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Model checking is a popular technique to verify (software) systems, where
calculating properties of Markov Models is common practice. Many algo-
rithms exist that achieve this, one of which is state elimination. Optimizing
these algorithms provides more accurate results and more performance. In
this paper we specifically address the underlying data structures for stor-
ing models in memory. We develop a novel data structure, implement it
within the framework of an existing model checker and benchmark it against
a more traditional object-oriented data structure. Furthermore, we evalu-
ate heuristics regarding the elimination order of states. We show that the
data structure used may have a significant impact on performance. Within
the realm of Markov Decision Processes, the problem of transition blowup
emerges which renders a state elimination algorithm unfit without further
optimizations. For Discrete-Time Markov Chains, elimination order has
impact on memory usage. However, the effects of a heuristic are highly
dependent on the characteristics of the model used.

1 INTRODUCTION

A popular technique for verifying the correct operation of (soft-
ware) systems is model checking, which aims to guarantee certain
properties of systems [8]. This is done by defining all different states
the system can be in and the various transitions between those
states. A single state of the system can, for example, be defined by
taking note of the value of all variables within that system as well
as the program counter. Transitions represent events, inputs or the
passing of time. Then, predefined properties are asserted. Starting
from a predefined initial state, is it possible to reach state X? More
complicated questions also play a role: how many steps would it at
best or worst take to reach state Y?

The model can be extended by augmenting it with probabilities.
Each transition gets annotated with a probability. As a result, it is
possible to calculate a new type of property: what is the probability
to reach state Z? This type of property forms the core of probabilistic
model checking and is the subject of this paper. A collection of states
with corresponding transitions based on a probability is called a
Markov chain. An important invariant is that for any state, the sum
of all outgoing probabilities equals 1. Furthermore, Markov chains
are subject to the Markov property which guarantees memoryless-
ness: every decision solely depends on the current state only. In
this paper, the concept of a Markov chain refers to a Discrete-Time
Markov Chain (DTMC) [9]. Within an instance of the model, one
or more goal states are present; properties (such as reachability) of
these states are asserted.

A DTMC may be extended with nondeterminism to obtain a
Markov Decision Process (MDP) [5]. An MDP is able to model pro-
cesses where both (user) choice as well as probabilities are involved.
Figure 1 shows an example of such a model. From the initial state A,
all states can be reached. States C and D are marked as goal states by
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Fig. 2. MDP from Figure 1 with state B eliminated

a double border. Transition c has a probability of 0.9 to reach state
C, and a probability of 0.1 to reach state B instead. These different
destinations are referred to as the different branches of a transi-
tion. Due to the possibility that a state has multiple transitions, the
model is no longer deterministic. State C can be reached directly or
through state B, so we now will calculate a minimum and maximum
probability to reach C instead of the single probability we would
obtain for a DTMC model.

This paper describes and motivates an implementation of proba-
bilistic model checking using the state elimination technique [2] for
both MDPs and DTMCs, with a focus on the latter. First, we intro-
duce the algorithm along with research questions after which we
present related work. We then provide background and definitions,
followed by details about the implementation of a state elimination
algorithm focusing on the areas of data structures and elimination
order heuristics. This implementation is subsequently benchmarked
and we present results along with a conclusion.

1.1 State elimination

This section will further elaborate upon the state elimination algo-
rithm [2]. When given an MDP or DTMC, the initial state as well as
one or more goal states are known. By eliminating non-goal states,
the algorithm results in an MDP or DTMC with only the initial state
along with a set of final states remaining. A state is final when it
is either a designated goal state or possesses a self-loop. The latter
case is considered a non-goal final state; they can not be removed
from the model while preserving probabilities. The primary goal of
elimination is to directly connect the initial state to the final states
with just a single transition. Therefore, after elimination, the desired
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properties can be calculated by examining the transitions between
the initial state and final states.

Elimination of individual states is achieved by first redistributing
the probabilities of any self-loops, if applicable. Each incoming tran-
sition of the state to be eliminated will then be connected directly
to the destinations of outgoing transitions. This process is later
discussed in more detail. An example of the elimination of a single
state can be found in Figure 2.

Compared to other methods like value iteration [10], state elim-
ination has the advantage of being able to produce exact results.
The Storm model checker [7] also makes use of state elimination to
calculate properties of parametric Markov models.

There are also disadvantages to using state elimination. As with
almost every algorithm, speed is an important factor. Depending
on the shape of the MDP or DTMC that serves as input, state elim-
ination can be a very slow process. During the execution of the
algorithm, many lookups and modifications will have to be made to
the in-memory structure that represents the given Markov model.
When these lookups or operations are performed in an inefficient
manner, this can have a significant impact on the overall perfor-
mance.

Furthermore, it is important to realize that regarding the outcome
of the algorithm, the order in which states are eliminated is irrele-
vant. As such, the question arises which elimination order yields
maximum performance.

When applied to MDPs, state elimination suffers from another,
more fundamental, issue. When eliminating any given state, every
incoming transition causes as many transitions to be created as there
are outgoing transitions for that state. Consequently, an exponential
increase in the amount of transitions is observed. Without using
methods to control this blowup, it is not feasible to perform state
elimination on large MDPs. This paper will therefore focus mainly
on DTMCs. As DTMCs are strictly limited to a single outgoing
transition per state, this effect is less prevalent. Section 2 will further
elaborate on this difference.

1.2 Our contributions

Knowing that state elimination inherently is subject to performance
issues, but at the same time can also achieve exact results, we would
like to investigate methods of implementing state elimination as
efficient as possible. The two main avenues of exploration in this
paper focus on the underlying data structure as well as elimination
order heuristics.

This results in the following research questions:

(1) Which data structures facilitate efficient state elimination in
DTMCs?

(2) Which elimination order heuristics improve the efficiency of
state elimination in DTMCs?

The findings obtained while answering these questions may guide
new implementations of the state elimination towards better per-
formance. Section 2 will introduce definitions and provide context.
Sections 3 and 4 will address the research questions about data
structure and elimination order heuristics respectively. Section 5
will provide a conclusion.
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Fig. 3. Example of a DTMC

1.3 Related work

As mentioned, the Storm model checker [7] currently implements
state elimination as well. The algorithm has also already been im-
plemented within the Modest Toolset [4]: it features a regular im-
plementation of state elimination within the mecsta tool [2] as well
as a symblicit implementation [3]. By exploring only a small sub-
sets of states and their transitions at a time during the elimination
process, the symblicit implementation aims to keep memory usage
to a minimum.

2 BACKGROUND

The most basic probabilistic model that is discussed in this paper is
the Discrete-Time Markov Chain (DTMC).

Definition 2.1. ADTMC is a 3-tuple M = (S, I, T) where S is a set
of states, I € S is the initial state and T is a function S X S — [0, 1],
where Vses Ygres T(s,s") = 1.

Here, T denotes the transitions between states in S. Note a transi-
tion does not need to exist. An example of a DTMC can be found
in Figure 3. Note that some definitions include the option to label
transitions. While this paper uses labels for illustrative purposes in
the examples, they serve no purpose in state elimination and are
therefore left out of scope when it concerns the algorithms or data
structures used.

By introducing nondeterminism to a DTMC, an MDP is obtained.

Definition 2.2. An MDP is a 4-tuple M = (5,1, T, B) where S is a
set of states, I € S is the initial state, T is a function S — P(B), B is
a set of functions S — [0, 1] where Vjcp Y ses b(s) = 1.

Note P (B) denotes the powerset of B. By introducing nondeter-
minism we deviate only slightly from the definition of a DTMC.
Instead of a transition heading towards a single destination state, a
transition now may result in multiple branches, each of which have
a certain probability of transitioning into a destination state. Each
item of B represents a collection of branches, which are assigned
as transitions to states via relation T. Multiple items out of B can
be selected for a single state, as states may have any number of
outgoing transitions. Naturally, it is still required that the sum of
all branches of a certain transition is 1.

Note that any DTMC can be easily transformed to an MDP where
each state only has a single transition with its branches correspond-
ing to the transitions the state had in the original DTMC. Therefore,
this state elimination algorithm is able to operate on both model
types.

As it is relevant to this paper, we will also define the concept of
the Dirac self-loop:
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Definition 2.3. Within an MDP, a Dirac self-loop is a transition
with a single branch of probability 1 that points to the originating
state.

To illustrate, in Figure 1, both states C and D posses a Dirac
self-loop.

Now that the models as well as relevant concepts are defined, we
will define the state elimination algorithm. This algorithm is used
for all experiments within this paper and consists of three parts.
First, there is the main function which is included as Algorithm
1. Its goal is to loop through all available states, determine if a
state is in need of elimination, and call the elimination function.
Then, the final property calculation is performed by enumerating
the different transitions and summing probabilities for reaching a
goal state. Based on the value of the max parameter, probabilities
to not reach a goal state may be summed instead.

Algorithm 1: Main function

Input: S, I, goal, is_max
for state € {s € S|s # I, s # goal} do
‘ eliminate_state(state)

o=

3 end

'S

redistribute_loops(init_state)
if max then

[

6 ‘ result « 0

7 else

8 ‘ result « 1

9 end

10 for transition € I.transitions do

11 localResult < 0

12 for branch € {b € transition.branches|b ¢ {goal,I}} do
13 ‘ localResult < localResult + branch.probability
14 end

15 if is max = localResult > result then

16 ‘ result < localResult

17 end

13 end

9 return result

=

The elimination function is defined in Algorithm 2 and is respon-
sible for eliminating a single state. Assumed is that Dirac self-loops
are completely removed beforehand and states that have a Dirac
self-loop are instead annotated with the dirac property.

Eliminating a state relies on a function that redistributes self-
loops, which is defined in Algorithm 3. This function will reassign
the probability of individual branches of all outgoing transitions of
a state so that there are no branches anymore that loop back to the
state the transition originates from.

3 DATA STRUCTURE

The data structure used when implementing the above state elimi-
nation algorithm is a crucial factor in performance. From reading
the given pseudocode, a few characteristics and common operations
are be visible. Notable, for example, is that states themselves are not
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Algorithm 2: State elimination algorithm

Input: state
1 func eliminate_state()

2 redistribute_loops(state)

3 for t;, € state.incoming_transitions do

4 p « tip.get_branch_to(state).probability
5 for tyy,; € state.transitions do

6 tnew < Transition(source = state)
7 for b € tiy.branches do

8 if b.target = state then

9 ‘ continue

10 end

11 tnew-add_branch(b)

12 end

13 for b € tyy;.branches do

14 b.set_probability(p)

15 tnew-add_branch(b)

16 end

17 tin.source.add_transition(tpey)
18 end

19 end
20 state.remove_outgoing_transitions()
21 end

Algorithm 3: Redistribution algorithm

Input: state
1 func redistribute_loops()

2 for outgoingTransition € state.transitions do

3 branches «— outgoingTransition.branches

4 P — Ybebranches|b.destination=state b-probability

5 for branch € {b € branches|b.destination # state} do
6 ‘ branch.probability « —bmnc}lf_r;bablmy

7 end

8 end

9 end

modified. No states are added and upon elimination merely all tran-
sitions coming from and going towards the state will cease to exist.
On the other hand, transitions are subject to a lot of modifications
as well as backwards lookups (figuring out incoming transitions for
a certain state).

Keeping this in mind, we designed a data structure that aims to
efficiently deal with these operations. This should result in better
performance characteristics than a naive object-oriented approach.
First, we will explain our novel data structure (3.1) after which we
analyze the time and memory complexity (3.2). Finally, the perfor-
mance of the novel structure is compared to a naive object-oriented
approach (3.3 and 3.4).
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3.1 Design and implementation

The data structure proposed in this paper consists of a set of arrays
which contain all information about the MDP at hand. These arrays
have a length based on the amount of branches present, which varies
throughout execution of the algorithm. Taking n as the amount of
branches and s as the amount of states, the four arrays are named,
typed and sized as follows:

e branch, type long, minimum size 4n

e probability, type double, minimum size n
® goal, type boolean, minimum size s

e dirac, type boolean, minimum size s

Within this paper, we use the long data type to represent state
indices to comply with practices already in use within the Modest
Toolset, which is later used as a framework for implementation.

In the branch array, a single branch is represented by four indices.
This could be effectively implemented using, for example, a struct.
Transition information is encoded within these branches as well.
Every branch contains the following properties:

e The index of the source state
o The index of the target state
e An identifier to match this branch to a transition
e Pointer to the next branch belonging to the state

States are never explicitly stored in the data structure. This is not
required as states are not subject to any modifications and therefore
an implicit definition is sufficient. Regarding states, we assume the
first branch of state with index i is at position 4i within the branches
array. Each state therefore has a very specific slot somewhere near
the start of the array.

Furthermore, it should be noted that states are not independent ob-
jects within the data structure. Every transition has an identifier—a
unique integer with the sole purpose of telling the different transi-
tions apart. In the branches array, for each branch the corresponding
transition identifier is stored.

The probability array stores for each branch the given probability.
Given that a branch is a 4-tuple within the branch array, a branch
which has its first element at index i in the branch array will have
an assigned probability at i/4 in the probability array.

Two pieces of state-level information are still to be stored. First,
there needs to be a mechanism to keep track of goal states. The goal
array provides this mechanism, simply indicating with a boolean if
a state is a goal state. The index within the goal array corresponds
to the index of the state, meaning that index i within the goal array
corresponds to a state which has the first element of the first branch
in position 4i of the branch array.

Figure 4 provides a visualization of the layout of the four arrays.
The corresponding MDP is drawn in Figure 5.
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Fig. 4. Visualized layout of arrays in the novel data structure

Fig. 5. MDP depicted in Figure 4

The operations the data structure is capable of performing were
identified and resulted in the interface below.

long[] GetTransitions(long state);
Pair <double, long >[] GetBranches(long transition);
void SetBranchProbability (
long transition ,
long targetState ,
double newProbability
)s
Pair <long, long >[] GetIlncomingTransitions (
long state
)s
void RemoveTransition(long transition);
void AddTransition (
long source,
Pair <double ,long >[] branches
)s
bool InitialOrGoal (long state);
bool IsDirac(long state);

Notable compromises that were made include the choice to repeat
the source state throughout every branch. While this does result in
a duplication of the information over all branches of a transition, it
allows for a faster determination of the source state when working
with incoming transitions.

With this structure, the branches array represents a linked list. Ar-
ray access generally is fast and hence this structure ensures travers-
ing branches of a transition is performant.

Two remarks should be made regarding filling and modifying the
branches array. As demonstrated, updating branches and transitions
is a very common operation when performing state elimination.
During the process of elimination, the amount of branches as well as
transitions may exceed far beyond the original amount of transitions
or branches. At times, it is thus required to update the size of the
array. The implementation from this paper multiplies the size of
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the arrays with 1.5 every time more space is needed. Secondly, one
of the advantages of using a linked list this way is that insertions
are efficient. To ensure optimal use of the available memory, it is
strongly recommended that the implementation keeps track of spots
that are freed up due to the deletion of branches. When inserting
new branches, those free spots can then be used. Care must be taken,
however, that a spot reserved for the first branch of a state due to
its position in the array must naturally not be used for a branch
belonging to a different state.

3.2 Complexity analysis

In this section we will provide a complexity analysis of both the
novel data structure presented in Section 3.1 as an object-oriented
approach. We address both time and memory complexity.

Assumed array access has a time complexity of 1 and both longs
as well as doubles take 8 bytes to store.

3.2.1 Novel data structure

Based on the operations the data structure needs to support, we can
identify four main categories of operations. These are the retrieval,
update, deletion and addition operations.

Retrieving data. When a state is given, we may want to retrieve
transitions and their branches or incoming transitions. Assuming
the state has n transitions, then retrieving all of them including
branches requires n array accesses since we can traverse the linked
list starting from the index that belongs to the targeted state.

Looking up incoming transitions for a certain state is likely the
most expensive operation we can perform within the data structure
as it requires us to loop over the entire array once. This is unfortu-
nate since we need to perform this operation often and is therefore
likely to form a bottleneck within the algorithm.

Updating and deleting transitions. Updating a transition—or, in
other words, setting its branches—as well as deleting a transition
have the same time complexity. The main and only challenge is
to find all branches of the transition within the array. Assuming
the state the transition belongs to has n branches in total for all
transitions combined, this will on average take 7 array lookups. At
worst, it will take n lookups.

Note that the performance of this operation therefore mainly
depends on the average amount of branches per state, and not the
amount of states.

Adding transitions. To add a transition to a state, we must locate
the last branch belonging to the state within the array. Building upon
the previous paragraph, this will always require n array accesses
where n is the total amount of branches the state already has.

Memory complexity of the structure. Each branch uses 4 * 8 = 16
bytes within the branches array and 8 more in the probability array,
totaling 24 bytes. A computer with 16 GB of memory would therefore
be able to work with up to about 666.000 branches. The amount of
states or transitions has no influence on memory usage. This is an
advantage to an object-oriented approach as that will suffer from
the overhead of creating separate objects for states and transitions,
which take up space in memory.
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3.2.2 Object-oriented approach

When using a detailed representation of the state space as ob-
jects in memory, operations become more straightforward as more
bookkeeping is being done: when, for example, keeping track of in-
coming transitions on state objects, it is now much easier to produce
a list of incoming transitions for a certain state. However, both the
bookkeeping as well as the individual operations do require extra
work and therefore result in worse performance when compared to
simple array accesses.

The object-oriented approach also requires more memory. The
exact amount of memory is hard to determine as it will vary much
depending on the runtime used, but in general we can conclude that
each object has some overhead when stored in memory. We will
need objects for both states, transitions and branches as well as all
extra information we store such as incoming transitions; they all
have a memory footprint.

3.3 Experiments

We benchmarked aforementioned data structure in order to evalu-
ate its performance. Prior to benchmarking, we implemented the
algorithm. The Modest Toolset [4] served as a good basis for imple-
mentation due to already having support for a wide range of model
input formats, a built-in benchmarking tool and in general a solid
framework for dealing with probabilistic models such as DTMCs
and MDPs. The existing toolset is written in C#, and so was this
algorithm.

Not only was the aim to benchmark the novel data structure
introduced in this paper, but a comparison is also deemed desirable.
Therefore, the same algorithm has been implemented using a more
naive object-oriented approach.

To reconcile the two approaches and make accurate benchmark-
ing possible, an interface was constructed first. This interface con-
tains all methods required to manipulate the given MDP and was
then implemented twice allowing for object-oriented variant along-
side the novel data structure. The interface implements the methods
exactly as specified in Section 3.1.

The models used for the benchmarks originate from the Quanti-
tative Verification Benchmark Set [6]. We listed the models we used
for the experiments in Table 1. For MDPs, we selected two models
small enough to be completed by the algorithm in a reasonable
amount of time. For DTMCs, we selected all available models with
a P property from the set.

We also included the haddad_monmege DTMC not only because
it is part of the benchmark set, but also because it is an especially
interesting case due to it being specifically designed to highlight
issues with convergence when using value iteration [1]. While value
iteration algorithms tend to produce incorrect results for this model,
state elimination algorithms are expected to produce an exact result.
Our algorithm does so, though when N > 54, incorrect results are
still produced (presumably due to floating-point rounding errors).

While benchmarking data structures, no use was made of any
elimination order heuristic. This paper will later study different elim-
ination order heuristics. The arbitrary heuristic eliminates states
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based on insertion order within the state space. This is a determin-
istic order, in each run and on both data structures, states where
eliminated in exactly the same order.

We used the mobench tool, which is embedded into the Modest
Toolset, to solve each model in Table 1 three times using both the
novel data structure presented in Section 3.1 as well as a naive
object-oriented data structure.

Experiments have been conducted on a 2020 MacBook Pro (macOS
Ventura, Intel i5 104" generation 2 GHz quad-core) with 16 GB of
RAM. A timeout of 10 minutes was used.

3.4 Results

We present benchmark results in Table 2. For each model, the aver-
age amount of seconds over the three runs is listed. Not all runs did
complete within the maximum amount of time.

On all DTMC instances, our novel approach performed better
than or equal to the object-oriented approach. The object-oriented
approach was unable to solve the larges instances within the timeout,
while the novel approach was able to do so. However, the results also
indicate that when working with MDP models, the novel approach
can be slower, up to 22% at the cdrive model.

Table 2. Benchmark results for data structures

Model Object-oriented | Novel
cdrive 415s 529s
triangle_tireworld 6.7s 23.2s
haddad_monmege 1.1s 1.1s
coupon 5.1s 5.0s
leader_sync 3.6s 3.5s
brp 3.3s 2.4s
crowds 57.8s 20.6s
egl Timed out 317s
nand Timed out 220s

4 ELIMINATION ORDER HEURISTICS

The given state elimination algorithm produces correct results no
matter the order in which states are eliminated. The elimination
order can, however, impact memory usage of the algorithm. After all,
more transitions and therefore more branches require more space in
memory. This can easily be demonstrated by fully randomizing the
elimination order and running the algorithm a few times. Substantial
differences in time to completion can then be observed, though every
result will still be correct. This is illustrated by Figure 6.
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Fig. 6. Evolution of number of branches when eliminating states in a random
order, 4 runs, using the brp model

4.1 Implementation
We will use the following heuristics for benchmarking:

o max_trans (for MDPs)
max_branch (for DTMCs)

e min_trans (for MDPs)
min_branch (for DTMCs)

e in/out (referred to as io)

For DTMC:s, focus is placed on branches while for MDPs focus is
instead placed on transitions. This has to do with the representation
of the different models in memory: a DTMC is simply an MDP
where every state has exactly one transition and many branches. The
amount of branches affects memory usage and performance and is
hence an interesting factor. With MDPs we expect potentially many
transitions per state, each of them not containing a disproportionally
large amount of branches. Hence, with MDPs transitions are the
more interesting metric.

When using the max and min heuristics, priority is given to either
states with respectively the most or least branches or transitions.
The io heuristic calculates a value for each state. This value is based
on the number of incoming as well as outgoing transitions. They
are multiplied, and states with the highest value are eliminated first.

Definition 4.1. The value of a given state is the number of its
incoming transitions multiplied by the number of its outgoing tran-
sitions.

As with the data structures, we established an interface to repre-
sent a certain heuristic. The interface is structured as follows:

long Next ();
bool Done();
void EventlInit(long stateCount);

void EventTransitionAdd(long transition, long state);

void EventTransitionRemove (
long transition ,
long state

)s

void EventTransitionUpdate (long transition);
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Table 1. Models used, along with their types and parameters

Model Type Parameters Target # of states
cdrive MDP c=2 goal 38
triangle_tireworld | MDP =9 goal 80
haddad_monmege | DTMC N =50,p=0.7 target 101
coupon DTMC N =5 DRAWS=2,B=5 collect_all 4.155
leader_sync DTMC N=5K=4 eventually_elected 4.244
brp DTMC N =64, MAX = 5 pl 5.192
crowds DTMC | TotalRuns = 6, CrowdSize = 5 positive 15.233
egl DTMC N=5L=38 unfairA 115.123
nand DTMC N=20,K=2 reliable 154.942
The Next() method provides the next state to eliminate based - cdrive (MDP)
on the heuristic. The Done() method can be used to determine if
there exists a next state. Furthermore, the heuristic possesses a few 81 r - :?::
methods that get called when events that mutate the model occur. io
This allows for the construction of a more efficient heuristic, since N arb

any changes in the desirable order can be processed immediately.

4.2 Experiments

In order to analyze aforementioned heuristics, we will run the elimi-
nation algorithm using all of them while continuously collecting the
number of branches and transitions. These numbers are collected
after each elimination and can therefore be visualized in a graph
that plots the number of states eliminated against the total number
of branches and transitions.

On top of the three heuristics introduced in this section, for com-
pleteness we also plot the arbitrary heuristic (arb). This is the same
heuristic used in Section 3.

We will benchmark a selection of models from the benchmark
set introduced in Section 3. Findings will be reported in the next
section, where we focus on interesting characteristics of the graphs.

Especially when dealing with MDP models, due to a large increase
in the amount of transitions, some models may not be able to finish
within a reasonable amount of time. We take a 10 minute timeout
into account, terminating every run that does not finish within the
timeframe. The same hardware is used as listed in section 3.3.

4.3 Results

The results of the experiments are represented in graphs in Figure 7
(for MDP models) and Figure 8 (for DTMC models).

For the MDP models, not all simulations were able to finish. Only
the arb and io heuristics for the cdrive models finished computing
within the given timeframe. Other heuristics were unable to contain
an exponential blowup of transitions.

For DTMC:s, less of an exponential effect is observed. All models
finished computing well before the timeout. In the three models
shown, max generally was the most optimal heuristic. It is, how-
ever, very difficult to generalize that statement as the min heuristic
illustrates: it is the optimal heuristic in two cases, but the worst
heuristic in the crowds model.

The io heuristic performs poor on the coupon model, average on
the crowds model and best on the leader_sync model.
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Fig. 7. Heuristic benchmark results for MDP models

The leader_sync model produces a remarkable graph; all four
heuristics follow the same path. We observed the same effect when
benchmarking the haddad,,onmege model.

Other models, such as the brp model produced graphs similar to
the coupon and crowds models.

5 CONCLUSION

By making use of models from the Quantitative Verification Bench-
mark Set [6] we demonstrated that when implementing an algorithm
for state elimination, the underlying data structure can have a sig-
nificant impact on performance. We conducted experiments that
compared a novel data structure against a more traditional and



TScIT 39, July 7, 2023, Enschede, The Netherlands

le3 leader_sync (DTMC)
5 —— max
. —:= min

4 1 io
s | TNl e arb
=
2]
=
B
= 27

1 -

0 -

0 1 2 3 4
le3
1e3 coupon (DTMC)
A
6 N t
4

£ k
S
g
5
S
=]
H*

led crowds (DTMC)

# of branches

states eliminated

Fig. 8. Heuristic benchmark results for DTMC models

naive object-oriented implementation. The novel implementation is
inspired by operations the state elimination algorithm frequently
performs and tries to refrain from any unnecessary bookkeeping an
object-oriented approach entails. We implemented the novel data
structure within the framework of the Modest Toolset [4]. Results
show a considerable improvement in performance for DTMCs when
using our novel approach. For MDPs results are inconclusive, with
the two models that we benchmarked performing better using an
object-oriented approach.

The inability from drawing conclusions around MDP models
stems from performance issues caused by the phenomenon of tran-
sition blowup when eliminating states from MDPs. We illustrated

MARK BOOM

how the amount of transitions within an MDP will grow exponen-
tially when the state elimination algorithm is applied. We must
conclude that without further optimizations regarding this issue,
state elimination is not a viable option for MDPs.

The second part of the paper investigated several heuristics that
can be applied to the elimination order of states. Three heuristics
were investigated. The heuristic orders states by the amount of tran-
sitions or branches. We developed both a minimum and maximum
approach as well as an approach where a value was calculated based
on the product of incoming and outgoing transitions and branches.
For DTMCs, the number of branches is used as a metric instead
of the number of transitions due to the fact that within a DTMC
each state possesses exactly one transition with many branches. In
this experiment, we show that heuristics have a significant effect
on the amount of transitions and branches generated and thereby
potentially influence memory usage of the algorithm. We were un-
able to identify a single heuristic that yields a positive effect on
every model, indicating the applicability of heuristics depends on
the characteristics of the model.

State elimination algorithms are one way to perform probabilistic
model checking. An advantage compared to other methods like
value iteration is the ability of state elimination to compute exact
results. When implementing such an algorithm, care must be taken
to carefully select a data structure that fosters performance. When
dealing with MDPs, extra caution is advised and in general it should
be assumed that state elimination is not a viable option. For DTMCs,
where state elimination is a more successful strategy, heuristics
regarding elimination order play a role in the amount of memory
used. The effects of heuristics, however, may differ strongly based
on the characteristics of the model used.

5.1 Future work

While this paper explores state elimination for both MDPs as well
as DTMCs, we clearly illustrated that a naive state elimination algo-
rithm is not able to handle MDPs of moderate sizes due to transition
blowup. Further research could focus on methods to contain this
blowup by combining transitions as they are being created. Addition-
ally, the newly developed data structure could be further improved,
especially regarding the currently expensive operation of looking
up incoming transitions.
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