16 ± 0.27 65.17 ± 1.37 65.46 ± 0.93 91.55 ± 0.60 

Pseudo-Siamese 

KPConv (de Gelis et 

al., 2023) 

95.20 ± 0.18 86.23 ± 1.37 76.08 ± 0.54 92.98 ± 0.95 55.96 ± 9.41 63.50 ± 1.41 91.88 ± 0.71 

DSM-Siamese 93.21 ± 0.11 86.14 ± 0.65 69.85 ± 1.46 70.69 ± 1.35 8.92 ± 15.46 60.71 ± 0.74 8.14 ± 5.42 

DSM-Pseudo-

Siamese 

93.44 ± 0.23 84.65 ± 2.05 68.41 ± 1.77 70.38 ± 4.98 15.42 ± 13.81 59.77 ± 3.32 33.15 ± 29.12 

DSM-FC-EF 94.39 ± 0.12 91.23 ± 0.31 71.15 ± 0.99 68.56 ± 3.92 1.89 ± 2.82 62.34 ± 1.23 46.70 ± 3.49 

RF (Tran et al. 2018) 92.72 ± 0.01 73.16 ± 0.02 64.60 ± 0.06 75.17 ± 0.06 19.78 ± 0.30 7.78 ± 0.02 73.71 ± 0.63 

Fully Connected 

Neural Network 

(ours) 

93.13 78.54 74.95 36.01 40.15 63.43 100.00 

Random Forest (ours) 92.99 76.49 74.69 36.01 41.22 62.56 98.11 
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The CNN model, excels in the 'Unchanged', 'New Building', 'Demolition', and 'Mobile Object' 
categories, outperforming several other models in these classes, as seen in the Table. While the model shows 
room for improvement in the, 'Vegetation Growth', and 'Missing Vegetation' classes, it's important to note 
that it still delivers competitive results, particularly when considering its simplicity and efficiency. The 'New 
Vegetation' class is the only obvious flaw. On this class, all of our models are underperforming. Looking at 
the confusion matrix (Figure 36), we encountered difficulties distinguishing between the 'new vegetation' 
(class 3) and 'vegetation growth' (class 4) categories in our dataset. Despite trying different strategies 
including up-sampling, weighted loss functions, and ensemble methods such as Random Forests, the 
Intersection over Union (IoU) metric for class 3 remained poor. First, there might be an overlap in the 
feature distributions of these two classes, given that both 'new vegetation' and 'vegetation growth' categories 
represent different stages of a tree's lifecycle, they share similar characteristics, which makes it challenging 
for our model to effectively differentiate between them. Moreover, our feature set may not enough capture 
the key differences between these two classes, or they might be missing and are underrepresented in our 
data. As a result, the model might not have had access to the necessary information to differentiate between 
these two classes. Lastly, the limitations might also be due to the choice of the model or its architecture. 
While we used a CNN model, it's possible that other more sophisticated architectures could yield better 
results. The Siamese KPConv model uses a kernel point convolution operation, which allows it to adapt to 
the local geometry of the data. This operation is particularly effective for classes like 'Vegetation Growth' 
that have complex and irregular structures. In contrast, our CNN model, while it does consider neighbouring 
points, may not capture the complexity of vegetation structures as effectively due to its convolution 
operation being less adaptable to local geometric variations. Therefore, the adaptability of the Siamese 
KPConv model's kernel point convolution operation to local geometric variations gives it an edge in 
identifying and classifying 'Vegetation Growth'. The Siamese KPConv and Pseudo-Siamese KPConv 
models, as presented by de Gelis et al., 2023, while achieving superior performance in almost all the classes, 
are more complex and computationally intensive. This highlights the strength of our models, which achieve 
competitive results with a fraction of the complexity. Similarly, our FCNN and RF models, show very good 

performance across most classes. The FCNN model, in particular, outperforms both our RF and the Tran 

et al. 2018  model, demonstrating the potential of neural networks in change detection tasks, even when 
they are implemented with a simple architecture. The DSM-Siamese, DSM-Pseudo-Siamese, and DSM-FC-
EF models, despite their data transformation and pre-processing, did not perform that well. In fact, our 
CNN model matches or surpasses the performance of the DSM-FC-EF model in several classes. This could 
be due to the fact that when rasterizing PCs into DSM, the size of the training set is considerably diminished, 
from one label per point to one label per cell/pixel (a 2D pixel gathers multiple 3D points). Since DSM-
based networks lose information and rely on smaller training sets, they might be more prone to over-fitting.  

Our models despite their simplicity, have shown competitive performance. They are not only easy 
to implement but also efficient, as they don't require complex pre-processing steps or extensive training. We 
demonstrated that simplicity and speed do not have to come at the cost of performance. The Siamese 
KPConv and Pseudo-Siamese KPConv models offer a sophisticated approach to multiple change 
segmentation, but their complexity and need for extensive training may not always be necessary. While there 
are areas for improvement, particularly in the vegetation-related classes, our models deliver competitive 
results across most classes and outperform most of the other state-of-the-art models in several categories. 
Our goal was to prove that even by using the idea behind 2D change detection, we can still get very satisfying 
results in 3D. This way we provide a faster training time as compared to other existing models that deal with 
raw point cloud data. The simplicity and efficiency of our models make them an attractive choice for change 
detection tasks, particularly in scenarios where speed and ease of implementation are crucial. 
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6.3. Comparison with the state of the art ( AHN) 

 
 
Table 14 - Per-class IoU scores on the AHN LiDAR dataset. All the other model accuracies are retrieved from de 
Gelis et al., 2023 study 

Method  mIoU  Unchanged  New building  Demolition  New clutter 

CNN (ours) 66.46 93.32 52.92 53.12 none 
Siamese KPConv (de Gelis 

et al., 2023) 59.93 ± 0.14 95.94 ± 0.06 83.19 ± 1.54 56.05 ± 1.74 40.53 ± 0.56 
Pseudo-Siamese KPConv 

(de Gelis et al., 2023) 52.32 ± 4.31 92.96 ± 1.34 76.54 ±  11.39 43.67 ± 1.88 36.76 ± 2.95 

DSM-Siamese 33.18 ± 3.56 88.58 ± 2.53 60.95 ± 5.54 18.04 ± 1.59 20.54 ± 3.59 

DSM-Pseudo-Siamese 41.40 ± 0.62 92.25 ± 0.11 73.26 ± 0.68 22.91 ± 1.82 28.02 ± 0.73 

DSM-FC-EF 44.73 ± 2.16 92.95 ± 1.49 74.21 ± 0.37 33.68 ± 6.84 26.32 ± 0.04 

RF (Tran et al. 2018) 28.56 ± 0.02 93.13 ± 0.00 70.5 ± 0.21 2.04 ± 0.04 13.27 ± 0.02 

FCNN (ours) 65.47 93.20 56.29 46.92 none 

RF (ours) 66.53 93.56 59.78 46.27 none 
 

Our comparison with the state of the art also extends to the analysis of the AHN data. However, 
there are critical points that must be clarified before we dive into the comparison. First of all, it's important 
to note that our dataset and the datasets used in other state-of-the-art studies differ in both size and 
geographical location. This discrepancy can cause an unfair comparison, so it’s necessary to keep it in mind. 
Despite these differences, all the datasets share the same fundamental characteristics and sources, being 
derived from AHN3 and AHN4. Second, as can be observed from the Table 14, our data does not include 
the class of "new clutter", which will inevitably influence the final mean intersection over union (mIoU) 
score when placed against other studies. These factors should be kept in mind as this section's comparison 
and discussion are not as straightforward as those of the simulated dataset. 

In terms of individual class performance, our model outperforms all of the competing models, with 
the exception of Siamese KPConv, in accurately identifying 'Unchanged' and 'Demolition' classes. For 
instance, our model achieves an 'Unchanged' class accuracy of 93.32%, narrowly trailing the 95.94% of the 
Siamese KPConv. The majority of other models struggled to identify demolitions on a satisfactory level. 
Contrarily, our model manages to distinguish 'Demolitions' with an accuracy of 53.12%, surpassing most 
other models. Our model achieved the highest mean IoU, but it's crucial to underscore that our model does 
not account for the “new clutter”, which will inevitably affect the average accuracy. Therefore, , this metric 
may not be the most reliable indicator of performance, underscoring the importance of per-class 
comparison. Our model's performance in the 'New Building' class was lower than the other models. 
Specifically, our model achieved 52.92% accuracy, comparable with the DSM-Siamese results. This low 
accuraccy can be addressed to the data pre-processing step. As described in the methodology section, one 
substantial challenge was mismatching tree points from one epoch with ground points from the next epoch. 
We decided to use 2D matching due to its computational speed and effectiveness on the Urb3DCD dataset.  
While the CNN addressed most of this resulting issues on the AHN dataset, some areas remained where 
the CNN could not fully fix this error, consequently impacting the accuracy of our classes. 

Another challenge that we previously referred to was that our algorithm operates solely on intensity, 
changes in height, and 2D point density. The importance of RGB values cannot be overstressed in models 
such as ours, where the individual features of point clouds play a significant role.  

Despite the absence of these features, our model still managed to achieve satisfactory results when 
benchmarked against the current state of the art. These results underscore the potential of our methods, 
and it lays a solid foundation for further exploration and research in this direction. 
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7. CONCLUSIONS AND FINAL REMARKS 

In this study, we presented a novel deep learning approach to change detection in point clouds, 
building on the concept of 2D change detection in images and extending it to 3D point clouds. This method 
was inspired by image change detection research, while also addressing the problems that appear in the 
traditional change detection and classification methods for 3D data. We developed three models and 
experimented on two different datasets, one simulated and one real-world. The simulated dataset was 
generated by (de Gélis et al., 2023),while the real data, derived from official AHN website, was downloaded 
from Geotiles.nl. 

Among the models tested, the CNN showed superior performance due to its utilization of 
neighbouring points to understand spatial context. The flexibility of our model allows users to easily add or 
remove classes from training and prediction, enhancing its efficiency. For the simulated dataset, our method 
achieved state-of-the-art results, as measured by Intersection over Unions (IoU). The CNN model 
demonstrated very good results across all classes, even surpassing some existing methods, except for the 
"New Vegetation" class which underperformed across all our models. This underperformance can be 
attributed to the complexity of vegetation growth class and the limitations of our model in capturing the 
spatial relationships within this class, as our model does not consider the larger context of these elements.  

The real dataset presented more challenges in terms of quality assessment and data preparation due 
to the absence of some features (such as RGB) and the target labels. Moreover, finding "demolitions" for 
AHN proved to be difficult, leading us to swap some tile epochs between AHN3 and AHN4 to extract this 
class from the "new building" one. This artificial crafting of classes might have introduced errors in training 
and prediction. Additionally, the RGB values, which performed exceptionally well on the Urb3DCD dataset 
and have shown their value in other classification tasks, were unavailable for our AHN data, leading to a 
loss in accuracy. Despite these problems, the model performed well when compared to the state of the art. 

Point cloud change detection and classification using deep learning methods is a relatively new field, 
but it has seen significant advancements in recent years. Our objective was to contribute further insights 
into the potential approaches for dealing with this kind of data. In future work, we recommend integrating 
RGB features into the AHN data, as these features have demonstrated impressive results in both 2D images 
and the 3D simulated point cloud. Implementing these features on top of existing ones is expected to boost 
the model’s performance. Furthermore, data inclusivity should be a critical consideration, given the vast 
diversity in feature combinations for the same object in real-world scenarios. Our models demonstrated 
strong performance even with reduced training data, as seen in our experiments using models trained with 
half the dataset. Interestingly, there was minimal difference in performance between full and half dataset 
experiments, suggesting that representativeness was maintained despite the reduction. Moreover, when we 
experimented with the AHN data, performance dropped in regions that were quite different from our 
training areas in terms of feature values. This suggests that the focus should be on the representativeness 
and quality of the training data, rather than its size. In terms of the optimal amount of training data, it's less 
about a specific quantity and more about ensuring that the data set includes the range and diversity of the 
scenarios that we aim to predict. This way we can train robust models that can generalize well and accurately 
predict new and unseen data.  
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8. APPENDIX 

Random forest results 
 
Table 15 - Accuracies of RF model trained with the first half of the dataset 

Class Precision Recall F1 Score Support 

0 0.941 0.963 0.952 403061 

1 0.807 0.893 0.848 27266 

2 0.858 0.622 0.721 43722 

3 0.38 0.882 0.531 2908 

4 0.743 0.448 0.559 9063 

5 0.794 0.737 0.764 7306 

6 1 1 1 2698      

accuracy 
  

0.916 496024 

macro avg 0.79 0.79 0.77 496024 

weighted avg 0.92 0.92 0.91 496024 

 

 
 
 
 
 
 
 
 

Figure 58 - Confusion matrix of RF model trained on the first half dataset 
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Table 16 - Accuracies of RF model trained with the second half of the dataset 

Class Class 
number 

Precision Recall F1-score Support 

unchanged 0 0.95 0.96 0.96 403061 

new_building 1 0.81 0.93 0.87 27266 

demolition 2 0.85 0.74 0.79 43722 

new_vegetation 3 0.34 0.93 0.5 2908 

vegetation_growth 4 0.8 0.18 0.3 9063 

vegetation_loss 5 0.8 0.74 0.77 7306 

mobile_objects 6 0.93 1 0.97 2698       

accuracy 
   

0.92 496024 

macro avg 
 

0.78 0.78 0.74 496024 

weighted avg 
 

0.93 0.92 0.92 496024 

 
 

 
 
 
 
 
 
 
 

Figure 59 - Confusion matrix of RF model trained on the second half dataset 
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FCNN results 
 
 

Table 17 - Accuracies of FCNN model trained with the first half of the dataset 

Class Class 
number 

Precision Recall F1-score Support 

unchanged 0 0.968 0.959 0.963 403061 

new_building 1 0.812 0.925 0.865 27266 

demolition 2 0.847 0.863 0.855 43722 

new_vegetation 3 0.371 0.926 0.53 2908 

vegetation_growth 4 0.84 0.421 0.561 9063 

vegetation_loss 5 0.795 0.759 0.777 7306 

mobile_objects 6 1 1 1 2698       

accuracy 
   

0.936 496024 

macro avg 0.805 0.836 0.793 496024 

weighted avg 0.941 0.936 0.936 496024 

 
 
 
 

 

 

 

Figure 60 - Confusion matrix of FCNN model trained on the first half dataset 
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Table 18 - Accuracies of RF model trained with the second half of the dataset 

Class Class 
number 

Precision Recall F1-score Support 

unchanged 0 0.96 0.96 0.96 403061 

new_building 1 0.81 0.94 0.87 27266 

demolition 2 0.86 0.82 0.84 43722 

new_vegetation 3 0.37 0.93 0.53 2908 

vegetation_growth 4 0.83 0.43 0.56 9063 

vegetation_loss 5 0.8 0.75 0.77 7306 

mobile_objects 6 1 1 1 2698       

accuracy 
   

0.93 496024 

macro avg 
 

0.81 0.83 0.79 496024 

weighted avg 0.94 0.93 0.93 496024 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 61 - Confusion matrix of FCNN model trained on the second half dataset 
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CNN results 
 

Table 19 - Accuracies of CNN model trained with the first half of the dataset 

Class Class 
Number 

Precision Recall F1-score Support 

unchanged 0 0.97 0.969 0.97 403061 

new_building 1 0.855 0.938 0.895 27266 

demolition 2 0.941 0.818 0.876 43722 

new_vegetation 3 0.371 0.925 0.529 2908 

vegetation_growth 4 0.713 0.63 0.669 9063 

vegetation_loss 5 0.779 0.775 0.777 7306 

mobile_objects 6 1 1 1 2698       

accuracy 
   

0.945 496024 

macro avg 0.804 0.865 0.816 496024 

weighted avg 0.95 0.945 0.946 496024 

 
 
 

 

 

 

 

 

 

 

 

Figure 62 - Confusion matrix of CNN model trained on the first half dataset 
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Table 20- Accuracies of CNN model trained with the second half of the dataset 

Class Class 
Number 

Precision Recall F1-score Support 

unchanged 0 0.964 0.977 0.971 403061 

new_building 1 0.87 0.926 0.897 27266 

demolition 2 0.955 0.807 0.875 43722 

new_vegetation 3 0.37 0.927 0.529 2908 

vegetation_growth 4 0.899 0.457 0.606 9063 

vegetation_loss 5 0.787 0.766 0.776 7306 

mobile_objects 6 1 1 1 2698       

accuracy 
   

0.946 496024 

macro avg 0.835 0.837 0.808 496024 

weighted avg 0.951 0.946 0.946 496024 

 
 

 

 

 

 

Figure 63 - Confusion matrix of CNN model trained on the second half dataset 
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