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ABSTRACT 

Developing a comprehensive understanding of urbanization and the urban ecosystem necessitates the 

requirement of crucial knowledge pertaining to Urban Impervious Surfaces (UIS). The need for an updated 

and accurate classification of UIS is of growing importance. Numerous studies have utilized various remote 

sensing and geospatial data sources to address this need. In this study, we investigate the effective utilization 

of freely available remote sensing sources, including satellite imagery and Volunteered Geographic 

Information sources like Twitter and Open Street Map, for UIS classification. An innovative aspect of this 

research lies in the creative integration of these data sources to acquire UIS training labels required for a 

Deep Learning based classification system. 

 

We propose a one-class classification approach using Deep One-Class Classification (DOCC) to reduce 

dependency on labeled data for different classes for an effective UIS classification. The introduced DOCC 

model demonstrates the efficiency of a deep feature network, utilizing only limited spectral features such as 

blue, green, and red spectral bands, to achieve accurate UIS classification. The DOCC showed a good 

accuracy which was later compared with that of a deep multiclass classification, focusing only on UIS class 

of multiclass. Moreover, the UIS labels proved to be more efficient in comparison to that of the globally 

available impervious maps. 

 

Overall, this study aims in contributing to the advancement of UIS mapping techniques by integrating 

various geospatial data sources and exploring innovative classification techniques. 

 

Keywords: Sentinel 2, Volunteered Geographic Information, Twitter, Open Street Map, Urban Impervious 

Surface, One-Class Classification, Deep feature learning. 
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1. INTRODUCTION 

1.1. Background of the research  

 
Urban Impervious Surface (UIS) denotes artificial structures and surfaces within urban areas that directly 

impede water infiltration into the ground (Y. Wang & Li, 2022). In urban environments, UIS includes a 

range of human-made structures such as roads, parking lots, sidewalks, rooftops, and paved surfaces. It is 

commonly regarded as a prominent indicator of urban area expansion, urban growth, and an increase in 

human settlements in urban areas  (Arnold & Gibbons, 1996). In recent times, notable advancements have 

been achieved in the exploration of appropriate geospatial data sources for the mapping of UIS. Here the 

term mapping refers to the detection of UIS regions by acquiring specific labels denoting the existence of 

the imperviousness in the region (Parekh et al., 2021).  

 

Data fusion is an emerging scientific research concept that encompasses the amalgamation of data from 

diverse sources to generate a cohesive solution or produce visually appealing high-quality representations of 

the data (Hall et al., 1997; Khaleghi et al., 2013; Schmitt & Zhu, 2016; Zhang, 2010). In the domain of 

remote sensing, research includes merging satellite imagery with airborne data, with the primary objective 

of extracting comprehensive and detailed information (Zhang, 2010). One of the key objectives of this study 

is to investigate the concept of fusing multiple geospatial data, specifically integrating satellite imagery and 

Volunteered Geographic Information (VGI) data, within the fields of remote sensing and Geographic 

Information Science (GIS). The utilization of openly and freely accessible multiple data sources renders 

them readily available and cost-effective. 

 

Satellite imagery is frequently utilized as the predominant geospatial data source in the domain of remote 

sensing. Nevertheless, in terms of UIS mapping, supportive data sources such as VGI play a pivotal role. 

VGI refers to user-generated information, which includes text and multimedia, that provides geographical 

information (Devkota et al., 2019). This study proposes an approach to integrate satellite imagery with 

supportive VGI data, specifically from Twitter and Open Street Map (OSM) to detect UIS regions. 

 

This study allows for the classification of UIS regions using the above-mentioned geospatial data without 

being constrained by factors like label acquisition costs, computational time, and the need for extensive 

manual work. To accomplish this objective, the study suggests employing a technique based on One-Class 

Classification (OCC) and utilizing deep learning techniques like Convolutional Neural Networks (CNN). 

The proposed Deep One-Class Classification (DOCC) framework helps to enhance the efficiency of UIS 

mapping while minimizing manual efforts and addressing associated constraints. 

 

Hence, alongside exploring data fusion, this project aims to delve into the concept of OCC Deep Learning 

techniques. The aim is to explore the effective utilization of openly accessible geospatial data, thereby 

promoting affordability and accessibility for all. Additionally, the Deep Learning OCC technique proposed 

in this research endeavours to tackle the issue of expensive label acquisition for training purposes and reduce 

the labour-intensive process of manual labelling or visual interpretation in situations where an adequate 

number of labels is unavailable. 
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1.2. Research Identification and Motivation 

 

Urban areas comprise diverse land cover types, including natural elements like parks, forests, and aquatic 

elements such as ponds and lakes, as well as human-made structures like buildings, parking spaces, and 

roads. UIS is represented by man-made urban landscape features like concrete and asphalt where percolation 

does not occur. The presence of these impervious surfaces is crucial in determining the complex dynamics 

of precipitation and discharge in urban environments (Schoener, 2018).  

 

Furthermore, by acting as a valuable instrument, the study of urban impervious surfaces aids in 

understanding urban development and expansion while also shedding light on their environmental 

implications (Sishi Wang et al., 2023). These factors have generated a demand for the latest accurate data on 

impervious surfaces, which serves as a valuable resource for urban planning and monitoring of urban 

ecosystems, among other applications. 

 

Traditionally, such information was obtained through field surveys involving GPS technology, which proved 

time-consuming and labour-intensive. In addition to these conventional techniques, remote sensing 

techniques are now extensively being used for impervious surface extraction from satellite imagery (Weng, 

2012). Over time, remote sensing techniques for detecting impervious surfaces have gained popularity and 

trust, particularly in combination with Machine Learning classification techniques.  

 

Nowadays, UIS mapping is often carried out by using binary and multiclass classification techniques. These 

techniques need more land cover class labels. However, acquiring a sufficient number of labelled training 

examples for each class, which are essential for effective learning, can often be costly. These costs 

encompass multiple aspects, including the expenses associated with raw data collection, data cleaning efforts, 

data storage, the procurement of necessary hardware resources utilized for data processing on computers, 

the time required for learning from the data, the conversion of data into an appropriate format for effective 

learning purposes, and the opportunity cost which arises from compromised learning outcomes that occur 

due to a lack of sufficient computational resources for handling extensive datasets (Turney, 2014; Weiss & 

Provost, 2014). 

 

Thus, finding ways to achieve the study of urban impervious surfaces by integrating traditional and non-

traditional open geospatial sources, which are free of cost, with a suitable strategy to counter the concerns 

of binary or multiclass classifiers to identify such UIS regions could be extremely helpful for future studies 

and references.  

 

1.3. Reseach gap 

 

Active research is currently being conducted to acquire labels for impervious surfaces in urban areas, 

particularly within the domain of remote sensing. The accurate classification of UIS heavily relies on 

meticulous satellite imagery selection, considering essential factors such as spectral features, spatial 

resolution, designated time period of the satellite data, and radiometric resolution (Lu et al., 2014). Previous 

studies have predominantly concentrated on satellites with medium spatial resolution, such as Sentinel and 

Landsat, which have been extensively employed for research purposes (Fan et al., 2019; Girolamo-Neto et 

al., 2020; Li, 2020; Sun et al., 2022; Tian et al., 2018). 

 

In addition, there has been significant research on the amalgamation of diverse data sources for the 

classification and representation of impervious surfaces, including the combination of optical imagery and 
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SAR (Bai et al., 2019). Significantly few research studies have utilized VGI data, such as OSM, in 

combination with satellite imagery to extract impervious surfaces (Fan et al., 2019; Z. Miao et al., 2019). 

Nonetheless, there is negligible research work that effectively combines satellite imagery with VGI sources 

like social media datasets (e.g., Twitter) and OSM specifically for urban impervious surface mapping (Z. 

Miao et al., 2019; Parekh et al., 2021; Yan et al., 2018). 

 

The conventional method for mapping UIS (Urban Impervious Surface) involves utilizing spectral indices 

derived from different bands of satellite data obtained through remote sensing(Lu et al., 2011; Zelang Miao 

et al., 2019a; Sishi Wang et al., 2023). Therefore, a model that relies less on a multiple spectral bands would 

be beneficial for further study. 

 

In recent times, exploring various regression and image classification models has been the key focus of UIS 

mapping. However, most of these mapping techniques focused on classifying urban land cover rather than 

specifically addressing UIS mapping (Brodley & Friedl, 1997). Other conventional ways were using binary 

class (Cheng et al., 2011) or multi-class (Li, 2020) classification methods.  

 

However, employing classification models with binary classifiers encounters significant challenges, 

particularly when dealing with big data, such as the existence of a substantial class imbalance of an 

exceptional magnitude. In scenarios where the occurrence of positive class instances is significantly lower 

than that of negative class instances, the class imbalance poses additional difficulties (Seliya et al., 2021; Shuo 

Wang & Yao, 2012). Moreover, the disparate prevalence of certain classes adds to the complexity of handling 

large datasets (Herland et al., 2019). 

 

To address these challenges, the concept of the OCC has been introduced. OCC is a special classification 

technique that utilizes only one class label for training (Schlachter et al., 2019). This approach tackles various 

challenges inherent in big data, encompassing significant differences in the availability of classes and the 

occurrence of highly rare classes (Seliya et al., 2021). Additionally, it enhances data quality through processes 

like cleaning data, selection of feature, and data downsizing techniques (Seliya et al., 2021). Classifying UIS 

as a single target (He et al., 2017a) is considered to be one of the recent solutions for UIS mapping. 

 

Conventionally, One-Class classifiers, which concentrate exclusively on a single target class (Deng et al., 

2018) has been implemented using machine learning algorithms like Isolation forest (Zelang Miao et al., 

2019a), and One-Class Classification through Support Vector Machine (OCSVM) (Dreiseitl et al., 2010; 

Seliya et al., 2021). However, issues such as the Isolation Forest's limited capability to detect locally clustered 

anomalies and its extended training time (Liu & Ting, 2012), depicted a room for improvement. Exploring 

a novel deep learning approach that remains relatively unexplored within the domain of remote sensing may 

offer promising opportunities for improvement. Additionally, one of the main drawbacks of traditional 

algorithms is their reliance on a well-defined set of manually crafted features, which often results in 

neglecting the consideration of spatial information(Liu & Ting, 2012). 

 

Despite the success of conventional machine learning methods in UIS when dealing with a single target 

class, (Gao & Liu, 2014), there is a lack of accuracy and precision mainly because of neglecting spatial 

information and due to the limited feature representation. This highlights the necessity for a deep learning 

architecture. Nevertheless, classifying UIS as a single target class using deep learning remains a challenge. 

The Deep One-Class Classification framework, recognized as the most recent available technique for OCC, 

incorporates multiple convolutional layers comprising deep feature learning networks with the combination 

of a classifier (Lei et al., 2021; Perera & Patel, 2019). 
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1.4. Research Objectives and Research Questions 

 

The overall objective of this research is to develop a deep learning classification system for UIS mapping 

using multisource geospatial data. The main objective mentioned previously can be further divided into the 

following sub-objectives: 

 

1. Identification of suitable freely available geospatial data sources (including remote sensing and VGI) 

for UIS mapping.  

 

2. Designing a Deep One-Class architecture for UIS mapping.  

 

3. Evaluating the proposed Deep One-class Classification architecture.  

 

To achieve the aforementioned objectives, the following research questions and sub research questions will 

be addressed: 

 

Research Q1. How can the fusion of multiple geospatial data sources enhance the accuracy of mapping UIS? 

(Objective 1)  

1.a Which remote sensing data sources are suitable for mapping UIS and why?  

1.b What are the VGI data sources selected for mapping UIS? 

1.c How to use VGI data and remote sensing data sources in an integrated way for accurate UIS 

mapping?  

 

Research Q2. How can UIS (target class) be classified without taking other land cover classes into account? 

(Objective 2)  

2.a How can Deep Learning be used for the One-Class Classification (OCC) approach given UIS 

as the target class?  

2.b What is a suitable architecture for one-class classification for mapping UIS?  

2.c How to prepare dataset for training, validation, and testing?  

 

Research Q3. How can the efficiency of the proposed Deep Learning One-Class Classification architecture 

be assessed and validated? (Objective 3)  

3.a How can we consider spatial continuity existence in our dataset in model validation?  

3.b How can we assess the generalization of the built model? 

3.c How can we compare the one class and multiclass classification? 
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1.5. Thesis Structure 

 

This thesis consists of seven main sections and an appendix. The thesis begins with an introduction that 

elucidates the research problem and the rationale behind the study, and identifies the research gap. This 

chapter also provides an overview of the thesis, outlining its objectives and research questions. The second 

division of this thesis presents a comprehensive review of relevant literature, highlighting the existing 

research conducted in the field. The third section delves into the specific area of study and discusses the 

datasets employed in this research. The fourth chapter outlines the methods employed to achieve the 

research goals. In the fifth chapter, the findings and results obtained from the applied methodology are 

discussed in detail. The sixth chapter concludes the entire research project by summarizing the key findings, 

identifying any encountered challenges, and proposing potential avenues for future studies. The seventh and 

final chapter focuses on the ethical considerations associated with this work. Additionally, an appendix is 

included in this thesis 

2. LITERATURE REVIEW 

According to (He et al., 2017a; Zelang Miao et al., 2019a), urbanization leads to the escalation of impervious 
surfaces. (Weng, 2012) states that the necessity of understanding the spatial pattern and distribution of the 
impervious surface is significant in comprehending urban characteristics. UIS is found to play a significant 
role in urban-environment relationships. For example, knowledge of impervious surfaces serves as a key 
parameter for Land Surface Temperature, surface water run-off, urban climate change, and ecological 
assessment (Alberti, 2005; Alberti et al., 2007; Cadenasso et al., 2007; Gillies et al., 2003; Pauleit et al., 2005). 
Another notable application of UIS mapping is its relevance in urban planning (Aayog, 2021; Enoguanbhor, 
2023; SCHUELER, 1994; Stasolla & Gamba, 2008). 
 
Remote sensing has proven to be a reliable approach for mapping and estimating impervious surfaces. 
(Weng, 2012) discusses the recent trend of remote sensing emphasizing on different sensors and their spatial 
resolutions in UIS classification and portrays impervious surfaces as an exceptional case of land cover. UIS 
classification has been achieved with a wide range of remote sensing data such as LiDAR data(Wu et al., 
2019), airborne hyperspectral data (van der Linden & Hostert, 2009),  satellite data from optical sensors, 
SAR (Bai et al., 2019; Sun et al., 2022; Tan et al., 2015; Torres et al., 2012; Y. Wang & Li, 2022; Xiang et al., 
2016), and VGI data (Elwood et al., 2012; Zelang Miao et al., 2019b). 
 
(Lu et al., 2014) suggests that remote sensing data with a medium or coarse spatial resolution is most suitable 
for studying imperviousness in an area. Previous studies focused on mapping impervious surfaces in specific 
cities by employing multispectral data with a medium spatial resolution as it is crucial for distinguishing 
impervious surfaces from other land covers (Li, 2020). Furthermore, previous research has proven that high-
resolution images with limited spectral bands is inadequate to differentiate urban land covers while 
hyperspectral images with multiple spectral bands presents the risk of data redundancy (Lu et al., 2014).  
 
According to (Dunkel et al., 2020; Naghavi et al., 2022), VGI data are voluntarily shared open-source data 
with spatial information. Acquiring VGI data is less time-consuming and cost-effective (McLaren, 2011). 
Integrating such VGI data with satellite imagery has been an active research in impervious surface studies 
in urban areas. One such notable work is the integration of OSM, a type of VGI data, with satellite imagery 
for impervious surface estimation (Fan et al., 2019; Parekh et al., 2021). Another significant research in 
utilizing VGI data for UIS mapping is by combining social media data with satellite imagery (Z. Miao et al., 
2019; Yan et al., 2018). 
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(He et al., 2017b) executed different One Class Classifier models such as OCSVM, Biased Support Vector 
Machine (BSVM), Positive-Unlabelled Learning (PUL), Presence and Background Learning (PBL), and 
Maximum Entropy Model (MAXENT) for the UIS classification. Particularly, the one class classifiers have 
shown high efficiency in training and good classification accuracies (He et al., 2017b). Moreover, adopting 
one class classifiers for impervious surface mapping enables addressing the challenges associated with 
imbalanced datasets and the difficulty in acquiring reference data labels for other classes. These challenges 
may arise due to limited accessibility to certain land cover types (Fernandez et al., 2011; Z. Xu et al., 2017). 
 
Deep learning, characterized by multiple processing layers, facilitates more efficient feature learning and is 
appropriate for learning representations of image data (Lecun et al., 2015; Ruff et al., 2018; Schmidhuber, 
2015). The selection of appropriate loss functions for feature learning is crucial in the realm of deep learning 
for one-class classification (Goyal et al., 2020; Lei et al., 2021; Perera & Patel, 2019). The cross-entropy loss 
function is a notable choice commonly used for multiclass classification tasks (Andreieva & Shvai, 2021). 
Numerous researchers have made attempts to modify the cross-entropy function for various classification 
tasks (Kobs et al., n.d.; Mostafa, 2021; Rezaei-dastjerdehei et al., 2020). Similarly, there have been endeavors 
to employ the cross-entropy loss function with modifications for OCC (Gong et al., 2021; Perera & Patel, 
2019). Prominent loss functions utilized for One-Class Classification (OCC) encompass the focal loss 
function, compactness loss function, bounded loss function, among others (Hong & Member, 2020; Perera 
& Patel, 2019; Razzak et al., 2020; Wiedemann & Beckmann, 2016). From these options, appropriate loss 
functions will be chosen for the purpose of this research in order to classify UIS. 
 
Many studies have been conducted on one class classification using deep learning, which is acknowledged 
to be an up-to-date technique (Ghozatlou et al., 2022; Lei et al., 2021; Ruff et al., 2018). (Lei et al., 2021) 
presented a DOCC model using convolution layers for satellite imagery, thus demonstrating that DOCC 
can be adopted for remote sensing data. An additional notable demonstration of DOCC's implementation 
in the domain of remote sensing is the employment of a specialized deep learning framework tailored 
explicitly for UAV images (Bah et al., 2019). 
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3. STUDY AREA AND DATASET 

3.1. Selected study Area  

 

The western region of the Netherlands has been selected as the testing area for this classification approach 

due to the ample availability of updated datasets encompassing both satellite imagery and VGI. Moreover, 

urbanization in the Netherlands is a significance phenomenon as the population residing within its urban 

areas is witnessing notable growth. This trend can be attributed to the emergence of new employment 

opportunities in the job market (Beckers & Boschman, 2019; Hans & Koster, 2018). This process of 

urbanization in the Netherlands has led to a substantial increase in the extent of impervious surfaces (Costa 

et al., 2021). Therefore, selecting the cities in the Netherlands as our case study provides a promising 

opportunity to implement our methodology and achieve accurate mapping of UIS. 

 

For this research, as mentioned earlier, the urban extent of the Netherlands is chosen in such a way that 

more emphasis is given to the urbanized cities of the country, which are housed in the western region. These 

cities are Amsterdam, the Hague, Utrecht, Rotterdam, and some extents of Arnhem. The geographical 

coordinates for the study area extent are as follows; minimum longitude- 4° 11' 12.7998" E, maximum 

longitude- 6° 19' 20.2722" E, minimum latitude- 51° 39' 54.579" N, and maximum latitude- 52° 36' 52.776" 

N. Figure 1 represents the chosen extent for this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Study Area Map 
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3.2. Datasets considered for the study  

 

Sentinel-2, an Earth observation mission that was developed by the European Space Agency (ESA), 

facilitates global monitoring, including land cover change mapping with its high-resolution imaging 

capability (Drusch et al., 2012). Sentinel-2 comprises twin satellites, namely Sentinel-2A and Sentinel-2B, 

which were set in motion in June 2015 and March 2017, respectively (Main-Knorn et al., 2017). The Sentinel-

2 Multispectral Imager (MSI) records imagery data in 13 spectral bands spanning the shortwave infrared, 

near-infrared (NIR), and visible segments of the electromagnetic spectrum (Gašparović et al., 2018). These 

satellites provide frequent revisits to the same region every 5 days, enabling the collection of multispectral 

imagery at a fine spatial resolution. This satellite mission is well-suited for capturing information about 

impervious surfaces (Misra et al., 2020). 

 

In a prior research, it was demonstrated that the impervious surface map generated from Sentinel-2A data 

at a 10-meter resolution contained more detailed information compared to the impervious surface map 

derived from Landsat 8 OLI imagery at a 30-meter resolution (R. Xu et al., 2018). Furthermore, the Sentinel-

2A impervious surface map from the same study effectively depicted continuous roads and accurately 

delineated building boundaries, whereas the Landsat 8 OLI image struggled to differentiate these boundaries 

(R. Xu et al., 2018). 

 

VGI is considered to be a potential source for understanding the surface of the Earth (Goodchild, 2007). 

OSM is a freely available and open geospatial dataset that represents various features present on the Earth's 

surface like buildings, roads, etc. (Fitri et al., 2022). Among VGI datasets, OSM holds a significant value for 

the GIS and remote sensing community offering a freely accessible and editable database along with a 

comprehensive map of the world contributed by volunteer mappers (Grinberger et al., 2022). Previous 

researches utilized OSM data specifically roads, buildings, pavements, and bridges, to identify impervious 

surfaces (Fan et al., 2019; Mao et al., 2022; Parekh et al., 2021). Furthermore, studies have demonstrated the 

integration of remote sensing data and OSM data for studying impervious surfaces to be effective (Fan et 

al., 2019; Mao et al., 2022; Parekh et al., 2021).  

 

Additionally, Twitter represents another valuable and state-of-art source of VGI. The geotagged nature of 

Twitter data provides a spatial component, making it an effective tool for gathering location-based 

information (Elwood et al., 2012). When combined with remote sensing data, Twitter has proven to be a 

useful spatial data source for multiple applications (Cervone et al., 2016; Devkota et al., 2019; Schnebele et 

al., 2014; Shao et al., 2021). 

 

An interesting study on Twitter's role in understanding human mobility within urban dynamics 

demonstrated that topic-related tweets can serve as a potential proxy for real-world activities in urban spaces 

like workplaces and residential spaces. This correlation was further validated by comparing tweet-derived 

data with work and residential population statistics from census records (Steiger et al., 2015). This implies 

that using geotagged tweets can serve as a viable alternative for capturing the spatial distribution of urban 

inhabitants, which correlates indirectly with UIS. Additionally, several studies have extensively examined the 

association between Twitter usage and urban land use. These investigations aim to characterize urban land 

use by analysing the activities of Twitter users (Frias-Martinez & Frias-Martinez, 2014; Z. Miao et al., 2019; 

Soliman et al., 2017). 

 

The purpose of this study is to examine the open geospatial data resources that are currently available to 

enhance the accuracy of mapping UIS. For 2022, optical data obtained from Sentinel-2 imagery was chosen, 

with a specific focus on the essential bands: blue, green, and red (refer to table 1). These bands were chosen 
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to assess the effectiveness of a deep learning feature extractor. The data was chosen based on its high spatial 

resolution of 10 meters, making it suitable for detailed analysis. Furthermore, its cost efficiency and 

compatibility with recent techniques were considered as advantageous factors in the selection process. 

 

Name Wavelength Description 

B2 496.6 nm Blue 

B3 560nm Green 

B4 664.5nm Red 

 

 

 

Additionally, as a supportive data source, the VGI data sources OSM and Twitter were employed for the 

suggested UIS mapping method. For this research, only the building and road features from the OSM dataset 

was considered. These features are chosen due to their demonstrated high reliability in accurately 

representing impervious surfaces (Parekh et al., 2021). Moreover, the geographical location of tweets is 

utilized while neglecting sensitive details like user identity, textual content, and any attached multimedia. The 

distribution of Twitter data used for this study is depicted in Figure 2. 

 

 

 

 

 

Figure 2 Map depicting the geographical locations of user tweets. 

Table 1 Spectral bands of Sentinel 2 utilized for this study 
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4. METHODOLOGY 

4.1. Acquiring Quality data 

 

There have been several attempts to extract impervious surfaces using machine learning algorithms and 

object-oriented segmentation methods, typically relying on the spectral features of the satellite imagery  (Fan 

et al., 2019; F. Huang et al., 2019; Mao et al., 2022). However, in this research work, a new approach is 

introduced for the extraction of UIS patches. Unlike traditional methods that rely solely on spectral features 

derived from satellite imagery, this approach incorporates the association of satellite imagery with VGI data, 

specifically Twitter and OSM data. By integrating these additional data sources, a rule-based approach is 

employed to extract UIS patches, providing a new perspective. This proposed methodology not only 

enhances the extraction process but also enables the creation of reliable labeled datasets of satellite imagery 

patches depicting UIS by considering tweet locations and OSM as references. 

 

Twitter is commonly utilized by individuals in proximity to human-made structures such as buildings, roads, 

and various concrete surfaces, collectively referred to as impervious surfaces (Z. Miao et al., 2019; Steiger et 

al., 2015). The study hence relies on the fact that the tweets originate from places that are in close proximity 

to urban structures which in turn can be related to impervious surfaces. 

 

The tweets from the western extent of the Netherlands were provided by the Faculty of Geo-Information 

Science and Earth Observation of the University of Twente. These tweets are in CSV format and include 

latitude and longitude information. Observations in the CSV that lacked the latitude and longitude 

information were excluded from the dataset. The initial filtering process involved removing tweets located 

in vegetation areas and water bodies. To accomplish this, the tweets were converted to shapefiles with the 

Coordinate Reference System (CRS) of EPSG 28992. Land cover data in the form of polygon shapefiles 

obtained from pdok were utilized to remove tweets associated with water bodies and parks. Geopandas1 

overlay function, specifically employing the "contains" option, facilitated this removal process. The selected 

tweets were subsequently stored in CSV format for further processing. Figure 3 depicts the flowchart 

detailing the aforementioned process, while Figure 4 presents the map illustrating the distribution of tweets 

across vegetation and water areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
1 https://geopandas.org/  

Figure 3 Flowchart representing the methodology of pre-processing. 
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To identify more reliable data for detecting impervious surfaces, several pre-processing steps were 

performed using the pandas 2  and geopandas 3  libraries. Initially, a "count" column was added to the 

geodataframe, indicating the number of tweets recorded at each location. This count was computed for each 

tweet and added as a new column in the data frame, representing the intensity or frequency of tweet 

occurrences at specific locations. Subsequently, a buffer of approximately 500 meters was created around 

each Twitter point using the geometry.buffer4 function from the geopandas package. This buffer size was 

chosen based on trial and error basis as 500 meters promises to give a wide spread out tweet points. The 

number of tweets within these buffers was then calculated and updated in the dataframe as the 

"buffer_counts" column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
2 https://pandas.pydata.org/docs/ 
3 https://geopandas.org/en/stable/docs/advanced_guide.html 
4 https://geopandas.org/en/stable/docs/user_guide/geometric_manipulations.html 

Figure 4 Tweets within the waterbodies and forest areas 

Figure 5 A buffer created around one of the selected tweets (left) and the tweet reduction after 
selection process (right) 
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Based on the created columns, two conditions were applied to identify Twitter points with a high probability 

of representing impervious surfaces. The first condition required the intensity (count) to be higher than the 

25th percentile of the count values, which was determined through trial and error. Similarly, the second the 

condition required the buffer count to be greater than the 25th percentile of the buffer counts. Twitter 

points that satisfied both conditions were selected, as they possess the highest probability of being 

impervious and are well-distributed. This shows that the tweets which are selected have a higher intensity 

of tweet occurrences.  

 

Some towns or cities had a low number of tweets, while others had dense clusters of tweets. To address this 

imbalance, tweet points in cities with dense clusters were selectively removed. Also, to ensure that the 

acquiring impervious labels is representative and not biased towards similar structures, it was necessary to 

distribute the tweets across the entire study area. This included assigning a new buffer with a radius of 10,000 

meters to each tweet, considering the distances between cities in the Netherlands. Tweets that were in close 

proximity within these buffers were then removed. These steps helped to remove points that were in close 

proximity and belonged to the same structure. Also, it helped to create a more balanced and representative 

dataset for further analysis. 

 

After selecting the tweets, a bounding box of size 64x64 pixels was created around each selected tweet as 

the centre point. The OSM data, which encompasses elements such as houses and roads that possess 

impervious characteristics (Fan et al., 2019; Parekh et al., 2021), was integrated to obtain reliable data. The 

number of roads and buildings within the extent of each bounding box was counted using the osmxtract5 

package. To ensure the selection of high-quality data, only bounding boxes with counts of buildings and 

roads above the 25th percentile were considered. The selected bounding boxes were used to extract Sentinel-

2 imagery from Google Earth Engine. The imagery extraction process specifically targeted scenes with a 

maximum of 10% cloud coverage within the bounds. This approach guarantees the extraction of patches 

that are considered to be impervious surfaces in urban areas. These acquired patches (refer to figure 8) are 

used for detecting UIS using a deep one-class classification model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
5 https://pypi.org/project/osmxtract/ 

Figure 6 Flowchart representing the methodology of this study. 
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Figure 6 illustrates the flowchart outlining the methodology for obtaining the desired satellite dataset. Figure 

7 displays the map showcasing the selected tweet’s locations, which serve as the center points for acquiring 

the satellite patches using the aforementioned methodology. Totally 1659 patches were collected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 7 Map of selected tweets after pre-processing 

Figure 8  Sample patch acquired through the proposed pipeline 
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4.2. Deep learning model for Impervious surface detection and mapping 

4.2.1 Deep One-class Classification 

 

As discussed previously, the most advanced approach currently employed to address OCC problems is 

through the utilization of deep learning techniques. UIS mapping can be conceptualized as an OCC 

problem, with the impervious surface serving as the target or positive class. In this study, the CNN, a widely 

recognized deep learning model, will be employed to construct the Deep One-Class Classification (DOCC). 

 

Input data and data preparation: The DOCC comprises two parallel pre-trained CNN networks. Each 

network requires two distinct sets of data: the target dataset, which contains the class that needs to be 

detected, and the reference dataset, which consists of a mixture of other data that is irrelevant to the target 

class (specifically, any surface other than the impervious class). 

 

Thus here, the previously extracted patches of impervious surfaces from the proposed pipeline is taken as 

the target class. These target dataset is of size 64x64. The reference dataset, on the other hand, is based on 

the EuroSAT dataset, which utilizes sentinel 2 satellite imagery (Helber et al., 2019). The patches in the 

reference dataset are also of same size as the target dataset and consist of a combination of RGB spectral 

bands from various classes, excluding the impervious surface. However, the reference dataset is not labelled. 

 

Therefore, the target dataset consists of 1659 images from previously proposed method, while the reference 

dataset comprises 19,000 EuroSAT images from various classes in total. The target and the reference 

datasets are divided into training and test sets using a test size of 30%. The number of datasets used as 

training and testing in this research are presented in Table 2. Figure 9 provides an illustration of the shape 

of the training and testing datasets. 

 

 

Reference training data 13300 images 

Target training data 1161 images 

Reference testing data 5700 images 

Target testing data 498 images 
 

                                             Table 2 Reference and Target Dataset split 

 

 

 

 

 

 

 

 

 

 

 

Before feeding the dataset into the initial pre-trained convolutional network, it is necessary to reshape the 

dataset to match the desired input patch size of h x w x c (Lei et al., 2021). Here, the variable h represents 

the height of the image, w represents the width of the image, and c indicates the number of spectral bands 

Figure 9 Code snippet of the shape of training and testing datasets 
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considered (Lei et al., 2021). In this research, the DOCC is initially showcased using three bands (RGB) 

with an input shape of (224, 224, 3), based on the VGG16 pre-trained model. A limited number of bands 

are employed to demonstrate the efficacy of deep feature learning in UIS classification. 

 

Loss Functions: The Positive and Unlabelled Learning (PUL) framework is employed, where the 

impervious surface dataset is considered as the Positive labels. PUL aims to identify an appropriate classifier 

based on the available positive and unlabelled data (Gong et al., 2021). The PUL approach assumes that the 

unlabelled dataset has the potential to belong to either the positive class or the negative class (Bekker & 

Davis, 2020; Gong et al., 2021; He et al., 2017a). To achieve this two major loss functions are introduced by 

(Perera & Patel, 2019) namely, Compactness loss and Descriptiveness loss. The compactness loss evaluates 

the similarity within the data belonging to the same class by estimating the intra-class variance of the target 

class. This estimation is accomplished using the Euclidean distance metric. On the other hand, the 

descriptiveness loss measures the ability to learn features that can effectively distinguish the target dataset 

from the reference dataset, employing the cross-entropy method (Perera & Patel, 2019). Later these two 

losses are combined to acquire the total loss.  

 

The formula for the compactness loss (𝑙𝑐) (Perera & Patel, 2019) is given by, 

 

𝒍𝒄 = 𝟏\𝒏𝒌 ∑ 𝒛𝒊𝑻𝒛𝒊

𝒏

𝒊=𝟏

 

 

Here z denotes the distance of the given sample from the mean of rest of the samples. Also, the variable n 

corresponds to the amount of samples. 

 

The categorical cross-entropy in Keras, along with the Softmax function, is applied to the reference dataset 

to compute the loss of descriptiveness (𝑙𝑑). The general formula for the cross entropy (Chaithanya et al., 

2021) is given by, 

 

 𝑳𝒄𝒆 =  − ∑ 𝒕𝒊 𝐥𝐨𝐠 𝑷𝒊 

𝒏

𝒊=𝟏

 

 

Thus the calculation of  𝑙𝑑 is derived using the above base entropy formula, denoted as 𝐿𝑐𝑒, which employs 

true(𝑡𝑖) labels and predicted(𝑃𝑖 ) labels. 

 

The total loss (𝑙𝑡), which is framed with reference to (Perera & Patel, 2019), is computed by combining the 

compactness and descriptive losses in the following formula, 

 

                                                                        𝒍𝒕 = 𝒍𝒅+ w𝒍𝒄 

 

Here, ‘w’ represents compactness weight which is given on trial and error basis. 

 

DOCC Architecture: The DOCC architecture is based on two important parameters: a deep learning 

feature extractor and a classifier (Bah et al., 2019; Perera & Patel, 2019). The deep feature extractor is 

constructed with parallel CNN architecture (Perera & Patel, 2019). Two pre-trained VGG 16 CNN model 

are employed to extract deep features, but with a modified approach. Two models, namely the target 

network and reference network, are constructed using the said pre-trained CNN. The target network is 
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trained using the image patches from impervious surface dataset (target) while the reference network is 

trained with the image batches from EuroSAT dataset.  

 

Training phase: The target network and the reference network in this study consist of a series of 

continuous convolution, pooling, and normalization layers (refer to figure 10) which are executed using 

keras6 and tensorflow7 packages. These networks are initialized in parallel, with each network utilizing its 

respective input dataset. The target network computes the compactness loss within the impervious surface 

dataset by estimating the intra-class variance. Conversely, the reference network estimates the 

descriptiveness loss using the EuroSAT dataset. These two losses mark the completion of the forward pass. 

The total loss is then calculated by applying the previously mentioned formula, with a weight of 8 assigned 

to the compactness loss. The weight w is adjusted in a way that the descriptiveness of the learned features 

is of comparable importance to that of compactness loss. The training process continues until the total loss 

reaches a point of convergence, indicating that the network has achieved stability. Later, fine-tuning of these 

networks are performed by changing hyperparameters like epochs and batch size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
6 https://keras.io/ 
 
7 https://www.tensorflow.org/ 

Figure 10 Summary of the Model architecture  

(Target and Reference model) 

https://keras.io/
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In this way, the deep features are learned for One-Class Classification. The flowchart of the training phase 

is represented in the figure 11 below.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Testing phase: In the testing phase, there are two important stages; template matching and classification. 

In the template matching stage, a subset of the impervious dataset is taken and by employing the target 

network, which has the weights learned during the training stage, a set of features are extracted.  

 

Test images are a combination of both the reference dataset and the impervious surfaces are given as new 

input samples. Using the trained target network as a feature extractor, features are generated from a test 

images as well. Subsequently, the features obtained from both the network, namely the target dataset and 

the testing set, are compared using an appropriate classifier. This classifier is constructed using the K-

Nearest Neighbour algorithm with a simple Euclidean distance as the matching function. The purpose of 

this classifier is to determine whether the test sample belongs to an impervious surface or not. The Euclidean 

distance, which serves as a straightforward matching function, is employed. The matching scores (s) derived 

from the classifier are used to identify and detect the impervious targets. 

 

Class = 0, if s > k 

Class = 1, if s<=k, 

 

In the above equation, the value of k represents the threshold used to determine whether the test image 

belongs to class 0 or class 1. The selection of the k threshold is done through an iterative process of trial 

and error, considering the model's performance metrics. If the matching score(s) surpasses the threshold 

value of k, the sample is classified as Class 1, representing the target class, which in this case corresponds to 

impervious surfaces. On the other hand, if the matching score(s) falls below the threshold, the sample is 

classified as Class 0, indicating other surfaces. The figure 12 shows the testing phase stages.  

 

 

 

 

 

 

Figure 11 Workflow of training phase 
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Evaluation: Previous research has utilized evaluation metrics such as precision, recall, F1 score, and 

confusion matrix for evaluating the classification models (Devkota et al., 2019; Lei et al., 2021; Zhao et al., 

2022). Therefore, these metrics are utilized to assess the performance of the proposed DOCC model. 

 

A confusion matrix is a common quantitative technique that provides knowledge on the output predictions 

of a classification algorithm (Strobel et al., 2018). This gives the information about the true positives, false 

positives, true negatives, and false negative of the classification model output. Recall is a metric that 

measures the ratio of correctly predicted real positive instances to the total number of actual positive 

instances (Powers, 2020). Precision, on the other hand, is a metric that quantifies the proportion of predicted 

positive instances that are indeed real positives (Powers, 2020). The combination of these two metrics gives 

the 𝐹1 score(Zhao et al., 2022), 

 

                                                     𝐹1 score = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                     

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 13 gives the formula and representation of the evaluation metrics discussed. 

 

 

 

 

 

Figure 12 Workflow of testing Phase 

 

Figure 13 Representation and formula for the evaluation metrics (Ma et al., 2019) 
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4.2.2 Deep Multi-class Classification 

 

A multi-class classifier is executed to compare the previously employed one-class classifier with a multi-class 

classifier. The purpose of multi-class classification is to classify the given dataset into multiple classes (Jha 

et al., 2019). Thus, a multi-class classifier, unlike the one-class classifier, requires labelled data for each of 

the classes. 

 

Input dataset and data preparation: The data utilized for this study consists of patches specifically 

generated for this research that are combined with land cover classes obtained from the publicly available 

EuroSAT dataset. The land cover classes utilized in this multiclass classification model include Forest, 

Herbaceous Vegetation, Permanent Crop, Annual Crop, River, SeaLake, Pasture, and Impervious Surface. 

Only RGB channels of the images are utilized in this analysis. Here the dataset with multiple land cover 

labels is split into test and train with test size of 30%.  

 

Multiclass classification architecture: The CNN architecture is utilized to execute the multi-class 

classification and it is executed similar to the DOCC but trained with CNN network for multiclass classifier. 

The forward function applies the layers of the CNN sequentially to the input in the specified order. 

  

Training and Testing: During the stage of training, the model iterates several steps including forward 

propagation, loss computation, and backpropagation, on the training data. The cross-entropy loss function 

effectively discerns the distinctions between the features of each class. Subsequently, during the testing 

phase, the model is evaluated using the test dataset to assess its performance. This facilitates a precise 

assessment of the model's performance and capabilities. 

 

Evaluation: The deep learning multi-class model is evaluated using the same set of evaluation metrics as   

the DOCC. The F1 score, precision, recall, and confusion matrix are among these measures. This enables a 

comprehensive comparison between the performance of the multi-class classifier and the DOCC. By 

comparing the results, we gain insights into the effectiveness of the one-class classifier in comparison to the 

multi-class classifier.  

 

 

4.2.3 Comparison with the existing Global Impervious Map  

 

A window with the dimension of the selected patches was set up that is 64 x 64, and a stride of 2 pixels was 

chosen to determine the moving window's step size. This window was then moved across the input Sentinel-

2 imagery and extract patches centred at each pixel location. These patches were run on the model  thus 

enabling us to compute an impervious classification on a pixel-wise basis. Subsequently, we compared this 

generated UIS map with the GISA map for evaluation. 

 

The Global Impervious Surface Area (GISA) map, utilizing a combination of Sentinel 1 and Sentinel 2 

imagery, provides valuable information spanning from 1972 to 2019 and it is notable for being the first map 

with a 10-meter resolution that is globally available (X. Huang et al., 2022). In addition, the GISA map is 

known to offer improved accuracy compared to that of previously existing maps. Therefore, conducting a 

comparative analysis between our UIS map and the GISA map holds substantial value. 
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5. RESULTS AND DISCUSSIONS 

5.1 Results and dicussion on Deep One-Class Classification (DOCC) 

 

Initially, when the dataset was subjected to DOCC, the obtained results were unsatisfactory. Therefore, 

some modifications on the weight of the loss function and hyper parameters were made during the feature 

learning phase. The training process involved the computation of the total loss function using both the 

target and reference models. The graph depicting the initial loss versus epoch is presented in figure 14. It 

shows the descriptiveness loss and total loss overlap. A negligible compactness loss can be seen when a 

compactness weight 'w' value of 0.5 is assigned in the equation 𝑙𝑡 = 𝑙𝑑+ w𝑙𝑐 . This indicates a need for 

adjustments in the computation of the total loss function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to (Perera & Patel, 2019), the value of the should be chosen carefully while considering extremes 

of zero or a large number as these can result in uninformative outcomes. Additionally, when dealing with 

one-class problems, it is advisable to assign greater weightage to the loss of the reference network, 

specifically the descriptive loss (Perera & Patel, 2019). Considering this, the weight was determined within 

a reasonable range through a trial-and-error process. The analysis revealed a significant disparity was 

observed in the loss function graph. As a result, the model has been adjusted to assign nearly equal 

importance to both the descriptiveness loss and comparative loss. The new graph is represented in figure 

15 where one can note that the total loss considers both the losses but with slightly higher preference to 

descriptiveness loss. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Graph showing initial loss versus epoch 

Figure 15 Graph showing loss versus epoch after changes in loss function 
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Hyperparameters tuning: 

 

The DOCC method employs a combination of CNN networks, as mentioned previously. The CNN block 

consists of several layers, notably the initial layer with a linear activation function, which performs linear 

input transformations. This is followed by a ReLU activation function layer. To prevent overfitting, a 

dropout regularization technique is applied with a dropout rate of 0.3, meaning that 30% of the units are 

randomly dropped out during training. This dropout rate is selected to strike a balance as a higher value can 

lead to under learning, while a lower value may have a negligible effect.  

 

The learning rate was identified as a significant parameter with a crucial impact. When the learning rate was 

set to 0.001, along with 100 epochs and a batch size of 10, the results depicted in Figure 15 were obtained. 

However, by adjusting the learning rate to 0.00001 based on the study by (Perera & Patel, 2019), noticeable 

improvements were observed in the curve patterns of the graph. To further enhance training and promote 

the model's generalization and performance, modifications were made to the epoch and batch size, which 

were adjusted to 60 and 16, respectively. Additionally, regularization techniques such as dropout with a rate 

of 0.2 and batch normalization were introduced. The effects of these alterations are demonstrated in Figure 

16, which exhibits a significant decrease in the losses during training, indicating enhanced performance. 

 

Scientifically, it is commonly understood that decreasing the learning rate can yield better results when 

combined with an increased number of epochs. However, in this specific scenario, the relationship is not 

linear due to the simultaneous adjustment of the batch size. Based on the observations from Figure 16, it 

can be inferred that after epoch 50, there is no substantial decrease in the loss.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classification evaluation: During the classification process, the testing phase of the deep learning model 

involved utilizing the test data from both the target and reference datasets. To detect whether the surfaces 

were impervious or not, the datasets from the target and class and the other reference classes with equal 

split of 6198 images out of which 498 images were impervious and the remaining were pervious. These 

images were combined and shuffled for testing. This combined dataset was then fed into the model for 

prediction and classification. The figure17 shows the predicted scores versus the true label graph, here the 

Figure 16 Graph showing loss versus epoch after hyperparameter tuning 
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predicted scores represent the likelihood of the instances belonging to a particular class. Here the 1 

represents the target class and the 0 represents the reference class. This is to show the separability of the 

classes. There is a minimal overlap showing an effective separability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The model demonstrated a high accuracy of around 98% (0.977896). The efficiency of the model is further 

revealed through the analysis of the confusion matrix (refer to figure 18), which indicates a minimal number 

of incorrectly detected images. The figure 19 depicts the sample images which are predicted as true positives, 

true negatives, false negatives and false positives. Additionally, the precision and recall metrics were found 

to be approximately 97% and 74% respectively, indicating the model's strong ability and reliability in 

predicting positive instances. 

 

In classification models, the F1 score is often prioritized over individual scores. In this case, the F1 score, 

which considers both precision and recall, is calculated to be approximately 0.844. This value, close to 1, 

indicates that the model performs well in minimizing both false positives and false negatives. The F1 score 

serves as a comprehensive evaluation metric, reflecting the model's overall performance in balancing 

precision and recall. Its closeness to 1 highlights the model's effectiveness in accurately identifying positive 

instances while minimizing incorrect predictions. The figure 19 shows the images which are classified as 

false negatives, false positives, true negatives, and true positives by the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Graph depicting predicted scored versus true labels 
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The second phase of testing focuses on assessing the generalization capabilities of the model. In this 

phase, a subset of the EuroSAT dataset, which contains a mixture of Permanent crop, sea lakes and 

impervious surfaces like residential areas, highways, and industrial zones, is used as unseen testing images. 

As EuroSAT comprises a global dataset, the images represent various locations worldwide. A total of 8648 

images were employed for this evaluation. 

 

When the same model was applied to these testing images, it correctly identified residential and highway 

patches as impervious surfaces (positive class) while labeling other regions such as crop areas and bodies of 

water as negative class. The resulting confusion matrix (refer to figure 20) illustrates the model's 

performance, with label 1 representing the target impervious surface and label 0 denoting other classes. The 

matrix demonstrates a substantial number of true positives, indicating the model's proficiency in detection. 

 

Based on these findings, we can conclude that the model exhibits good capacity to apply learned knowledge 

to new and unseen data. This evaluation provides valuable insights into the model's robustness and its 

accurate performance across diverse geographical regions. 

 

 

Figure 18 Confusion matrix for DOCC 

Figure 19 Detection by the DOCC model 
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5.2 Results and discussion on Deep Multi-class Classification 

 

The Deep Multi-class Classification task involved working with a dataset containing eight distinct classes, 

including the UIS patch. These classes are as follows: 0 - Annual crop, 1 - Forest, 2 - Herbaceous, 3 - UIS, 

4 - Pasture, 5 - Permanent crop, 6 - River, and 7 - Sealake. Each number represents a specific class label. 

The model was built using softmax activation function to handle multi-class classification. To optimize its 

performance, the model underwent fine-tuning with parameters carefully set. A batch size of 32 and 25 

epochs were chosen. Although it resulted in a faster learning process, it proved to be sufficient in achieving 

a good classification performance. 

 

The overall F1 score achieved for the classification task was 0.9862, indicating a good level of performance. 

However, to facilitate comparison, the accuracy of classifying the UIS surface specifically was the focus of 

evaluation. As mentioned earlier label 3 represents the UIS label. The accuracy was computed for the UIS 

class alone with other evaluation metrics. The accuracy for UIS is the ratio of accurately classified to the 

instances which are not identified accurately. The accuracy was about 98 % (from figure 22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 21 Graph on evaluation metrics for each epoch 

Figure 20 Confusion matrix output from second phase of testing 



 

25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The graph in Figure 21 illustrates the F1 score, precision, and recall scores exclusively for the UIS class 

across different epochs. It is evident from the graph that these scores reached their peak shortly before the 

25th epoch. Furthermore, Figure 22 displays the confusion matrix for the overall multilabel classification. 

Specifically focusing on Label 3, which corresponds to the UIS class, we can observe that the multiclass 

classifier accurately identified it with a higher number of true positives. 
 

5.3 Comparison between One-class classifier and Multi-class classifier 

 

One Class Classifiers have proven to be effective in handling imbalanced data (Seliya et al., 2021), making 

them a suitable choice when dealing with applications for detecting a single class. They leverage well-

represented target training data to successfully identify anomalies. On the other hand, multi class 

classification requires training data from each class, which can be challenging to obtain, especially when 

dealing with imbalanced datasets. Despite these differences, both approaches show promising results in 

addressing the classification task. 

 

When comparing the accuracy of classifying the UIS using both classifiers, it was observed that both the 

DOCC and the Deep Multi-Class Classification (DMCC) achieved nearly equal accuracy. The DOCC 

classifier achieved an accuracy of 97.8% for the UIS class, while the DMCC classifier achieved an accuracy 

of 98.6% for the particular UIS label. 

 

Evaluation Metric DOCC DMCC(only for UIS class) 

Precision 0.9713 0.9462 

Recall 0.7470 0.9890 

F1 Score 0.8445 0.9671 

Accuracy 0.9779 0.9862 

 

 

 

Figure 22 Confusion Matrix for multi-class classification                           

Table 3 Evaluation metrics of both DOCC and DMCC 
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The Table 3 presents a comparison of evaluation metrics between DOCC and the UIS class of DMCC. It 

is notable that the precision of DOCC outperforms DMCC, whereas the remaining metrics favor DMCC. 

However, considering the marginal difference between the two, we can conclude that DOCC achieves 

appreciable results comparable to DMCC. Upon comparing the F1 scores of DOCC and DMCC, it becomes 

evident that DMCC exhibits a slight improvement over DOCC. However, it is important to note that 

DOCC's performance is still commendable. Furthermore, the accuracy of both approaches is fairly similar 

to each other. 

 

These results indicate that the DOCC approach as efficient as DMCC in detecting the UIS without heavily 

relying on a large amount of labelled data unlike the multiclass classification approach. Consequently, this 

reduction in the need for labelled data makes it cost and time efficient, making the DOCC approach an 

advantageous choice for the specific tasks like UIS detection. 

 

5.4 Results and dicussion on Comparison of acquired UIS map with existing Global map 

 

As mentioned earlier in the methodology section, we compare the UIS map generated by the DOCC model 

with an existing GISA map which is considered to be better in the current scenario(X. Huang et al., 2022).  

A subset of samples was selected, and some of them exhibited similar quality to the GISA map, as depicted 

in Figure 23. However, the remaining samples displayed lower quality compared to the GISA map when 

assessed visually. Notably, the GISA map exhibited well-defined boundaries of impervious surfaces, such 

as buildings, whereas the UIS map had some inaccuracies in this regard. Nevertheless, in most cases, the 

UIS map produced satisfactory results comparable to the GISA map.  

 

To compare these two maps more accurate metrics like correlation coefficient was employed (X. Huang et 

al., 2022; X. Wang et al., 2022). Based on the calculated values, the correlation coefficient is determined to 

be 0.6268851409, indicating a moderate positive correlation between the two maps. This finding lead to the 

conclusion that there exists a good positive correlation but certain degree of variability between the two 

maps was also observed.  

 

Nonetheless, it is important to note that while the GISA map has been utilized as a validation dataset, it 

cannot be unequivocally regarded as the ground truth, as it is also derived from recent research work. 

However, considering the limited availability of datasets with a 10-meter resolution and good quality, the 

GISA map remains a valuable resource for conducting meaningful comparisons. 
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6. CONCLUSIONS 

6.1 Conclusion 

 

This research was conducted as a creative approach to investigate the dynamics of urban areas and the 

processes of urbanization in cities by developing updated labels for UIS, which provide valuable insights. A 

DOCC model was introduced, utilizing the integrated UIS labels obtained from a combination of remote 

sensing data (i.e., satellite imagery) and VGI. Through the implementation of the DOCC model, the research 

effectively addressed the research questions and analysed the resulting outcomes and findings. 

 

Research Q1. How can the fusion of multiple geospatial data sources enhance the accuracy of mapping UIS? 

(Objective 1)  

 

1.a Which remote sensing data sources are suitable for mapping UIS and why?  

1.b What are the VGI data sources selected for mapping UIS? 

1.c How to use VGI data sources and remote sensing data sources in an integrated way for accurate 

UIS mapping?  

 

The research successfully addressed the aforementioned research question by utilizing freely available 

geospatial data sources such as sentinel 2 satellite imagery, Twitter geotags, and OSM data. A key aspect of 

this study was the development of a simple yet effective pipeline for integrating data from these different 

sources.  

 

Research Q2. How can UIS (target class) be classified without taking other land cover classes into account? 

(Objective 2)  

 

Figure 23 comparison between GISA and UIS at 10 m resolution 



 

28 

2.a How can Deep Learning be used for the One-Class Classification (OCC) approach given UIS 

as the target class?  

2.b What is a suitable architecture for one-class classification for mapping UIS?  

2.c How to prepare dataset for training and testing?  

 

The research demonstrated that employing an OCC approach using deep learning with only a single labelled 

dataset for UIS mapping has a comparable efficiency to a multiclass classifier that relies on a larger labelled 

dataset. This highlights the potential to reduce the need for extensive labelling efforts and associated costs 

for similar classification tasks. The proposed DOCC uses only limited spectral features (red, green, and blue 

bands) in achieving an efficient UIS classification, thus showing the efficiency of the deep feature network 

used in the construction of the DOCC model. Therefore, the suggested DOCC architecture effectively 

addresses the second research question. Furthermore, the DOCC approach presented in this study has the 

potential to be applied to other similar one-class problems.  

 

Research Q3. How to assess and validate the efficiency of the proposed Deep Learning One Class 

Classification architecture? (Objective 3)  

 

3.a How can we consider spatial continuity existence in our dataset in model validation?  

3.b How can we assess the generalization of the built model? 

3.c How can we compare the one class and multiclass classification? 

 

The developed model demonstrated its applicability for global applications, as the process of creating UIS 

labels followed a systematic pipeline that was not limited to any specific location. During the testing phase, 

the model was evaluated using data from EUROSAT, a global dataset spanning various regions worldwide. 

As a result, the evaluation performed on this diverse dataset addresses spatial continuity and generalization, 

taking into account the fact that the data originates from different locations. Spatial continuity refers to the 

model's consistent representation of impervious surface patterns across diverse locations. Evaluating the 

model's performance on the EUROSAT dataset, which contains data from various regions, assesses its 

ability to maintain spatial continuity by accurately identifying impervious surfaces regardless of location or 

geographic variations. 

 

Generalization refers to the model's capacity to apply learned knowledge to new, unseen data. Testing the 

model on the global EUROSAT dataset determines if it can generalize its understanding of impervious 

surfaces beyond the specific training data. This evaluation provides insights into the model's robustness and 

its accurate performance on diverse geographical regions. 

 

Furthermore, the efficiency of the DOCC was evaluated in comparison to that of a deep multi-class 

classifier. The findings of the study indicate that it is both feasible and efficient to map impervious surfaces 

in urban areas using the DOCC approach even with a limited dataset. It achieves a comparable efficiency to 

that of a multi-class classifier.  

 

Furthermore, upon comparing the generated UIS map with globally available impervious surface datasets 

like GISA, it was observed that the UIS map exhibited a significant degree of correlation, albeit with some 

variability.  

 

Thus, this approach overall provides a valuable resource for studying urban ecosystems and processes of 

urbanization using multiple open geospatial data sources. 
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6.2 Research Limitations and future works 

 

The process of selecting tweets in the data processing pipeline can be simplified by using a single kernel or 

buffer instead of two. In the future, there is potential for significant advancements in the data processing 

side by incorporating more sophisticated and intricate methodologies(Fan et al., 2019; F. Huang et al., 2019). 

This study can further be extended by introducing more spectral bands in the deep feature learning phase 

of the DOCC model. Future studies can also explore the incorporation of other data sources, such as 

Synthetic Aperture Radar (SAR) or other VGI data within the same methodology. 

7. ETHICAL CONSIDERATIONS, RISKS, AND 
CONTINGENCIES 

Privacy is a key ethical consideration while handling VGI data(Mooney et al., 2017). Ethical concerns extend 

to areas such as legal liability, responsible use, and data quality(Fleming et al., 2018). The fusion of VGI-

based information with traditional data sources stored in map databases can give rise to liability issues for 

people who handle and rely on digital map (Blatt, 2015). To address privacy concerns, it is crucial to have a 

clear understanding of the license terms associated with open source data, particularly VGI data, and employ 

appropriate strategies to handle privacy issues(Mooney et al., 2017). Protecting the privacy of volunteer 

contributors is of utmost importance for effectively managing OSM data, as it serves as an incentive for 

increased volunteer participation. 

 

To ensure ethical compliance, this study will adhere to OSM's Good Practice guidelines, which are designed 

to promote data quality and reliability(Jaljolie et al., 2022). However, the limited temporal availability of 

tweets, typically spanning 5-7 days, poses a significant challenge in terms of repeatability in Twitter-related 

research(Granell & Ostermann, 2016).Certain methods of processing Twitter data, such as the creation of 

composite data without informed consent, are considered research misconduct(Webb et al., 2017).  

 

Nevertheless, this research does not require access to tweet content or tweet IDs, effectively addressing 

privacy and consent concerns. Furthermore, the handling of Twitter data will strictly adhere to Twitter's 

policy terms and conditions to ensure ethical compliance. 
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Attribute with fields of counts and buffer_count: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Snippet of Evaluation metrics of the DOCC: 

 

 

 

 

 

 

Snippet of Evaluation metrics of the DMCC: 
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Tweets selected after condition 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buffer_2 with 10,000 meters: 
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Comparison between GMIS and UIS at 30 m resolution: 

 

 


