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Abstract

Up to half a million people worldwide suffer a spinal cord injury every year, often resulting
in paraplegia. Exoskeleton robots can aid in rehabilitation and improve mobility and quality of
life for these patients. Because current prototypes force the user to rely on crutches for stability,
balance control is one of their main challenges. In this work, a controller for corrective stepping
for a bipedal exoskeleton robot is designed and tested in simulations using a Linear inverted
Pendulum (LiP) model. The controller uses the Instantaneous Capture point and Capture
Areas associated with the LiP model to control the position of the feet and Zero Moment Point
location within the Polygon of Support to stabilize the robot after a disturbance (e.g. a push).
This controller proved to effectively stabilize pushes of up to 90 N in different directions for a
duration of 0.25 s in simulations.

Keywords: Bipedal exoskeleton robot, balance control, corrective stepping, Linear inverted
Pendulum (LiP), capturability
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Chapter 1

Introduction

According to the World Health Organization (WHO), up to half a million people suffer
a spinal cord injury (SCI) every year [1]. Most SCIs are caused by traffic accidents, falls,
or violence. One major consequence of SCI is (partial) paraplegia, which means the patient
(partially) loses control over the lower extremities. These patients often permanently end up in
a wheelchair [2].

Acute care is important in SCIs. However, secondary complications also pose a significant
threat, so careful aftercare and rehabilitation are required. Rehabilitation is also often necessary
to reintroduce patients back into society and make them less dependent on caregivers. This can
both improve the quality of life of the patients and reduce the costs of the disease, for example
by reducing the lost earnings which is the main contributor to the costs [1].

Current rehabilitation methods rely on wheelchair usage and physical therapy [3]. However,
this greatly reduces the mobility and independence of patients. New treatments in development
are diverse, from neurological implants and prosthetics to exoskeleton robots [4]. These new
treatments have the opportunity to improve the healing process and better assist paraplegics
in daily life.

1.1 Exoskeleton Robots

Fig. 1.1: The Symbitron Ex-
oskeleton Robot. From [5].

Exoskeleton robots are robotic devices that can be worn over
all or part of the human body (see Fig. 1.1). They can either be
actuated or passive, and can provide support and assist in human
locomotion. Exoskeletons therefore have the potential to improve
the mobility and quality of life of SCI patients, assist in rehabil-
itation, and reduce the risk of secondary health complications,
and results so far are promising [6, 7].

Still, there are some important challenges to overcome before
exoskeletons for paraplegics can be deployed on a large scale [8].
One of those challenges is the balance control of these robotic
devices. Many current prototypes, like the Symbitron Exoskele-
ton [5], have achieved gait support, but force the user to rely
on crutches for balancing. However, this limits the mobility im-
provement the exoskeleton is supposed to provide. So, the ex-
oskeleton should be able to balance on its own.
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1.2. CONTRIBUTION OF THIS WORK CHAPTER 1. INTRODUCTION

1.2 Contribution of this Work

In recent work by A. Vallinas et al. [9], a momentum-based balance controller for the Sym-
bitron robot during stance was developed. With this controller, the robot can withstand pushes
of up to 30 N in forward and sideways directions. However, for higher disturbances or backward
pushes, a recovery step is necessary, which the exoskeleton robot is currently not able to make.
In this work, a controller for corrective stepping for a bipedal exoskeleton robot (like Symbitron)
will be developed and discussed.

A Linear inverted Pendulum (LiP) model will be used to simulate a bipedal exoskeleton
robot. With this model, a finite state machine controller will be developed and tested. The goal
of the controller is to detect disturbances in the balance of the exoskeleton and take corrective
steps based on these disturbances to stabilize the robot. Additionally, the controller must take
limitations of the robot into account, like maximum step length and minimum step time, and
it should avoid self-collision.

1.3 Outline of the Thesis

First, some background information regarding the Symbitron exoskeleton robot, balance,
and the LiP model will be discussed. Next, the model used will be explained, as well as
the designed controller and validation methods. After presenting the validation results, the
controller and its behavior will be discussed, and possibilities for future work will be given.
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Chapter 2

Background

In this chapter, first, some background information on the Symbitron exoskeleton will be
given. Then, balance in bipedal robots will be discussed, before the LiP model and its features
will be explained.

2.1 Symbitron

Fig. 2.1: A rendered CAD model of the
Symbitron Exoskeleton Robot. From [5].

The Symbitron exoskeleton (Fig. 2.1 is a lower-limb
exoskeleton (LLE) that can assist the user in standing
and walking [5]. Its modular design allows it to be used
in different configurations, from just ankle support to
complete hip-knee-ankle support, which is the config-
uration of interest for this research. Furthermore, the
exoskeleton was designed to be able to resize, so it can
be tailored to its pilot.

The exoskeleton weighs around 41 kg and is under-
actuated with a total of 16 degrees of freedom (6 for
the floating base, and 5 per leg). In both legs 4 of
the 5 joints are actuated; hip ab-/adduction (HAA),
hip flexion/extension (HFE), knee flexion/extension
(KFE), and ankle plantar-/dorsi-flexion (ADP). Ankle
in-/eversion (AIE) is also possible, but not actuated.
Lateral or medial rotation of the hip is not possible,
hip in-/eversion is possible but not actuated and will
be disregarded in this research.

The exoskeleton joints are force-controlled through
Series Elastic Actuators (SEAs). This facilitates com-
pliant joints, which makes the LLE safer to use with
a human pilot. Furthermore, it allows patients with
partial SCIs to influence the exoskeleton, providing a
more natural cooperation between the pilot and the ma-
chine. This also emphasizes the supporting function of
the LLE and can aid in rehabilitation.
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2.2. STABILITY OF BIPEDAL SYSTEMS CHAPTER 2. BACKGROUND

2.2 Stability of Bipedal Systems

In general, when talking about a stable controller, it means that for bounded input the
output will also be bounded: BIBO stability. For the stability control of a bipedal robot,
the input will be (bounded) disturbances to the stability of the system (like a push), and the
output will either be that the exoskeleton stays upright (stable) or falls over (unstable). So, the
controller can only be stable for a subset of disturbances (inputs), and other inputs like large
disturbances that are physically impossible to withstand will lead to instability.

To avoid confusion and focus on the stability of the actual exoskeleton, two different terms
for the stability of a bipedal robot are used in this work. The system is stable if it can stay
standing upright without stepping, and it is capturable if it can become stable with a finite
number of steps. In the following section, these definitions will be further specified.

2.3 The Linear inverted Pendulum as a Bipedal Robot Model

Bipedal (exoskeleton) robots are inherently unstable systems, which are difficult to control
due to their high-order and non-linear dynamics. Furthermore, they are hybrid systems, be-
cause the dynamics change between single- and double-support phases. So, for the design of a
controller for corrective stepping for a bipedal exoskeleton robot, a (greatly) simplified model
is used: the Linear inverted Pendulum (LiP) model.

2.3.1 The Model

Fig. 2.2: A 3D-LiP model with a finite-sized
foot. The foot, or PoS, is the rectangle around
the base of the pendulum, the ZMP. The CoM
pivots around the ZMP because of the gravity
force g, but stays at the same height h through
the force f exerted on the CoM by the telescop-
ing leg. The point PrCoM is the location of the
CoM projected onto the xy-plane. Forward is in
the positive x-direction.

In the LiP model, first used for bipedal robot
control in 1991 by S. Kajita and K. Tani [10],
all mass is concentrated in the Center of Mass
(CoM), rCoM, attached to a telescoping massless
leg which pivots around the Center of Pressure
(CoP), rZMP. The rectangular area around the
CoP represents the Polygon of Support (PoS), so
the area underneath the (imaginary) feet of the
robot wherein the CoP is physically able to be.
The leg telescopes in such a way that the CoM
always stays at the same height, h. The force it
exerts on the CoM to accomplish this is repre-
sented by vector f . See Fig. 2.2 for a schematic
overview of the model.

The resultant force from the pressure between
the feet of the robot and the ground has an equiv-
alent Ground Reaction Force (GRF) that acts at
the CoP, i.e. the point the LiP pivots around. If
the GRF is inside the PoS, the CoP coincides with
the Zero Moment Point (ZMP) [11]. The ZMP
is the point where the CoP would need to be to
ensure no rotational acceleration of the structure
around any of the edges of the support. When-
ever the ZMP moves outside the finite-sized foot,
the GRF and thus CoP will lie on the edge of
the foot, resulting in rotation of the robot around

4



2.3. LINEAR INVERTED PENDULUM CHAPTER 2. BACKGROUND

that foot edge. Because of these features, the ZMP has been used by many researchers for the
control of bipedal robots [11]. It can be used for gait generation but also for balancing, and as
such it will be the input of the LiP model which will be controlled.

Using the LiP model, the hybrid, high-order, and non-linear dynamics of a bipedal robot are
simplified to general, low-order, and linear dynamics. The equations of motion for this system
are

mr̈CoM(t) = f(t) +mg, (2.1)

where m is the mass at the top of the pendulum, rCoM =
(
xCoM yCoM zCoM

)T
is the

position of the CoM, f =
(
fx fy fz

)T
is the force acting on the CoM created by the telescoping

leg, and g =
(
0 0 −g

)T
is the gravitational acceleration vector.

Using the location of the pivot point rZMP =
(
xZMP yZMP zZMP

)T
and the fact that

the telescoping force cancels out the vertical motion/acceleration of the CoM, the equations of
motion can be rewritten as

r̈CoM(t) =
g

h
(PrCoM(t)− rZMP(t)) , (2.2)

where P =

1 0 0

0 1 0

0 0 0

 projects rCoM onto the xy-plane [12].

This results in a linear model. The equations are decoupled, so a 3D LiP model can be
interpreted as a combination of two 2D LiP models, which further simplifies subsequent calcu-
lations.

2.3.2 Instantaneous Capture Point

Fig. 2.3: An illustration of the Instanta-
neous Capture point (IC). If the ZMP is
placed behind the IC, the pendulum will
fall backward, so to where it came from
(left figure). If it is placed in front of the
ZMP, the CoM will fall past the ZMP, so
forward (right figure). Adapted from [13].

One of the possibilities that this LiP model brings, is
the ability to calculate the location of the Instantaneous
Capture Point (IC or ICP), rIC. This is the point where
the ZMP should be for the LiP to stay balanced, as can
be seen in Fig. 2.3. So, balance can now be defined as
∥PrCoM(t)−rZMP(t)∥ → 0 as t → ∞, so the CoM stays
above the pivot point/foot as time progresses.

By noting that Eq. (2.2) represents a mass-spring
system, orbital energy equations can be derived, that
can tell something about the rotation/pivoting of the
system [14]. If this orbital energy is negative, the CoM
will start falling backward before getting straight above
the ZMP, and if it is positive the pendulum will topple
over, as in Fig. 2.3 (left and right respectively). If the
orbital energy is zero, the LiP model will come to a
stop with the CoM above the ZMP and thus will be
balanced. Using this, the IC point can be found [10, 12]. This results in the following equation:

rIC(t) = PrCoM(t) +

√
h

g
ṙCoM(t), (2.3)

where rIC =
(
xIC yIC zIC

)T
is the location of the IC. This point, which considers both the

location and speed of the CoM relative to the ZMP, was also introduced as the extrapolated
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2.3. LINEAR INVERTED PENDULUM CHAPTER 2. BACKGROUND

Centre of Mass (exCoM or XcoM) by Hof et al. [15] in their studies into dynamic stability.
Since the dynamics of the IC and CoM are stably coupled [16], it can be used to determine
stability for a LiP model with a finite-sized foot, which represents the PoS of a real exoskeleton.
Stability is now defined as rIC ∈ PoS. So, if the IC leaves the PoS, balance is lost and a step
(so a change of the PoS) is necessary to regain balance.

Because of the linear dynamics of the LiP model and thus of the IC, it is also possible to
calculate [12] the location of the IC after step time ts:

rIC(ts) = (rIC(0)− rZMP(0)) e
√

g
h
ts + rZMP(0) (2.4)

This is the location where the ZMP should be after a step that takes ts time for the system to
come to a stop, given that the ZMP does not move during the step and there are no further
disturbances. It can be used to plan recovery steps, check capturability, and calculate capture
areas.

2.3.3 Capturability and Capture Areas

Fig. 2.4: A conceptual representation of
N-step capturability areas for a human
that is standing (a) and running (b).
Adapted from [12].

When the robot is falling, it is important to be
able to determine if the system is capturable, or if it
should enter a certain safety state to lower the risk of in-
juries/damages when a fall is unavoidable. If the robot
is able to make a step that brings the IC inside the
PoS, the system is considered 1-step capturable. The
area around the IC(ts) where the robot can step for this
to happen is considered the 0-step capturability area,
because after stepping there no more steps are required
to stabilize the exoskeleton.

Similar to the 0-step capturability area, higher N-
step capturability areas can also be determined. So, if
the exoskeleton robot is not able to step into the 0-step capturability area, it can be checked if
the system is capturable in more than one step. See Fig. 2.4 for a representation of these N-step
capturability areas for a standing and running human. For the running human, the IC(ts) lies
in front of the human and so do the capturability areas.

N-step capturability areas [12] are calculated using the following equation:

dN = (dN−1 + lmax − fl) e
−
√

g
h
ts + fl, N ≥ 1 (2.5)

where lmax is the maximum step length and fl is the average distance from the center of the
foot to the edge of the PoS. The variable dN is the radius of the circle around rIC(ts) wherein
the ZMP should lie for the system to be N-step capturable.

As stated before, a corrective step is needed to regain stability if the IC moves outside the
PoS. As a consequence, d0 is (roughly) equal to the average distance between the center of the
foot and the edge of the PoS, fl. So, the parameters where dN depends on are constant, which
means the capturability areas are constant as well.

The series equation for dN also allows the calculation of d∞ [12]:

d∞ = lmax
e−

√
g
h
ts

1− e−
√

g
h
ts

+ fl (2.6)

So, if the model/robot is not able to step within the d∞ area (i.e. the distance from both feet
to rIC(ts) is larger than lmax + d∞), the system is not capturable and a safe falling strategy
should be adopted. The latter is outside of the scope of this work.
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Chapter 3

Methods

For the design of a controller for corrective stepping in a bipedal exoskeleton robot, a 3D-LiP
model was used. First, this model is discussed, before the controller itself is explained. Finally,
the implementation and controller validation methods are stated.

3.1 The Model

A 3D-LiP model as discussed in Chapter 2, Sec. 2.3 was used to simulate a bipedal ex-
oskeleton. In this model, the location of the base of the pendulum, thus the ZMP, is the input,
and the location and velocity of the CoM are the output. In addition, two virtual massless feet
connected to the CoM with massless legs were added, so the model more closely resembles an
actual bipedal robot and individual foot placement can be taken into account.

Table 3.1: Model parameters

Parameter Value Description

m 41 kg Mass at top of pendulum

h 1 m Height of pendulum

g 9.81 m s-2 Gravitation constant

w 0.2 m Hip/stance width

lmax 0.4 m Maximum step length

ts 0.5 s Step time

tws 0.12 s Weight shifting time before step

tcd 0.05 s Cooldown time after step

fw 0.04 m Foot width from center of foot

fh 0.08 m Foot height from center of foot

Table 3.1 shows the parameters that are used for this model. The hip/stance width is
the distance between the centers of the feet during stance. The maximum step length is the
maximum distance a foot can step, measured from the other foot. Apart from the stepping
time ts, two other time constants are used: weight shifting time before a step tws, which helps
counteract falling sideways when stepping forward (will be explained in more detail in Sec. 3.2),
and cooldown time after a step tcd, which allows for the shifting of weight (and thus movement
of the ZMP) to the other foot after a step. The foot width and height fw and fh are not
necessarily the actual dimensions of the robot’s feet, but rather the area within the feet where

7



3.2. THE CONTROLLER CHAPTER 3. METHODS

the ZMP can lie. When both feet are on the ground, the ZMP is able to lie within the convex
hull of the feet.

Using these parameters, the capturability areas were calculated. The distance fl was ap-
proximated by averaging the foot width and height. Furthermore, ts in Eq. (2.5) and (2.6) was
substituted with ts+tcd, to account for the added cooldown time to the step time. The following
radii (in m) were obtained: [d0 = 0.0600, d1 = 0.1314, d2 = 0.1442, d3 = 0.1465, ..., d∞ = 0.1470].
After d2 the difference in radius becomes insignificant because the robot will not be able to step
that precisely. Therefore, 3-step capturability areas, and higher, will be disregarded.

3.2 The Controller

To be able to effectively stabilize and/or capture the system, the controller is required to be
able to adapt its behavior to suit the current situation. To this end, a finite state machine was
designed and implemented for the control of the model. It was designed to take the location
and velocity of the CoM and the location of the left and right foot of the robot as inputs, and
calculate the desired position of the ZMP and left and right foot as outputs. Furthermore,
it was designed to prevent collision between the two legs, weight shifting was added, and a
capturability check was implemented.

3.2.1 The State Machine

Fig. 3.1 shows a diagram of the state machine that was designed. The controller starts on
simulation start and enters the Standing state. In this state, it continuously updates the IC,
ZMP, and IC(ts) based on the position and velocity of the CoM. Whenever a disturbance (like
a push) is administered to the CoM, the controller first tries to correct for it by moving the
ZMP accordingly, so by shifting the weight of the robot. However, when the IC no longer lies
within the PoS and the exoskeleton thus lost its balance, this tactic is no longer sufficient and
the controller switches to the Falling state.

In the Falling state, the IC, ZMP, and IC(ts) are again updated. Then, the capturability
of the system is checked. If the distance between both feet and rIC(ts) is larger than the
maximum step length lmax plus the 2-step capturability area radius d2, the system is considered
uncapturable and the controller stops. When the system is capturable, a decision with which
leg to step is made. If the exoskeleton currently has its legs crossed, it will step with the left
leg if the IC(ts) lies to the left of the robot and vice versa. Otherwise, it will check if one of the
feet is supporting more than 80% of the weight of the robot and, if so, choose to step with the
other foot. Finally, if that is also not the case, the controller checks which foot is closer to the
IC(ts) and if it is within stepping range. If so, it will choose that foot to step with, otherwise,
the other foot will be able to step closer to the IC(ts) and thus will be chosen.

If the robot was not standing with its legs crossed and did not have more than 80% of its
weight on one foot, the state machine first enters a Weight Shifting state before the actual
stepping state. In this state, the ZMP is first moved to the foot that will perform the step. This
weight shifting is done to counteract the sideways falling of the robot during the step, caused
by the movement of the ZMP from between the feet to the foot that is not stepping. After
tws seconds have passed, the ZMP moves to the other foot and the controller switches to the
corresponding Stepping state.

8



3.2. THE CONTROLLER CHAPTER 3. METHODS

Fig. 3.1: Overview of the controller, containing a flow diagram of the finite state machine and algorithms
used.

9
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In the Stepping state, first, the IC, ZMP, and IC(ts) are updated. Then, the step target is
determined. A vector from the non-stepping foot towards the rIC(ts) is formed, and extended
by d0. This extension helps increase the robustness of the controller by increasing the stability
margin. The stability margin is defined as the distance from the ZMP to the edge of the PoS,
as this is a measurement of the amount of movement of the ZMP that is allowed to keep the
system stable. If this vector is greater than lmax, it is scaled down to take the maximum step
length into account. Finally, the controller checks if the step target causes no collision between
the feet, and, if stepping with the right foot, the location is not to the left of the left foot and
vice versa. This helps prevent internal collisions and facilitates a more natural way of crossed
legs stepping to the right or left. Using the now-found step target, a stepping trajectory is
determined. Then, during ts seconds, the IC is updated and the foot is made to follow the
trajectory, before ending at the step target.

The controller now switches to the Stepping Cooldown state. Here, the IC, ZMP, and
IC(ts) are updated for a duration of tcd seconds. This allows for the movement of the ZMP and
thus weight shifting from the foot that did not step to the new ideal ZMP location in the new
PoS. The controller now switches back to the Standing state, where it will check if the robot
regained stability or if it is still falling and another step is required.

3.2.2 Desired ZMP Location and Stepping Trajectory

Whenever the ZMP is updated, the controller first checks if the IC lies within the PoS. If it
does, the ZMP is set to this location. When the IC lies outside the PoS, however, it searches
for the closest point within the PoS to the IC. It does this by first finding the edges of the PoS,
which is a rectangle when only one foot is on the ground, and a convex hull with 6 corners if
both feet are on the ground. It then loops through the edges and finds the closest point to
the IC on each edge. Finally, from the points found, the one closest to the IC is chosen. See
Appendix A.1 for a more detailed explanation.

For the stepping trajectory, three 6th-order polynomials are used (one for every dimension),
which start at the current foot position with a velocity and acceleration of zero, and end at the
step target, also with zero velocity and acceleration. Halfway through the step, the polynomials
are designed to pass through a point halfway in between the starting and ending point, but with
a greater z-value to create an arc. The height of the arc is determined by the stepping length,
with a minimum of 5 cm and a maximum of 30 cm. See Appendix A.2 for a more detailed
explanation.

3.3 Implementation

The 3D LiP model was implemented in Simulink (Version 10.5) in combination with MAT-
LAB (R2022a). The controller was implemented as a Matlab Function within Simulink. For
the simulation, a discrete fixed-step solver was used, with a sample time of 0.001 s, so 1000 Hz.
A simulation time of 5 s was chosen, and it was checked if this time was sufficient by looking
at the simulations with the most steps and if in these simulations the CoM came to a stop.

3.4 Controller Validation

A disturbance in the CoM’s acceleration, Fd =
(
Fd,x Fd,y 0

)T
, was added to simulate a

push. This disturbance was set to start 0.1 s after the start of the simulation and end 0.25 s
later at t = 0.35 s. The direction of the push was varied within the xy-plane, and the magnitude

10



3.4. CONTROLLER VALIDATION CHAPTER 3. METHODS

of the push was varied from 0 to 100 N to test the controller. The resulting movements of the
CoM, ZMP, IC, IC(ts), and feet were recorded, plotted, and analyzed.

In particular, first pushes in forward, diagonal and sideways directions that result in a
single correction step are analyzed. Plots of the situation at the beginning of the step, halfway
through and just after the step are created, to show the step trajectory and robot movement.
Furthermore, top-view trace plots are created, which show the movement of the CoM, IC, and
ZMP, and the foot positions.

A stronger push in forwards and sideways directions which the controller is still able to
stabilize is also plotted and analyzed in the same way. Here, the behavior of the controller
during multiple steps is more closely studied.

Finally, the controller is tested for pushes with Fd,x ∈ [−80, 80] N (steps of 20 N) and
Fd,y ∈ [−100, 100] N (also steps of 20 N). A contour plot is created, showing the number of
steps required to regain stability. If the system is not capturable, nothing is plotted. This will
help determine the limits of the controller. Any special cases will be noted and analyzed further.
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Chapter 4

Results

The results from the controller validation will be presented in this chapter. The reaction of
the controller to different disturbances will be shown, and particularities will be highlighted.

4.1 Pushes in Forward, Diagonal, and Sideways Directions

In Figs. 4.1–4.3 the results of the simulations for respectively forward, diagonal, and sideways
1-step capturable pushes are shown. The situation at the beginning of the step, halfway through,
and after the step is depicted. Note that the IC(ts) is not updated during the step, but is updated
afterward, so its location and thus the location of the capturability areas in the third subplot
can differ from the first two in each figure.

Due to the forward push, Fd =
(
60 0 0

)T
N, a step is made with the right foot (Fig. 4.1).

The IC, IC(ts), and capturability areas lie slightly to the right of the robot. It is also visible
that the step target is past the IC(ts), not by d0 but on the maximum step distance from the
left foot. After the step, the ZMP is moved from the left foot to the IC that lies in the right
foot.

Fig. 4.1: Simulation of model and controller response after a forwards push of Fd =
(
60 0 0

)T
N. The

LiP model can be seen as the dash-dotted black line which connects the ZMP on the ground to the CoM
(black circle). The blue and red rectangles represent the left and right foot respectively, and are connected
to the CoM with the correspondingly colored line. The dashed red circle around the left foot shows the
maximum stepping distance for the right foot, and vice versa for the dashed blue circle. The green dot
shows the IC and the blue dot is the IC(ts). Around the IC(ts) the 0, 1, and 2-step capturability areas are
shown, from light to dark gray. The yellow cross shows the step target. In the top left, the administered
push and timestamp are shown.

Due to the diagonal push, Fd =
(
45 45 0

)T
N, again a step is made with the right foot

(Fig. 4.2). It is visible that the step target lies a bit more than d0 past the IC(ts), and that

12



4.1. PUSHES IN DIFFERENT DIRECTIONS CHAPTER 4. RESULTS

the feet do not collide after the step, although they are very close together. The ZMP moves
outside the PoS of the individual feet but stays inside the overall PoS (the convex hull of both
feet).

Fig. 4.2: Simulation of model and controller response after a diagonal push of Fd =
(
45 45 0

)T
N.

The LiP model can be seen as the dash-dotted black line which connects the ZMP on the ground to the
CoM (black circle). The blue and red rectangles represent the left and right foot respectively, and are
connected to the CoM with the correspondingly colored line. The dashed red circle around the left foot
shows the maximum stepping distance for the right foot, and vice versa for the dashed blue circle. The
green dot shows the IC and the blue dot is the IC(ts). Around the IC(ts) the 0, 1, and 2-step capturability
areas are shown, from light to dark gray. The yellow cross shows the step target. In the top left, the
administered push and timestamp are shown.

Due to the sideways push, Fd =
(
0 75 0

)T
N, a step is made with the right foot again

(Fig. 4.3). It can be seen that the right foot is not placed to the direct left of the left foot, but
rather in front and to the left. The IC lies inside the PoS after the step, and the ZMP is moved
there. The simulation ends with the exoskeleton in a stance with its legs crossed.

Fig. 4.3: Simulation of model and controller response after a sideways push of Fd =
(
0 75 0

)T
N. The

LiP model can be seen as the dash-dotted black line which connects the ZMP on the ground to the CoM
(black circle). The blue and red rectangles represent the left and right foot respectively, and are connected
to the CoM with the correspondingly colored line. The dashed red circle around the left foot shows the
maximum stepping distance for the right foot, and vice versa for the dashed blue circle. The green dot
shows the IC and the blue dot is the IC(ts). Around the IC(ts) the 0, 1, and 2-step capturability areas are
shown, from light to dark gray. The yellow cross shows the step target. In the top left, the administered
push and timestamp are shown.

In Fig. 4.4 top-down view trace plots of the model after the three different pushes can be seen.
The blue and red rectangles again represent the left and right foot respectively. Additionally,
the movement of the CoM, IC, and ZMP are shown. What stands out is that in the graph
of the forward push the CoM and IC not only move forward (in positive x-direction) but also
sideways. They first move a bit to the left (positive y), and then more towards the right

13



4.2. STABILIZING WITH MORE STEPS CHAPTER 4. RESULTS

(negative y) before ending inside the PoS of the right foot. It can also be seen that, although
the push was completely in the forward direction, the robot did not purely step forward with
its right foot but also a bit to the right.

In the trace plot of the diagonal push simulation (middle figure), it can also again be seen
that the controller prevented a collision between the feet. In the trace plot of the sideways push
(right figure), it is also again visible that the right foot did not step to the direct left of the left
foot, but rather to the left and in front of the left foot.

Fig. 4.4: Top view trace plots of the model after respectively forwards (left figure), diagonal (middle
figure), and sideways (right figure) pushes. The blue and red rectangles show the stepping locations of
the left and right foot respectively, including their starting position.

Only pushes in positive x- and y-directions are shown here. Pushes in other directions were
also tested and showed similar results, and are therefore omitted.

4.2 Stabilizing with More Steps

Apart from the before mentioned 1-step capturable pushes in forward, diagonal, and sideways
directions, pushes that required multiple steps to stabilize were also tested. In Fig. 4.5 the top
view trace plots of two simulations can be seen, one with a stronger push in the forward direction

Fd =
(
80 0 0

)T
N and one in sideways direction Fd =

(
0 85 0

)T
N.

Fig. 4.5: Top view trace plots of the model after forward and sideways pushes that require multiple steps
to capture. The blue and red rectangles show the stepping locations of the left and right foot respectively,
including their starting position.

It can be seen that both pushes required three steps to stabilize. For the forwards push, it
stands out that the first step with the right leg is a bit to the left, while the robot is falling a
bit to the right. The weight shifting before this first step is also visible, the ZMP first moves to
the right foot before going to the left foot to allow the stepping with the right foot. After the
first step, the exoskeleton steps diagonally to the front right with the left foot, causing the legs
to be crossed. Finally, a last step is made with the right foot, stabilizing the robot.
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4.3. CAPTURABILITY OVERVIEW CHAPTER 4. RESULTS

What is noticeable for the sideways push is that the first step with the right foot is to the
front and left of the left foot, instead of directly left. After this first step, the robot starts also
falling backward, so the following steps are diagonal to the left and back. The robot regains
stability in a crossed-leg stance because the right foot is to the left of the left foot.

4.3 Capturability Overview

Fig. 4.6: A filled contour plot on the number
of steps needed by the system to come to a
stop after a push. A representation of the
robot is added in the middle for orientation
clarification. The robot faces to the right of
the graph (positive Fd,x direction).

Fig. 4.7: Top view trace plot of simulation
with five recovery steps. The blue and red
rectangles show the stepping locations of the
left and right foot respectively, including their
starting position.

To test the limits and performance of the con-
troller pushes of different magnitudes and directions
were administered to the model (n = 399). Fig. 4.6
shows a filled contour plot on how many steps the
robot needed to come to a stop if this was possible.

The light gray area in the middle contains all
pushes that did not require a step, so these pushes
were not strong enough to destabilize the robot.
Then, in a bit darker gray the 1-step capturable
pushes are visible, followed by the 2-step capturable
pushes in even darker gray. Although there were
pushes that required more steps to capture, there
are too few to be visible in the contour plot.

What stands out is the relative sizes of the dif-
ferent N-step capturability areas. A large number of
pushes (135) were 0-step capturable, while only 26
pushes were 1-step capturable, 38 pushes were 2-step
capturable, and 12 steps were 3-step capturable. So,
two capturing steps were also more often required
than just one step. Remarkably, there were also two
pushes which required five steps to stabilize. The
other 186 pushes were not capturable.

To further analyze the 5-step capturable push

case Fd =
(
50 −90 0

)T
N, a top view trace plot

was created which can be seen in Fig. 4.7. It can
be seen that the robot first crosses its legs by step-
ping to the front right of the right foot with its left
foot. Afterward, it makes a large step (maximum
step length) to the right with its right foot. It then
cross-steps again, causing the exoskeleton to start
falling backward. The next step is with the right
foot, backward and to the right, and lastly, the left
foot is used to step further back and stabilize the sys-
tem. The other 5-step capture case is for the same
disturbance but in negative Fd,x-direction, and looks
very similar (but mirrored) to this case.
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Chapter 5

Discussion

The goal of this research was to develop a controller for corrective stepping for a bipedal
exoskeleton robot. Using a 3D LiP model and the associated IC, IC(ts), and capturability
areas, a finite state machine was designed that controls the location of the ZMP and feet of
the exoskeleton. This controller proved to effectively stabilize pushes of up to 90 N in different
directions for a duration of 0.25 s in simulations.

5.1 Performance

As can be seen in Chapter 4, the controller effectively performs capturing steps. The con-
troller detects when there is a disturbance in the balance of the robot by calculating the location
of the IC and checking if it lies inside the PoS. Whenever the IC moves outside the PoS, the
controller plans a corrective step, taking the additional constraints into account. It limits the
step distance to the maximum step length and sets the duration of the step to the minimal step
time. It avoids self-collision by updating the step target so the feet do not overlap after the
step, and by assuring the left foot is never placed directly to the right of the right foot and vice
versa. The controller then effectively performs the corrective step.

Additionally, the controller’s choice of foot to step with is based on the current stance and
weight distribution. This helps generate more effective and natural capture steps. Furthermore,
when the robot’s legs are not crossed and no more than 80% of the total weight is on one foot,
a weight-shifting trajectory of the ZMP is traced, as can be seen in Figs. 4.4 and 4.5. This
weight shifting helps cancel out sideways falling caused by stepping with one foot which moves
the ZMP towards the other foot, so towards the side.

5.2 Comparison with State of the Art

Comparing the controller developed in this work with other state-of-the-art controllers is
difficult since no simulations or experiments with actual bipedal (exoskeleton) robots were
performed. However, in simulations with a simple planar biped recovering balance after a push
by stepping based on the IC [14], the controller recovered from a push resulting in a change
of velocity of the CoM from rest to 0.2 m/s, which is relatively a smaller disturbance than
the disturbances the controller from this work can handle. The LiP model used in [14] does,
however, include a flywheel at the CoM and feet with mass, and only uses one recovery step,
which makes a direct comparison less appropriate.

Recovery steps can also be based on other characteristics than the IC, like the Divergent
Component of Motion (DCM) [17]. The humanoid robot Toro can withstand lateral pushes of
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25 N for 1 s while walking, and can survive external forces of up to 15% of the robot’s weight
(76 kg) being controlled based on the DCM. Since the controller in this work focuses on balance
recovery during stance, a direct comparison cannot be made, however, the performances of the
controllers seem similar.

Disturbance recovery of humanoid robots can also be based on model predictive control
(MPC) and whole-body dynamics [18]. Using these strategies, a humanoid robot (41 kg) was
able to withstand a forward push of 400 N for 0.1 s in simulations, which is a (relatively)
better performance than that of the controller developed in this work. However, this robot also
uses e.g. movement of the arms for recovery, which is not possible for exoskeleton robots like
Symbitron.

5.3 Limitations and Possible Improvements

For forward pushes it can still be seen that the exoskeleton also falls or moves a bit to the
side caused by the displacement of the ZMP to the foot which is not stepping (see Figs. 4.4
(left) and 4.5 (left)). This indicates that the weight shifting before the step is not ideal and that
this still provides an opportunity for improvement. It could be useful to implement a dynamic
weight-shifting trajectory or time instead of the static ones currently used, which adapt to the
situation by taking the positions of the feet and position and velocity of the CoM into account
and better cancel out sideways movements.

Furthermore, it may also be useful to perform weight shifting in other situations, like the
sideways push visible on the right in Fig. 4.5. It can be seen that although the push was
directed to the left, the robot also moves back, due to stepping in front of the left foot instead
of directly to the left. So, a front-back weight-shifting might (partially) cancel this movement,
possibly leading to faster recovery and increased capturability.

Apart from the possibility of dynamic weight shifting, the stepping itself can also benefit
from being more dynamic [19]. Currently, every step takes the same amount of time, which limits
the possibilities of the controller and will also feel unnatural for the pilot for small steps versus
large steps. So, an adaptive stepping time might be preferable over a static one. Furthermore,
updating the step target and trajectory during the step can improve accuracy, and better handle
disturbances during the step.

The controller successfully prevents collisions between the feet by moving the step target.
However, the stepping trajectory does not take this constraint into account, and the stepping
foot is free to move through the other foot or leg during the step. So, before the controller can
be tested on a real exoskeleton, this constraint must also be taken into account when generating
the stepping trajectory. Additionally, the controller now only moves the feet and sees the legs
as virtual connections between the feet and CoM. The legs of the real robot are of course not
virtual, so trajectories should also be created for them.

What also stands out is the sizes of the N-step capture regions in Fig. 4.6. Many pushes
turned out to be 0-step capturable, while the amount of 1-step capturable pushes was low. As
can be seen in [9], the actual 0-step capturability region should be smaller for the Symbitron
exoskeleton. Further tweaking of the model parameters might improve the accuracy of the
simulation.

In addition, in the simulations in this research, the actual ZMP of the model instantaneously
moves towards the desired ZMP location, as determined by the controller. With a real exoskele-
ton, this is not possible, there would be a (small) delay before the ZMP reaches the desired
location, due to e.g. actuator dynamics. This delay can be integrated into the model with for
example a low-pass filter to better resemble the actual robot [16].
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5.4 Future Work

Apart from the before mentioned possible improvements on limitations of the controller,
there are some additional extensions/adaptions the controller might benefit from. One of these
proposed extensions to the controller is an extra control sequence that brings the exoskeleton
back to a parallel stance after stabilizing, so with the feet next to each other at hip/stance
distance w. This increases the stability margin, providing more stability. Furthermore, it is
desired for the pilot to return to a more natural stance after stabilizing.

Other ways of improving push robustness are implementing more advanced models, like
the Variable-Height Inverted Pendulum (VHIP) [20], Augmented Linear Inverted Pendulum
(ALIP) [21], or Bipedal Trunk Spring Loaded Inverted Pendulum (BTSLIP) [22] model. These
models more closely resemble the dynamics of an actual bipedal exoskeleton robot and provide
more control possibilities to increase stability. Apart from these more advanced models the
implementation of rotational inertia into the model will also increase simulation accuracy, and
can also improve capturability [12].

Lastly, the controller is at this point only able to walk on flat ground. In daily life, SCI
patients using an exoskeleton robot will also have to walk on uneven terrain, so the controller
should be adapted to also be able to balance the exoskeleton under these (more challenging)
circumstances, including varying foot placement heights and ground frictions.
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Appendix A

Algorithms

In this appendix the used algorithms will be explained in more detail.

A.1 Desired ZMP Location

Fig. A.1: Finding the closest
point on line segment p1p2 to
point rIC.

To find the closest point in the PoS when the IC lies out-
side the PoS, first, all corners of the PoS are found. Then, the
controller loops through these points (except the first one) and
finds the point on the line segment connecting each point with
the previous point that is the closest to the IC. For points p1,
p2, and rIC this is done by first creating a vector from point 1 to
point 2, and from point 1 to the IC:

−−−→p1p2 = p2 − p1, (A.1)
−−−→p1rIC = rIC − p1. (A.2)

The IC is projected on the line passing through p1 and p2 with

d =
−−−→p1p2

∥−−−→p1p2∥
· −−−→p1rIC (A.3)

rIC,proj = p1 + d
−−−→p1p2

∥−−−→p1p2∥
. (A.4)

However, to limit the projection to the line segment, d is first limited between 0 and the length
of the vector −−−→p1p2.

Repeating this step for all corners of the PoS and thus for all edges of the PoS, a set of
possible points is found. The final point is then chosen by calculating the distance between
each point and the IC and choosing the point with the smallest distance.
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A.2 Stepping Trajectory

The 6th-order polynomials used for the stepping trajectory are:

x(t) = ax,0 + ax,1t+ ax,2t
2 + ax,3t

3 + ax,4t
4 + ax,5t

5 + ax,6t
6, (A.5)

y(t) = ay,0 + ay,1t+ ay,2t
2 + ay,3t

3 + ay,4t
4 + ay,5t

5 + ay,6t
6, (A.6)

z(t) = az,0 + az,1t+ az,2t
2 + az,3t

3 + az,4t
4 + az,5t

5 + az,6t
6. (A.7)

The coefficients a are found using the following equation (only x is shown, the method is the
same for y and z):

px = Tax, (A.8)

with

T =



x(0)

ẋ(0)

ẍ(0)

x(0.5)

x(1)

ẋ(1)

ẍ(1)


=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 2 0 0 0 0

1 0.5 0.52 0.53 0.54 0.55 0.56

1 1 1 1 1 1 1

0 1 2 3 4 5 6

0 0 2 6 12 20 30


px =

(
x(0) ẋ(0) ẍ(0) x(0.5) x(1) ẋ(1) ẍ(1)

)T
=

(
p0,x 0 0 p1,x p2,x 0 0

)T
which can be solved with ax = T−1px since T is square. Here, T is a matrix containing the
coefficients a on every row for respectively the position, velocity, and acceleration at t = 0 s,
the position at t = 0.5 s, and the position, velocity, and acceleration at t = 1 s. The vector px

contains the corresponding target values of the polynomial. In this way, the polynomial can be
fitted to the position, velocity, and acceleration constraints.

Points p0 =
(
p0,x p0,y p0,z

)T
and p2 =

(
p2,x p2,y p2,z

)T
are respectively the starting

(t = 0 s) and ending (t = 1 s) point of the trajectory, and p1 =
(
p1,x p1,y p1,z

)T
is the point

halfway (t = 0.5 s), calculated as

p1 =
(p0,x+p2,x

2
p0,y+p2,y

2
∥p2−p0∥
2lmax

0.25 + 0.05
)T

. (A.9)

Here, the last factor creates the typical arc of a step, with a minimum height of 0.05 m and a
maximum height of 0.3 m, height depending on the length of the step. The length of a step
can be 2lmax at maximum, since one foot can step from a distance of lmax from one side of the
non-stepping foot to a point lmax from the other side of the foot.

The found coefficients a are then used to update the location of the stepping foot at every
controller cycle. To keep in line with the stepping time ts, the time is scaled before the new
location is calculated: x(t/ts), y(t/ts), and z(t/ts).
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