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1 Abbreviations

• RLN Recurrent laryngeal nerve

• RFA Radiofrequency ablation

• JV Jugular vein

• CA Carotid artery

• GUI Graphical user interface

• FOV Field of view

• SRAD Speckle reducing anisotropic diffusion

• TIRADS Thyroid Imaging Reporting and Data System

• LA Laser ablation

• CNN Convolutional neural network

• FCN Fully convolutional neural network

• MONAI Medical Open Network for artificial intelligence

• HD95 Hausdorff distance 95th percentile

• DSC Dice similarity coefficient

• mAP Mean average precision
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Abstract

Thyroid nodules have a high prevalence and can be detected upon ultrasound imaging.
To improve the diagnosis and treatment of thyroid nodules, a 3D segmentation method for
ultrasound scans was developed, segmenting the thyroid, carotid artery (CA), and jugular
vein (JV). The goal of the method is to aid needle-based interventions, such as radiofre-
quency ablation (RFA) and improve volumetry accuracy. A tracked sweep dataset from an
online repository was used together with a dataset acquired with matrix transducer, which
allows for fast 3D volume acquisition. Both datasets consisted of ultrasound scans and an-
notations from 27 subjects. Pre-processing techniques were applied to enhance the scans,
including voxel size normalization and speckle reduction. A U-Net was trained with differ-
ent strategies (2D, 2.5D majority vote, and 3D) on both the matrix dataset and tracked
sweep dataset, to find the best training strategy. The Dice similarity coefficient (DSC)
and Hausdorff Distance 95% (HD95) were used to assess the model’s performance. The
volume of the prediction was compared to the ground truth and to volumes obtained using
the ellipsoid formula. The results showed variations in performance among the training
strategies. The 2D model achieved the best results for the tracked sweep dataset in terms
of median DSC (0.934, 0.924, 0.897) and HD95 (1.206, 0.588, 1.571 mm) for the thyroid, CA
and JV respectively. For the matrix dataset, the 3D train strategy gave overall best results
in its median DSC (0.869, 0.930, 0.856) and HD95 (1.814, 0.606, 1.405 mm) for the thyroid,
CA and JV respectively. The model demonstrated lower median volume errors (4.45%)
compared to the ellipsoid formula (13.84%) for thyroid volume estimation in the tracked
sweep dataset. For the matrix dataset, an error of 7.40% was achieved. A graphical user
interface was developed for visualization and clinical use of the segmentation results. A 3D
segmentation method for ultrasound volumes of the thyroid, CA and JV was developed.
This work paves the way for the development of a planning and navigation method to be
used with RFA for thyroid nodules.

Reader

This thesis starts with an introduction chapter, briefly stating the current medical status of thyroid nodule
pathology, diagnosis and treatment. Then the focus will be on segmentation and the role deep learning
has played in the segmentation of thyroids so far. The introduction will end with the research goal and
questions. Chapter 4 contains background information to learn more about the clinical background, the
ultrasound imaging modality, or segmentation methods, ending with a deep learning section which will
contain an explanation of all technical terms mentioned in this thesis. Chapter 5 contains the methods,
followed by the results in Chapter 6 used to find an answer to the research goal and questions. Chapter
7 contains the discussion, discussing results, the limitations of the study, the clinical value of the results,
and suggestions for future research. Chapter 8 summarises the results, leading to a conclusion.

3



Samenvatting

Schildklier nodi komen veel voor en kunnen worden gedetecteerd met ultrasound. Om de diagnose en
behandeling van schildklier nodi te verbeteren, werd een 3D-segmentatiemethode voor ultrasound scans
ontwikkeld die de schildklier, carotide (CA) en jugularis (JV) segmenteert. Het doel van de methode is
om interventies met naalden, zoals radiofrequente ablatie (RFA), te ondersteunen en de nauwkeurigheid
van volumetrie te verbeteren. Een publiek beschikbare tracked sweep dataset werd gebruikt samen met
een dataset die was verkregen met een matrix transducer, die een snelle 3D volume acquisitie mogelijk
maakt. Beide datasets bestonden uit ultrasound scans en annotaties van 27 proefpersonen. Er werden
voorbewerkingstechnieken toegepast om de scans te verbeteren, waaronder voxelformaatnormalisatie en
speckle reductie. Er werd een U-Net getraind met verschillende strategieën (2D, 2,5D majority vote en
3D) op zowel de matrixdataset als de tracked sweep dataset om de beste trainingsstrategie te vinden. De
Dice similariteitscoëfficiënt (DSC) en Hausdorff Distance 95% (HD95) werden gebruikt om de prestaties
van het model te beoordelen. Het volume van de voorspelling werd vergeleken met de annotaties en
met volumes verkregen met de ellipsöıde formule. De resultaten toonden variaties in prestaties tussen
de trainingsstrategieën. Het 2D-model behaalde de beste resultaten voor de tracked sweep dataset in
termen van mediaan DSC (0.934, 0.924, 0.897) en HD95 (1.206, 0.588, 1.571 mm) voor respectievelijk de
schildklier, CA en JV. De 3D train strategie gaf de beste results voor de matrix dataset in mediaan DSC
(0.869, 0.930, 0.856) en HD95 (1.814, 0.606, 1.405 mm) voor respectievelijk de schildklier, CA en JV. Het
model toonde ook lagere mediane volume errors (4.45%) vergeleken met de ellipsöıde formule (13.84%)
voor het berekenen van het schildkliervolume in de tracked sweep dataset. Voor de matrix dataset werd
een error van 7.40% behaald. Er werd een grafische gebruikersinterface ontwikkeld voor visualisatie en
klinisch gebruik van de segmentatieresultaten. Er werd een 3D-segmentatiemethode ontwikkeld voor
ultrasoundvolumes van de schildklier, CA en JV. Dit werk effent de weg voor de ontwikkeling van een
plannings- en navigatiemethode voor gebruik met RFA voor schildklier nodi.

4



Contents

1 Abbreviations 1

2 Preface 2

3 Introduction 7
3.1 Thyroid nodule pathology and treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Previous research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Background 9
4.1 Clinical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1.1 Thyroid nodule pathology and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.2 Radiofrequency ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.1 3D ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Methods and materials 14
5.1 Data set description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1.1 SegThy tracked sweep dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 Matrix transducer dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Pre-processing and post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Training strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.5.1 Training strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.2 Volumetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5.3 Segmentation GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Results 19
6.1 Training strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Volumetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 Segmentation GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Discussion 23
7.1 Comparison to other research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.4 Clinical value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.5 Suggestions for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Conclusion 26

A Optimization of the model 31
A.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.1.2 Loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.1.3 Transforming data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.1.3.1 Despeckaling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5



A.1.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.1.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.1.6 Combining datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.3 Interpretation of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B Held-out test set 38

6



3 Introduction

3.1 Thyroid nodule pathology and treatment

Thyroid nodules are common in the adult population, with approximately 50-70% of adults presenting with
thyroid nodules on ultrasound imaging. [1, 2]. Of these nodules, 10-20% are symptomatic [3], leading to
aesthetic problems as well as difficulties breathing or swallowing [4]. Approximately 90% of all thyroid nodule
cases are benign. [5]. Ultrasound is employed for thyroid pathology diagnosis, in which the volume of the
thyroid is an important measure [6]. Caliper measurements and the ellipsoid formula are used to determine
the volume [7]. More information on diagnosis of thyroid nodules can be found in Section 4.1.

Surgery is the conventional way of treating benign thyroid nodules. Surgery poses the risk of complica-
tions. The most common complications are recurrent laryngeal nerve (RLN) palsy, which can be temporary
(up to 1.9%) or permanent (up to 0.6%), postoperative hemorrhage, temporary (up to 30%) or permanent
(up to 0.4%) hypoparathyroidism, hematomas (up to 0.4%), recurrence of nodules (up to 1.2%), wound in-
fection (up to 0.6%), and hypocalcemia (up to 30%) [8]. Surgery has other disadvantages, including general
anesthesia and scar formation [9]. In recent years, minimally invasive thermal ablation techniques, such as
radiofrequency ablation (RFA) under ultrasound guidance have become more frequent in the treatment of
thyroid nodules [10]. RFA consists of the insertion of an internally cooled needle into the target nodule.
The needle is connected to a generator producing an alternating high-frequency current, causing vibration of
ions in the tissue, creating heat. The tissue in contact with the exposed tip will undergo thermal injury and
coagulative necrosis in the target nodule, leading to shrinkage of the nodule [11].

While RFA is a relatively safe technique, some complications can still occur. Complications during
RFA include temporary voice change with a duration longer than 1 month (0.7%) and shorter than one
month (0.1%), nodule rupture requiring drainage (0.1%) or requiring conservative treatment (0.3%), Horner
syndrome (0.1%), hypothyroidism (0.1%), hematomas (0.8%), hypertension (0.5%) for patients with benign
thyroid nodules [12].

However, some studies also reported no major complications nor an affected thyroid function after RFA
[9, 13]. Elaborate information about the RFA procedure can be found in Section 4.1.

During the RFA procedure, the radiologist uses 2D ultrasound to visualize the thyroid and guide the
RFA needle. During the procedure, gas formation caused by the ablation deteriorates the visibility of the
thyroid on the ultrasound image [14]. The 2D visualization and artifacts during and before the procedure
restrict the radiologist from fully monitoring the position of the RFA needle and the local vital structures in
real-time [15]. Radiologists require considerable experience to target the correct structures without damaging
surrounding organs [16, 17].

To improve the RFA procedure, the use of 3D ultrasound is suggested during the procedure. This increases
the field of view (FOV) and reduces the need for transducer movement to visualize the entire needle and vital
structures [18]. A computer-aided intervention system could provide better insights into needle insertion
placement and prevent damage to nearby critical structures. A critical step in creating such a tool is to
acquire an accurate (semi-)automatic segmentation of the thyroid and surrounding vital organs.

3.2 Previous research

In literature, the results of semi-automatic and automatic segmentation methods are mentioned. More
information about these segmentation methods can be found in Section 4.3. Research has already been per-
formed on the automatic segmentation of the thyroid in ultrasound images using deep-learning algorithms.
[19, 20, 21, 22] Older research focused more on 2D ultrasound segmentation and more recent research also
segmented the thyroid from 3D ultrasound images. To the author’s knowledge, no research has been per-
formed yet on the segmentation of 3D ultrasound data acquired with a matrix transducer. This research
will combine the 3D ultrasound sweep dataset used by Krönke et al. with a dataset acquired with a matrix
transducer. A comparison of results of this study to results in other research can be found in Section 7.

3.3 Deep learning

Convolutional neural networks are a common type of deep learning architectures in medical image processing,
with the advantage of the ability to capture local relations with small convolution filters to learn lower-level
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features of the image, such as edges, corners, and textures, and high-level features like shapes and patterns
[23]. A U-Net is a fully convolutional network consisting of an encoder and a decoder path. The encoder
down-samples and extracts features, to capture contextual information at different scales [24]. Segmentation
models based on U-Nets contraction and expansion structure are widely used in medical image segmentation
[25].

3.4 Research goal

This study developed a pipeline that can segment the thyroid, jugular vein (JV), and carotid artery (CA) in
a 3D ultrasound scan of the neck automatically using a U-Net. The U-Net was trained on a dataset of 3D
US images made with the matrix transducer and tracked sweep. Different training strategies are compared,
being training in 2D, a majority vote in axial, sagittal, and coronal orientation, and 3D to find which strategy
leads to the best results.

The segmentation is of use in treatment planning and navigation of RFA procedures, to provide a clear 3D
overview of the structure that needs to be ablated and the structures that need to be avoided. To facilitate
its use in the clinic the pipeline is implemented in a Graphical User Interface (GUI). In addition to treatment
planning, the segmentation can also be used for thyroid volumetry during diagnosis and follow-up.

3.5 Research questions

The research goal is divided into the following research questions:

1. What is the potential of using the matrix transducer for 3D ultrasound acquisition in segmenting the
thyroid, CA and JV using a U-Net?

2. What training strategy will lead to the best results?
3. How can the results be implemented for treatment planning of RFA procedures?
4. How well can the model predict the volume of the thyroid, compared to the ellipsoid formula used in

the clinic?
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4 Background

4.1 Clinical background

This chapter will introduce the pathology of thyroid nodules and the procedure of RFA.

4.1.1 Thyroid nodule pathology and diagnosis

The thyroid is located anteriorly in the neck across the front of the trachea, composed of a left and a right lobe
with a small connecting branch, called the isthmus. The thyroid produces the thyroid hormones thyroxine
and triiodothyronine, essential for normal development, growth, and metabolism, and calcitonin, which plays
a role in Ca2+ and phosphate homeostasis [26].

A frequently occurring pathology in the thyroid is the presence of thyroid nodules, which are caused
by an overgrowth of cells in the thyroid gland. The majority of people diagnosed with thyroid nodules
are asymptomatic. Those who do experience symptoms can have a globus sensation, difficulty swallowing,
shortness of breath, hoarseness and pain [5]. Thyroid nodules can also be functioning autonomously, causing
hyperthyroidism over time [27].

Sonography is used as the primary modality for the initial stratification of cancer risk and to decide on
the need for a fine-needle aspiration biopsy. Ultrasound is suggested when the thyroid gland is palpably
abnormal or upon incidental detection in other radiological studies. Owing to the superficial location of the
thyroid, high-resolution ultrasound probes (≥ 12 MHz) can be used to detect the nodules. For the assessment
of nodules, the American College of Radiology has recommended a point system called the Thyroid Imaging
Reporting and Data System (TIRADS). This system assigns points based on 5 ultrasound features, which
determine the estimated cancer risk and recommendations for fine-needle biopsy or surveillance [5].

4.1.2 Radiofrequency ablation

In the past years, minimally invasive techniques under US-guidance have become more frequent in the treat-
ment of thyroid nodules. The guideline of image-guided thyroid ablation in Europe and Asia states that
chemical and thermal ablation techniques have been proposed as common modalities for non-surgical treat-
ment of benign thyroid nodules [28]. The current practice guidelines state the use of laser ablation (LA)
and RFA as first-choice thermal ablation treatment modalities [28]. Recent studies have shown that RFA
showed a larger volume reduction and fewer overall complications than LA, with a smaller number of treat-
ment sessions [28]. Studies have shown that volume reduction in 6 to 12 months can be 50,0 to 93,4% [11].
Despite these good results, a survey of the European Thyroid Association showed that in the management
of thyroid nodules only 16% of European Thyroid Association members had availability to thermal ablation
procedures and only 5% performed thermal minimally invasive techniques themselves [29]. RFA is a relatively
safe technique, but some complications can still occur [3].

The ablation procedure starts with the insertion of an internally cooled electrode into the target nodule.
See Figure 1 for a schematic image of the needle placement.

Figure 1: Schematic of the thyroid and surrounding critical structures during an RFA procedure. The CA
(red) JV (blue), and nerves (red) are near the ablation zone [30]. The numbers represent the order of ablation.
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The patient is placed in a supine position with a hyper extended neck to allow for visualization of the
target nodule and vital cervical structures with US in real-time. The patient is kept alert and verbal during
the procedure, which is of importance for detection of paralysis of the vocal chord during the procedure and
to indicate pain, which can serve as a marker for unwanted damage. To separate the target lesion from
the surrounding structures in the neck, such as the CA, RLN, JV, anterior cervical muscles, esophagus,
and trachea, a hydrodissection technique can be applied. This provides a safety margin to prevent thermal
damage to these critical structures. One approach to insertion of the electrode is the trans-isthmic approach,
where the electrode is inserted from the midline of the neck and advanced laterally into the target nodule.
This limits heat exposure to the RLN. This does make it more challenging to change the position of the
electrode when the patient talks or swallows compared with the lateral to medial approach. This is also
called the moving shot technique, where the nodule is ablated bit by bit, starting inferior-posterolaterally
and moving medially and anteriorly. The deepest part is then ablated first, followed by the more superior
layers. This is then repeated for the middle and superior parts [3, 11].
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4.2 Ultrasound

Ultrasound is a non-invasive, real-time imaging modality. This section will give a short introduction to ul-
trasound, the phenomenon of speckle noise, how the ultrasound waves are generated, and 3D ultrasound.

Medical ultrasound imaging is an imaging modality that generated images using sound waves of frequencies
of 1 to 20 MHz, The so-called sonogram is generated with a transducer that sends pulses of ultrasound into
the body. The sound propagates through the tissue and generates scattered and reflected waves. The waves
that are scattered or reflected to the transducer generate the sonogram. The analog signal is discretized,
resulting in a finite number of amplitudes that can be read. The resolution in amplitude is 8 (255 levels) or
16 bits (65535 levels) in common medical systems. If the signal becomes too large, it becomes clipped, so in
case of 8 bits, all signals over the 255th level become clipped. Signals that are too low have a low signal to
noise ratio.

Ultrasound suffers from speckle noise, which is inherent in ultrasound images. It shows as a granular
pattern, resulting from constructive and destructive interference of backscattered ultrasound from scatterers
smaller than the spatial resolution of the systems [31]. Speckle noise is a random process, but it does contain
information. The statistics of the speckle can provide information about different tissue microstructures, but
there is no consensus yet on how this can best be interpreted and used. However, it is known that speckle
noise reduces image contrast, and blurs and obscures image details [32].

4.2.1 3D ultrasound

Different types of medical transducers are used: linear arrays, curvilinear arrays, phased arrays and annular
arrays. Ultrasound is conventionally used as a 2D imaging modality, but approaches for 3D imaging were
also developed. This is done using linear arrays in tracked and mechanical scanning. In tracked scanning,
a position sensor, e.g. optical or electromagnetic sensor, is placed on the transducer to measure its position
and orientation while it is being moved, creating a stack of 2D images that are reconstructed to a 3D image
[33]. In mechanical scanning, a motorized mechanism moves a conventional transducer internally to be
able to reconstruct a 3D image from acquired 2D images [34]. Lastly, 3D US transducers consisting of a
2-dimensional array of elements can be used [35]. The different types of transducers used to create 3D US
images are visualized in Figure 2.

Figure 2: Types of transducers used to make a 3D US scan. 1) A linear 2D transducer that can be swept
over the neck, reconstructing 2D scans to a 3D volume. 2) A wobbler transducer where the elements make
a mechanical sweep internally while the transducer is being held in place. 3). A matrix transducer, having
elements 2-dimensionally, creates a 3D scan in real-time.

The acquired 3D images are usually visualized as multiplanar views or volume rendering. The spatial
resolution is usually anisotropic and poorer than in 2D imaging [36].

The tracked method has the advantage over a 3D US transducer of a larger field of view. However, this
technique is relatively difficult and localization errors from the sensors can lead to lower accuracy of the
resulting calibration [34]. The wobbler transducer has more potential in limiting image distortion, motion
and deformation artifacts on both rigid and deformable bodies than the tracked method [34]. The frame rate
of the matrix transducer allows for real-time 3D US imaging. Matrix transducers of up to 56.000 elements
are available [37].
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4.3 Segmentation

The study started with finding a method for segmenting the thyroid. In literature, multiple methods that
had already been applied in thyroid segmentation were found. This chapter aims to elaborate on these
segmentation methods. Before machine learning was applied in medical image segmentation, the most used
approaches were model-based, atlas-based, or a combination. Model-based methods use a ground-truth seg-
mentation mask to build statistical models that capture the shape and appearance of segmentation objects
[23]. Atlas-based models register multiple atlases images to the target images, where pixel-wise label predic-
tions are generated with a statistical label fusion, elastic transformation, or another fitting model [23]. The
atlas models can be combined with model-based methods as well, for example, shape/appearance models and
intensity models [38].

Active contour models, also called snakes, take an initial manually drawn contour and try to optimize
this to the actual contours of an object. The initially drawn contour is iteratively deformed to get closer to
pixels with a high gradient and to be smooth. For all points on the boundary, it is moved within a certain
window where the energy for the contour is minimum. This is iterated until the sum of motions of the contour
becomes lower than a certain threshold [39].

Level sets start with an initial guess of the boundary. The boundary curve evolves based on the Gaussian
gradient of the image magnitude giving the velocity. The gradient magnitude of the motion of the curve is
then calculated. These two are combined in a PDE, that is numerically solved [39].

In graph cut, the image is represented as a graph with the pixels as nodes and the edges represent the
similarity of neighboring pixels. The segmentation algorithm tries to find the cut in the graph separating
foreground and background regions [39].

In decision tree models the data is split into subsets based on certain features that the algorithm finds, like
pixel intensity or texture. Once the algorithm has learned how to partition the data into different categories,
pixels from new data can traverse the tree and get assigned a label based on which node it reaches [39].

The advantages of these methods are that it is easy to implement and does not require high-performance
hardware devices [4], but it comes with the cost of relatively low performance in comparison to deep learning
[38]. Furthermore, deep learning has already been widely studied because of its great performance and results
and potential for further improvement in computer-aided diagnosis and computer aided intervention [40].

4.3.1 Deep learning

Modern machine learning segmentation methods currently researched are mostly deep learning models, which
outperform the machine learning algorithms and atlas-based auto-segmentation because of the excellent
abilities of feature extraction, representation and generalization [23][38]. Deep learning has substantially
gained in popularity because of the high-level parallel processing abilities of current hardware and large
data availability. The biggest improvement of deep learning as compared to atlas-based methods is seen
in segmentation of low-contrast organs [41]. However, class imbalance, which is caused by the large size
difference between small and large organs, still can cause worse segmentation results for the smaller organs
compared to larger organs [41].

The cost or loss function is a surrogate measure for the performance of the machine learning model,
by measuring how well the current output corresponds to the ground truth. The goal of training a neural
network is to find the optimal values of parameters for the network by minimizing the cost function. The
method of finding these optimal values is determined by the type of optimizer used, with the learning rate
serving as the step size for each iteration towards the minimum of the cost function. Regularization is a
modification made to the algorithm intended to improve generalization. This can be in the form of putting
restrictions on the parameter values, a preference for a simpler model or encoding prior knowledge. These
constraints and penalties can lead to an improved performance on the test set by preventing overfitting and
forcing constraints on the output. The amount of training samples that are processed by the network in one
forward/backward pass is determined by the batch size. A larger batch size gives a more accurate gradient
estimation, but it is limited by the memory usage of hardware. The epoch number gives the number of
complete passes through a data set [42].

Convolutional neural networks (CNNs) are the most common type of deep learning architecture in medical
image processing, with the advantage of the ability to capture local relations with small filters and propagation
of dependencies in the short-range by stacking multiple layers [23]. Convolution is a mathematical operation
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Figure 3: To train a model, it needs to learn what weights to assign to which parameters. These are summed
(potentially including a bias), and given to the activation function, which then makes a prediction based on
what it has learned.

Figure 4: Example of a cost function. To improve results, the model tries to optimize the cost function.
The model starts at an initial value of the weight. In each update, a small learning step is taken to find the
inverse direction of the gradient. An optimizer is used to find the global minima.

that takes an input (image) and then uses a kernel (filter) to create an output, which is also called a feature
map. The multiplication with the kernel results in a smaller amount of features than the original image, for
example only edges. CNNs can be used to classify every pixel individually with patches around the pixel and
to produce a multi channels likelihood map with the same size as the input image. This will lead to a large
memory cost if the dimensions of the feature maps are kept, therefore down-sampling layers such as max
pooling and average pooling are applied after some convolutional layers to reduce the dimension of the feature
map. However, this does result in a lower resolution than the input image. To prevent this decrease, the fully
convolutional network (FCN) can be used [43]. This CNN-based semantic segmentation method replaces the
fully connected layers with convolutional layers, to extend the model function from image classification to
semantic segmentation. A popular image segmentation network called U-Net stems from FCN. The network
has a U-shaped structure with symmetrical encoder and decoder paths. Many variations have already been
developed, including UNETR, U-Net++, V-net and deep attention U-Net [23, 44, 45]. More information on
the U-Net architecture can be found in Section 5.
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5 Methods and materials

A visual summary of the methods is provided in Figure 5. In order to develop a model for segmentation
of the thyroid, CA, and the JV, datasets comprised of 3D ultrasound scans of the thyroid needed to be
acquired. Two different datasets were used for training and testing. The characteristics of the two datasets
are provided below.

Figure 5: Overview of methods. 1) The model is trained on 3D ultrasound tracked sweep and matrix data.
2) The scans are preprocessed. This involves scaling grey level intensities from 0 to 1 and despeckling in 3D.
3) Different training strategies were used. The first is on 2D axial slices, the second is a majority vote in
2.5D, where slices in all axial, coronal and sagittal planes are used and the third is trained on 3D patches of
the scan. 4) The U-Net takes these training strategies as input and produces a segmentation map. 5) The
resulting segmentation is post-processed with a largest component analysis. 6) The pipeline is implemented
as a GUI in MeVisLab, which visualizes the resulting segmentation as an overlap on orthogonal slices and as
a 3D reconstruction for planning of an RFA procedure.
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5.1 Data set description

The model was trained on two distinct datasets of 3D ultrasound scans of the thyroid gland. These scans
could be acquired using various types of transducers, namely a 2D transducer, a wobbler transducer, or a
matrix transducer. To enhance the generalizability of the model across different acquisition methods, the
training data set included a publicly available data set obtained from tracked ultrasound scans [21], as well
as a self-generated data set acquired using a matrix transducer. The wobbler transducer was also considered,
but due to inferior export quality, this was not included in the model.

5.1.1 SegThy tracked sweep dataset

The SegThy dataset [21] comprised tracked ultrasound sweeps of the neck region of 28 healthy volunteers.
An example of a sample from this dataset is illustrated in Figure 6. The scans were acquired using a Siemens
Acuson NX-3 US machine (Siemens Healthineers AG, Erlangen, Germany), in combination with a 12MHz
VF12-4 transducer that employed electromagnetic tracking via a PIUR tUS system (piur imaging GmbH,
Vienna, Austria). The scans that were included in the present study were made by a physician with 6 years
of experience. The voxel size of the scans was 0.12x0.12x0.12 mm3 with a variable FOV. Further details can
be found in the article by Krönke et al. One scan was excluded due to a lower signal that impeded accurate
annotation of the dorsal boundary of the thyroid. The annotations of the thyroid were already created by a
radiologist with 8 years of experience, whereas the annotations of CA and JV were added by a Biomedical
Engineering master student for this research. The SegThy data set has previously been utilized by Krönke
et al. [21] for the development of a deep neural network for thyroid segmentation, with the aim of reducing
inter-observer variability in thyroid volumetry. The primary focus was on diagnostic applications, whereas
the current study aims to apply the model additionally for treatment planning for RFA procedures.

Figure 6: A sample from the SegThy data set, with slices in axial, coronal and sagittal orientation. The
thyroid (green), CA (red) and JV (blue) are annotated.

5.1.2 Matrix transducer dataset

The 3D ultrasound data from the matrix transducer dataset was acquired using an XL14-3 xMATRIX trans-
ducer connected to an EPIQ Elite 7 ultrasound system (Philips Healthcare, Amsterdam, The Netherlands). A
total of 57 volunteers underwent one left and one right thyroid scan. The exclusion criterion was no (partial)
removal of a thyroid lobe. The scans were made by a biomedical engineering student. The scans were con-
ducted using the Thyroid protocol of the ultrasound system. The scans have a voxel size of 0.129x0,071x0,141
mm3 with a fixed FOV. The field of view was set using the maximum angle of 40 degrees. Since this did not
capture the entire thyroid, the decision was made only to scan the caudal part of the thyroid. To ensure an
equal distribution of samples from both datasets within the final model scans from the first 27 subjects were
selected for annotation, with 7 men and 20 women with an average age of 22. An example of a sample from
this dataset is illustrated in Figure 7. The dataset was annotated by a Technical Physician and a Biomedical
Engineering student and refined by a radiologist with 15 years of experience. Annotations were made in 3D
Slicer (version 5.2.1, available at www.slicer.org) [46].
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Figure 7: A sample from the matrix data set, with slices in axial, coronal and sagittal orientation. The
thyroid (green), CA (red) and JV (blue) are annotated.

5.2 Pre-processing and post-processing

The ultrasound scans underwent pre-processing to enhance the potential of the model segmentations. To
obtain equal pixel size for all scans, the voxel spacing was converted to 0.12x0.12x0.12 mm3. The voxel grey
values were scaled from 0 to 1. Ultrasound imaging is susceptible to artifacts and speckle noise, which can
hinder segmentation accuracy. Speckle noise is inherent in ultrasound images, caused by microstructures
smaller than the imaging resolution. Noise filters are often employed before applying segmentation methods
to improve accuracy [47, 31, 48, 6]. A risk of applying a despeckling filter to US images is losing edge
information, because of over-smoothing. Many de-speckle methods exist and have been applied to ultrasound
images. The best results were found with edge-preserving despeckling methods [47]. The speckle-reducing
anisotropic diffusion (SRAD) filter was implemented due to its edge-preserving and enhancing effects. A 3D
SRAD filter based on the article by Yu et al. [48] was used to despeckle the images. The Matlab code made
by F. Lance [49] was converted to Python code. The manual ROI selection needed for the speckle variation
coefficient was replaced with an approximation, as suggested in the article by Yu et al. Additional details
regarding this method can be found in Appendix A.1.

Since all final structures consist of one connected part, a keep largest component post-processing step was
added to the segmentation pipeline to remove non-connected segmented pixels to improve final results.

5.3 Model description

Because of the excellent segmentation results mentioned in literature, a U-Net architecture was chosen for
this application. The U-Net provided by the Medical Open Network for Artificial Intelligence (MONAI)
library [50] was used. See Figure 8 for a schematic visualization of the model. This architecture consists of
an encoder and a decoder. The encoder consists of convolutional layers with a 3x3 kernel size and a rectified
linear unit activation function. This is followed by max-pooling layers with a 2x2 kernel size and stride 2 to
downsample the feature maps. The decoder consists of up-convolutional layers with the same kernel size and
stride. The corresponding feature maps from the encoder and convolutional layers are then concatenated to
generate the final output. This U-Net had 16 to 256 feature channels. A softmax activation function is used
in the output layer.

The model was trained with a Dice-cross-entropy loss function. The data was augmented with a random
zoom with a factor of 0.8-1.2 during training. The models were trained with a batch size of 8, and an Adam
optimizer was used with a learning rate of 1e-3 for the first 400 epochs and 1e-4 for the last 100 epochs,
totaling 500 epochs. Lastly, a dropout layer of 0.1 was applied to prevent overfitting of the model.

The model was first optimized on the tracked sweep dataset, because of rapid availability of the data.
Afterward, the matrix dataset was added to the training process. Epoch count and learning rate were
re-evaluated after combining the datasets. The detailed optimization method is provided in Appendix A.1.

During the optimization phase, 20% of the data was used for validation. The model was tested on 10%
of the data and cross-validated 5-fold.
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Figure 8: Network structure of a U-Net architecture, consisting of a contracting path and expansive path
(encoder and decoder), connected by skip connections. The encoder obtains features from the input image
through convolutional operations. Every blue box is a multi-channel feature map and the number of channels
is denoted above the box. The number of channels increases while the spatial dimensions decrease by the
max-pooling layers. The decoder path uses up-convolutions to recover the original spatial resolution and
concatenates the features from the encoder with the upsampled features. [24]. In the U-Net used for this
research, the number of channels was changed to 16-256.

5.4 Training strategies

After optimizing the data augmentation and model hyperparameters in 2D, a majority vote assembly in 2.5D,
and training in 3D was performed, after which validation loss was reassessed for epoch count and learning
rate. For the 2D training strategy, a random axial slice was selected and cropped to 256x256 pixels. The
crop was made with 50% of the time the center voxel being a label and 50% of the time, the center voxel
being background. For the 2.5D majority vote training strategy, the model was trained on axial, coronal, and
sagittal slices separately. For each orientation, a random slice was selected and cropped to 256x256 pixels.
The three models were then separately applied to the test samples, and a label was assigned to each pixel
only if a minimum of two out of the three models agreed on the label. Finally, for the 3D training strategy,
a crop was made of 256x256x64 pixels to make a valid comparison, but limited by memory constraints. The
same parameters as used in the 2D model were chosen, but the number of epochs was increased, and the
number of non-labeled center crops the model encountered was doubled.

5.5 Evaluation

First, the results of different training strategies were compared. The best performing model in terms of
metrics and visual evaluation was used for volume predictions and implementation in the segmentation GUI.

5.5.1 Training strategies

For evaluation, the Dice similarity coefficient (DSC) and Hausdorff Distance 95% (HD95) were used. For
testing of differences between the results of different training strategies, a Friedman test (p = 0.05) was
performed using SPSS (version 28.0, IBM Corp., Armonk, NY, USA) after the cross-validations. A post-hoc
Wilcoxon test was conducted if the groups contained significant differences. Additionally, the results of the
model were visually evaluated in slice planes and as a 3D reconstruction for their strengths and weaknesses.
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5.5.2 Volumetry

For diagnosis and follow-up purposes, the volume of the prediction was compared to that of the ground truth
and to the outcomes of using the ellipsoid formula. The ellipsoid formula was only performed on the tracked
sweep dataset since the matrix scans do not contain the entire thyroid. Since the isthmus is not included in
these measurements in the clinic, a bounding box was made around the thyroid lobes up until the trachea to
exclude the isthmus.

Figure 9: For calculation of the thyroid volume, the ellipsoid formula is used in the clinic. The length, width
and depth of the thyroid are manually measured (green lines). For automatic calculations, a bounding box
(blue) was made to exclude the isthmus from ground truth and ellipsoid measurements.

To account for inter- and intraobserver variability in drawing the lines representing height, width and
thickness of a lobe, the ’regionprops3’ function in MATLAB (MathWorks, R2022b) was used to find the
length in pixels of the major axes of the thyroid lobe label. This resulted in Equation 1. The results of
the matrix transducer volume prediction were compared to the results of the tracked sweep dataset and
the results of the prediction of the tracked sweep dataset were compared to the error by using the ellipsoid
formula. For the comparison to the model predictions, the best performing training strategies in terms of
thyroid DSC and HD95 was used. A Mann-Whitney U test was performed to test for statistical differences.

Vellipsoid =
π

6
×Vpixel × dlength × dwidth × ddepth (1)

5.5.3 Segmentation GUI

To demonstrate the practicality of the segmentation pipeline for radiologists, a GUI was developed using
MeVisLab (Version 3.4.2, available at www.mevislab.de). The GUI was designed to enable the user to use
buttons to load medical images and visualize them in orthogonal planes with the ability to scroll through
different slices and in 3D to view results from all angles. The user could visualize and toggle the segmentation
results and visually evaluate the accuracy of the segmentation.
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6 Results

An overview of the results upon which decisions were made to obtain this model, can be found in Appendix
A.2. The first run was performed on a completely held-out test set. Results are shown in Appendix B.

6.1 Training strategies

The performance of the model for segmenting the thyroid, CA, and JV was evaluated on the held-out test
set and then cross-validated 5-fold for statistical testing. 5-fold cross validation on 6 samples each fold, led
to a total of 30 scans in the test set for both datasets. The results can be found in Tables 1 and 2. The
results are also visualized in Figure 10 as a boxplot to visualize the spread and outliers of the metrics of the
train strategies. A visualization of results is provided in Figure 11.

There was a difference in the results of the different training strategies for the sweep dataset. As can be
seen in Table 1, the DSCs of all structures differ significantly between training strategies, as does the HD95

of the JV. A post hoc Wilcoxon test showed that for the thyroid, the DSC was highest in 2D. For the CA,
the DSC was highest in 2D and 3D and the HD95 was also best in 2D and 3D. For the JV, the DSC was
highest in 2D and 3D. P-values of the post hoc Wilcoxon test can be found in Table 3.

There was a difference in the results of the different training strategies for the matrix dataset as well. As
can be seen in Table 2, there is a significant difference between the training strategies of the thyroid, CA and
JV. post hoc Wilcoxon test showed that for the thyroid, training in 2D and 3D led to the highest DSC. For
the CA, training in 2D and 3D led to the highest DSC. For the JV, the DSC was highest for 2D and 3D and
the HD95 was best when trained in 3D. P-values of the post hoc Wilcoxon test can be found in Table 3.

DSC HD95

T CA JV T CA JV
2D 0.934 ± 0.036 0.924 ± 0.022 0.897 ± 0.112 1.206 ± 1.132 0.588 ± 0.343 1.571 ± 3.255

2.5D 0.920 ± 0.032 0.910 ± 0.043 0.844 ± 0.185 1.368 ± 1.014 1.010 ± 0.556 1.868 ± 2.190
3D 0.917 ± 0.046 0.924 ± 0.030 0.885 ± 0.148 1.397 ± 1.136 0.543 ± 0.450 1.660 ± 3.404
Sig. <0.001 <0.001 <0.001 0.587 <0.001 0.092

Table 1: Median results tracked sweep dataset measured in DSC and HD95 for the thyroid, CA and JV. The
results of the Friedman test to test for significant differences between the training strategies are included.

DSC HD95

T CA JV T CA JV
2D 0.894 ± 0.043 0.931 ± 0.041 0.881 ± 0.184 1.712 ± 0.805 0.495 ± 0.911 2.486 ± 3.003

2.5D 0.863 ± 0.074 0.919 ± 0.065 0.824 ± 0.239 1.911 ± 1.080 0.736 ± 1.286 2.301 ± 4.025
3D 0.869 ± 0.045 0.930 ± 0.031 0.856 ± 0.148 1.814 ± 0.618 0.606 ± 0.437 1.405 ± 2.099
Sig. <0.001 0.009 <0.001 0.113 0.227 <0.001

Table 2: Median results matrix dataset measured in DSC and HD95 for the thyroid, CA and JV. The results
of the Friedman test to test for significant differences between the training strategies are included.

Sweep Matrix
DSC
T

DSC
CA

DSC
JV

HD
CA

DSC
T

DSC
CA

DSC
JV

HD
JV

2D/2.5D <0.001 <0.001 <0.001 <0.001 <0,001 <0.001 <0.001 0.028
2D/3D 0.043 0.705 0.787 0.234 0.104 0.254 0.144 0.007

2.5D/3D 0.185 <0.001 0.063 <0.001 0.112 0.187 0.004 0.003

Table 3: Significance level of post hoc Wilcoxon test for all groups that showed significant differences in
Friedman test.
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(a) Tracked sweep dataset

(b) Matrix dataset

Figure 10: Boxplot containing the results of different structures in the tracked sweep and matrix dataset test
sets after cross-validations measured in DSC and HD95. Containing the mean (x) and outliers (+).

The results from the overall best performing training strategy of the tracked sweep (2D) is also compared
to the overall best performing training strategy of the matrix dataset (3D). Results of the Mann-Whitney U
test can be found in Table 4. The DSC and HD95 of the thyroid are higher in the tracked sweep dataset.

DSC HD95

T CA JV T CA JV
Sig <0.001 0.947 0.859 0.004 0.935 0.220

Table 4: Mann-Whitney U test results of comparison of tracked sweep dataset to matrix transducer dataset.
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Figure 11: A visualization of two samples from the matrix dataset (a-b) and two samples from the tracked
sweep dataset (c-d). a) Axial view: A small vessel traverses through the thyroid (1). In this sample, the 3D
model is the only model that excludes the small artery through the thyroid from the thyroid label. However,
it misses the distal boundary of the thyroid (2). b) 3D view: All models show some segmentation leakage of
the distal part of the thyroid label (4), where the boundaries have a lower contrast with surrounding tissues.
The 2.5D model misses the isthmus of the thyroid (5). The JV was not segmented entirely, but was partly
labeled as carotid, leading to removal after the postprocessing step. c) Axial view: in this tracked sweep
sample, the 2D and 2.5D vessels perform better in segmenting the vessel that traverses through the thyroid
than the 3D model (6). d) 3D view: the 3D model creates smoother results than the other models. The
isthmus is less well segmented (7). Additionally, this sample visualizes unrealistically large fluctuations in
artery and vein dimensions, which are caused by erroneous volume reconstruction of the tracked sweep.
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6.2 Volumetry

The volume error was determined with the 2D model, which obtained the best thyroid segmentation results
for the tracked sweep dataset and showed equally good results as the 3D model for the matrix dataset. The
volume of the prediction segmentation of the tracked sweep dataset had a median error of 4.45% compared
to the ground truth annotations. The error of the matrix dataset was 7.40%. Using the ellipsoid formula
on the tracked sweep dataset led to an error of 13.84% compared to the ground truth with exclusion of the
isthmus. The ellipsoid volume error was higher (p < 0.001) than the volume error of the model. The error
on the matrix dataset was larger than the error of the tracked sweep dataset (p = 0.016).

6.3 Segmentation GUI

To facilitate the use of the model in the clinic, the model was also implemented in MeVisLab with a visual-
ization tool. The interface is shown in Figure 12. The GUI contains a file browser for the 3D US scan. A
file, exported from the US system, containing the 3D US scan is needed. Once loaded, the user can press the
segment button and the segmentation is executed. Once the segmentation is finished, the segmentation is
saved as a NIfTI file to the folder of the scan and can be loaded with the segmentation file browser. The user
can visualize the segmentation as an overlay on the orthogonal planes. The user can check the segmentation
by scrolling and toggling the overlay. A viewer on the right shows the structures in 3D, which can be viewed
from all angles.

Figure 12: The interface of the segmentation pipeline.
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7 Discussion

The goal of this research was to obtain a method that performs 3D segmentation of the thyroid, CA and JV
and to present the results in MeVisLab to be used for treatment planning and navigation. Additionally, the
segmentation can be used to calculate the volume of the thyroid for diagnostic and follow-up purposes. This
study used 3D US thyroid scans made with a tracked sweep and a matrix transducer. A U-Net was applied
to segment the thyroid, CA and JV. Different training strategies were applied and the results were cross-
validated. The different training strategies had different strengths and weaknesses. The 2D model generally
produced the best DSC and HD95. In some cases, small vessels traverse through the thyroid, depending
on the orientation of the vessel, the models produce different results. The 2D model generally segmented
the isthmus better than the other models. The outliers in the segmentation results were often caused by
segmentation leakage to low contrast structures. For the JV, outliers were mostly caused by structures near
the edge of the FOV and by mistakes in labeling pixels belonging to the JV as CA. The 2D model was also
applied for volumetry of the thyroid. The best prediction was made with the model prediction on the sweep
dataset which performed better than the prediction on the matrix dataset and use of the ellipsoid formula.

Of the different training strategies, the 2.5D majority vote performed worst. This was the result of poor
segmentation results of training on the coronal planes, which was caused by the low resolution in this plane.

7.1 Comparison to other research

Previous research on thyroid segmentation has already been done. Poudel et al. [51, 19] segmented the
thyroid in 2D ultrasound images using semi-automated active contour leading to a DSC of 0.80. Wunderling
et al. [52] used semi-automated algorithms, namely level set, graph cut, and decision tree feature classifier,
to perform thyroid segmentation. The DSCs had average values of 0.713, 0.748, and 0.601 for the three
algorithms, respectively. More information on these methods can be found in Section 4.3. Following up on
his previous research on semi-automated algorithms, Poudel et al. [19] created a CNN trained on slices of 3D
thyroid scans, leading to a DSC of 0.87. Kumar et al. [20] segmented the thyroid gland, nodules and cystic
components on 2D ultrasound using a multi-prong CNN, combining 10 cross-validated models. The algorithm
achieved a mean DSC of the thyroid of 0.87 and 0.91 for transverse and longitudinal scans respectively. They
compared it to a semi-automated distance regularized level set segmentation, which after placing a seed led
to a DSC of 0.94-0.95, thus performed better than their algorithm. Recently, Krönke et al. [21] constructed a
convolutional neural network to segment the thyroid in 3D ultrasound images obtained by freehand tracked
ultrasound with electromagnetic tracking of a 2D transducer to reduce inter-observer variability of thyroid
volumetry. The model was trained on slices. The segmentation resulted in a DSC of 0.95, 0.94, and 0.83 for
training, validation, and test set respectively. Ma et al. [22] created a scale-aware attention network and a
PointRend technology-Mask R-CNN to segment the thyroid, muscles, trachea, CA, cricoid cartilage, isthmus,
esophagus, JV, and endothyroid vessel on 2D ultrasound images. They used mean average precision (mAP)
to assess the overlap in segmentations. More information about deep learning algorithms can be found in
Section 4.3.1. The results of the best performing model in terms of DSC are in the same range as previous
research on thyroid segmentation, but also provide an insight into the potential of 3D ultrasound images
acquired with a matrix transducer and the potential use of a deep learning model on 3D ultrasound scans
for RFA treatment planning and navigation. The cross-validation led to an amount of 30 samples on which
the model was tested, which shows the generalizability of the model to different samples.

Currently, needle positioning and structure visualization are based on 2D US guidance [37]. A 3D segmen-
tation allows for clear structure visualization and may result in more accurate and safe RFA. This research led
to a model that can segment the thyroid in both tracked sweep and matrix 3D ultrasound images, while also
focusing on the vessels near the thyroid. The segmentation can be used both for diagnosis and for treatment
planning.

7.2 Transducers

The different transducer types to make a 3D US scan have different advantages and disadvantages. The 2D
transducer with tracking has the advantage of a larger FOV and high resolution. However, longer scanning
times of 20-30 seconds or more can introduce motion artifacts. Also, localization errors in the tracker can
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reduce scan quality [34]. The wobbler and matrix transducer can create a full 3D volume in less than
3 seconds, reducing the risk of motion artifacts. The limited FOV of the matrix transducer only allows
capturing of approximately half the thyroid when making a transverse scan. Because of a higher prevalence
of nodules in the caudal part of the thyroid, a decision was made to make the scans with a focus on the caudal
part of the thyroid. A longitudinal scan could potentially capture the entire thyroid, but then structures left
and right of the thyroid will not be captured. Also multiple transverse scans could be made and stitched
together [53]. The wobbler transducer was also considered for this research. However, due to inferior export
quality this dataset was not included.

7.3 Limitations

This section provides an overview of limitations of this study.
For this research, healthy subjects were scanned. Diseased thyroids have a different appearance than

healthy thyroids, having larger volumes, more irregular shapes and containing large nodules. The trained
model might have poor results when applied to patients. To apply the model to patient scans, the model
would preferably be trained on a dataset containing patient scans.

The model was trained on two datasets with scans of a combined 72 participants. More datasets or
more subjects could be added or acquired to obtain better generalization. Preferably, the scans would be
made and annotated by a medical professional, which was not the case for the present study. However,
the operator did perform over 100 thyroid-lobe scans already. The thyroid protocol was selected with the
automatic optimization setting of the system selected. The current model is trained and tested on both
a sweep and matrix dataset. Using different methods of acquisition could already improve generalizability
to more different types of acquisition, for example, the mechanically steered wobbler transducer. When
applied to scans obtained with other US systems, results could still deteriorate. Other measures taken to
increase generalization are preprocessing to equal pixel spacing. Data augmentation was applied to create
more variation in thyroid size.

The time the segmentation takes is composed of the preprocessing time and the model application time.
The average sample takes 2-5 minutes to be preprocessed. For the 2D model, it takes approximately 0.3
seconds per slice to be applied, leading to 2-3 minutes per 3D volume. The 2.5D model needs to apply three
models to the sample, therefore takes about three times longer. The 3D model takes less than 10 seconds to
be applied to the entire volume.

The current despeckling method was focused on being automatic, meaning no user input is needed. This
led to the decision to choose a standard value for the speckle coefficient of variation q0. The value was
determined by selecting a homogeneous region on the thyroid for all scans in the tracked sweep dataset and
calculating the coefficient using Equation 2 for t=0. The value was constant at around 0.7, so this value was
chosen. For other US systems however, depending on the amount of speckle development these values might
vary.

US has a high inter- and intraobserver variability, because of its low contrast, artifacts and high noise
levels [21]. Therefore, creating a ground truth to train the model on is difficult. The model could improve
some of the small errors, but these errors will have a negative effect on evaluation results. To potentially find
these errors, the models were also visually evaluated on their performance.

The output file of the exported US scan is dependent on the vendor of the US system. The current GUI
is made to load NIfTi files. In the clinic, the GUI would have to be tailored to the file that is generated.

7.4 Clinical value

The model could be applied in different clinical settings. The focus of this study was to make a 3D recon-
struction that a radiologist can use for planning and navigation of RFA. The radiologist can evaluate the
created segmentation by scrolling through the slices with the segmentation as an overlay to the scan. During
the procedure, the radiologist can look back on the reconstruction to get an overview of how the thyroid and
vessels look in planes that are not visualized or when image quality deteriorates due to gas formation. A
patient dataset should be acquired to be able to include nodules as a separate structure in the segmentation.
The results could then also be used for needle based diagnosis such as fine-needle aspiration biopsies.
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7.5 Suggestions for future research

The current application of the segmentation created in this research is to make a planning pre-treatment.
In future applications, research might look into the possibility of an overlay on scans in real-time. The
current models are not fast enough to be applied in 3D in real time. Additionally, the quality of the images
deteriorates because of the gas bubbles formed. When using a matrix transducer during the ablation, the
radiologist could use orthogonal US planes to visualize the thyroid. The scan made pre-treatment could be
registered to the US scan in real-time. This does include the assumption that the shape of the structures
remains similar during the ablation. The shape of the JV is highly dependent on the amount of pressure
applied by the transducer, which would therefore have to be kept as steady as possible.

As mentioned in the introduction, multiple different models have already been applied for thyroid segmen-
tation on 2D and 3D US scans. One of the main features of U-Net is the creation of detailed segmentation
maps even with a limited amount of training samples. Also, its context based learning allows for relatively fast
training [25]. As mentioned in Section 4.3.1, different versions of the U-Net exist and could potentially create
better segmentation results. Examples of models based on the U-Net structure are attention U-Net, inception
U-Net, residual U-Net, recurrent U-Net, dense U-Net, U-Net++ and ensemble U-Net [25, 23, 44, 45].

The primary target of the ablation is the thyroid nodule. In the current study, healthy participants were
scanned, containing only a few occasional, small nodules, which were now included in the thyroid label. If
scans of patients eligible for RFA could be included in the training process, also the nodules could be added
as a separate structure for the model to be trained on. As mentioned in Section 4.1, the nerves surrounding
the thyroid increase the risk of complications during the procedure. Therefore accurately localizing these
nerves, could decrease the risk of complications. However, high variation in the location of these nerves and
low visibility make it difficult for an inexperienced person to make these annotations. A safety margin is
kept to the esophagus, to prevent esophageal injury, leaving parts of the nodule too close to the esophagus
untreated. [54] In future research, the esophagus could also be included in the model.

Furthermore, automatic needle feature localization and tracking could bring improvements to image-
guided procedures [55]. Fast and accurate visualization of the spatial relationship between the needle and
target can improve the workflow for adjusting the needle position. Furthermore, this information can be used
in feedback-controlled robotics-assisted procedures in the future. A needle tracking algorithm could also be
used for needle path analysis post-processing to improve procedure planning [55]. Pourtaherian et al. [18]
researched the use of a convolutional neural network in needle tracking during 3D US procedures, which led
to a higher precision and recall rate as compared to state-of-the-art handcrafted features.
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8 Conclusion

For the tracked sweep dataset, overall best results for the test sets were obtained when training in 2D,
resulting in a median DSC and HD95 of 0.934 and 1.206 mm for the thyroid, 0.924 and 0.588 mm for the
CA and 0.897 and 1.571 mm for the JV. For the matrix dataset, the overall best results were obtained when
training in 3D, resulting in a median DSC and HD95 of 0.869 and 1.814 mm for the thyroid, 0.930 and 0.606
mm for the CA and 0.856 and 1.405 mm for the JV. The tracked sweep dataset gave better results in thyroid
segmentation than the matrix dataset in both DSC and HD95, but no differences were found between CA
and JV results. The tracked sweep dataset outperformed matrix dataset in thyroid segmentation, but further
research is required due to limitations in the matrix transducer’s field of view.

The segmentation can give the radiologist an overview of the thyroid, CA and JV in 3D. The overlay
in orthogonal planes allow the radiologist to verify the segmentation to determine if the segmentation is
accurate enough to use for planning an RFA procedure.

The model can predict the thyroid volume with a smaller error than the ellipsoid formula used in the
clinic, with 4.45% for the sweep dataset and 7.40% for the matrix dataset compared to 13.84% with the
ellipsoid formula on the sweep dataset.

This research showed the potential of using a tracked sweep and a matrix transducer for 3D ultrasound
in segmentation of thyroid ultrasound scans for treatment planning and volumetry, and warrants further
research to improve needle-based interventions.
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A Optimization of the model

A.1 Methods

This section contains an overview of the steps taken to optimize the U-Net before applying different training
strategies.

A.1.1 General

Initially, the models are trained for 500 epochs. To avoid under or overfitting, the model’s validation loss is
assessed post-training, which may result in a modification of the epoch count. Additionally, a seed is applied
before the application of transformations to ensure reproducibility.

To evaluate increase or decrease of performance, the DSC, HD and HD95 are calculated over 12 unseen
samples. A Shapiro-Wilk test was performed to test for a normal distribution of the data. If the data
follows a normal distribution, a paired t-test is applied. If the data does not follow a normal distribution, a
Wilcoxon signed-rank test will be applied to the data. The test samples were also visually analyzed for their
improvements.

A.1.2 Loss functions

The model is trained on four different loss functions, specifically dice, dice-cross-entropy, dicefocal and tversky
loss. The optimal loss function, as determined by performance on the validation set, is selected for subsequent
testing and further model optimization. The diceloss aims to directly optimize the DSC, which is one of the
used metrics for assessing the model results, while the dicefocal loss function is noteworthy for its ability to
improve the accuracy of challenging misclassified slices, such as caudal slices. By combining Dice loss with
Cross Entropy loss, the model also considers pixel classification probabilities, with a focus on maximizing
the likelihood of accurate pixel classification. Utilizing the Tversky loss function, with an emphasis on
minimizing false negatives, has the potential to improve the model’s ability to accurately segment typically
missed portions of the image that are more difficult to classify. Post-processing techniques could be applied
to eliminate some of the oversegmentations resulting from this approach. Alternatively, utilizing the Tversky
loss function to minimize false positives could reduce the occurrence of segmentation leakage.

Loss function Parameters
Dice Include background = False, softmax = True
Dicefocal Include background = False, softmax = True
Tversky Include background = False, softmax = True, alpha = 0.3, beta = 0.7
Tversky Include background = False, softmax = True, alpha = 0.7, beta = 0.3
DiceCE Include background = False, softmax = True

Table 5: Parameters used for the different loss functions. Here alpha is the weight of false positives and beta
is the weight of the false negatives.

The loss function with the highest mean DSC and HD was used for further testing. A higher priority is
given to the thyroid, then the CA and lastly JV. A better HD is prioritized over a better DSC.

A.1.3 Transforming data

Data augmentation is a common technique used to increase the unreliability of models trained on image data.
In this study, a dataset of thyroid images is visually analyzed for intensity, size, and shape characteristics.
Relevant augmentations are then added to the dataset and their effect on generalizability to unseen data is
examined. If results improve, the augmentation is included in the final model. Data can also be preprocessed
to improve results. Data can for example be scaled and in the case of US, despeckled.

The learning process of neural networks can become slower when working with larger integer inputs from
0 to 255. To optimise the learning process, pixel values are normalized between 0 and 1.
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To introduce more data variability to the model, a positive or negative shift of 10 intensity values with
a probability of 0.25 is added to the dataset. Since there is a variation in placement of the transducer on
the neck, a slight variation in the angle can be seen in the US images.To create more samples that contain
this variation, a random rotation with a probability of 0.25 and a range of 0.10 radials is added. Further,
since the size of the thyroid, CA, and JV can vary, a random zoom with a probability of 0.25 and a factor of
0.8-1.2 is added to the dataset. Since no discrimination has to be made by the model between left and right
thyroid, a vertical flip with a probability of 0.5 is added. Finally, denoising methods are tested to improve
segmentation results. Gaussian smoothing and SRAD are tested. First, a Gaussian smoothing factor of 1.3 is
added. Denoising the image could improve segmentation results, leading to fewer holes in the segmentation.
However, it could also decrease segmentation quality of edges. To prevent the edge segmentation quality
from decreasing, SRAD is implemented. This method should only decrease speckle noise and is supposed to
be edge enhancing, because of edge protection methods and reduction of speckle noise. A description of how
this method was implemented can be found in the next section.

Transform Parameters
Scale intensity minv=0, maxv=1
Random intensity shift prob = 0.25, offsets = 10
Random rotation prob = 0.25, range z=[0.15,0.15], mode=[’bilinear’, ’nearest’]
Random zoom prob=0.25,min zoom=0.8, max zoom=1.2, mode= [’bilinear’,’nearest’]
Random flip prob=0.5, spatial axis=0
Gaussian smooth image key = ’img’, sigma = 1.3
Despeckaling see SectionA.1.3.1

Table 6: Parameters used for the different transformations.

A.1.3.1 Despeckaling algorithm This method is based on the article by Yu et al. [48] and the MAT-
LAB code by Frank Lance [49] that also converts it to a 3D process. SRAD was made to reduce speckle noise
while preserving image features. Anisotropic diffusion is a widely used technique that smooths an image but
preserves edges. The traditional anisotropic diffusion methods often cause blurring or over smoothing. The
SRAD method in the paper aims to prevent this by adaptively changing the diffusion coefficients based on
local image features.

First, the data is normalized from 0-1 and rounded to three decimals. Next, a speckle coefficient of
variation has to be determined. The original method takes as an input a small homogeneous region in the
structure, manually determined by the user, and determines the speckle scale function by using Equation 2.

q0(t) =

√︁
var[z(t)]

z(t)
(2)

To automate this process, an approximation can be used. See Equation 3.

q0(t) ≈ q0e
–ρt (3)

Where ρ is a constant that we take as 1
6 , concluded from experimental and theoretical results. q0 is the

speckle coefficient of variation in the image. This was determined to be approximately 0.7 in the thyroid
region for the SegThy sweep dataset. I will try to verify this by also determining this factor for the matrix
dataset.

Next, the instantaneous coefficient of variation serves as an edge detector. This is calculated using Equa-
tion 4.

q(x, y, z; t) =

√︄
1/2(|∇I|I)2 – 1/62(∇2I/I)

[1 + (1/6)(∇2I/I)]

2

(4)
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The diffusion coefficient inhibits smoothing near edges and can be calculated with Equation 5.

1

1 + [q2(x, y, z; t) – q20(t)]/[q
2
0(t)(1 + g20(t))]

(5)

The divergence can be calculated using Equation 6.

dni,j,k =
1

h2
[cni+1,j,k(I

n
i+1,j,k – Ini,j,k) + cni,j,k(I

n
i–1,j,k – Ini,j,k)

+cni,j+1,k(I
n
i,j+1,k – Ini,j,k) + cni,j,k(I

n
i,j–1,k – Ini,j,k)

+cni,j,k+1(I
n
i,j,k+1I

n
i,j,k) + cni,j,k(I

n
i,j,k–1 – Ini,j,k)]

(6)

With these equations combined, each iteration, the image can be updated with Equation 7

In+1
i,j,k

= Ini,j,k +
Δt

4
dni,j,k (7)

The despeckling is done for 50 iterations with a timestep Δt of 0.05.

A.1.4 Hyperparameters

The batch size is a balance between efficient use of computational resources, noisy gradient estimates and
overfitting when choosing a lower batch size. On the other hand, overgeneralization and higher computational
cost when choosing a higher batch size. The training batch size is varied from 8 to 16 to 32. An Adam
optimizer is used. Choosing a smaller learning rate can lead to the model getting stuck in local minima of
the loss function. A larger learning rate can prevent the model from reaching the absolute minimum of the
loss function. The learning rate is varied from 1e-4 to 1e-3 and also combined. To change the perceptive
field, a kernel size of 3 and 5 are compared.

Hyperparameters Variations
Batch size 8

16
32

Kernel 3x3
5x5

Learning rate 0.001
0.0001
0.001 for first 400 epochs, then 0.0001 last 100 epochs

Table 7: Values used for variations of hyperparameters.

A.1.5 Regularization

To prevent over fitting, some regularisation methods are applied. A dropout layer randomly sets a certain
percentage of neurons in a network layer to zero during training. This way the network learns what unnec-
essary learned features are and prevents the neurons in the network from relying too extensively on another
neuron.

Weight decay regularizes the model by adding a penalty term to the loss function. Because of this penalty,
the model is encouraged to use smaller weights to reduce the complexity of the model. Because of this penalty
term, the model could generalize better to unseen data.
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Batch normalization is a technique that normalizes the input data to each layer of the network. The
normalization is done by adjusting and scaling the activations to make the input data more suitable for the
subsequent layers of the network.

For regularization, a batch normalization, dropout layer, and weight decay were investigated for their
effect.

Regularization methods Value
Dropout 0.1
Weight decay 0.0001
Batch normalization

Table 8: Values used for the different regularization methods.

A.1.6 Combining datasets

After optimizing the model, the acquired xMatrix dataset was combined with the SegThy tracked sweep
dataset. Assumed is that the doubling of amount of samples will increase results. However, this is done with
the assumption that both datasets have a similar distribution and can be learned from interchangeably. To
confirm results don’t decrease when combining the models, the final model is trained on the SegThy tracked
sweep dataset, the xMatrix dataset and a combined dataset.
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A.2 Results

This section contains the results during optimizing the models, based on the methods mentioned in Section
A.1. The interpretation of the results will follow in the next section. All tables contain mean results of DSC
and HD to the thyroid (T), CA, and JV after trying out different loss functions (table 9), transformations
(table 10), hyperparameters (table 11), regularizations (table 12) and lastly combining the datasets (13) If
the change or addition led to significantly better or worse results, it is noted with a + or - respectively. Table
10 is compared to the results from the DiceCE loss functions without transformations, with a batch size of
16, kernel size of 3x3, and learning rate of 0.001.

Loss function Metric T CA JV Mean

Dice
DSC 0,814 0,881 0,721 0,805
HD 3,976 1,061 5,205 3,414

DiceFocal
DSC 0,862 0,897 0,825 0,861
HD 3,397 0,949 1,538 1,961

DiceCE
DSC 0,869 0,897 0,893 0,886
HD 3,272 0,907 1,464 1,881

Tversky FP
DSC 0,852 0,831 0,790 0,824
HD 3,628 3,064 2,869 3,187

Tversky FP
DSC 0,836 0,862 0,849 0,849
HD 3,744 1,119 1,824 2,229

Table 9: Loss functions

Transformation Metric T CA JV Mean

Scale intensity
DSC 0,910+ 0,903- 0,875 0,896
HD 2,803 0,844 1,568+ 1,738

Shift intensity
DSC 0,899+ 0,883 0,868 0,884
HD 2,804+ 0,920+ 1,685 1,803

Random rotation
DSC 0,887 0,883- 0,800- 0,856
HD 2,686 1,025- 2,209 1,973

Random flip
DSC 0,891 0,889- 0,836- 0,872
HD 2,912 1,144- 1,885 1,980

Zoom
DSC 0,918+ 0,898+ 0,871 0,896
HD 2,402 0,823+ 1,497+ 1,574

Crop
DSC 0,763- 0,483- 0,036- 0,427
HD 4,561- 7,485- 6,042- 6,029

Gaussian smooth
DSC 0,796- 0,890- 0,865- 0,850
HD 3,968- 0,974- 1,571- 2,171

Despeckle
DSC 0,918+ 0,902+ 0,811 0,877
HD 2,545 0,841+ 2,101 1,829

Table 10: Transformations
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Parameter Value Metric T CA JV Mean

Batch size

8
DSC 0,913+ 0,895 0,875 0,894
HD 2,471+ 0,918 1,610 1,667

16
DSC 0,900 0,894 0,899 0,898
HD 2,734 0,928 1,512 1,725

32
DSC 0,918+ 0,898 0,862 0,893
HD 2,280+ 0,855 1,556 1,564

Kernel
3x3

DSC 0,900 0,894 0,899 0,898
HD 2,734 0,928 1,512 1,725

5x5
DSC 0,890 0,891 0,797- 0,859
HD 2,913 0,925 2,064- 1,967

Learning rate

0.001
DSC 0,900 0,894 0,899 0,898
HD 2,734 0,928 1,512 1,725

0.0001
DSC 0,929+ 0,897 0,871 0,899
HD 2,242+ 0,800 1,530 1,524

0.001 first 450
epochs, then
decrease to 0.0001

DSC 0,926+ 0,901 0,882 0,903
HD 2,230+ 0,802 1,541 1,524

Table 11: Hyperparameters

Loss function Metric T CA JV Mean

Batch normalization
DSC 0,886 0,808- 0,863 0,852
HD 2,914 1,171- 1,712 1,932

Dropout
DSC 0,910+ 0,907+ 0,875 0,897
HD 2,458+ 0,794+ 1,518 1,590

Weight decay
DSC 0,898 0,867- 0,791 0,852
HD 2,761 1,116 2,044 1,974

Table 12: Regularizations

Training
dataset

Evaluation
dataset

Metric T CA JV Mean

Only trained on
single dataset

Sweep
DSC 0,911 0,903 0,873 0,895
HD 2,457 0,819 1,519 1,598

Matrix
DSC 0,805 0,872 0,856 0,844
HD 4,304 0,807 1,723 2,278

Trained on both
sweep and matrix
dataset

Sweep
DSC 0,912 0,904 0,879+ 0,898
HD 2,380 0,818 1,472 1,557

Matrix
DSC 0,832+ 0,874 0,871 0,859
HD 3,897+ 0,745 1,594 2,079

Table 13: Combining datasets

A.3 Interpretation of results

Based on having the highest DSC and HD for all structures, all further testing is done with the DiceCE loss
function.

Scale intensity led to a significant improvement in the DSC of the thyroid and HD of the JV, but a
significant decrease in DSC of the CA. Because of the priority in improving thyroid segmentation, scale
intensity was included in the final model.

Random intensity shift improved the DSC of the thyroid significantly and the HD of the thyroid , and
CA. However, looking at the results, primarily small non-connected false positives were resolved, but there
was an increase in significant parts of the thyroid that were not segmented. Evaluating the effect of this
transformation on post-processed labels only led to a significant decrease in DSC of the JV. Therefore, this
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augmentation was not included in the final model. Random rotation significantly decreased the DSC of CA,
and JV and the HD of the CA. Therefore, this augmentation was not included in the final model.

A vertical flip led to a decrease in DSC of the CA, but an improvement in the HD of the thyroid. Visually
the results looked worse, since the thyroid edges were often under-segmented. Therefore, this augmentation
was not included in the final model.

A random zoom led to a significant improvement in DSC of the thyroid and CA and an improved HD of
the CA, and JV. Therefore, this augmentation was included in the final model.

Gaussian smooth led to a significant decrease in performance for all DSC and all HD. Therefore, this
augmentation was not included in the final model.

Despeckling led to a significant improvement in the DSC of the thyroid and CA and the HD of the CA.
Visual evaluation showed that the despeckled model resulted in a smoother appearance of the segmentation.
However, in some slices the despeckled model also entirely missed the JV, in contrast to the same model
trained on the original images, where often still a small part of the JV was found, but the result became very
pixelated. The despeckling method was included in the final model.

Training in a batch size of 8 and 32 both led to significantly better results than training in batches of 16.
Because of a reduced computational cost, the batch size of 8 was included in the final model. The kernel size
of 3x3 performed significantly better than the 5x5 kernel. Therefore a 3x3 kernel was chosen for the final
model.

Both the learning rate of 0.0001 and the learning rate of 0.001 for the first 450 epochs and 0.0001 for
the last 50 epochs led to better results than only using a learning rate of 0.001. In post-processed results,
both improved the same scores, but in non-post-processed results, the decreasing learning rate removed more
outliers than the the learning rate of 0.0001.

37



B Held-out test set

Metric T CA JV

2D
DSC 0.94 ± 0.01 0.94 ± 0.02 0.90 ± 0.03
HD95 0.89 ± 0.64 0.50 ± 0.27 1.41 ± 0.62

2.5D
DSC 0.92 ± 0.01 0.91 ± 0.02 0.87 ± 0.05
HD95 1.70 ± 0.74 0.84 ± 0.78 1.52 ± 0.43

3D
DSC 0.92 ± 0.01 0.92 ± 0.02 0.90 ± 0.04
HD95 1.16 ± 0.50 0.62 ± 0.17 1.60 ± 1.78

Table 14: Results on held-out test set of sweep dataset

Metric T CA JV

2D
DSC 0.86 ± 0.07 0.85 ± 0.04 0.77 ± 0.15
HD95 3.02 ± 1.43 3.53 ± 1.16 2.49 ± 1.98

2.5D
DSC 0.83 ± 0.08 0.854 ± 0.04 0.70 ± 0.21
HD95 3.03 ± 3.12 2.34 ± 1.05 2.39 ± 1.04

3D
DSC 0.82 ± 0.07 0.83 ± 0.08 0.70 ± 0.50
HD95 3.15 ± 1.29 2.30 ± 1.24 3.57 ± 5.49

Table 15: Results on held-out test set of matrix dataset
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