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Preface

This paper is a bachelor’s assignment of the study Applied Mathematics at the University
of Twente. The subject of this assignment is crowd modeling. This field of research is
inspired by the behaviour of starlings in flocks, bu this paper will focus on the behaviour
of humans in crowds.

In this paper a model is proposed based on the Buckingham π-theorem. After long hours
of modelling and coding, this is the result. I hope you enjoy reading it as I have enjoyed
writing it.

I would like to thank my supervisor Gjerrit Meinsma for his help and ideas about the
subject and specifically the idea for using the Buckingham π-theorem to determine an
equation that can be used for crowd modelling.
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Abstract

The title ’Crowd Modelling: Simulating the Evacuation of Pedestrians’ pretty much
summarizes the essence of the report. The goal of this report is to make a dynamic
crowd model that does not produce "bouncing" effects like [2]. Each individual in
the crowd has to abide by three rules: do not get too close to your neighbours, keep
a distance from objects and walls and walk a regular pace towards the exit. In the
model this translates to accelerations that guide people. It is assumed that these ac-
celerations can be summed to obtain the total acceleration. The motion is described
by differential equations.

The inspiration for this paper is the Buckingham π-theorem. The acceleration can
be expressed as a differential equation of velocity and position. The most important
result of this paper is that with dimensional analysis using the Buckingham π-theorem
produces a realistic model, but it has its limitations.

Further research will mainly focus on flow time (time it takes for everyone to reach
the exit). How do different floor plan designs affect the flow time of the simulation?
It can seen that the width of the door influences the flow time. Also adding an extra
exit decreases the flow time. However, adding an obstacle in front of the exit to create
two separate queues for the exit, does not seem to influence the flow time at first, but
after changing some parameters it does improve the flow time.
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1 Introduction

The goal of this bachelor’s assignment is to create a crowd model in which people accelerate
and decelerate based on their velocity, position and surroundings. Furthermore, it is the
aim to find out how the shape and design of a room can influence the flow of a crowd.
Effective crowd evacuation is very important for the safety of pedestrians is public spaces,
but also, though less of a priority, it can save time and prevent "traffic" jams.

Crowd modeling is a well-researched and widely discussed topic. In 1987, Craig Reynolds
was one of the first researchers to propose a model on the behaviour of birds in a flock,
where he calls the bird-like objects "boids", [4]. Many researchers have followed since then,
and research on this topic is still ongoing. Most of these studies are based on some basic
principles. For example, birds are modeled according to three basic rules. By using these
rules, it is possible to simulate a large flock of birds that displays almost the same pattern
as real birds. This indicates a reasonable assumption of the three basic rules. The first
rule is that birds like to stay close to each other as they are social animals. In addition,
birds do not want to collide, so they keep a certain distance. The last rule assumed is that
every bird prefers to fly at the same speed as the rest of the flock. Birds change direction
by banking, which means that their wings remain in line, and their speed does not change
when making a turn.

Modeling humans can be done in a similar way, although there are some differences. First
of all, it is assumed that humans do not really work together in a group, so they do not
necessarily have the urge to stay close to each other. In some situations, this is the case,
but in most cases, a person will do what is best for themselves. Therefore, human crowds
are seen as a group of individuals. The second rule does apply to humans, as they try to
avoid collisions. The third rule is also similar, as each person has a desired speed. As a
situation becomes more and more chaotic, the desired speed will increase, and everyone
wants to get out of the room or hallway as quickly as possible. Additionally, humans are
modeled in a space with walls and other stationary obstacles, which must also be avoided
in order to prevent collisions.

One way of modelling a human crowd can be found in [2]. Simulating a massive crowd in
a small room at first seems to produce reasonable results. But when taking a closer look
it shows that the people keep bouncing of each other, which is not realistic at all.

This paper proposes an alternative model based on the physical dimensionality property,
as per example 4.7 in [3]. This bachelor’s assignment aims to analyze this model and to
extend it to crowds in venues with walls and other stationary obstacles.

This is not the first paper to do research on crowd evacuation. Still, a good argument can
be made for the importance of this research. The problem with crowd modelling is that it
is (at least for now) impossible to make a completely realistic model. However, if multiple
different models all have roughly the same conclusion, then it might not matter that much
if it is not completely realistic. By studying an alternative way of modelling a crowd, the
results of previous crowd models can be taken more seriously. So, there remains enough
useful research in this field.

The research question and sub question of this paper are a follows:
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"Is the model based on the Buckingham π-theorem realistic?"

"How can a floor of a building be designed such that a crowd of people can leave through
the exit doors as quickly as possible?"

In remainder of this paper both questions are aimed to be answered via simulations and
data. But first, an explanation of the model is required.
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2 Dimensional and scaling analysis

Imagine that a person is walking towards a wall. If that person wants to avoid walking
into the wall, he might want to apply a certain acceleration in order to brake. It will now
be demonstrated how the acceleration can be expressed as a function of the velocity and
position.

The acceleration ẍ is assumed to be a function of position x and velocity ẋ. With respect
to x and t, the dimensional matrix of this expression is as follows:

x(t) ẋ(t) ẍ(t)

x 1 1 1
t 0 -1 -2

The null-space of this matrix is spanned by (1, -2, 1). By the Buckingham π-theorem, the
expression is equivalent to the dimensionless quantity below. Moreover, if the acceleration
follows only from the velocity and position, and no other variables, the Buckingham π-
theorem states that any policy that determines ẍ at any time t must be of the following
form. [3]

[
x(t) ẋ(t) ẍ(t)

]

1
−2
1


=

ẍ(t)x(t)

ẋ2(t)
.

This quantity is unique, since ẍ(t) is assumed to follow uniquely from ẋ(t) and x(t), hence

ẍ(t) = c
ẋ2(t)

x(t)
, c ≥ 0. (2.1)

Here c is a constant without dimensions.

Equation (2.1) solves for ẍ at any moment in time. So, if someone were to push this person
into another state (x, ẋ), (2.1) provides the correct solution for this new state.

2.1 Deceleration constant

In (2.2) the deceleration constant c is used to condition how fast a person decelerates.
Interestingly, if c = 1/2, a constant acceleration is applied.1 Similarly, we might want to
choose c = 1/3 in case we want a constant power ẍẋ(t) to be applied.

Figure 1 shows the consequences of varying the value of c.
1By separating ẋ2, ẍ(t) = ẋ2(t)/x(t) becomes ẍ(t)/ẋ(t) = ẋ(t)/x(t). Integrating that over t yields

ẋ(t) = αxc(t) for some constant α. It then follows that ẍ(t) = α2cx2c−1(t). Therefore ẍ is constant iff
c = 1/2.

5



(a) Time to wall with c ≤ 1. (b) Time to wall with c > 1.

Figure 1: The time until a person reaches the wall for different values of c. The
starting distance is 5 m and the initial speed is 1 m/s.

It is hard to show but figure 1 shows that for c < 1 the wall is reached within finite time,
whereas for c ≥ 1 the wall is approached but never reached.

2.2 One dimensional model

Say now we want to simulate people walking in a line towards some exit, now a person
might have the brake for a moving person in stead of a wall. In case a person is nearing a
moving object such as another person, equation (2.1) changes.

Wall
A B C

Figure 2: People in a 1 dimensional space walking towards a wall

We obtain the following formula for a person i walking into person j.

ẍij = −c

(
ẋi − ẋj

)2
|xi − xj |

. (2.2)

This acceleration only needs to be applied to person if2 xj > xi and ẋj < ẋi. In figure 2
person B will react to person C if C is going slower than B and B will react to the wall.

2Since the wall is on the right and the starting point x = 0 is on the left.

6



Person B will, however, not consider person A, since xA < xB.

The next section proposes a two dimensional model based on (2.2).
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3 Pedestrian model

In this section a two dimensional model will be described. The model is in two dimensions,
since humans cannot move up and down.

3.1 Model description

In this model people are modelled as circles with radius r, and the number of people is
denoted with n. In the model, variables x, ẋ and ẍ denote the position, velocity and
acceleration of a person respectively, where x, ẋ, ẍ ∈ R2. The movement of a person will
be described as the sum of accelerations caused by different factors:

ẍi = ẍi.exit +
K∑
k=1

ẍik.wall +
n∑

j=1

ẍij , (3.3)

where ẍi.exit is the acceleration that pushes the people towards the exit, ẍik.wall is the
acceleration due to wall k, k = 1, . . . ,K and ẍij is the acceleration caused by person j,
j = 1, . . . , n and j ̸= i.

In (3.3) it can be seen that multiple accelerations influence the movement of a person. It
is assumed that a person abides by three rules. Firstly, a person does not want to bump
into other people. Secondly, a person prefers not to hit a wall. And lastly, people want to
reach the exit with a desired speed.

5 meter

5
m

et
er

Wall 1

Wall 2

Wall 3

Wall 4

Wall 5

Figure 3: The simulated room which is 5 m by 5 m. The exit is in the middle of
the right wall with width 1 m. Each circle represents a person with radius r.

To abide by those three rules, this model states that accelerations should be applied and
summed according to (3.3). These accelerations will now be highlighted, but note that
these accelerations are only active when it is required. Later in this section it will be
shown when these equations become active in the simulation.

3.1.1 Avoiding the walls

One of the rules is that a person wants to avoid bumping into a wall. From (2.2) the
following acceleration is derived that is applied to a person i = 1, . . . , n in order to not hit
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a wall k = 1, . . . , 5.

ẍik.wall = −c
||ẋik||2

||dik||
dik

||dik||
. (3.4)

In (3.4) dik is defined as the distance vector from person i to wall k, i.e. dik = xik − xi,
where xi is the position of person i and xik is the projection of xi on wall k.

Furthermore, ẋik is the relative velocity of person i with respect to wall k. It is defined as
ẋik = ⟨nk, ẋi⟩, where nk is the normal vector of wall k pointed inward.

Moreover, the dimensionless constant c is used from section 2.

The direction of the acceleration is perpendicular to and away from the wall.

3.1.2 Avoiding neighbours

The last part in the sum of equation (3.3) is given by ẍij . This acceleration is defined for
each individual in (3.5).

ẍij = −c
||ẋi − ẋj ||2

||xi − xj ||
dij

||dij ||
. (3.5)

In (3.5) dij is the distance vector from person i to person j, defined by dij = xj − xi.
Equation (3.4) and (3.5) are quite similar, since they are both based on equation (2.2).

3.1.3 Steering towards the exit

One of the other wishes of the people is to reach the exit. Each person has a desired speed
at which they prefer to walk. This acceleration is modelled by ẍi.exit and is given by the
following equation. [2]

ẍi.exit =
1

τ

(
vi.0

xexit − xi

||xexit − xi||
− ẋi

)
(3.6)

In (3.6) two constants are included, namely vi.0 and τ . The first denoted the desired speed
of a person i, i = 1, . . . , n. The latter is the so called time characteristic, more will be
explained in section 3.1.4.

3.1.4 Time characteristic

In equation (3.6) a time characteristic τ is used to control how fast a person reaches its
desired speed. Figure 4 demonstrates the change in behaviour for different values of τ . In
figure 4, (3.6) is simulated in one dimension to showcase the effect that τ has. Equation
(3.6) in one dimension is just

ẍi.exit(t) =
1

τ

(
vi.0 − ẋi(t)

)
.
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Figure 4: Speed progression for different values for the time characteristic τ .

We see that there exists an exponential relation between ẋ and τ . Also, for larger values
for τ , it takes the person longer to reach its desired speed.

3.1.5 Panic

Besides simulating a crowd in a regular situation it is important to simulate a crowd in
an emergency. When people start to panic their patience reduces and their desire to reach
the exit increases.

One way to simulate panic is by changing the desired speed in the direction of the exit
according to the degree of panic. This means that the acceleration towards the door in-
creases when people start to panic. This can be modelled by varying the desired speed vi.0
in equation (3.6) in time.

The desired speed can be determined per time interval by a "panic parameter" pi(t). In
[2] it is defined as per equation (3.7).

pi(t+∆t) = 1− ||ẋi(t)||
vi.0(t)

(3.7)

In this formula pi(t) indicates that panic level of person i at time t, where 0 ≤ pi(t) ≤ 1
by construction.3 According to the formula pi(t) increases when the speed decreases, and
it goes to zero when people reach their desired speed. However, the desired speed is also
dependent on the panic level, since people want to walk faster when they are panicking.
In [2] the desired speed is calculated as follows.

vi.0(t+∆t) =
[
1− pi(t)

]
vi.0(0) + pi(t)vi.max (3.8)

3||ẋi(t)|| cannot exceed vi.max
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The initial desired speed is denoted by vi.0(0) and the maximum speed is given by vi.max.

Equations (3.7) and (3.8) make sure that the desired pace increases as the time it takes to
exit the room increases. The level of panic grows and shrinks proportionate to the waiting
time.

3.2 Motion model

From the previous subsection we know the different accelerations that influence a person’s
course. That means that the movements of person i can now be computed.

d
dt

[
xi(t)
ẋi(t)

]
=

[
ẋi(t)
ẍi(t)

]
. (3.9)

Equation (3.9) is a state representation of the model, where ẍi is calculated in equations
(3.3), (3.6), (3.4) and (3.5).

To make the computation more efficient, the movement will be modelled discretely. At
each time step ∆t the current position xi and velocity ẋi of person i are calculated. Using
equation (3.9) the following equating is implemented for the simulation:

ẋi(t+∆t) = ẋi(t) + ẍi(t)∆t (3.10)
xi(t+∆t) = xi(t) + ẋi(t)∆t (3.11)

3.2.1 Potential collisions

An important question remains: When will a person collide? It is important for a person in
the simulation to know when a potential collision is feasible, so it can activate the required
acceleration.

It is easily derived when a person is going to hit a wall. If the distance is rather small and
the relative velocity ẋik is negative, the person will want to steer away from the wall. In
other words, (3.4) is activated for the respective wall. But when is a person going to collide
with another person, i.e. when must a person steer away from or break for another person?

Wall

ẋ

ẋx

ẋy

Figure 5: A person (circle) is going to hit the wall.

First of all, an individual will obviously not react to the movements of another at the other
side of the room. So we must set a radius R for each person. If a person or obstacle comes
within the circle with radius R, the person might have to react. Otherwise no acceleration
needs to be applied.
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Furthermore, a person will only slow down for or move away from a person if he or she can
see him. The visual span of the human eye is approximately 120◦ [1]. However, there is
also that what we call peripheral vision, which means that humans can sense objects and
movement at a range from 200◦ to 220◦ [5].

Now there are two cases left, namely when two individuals come close to each other but
do not collide, and of course when two individuals are on a collision course. But how does
one decide whether they are on a collision course or not?

Say two people are both walking, person A and person B, where A is the ’walker’ and B
is seen as the obstacle. They both have a certain velocity. It is assumed that A is able to
see B. Now we want to check whether A and B are on a collision course or not. This is
possible by doing some simple trigonometry.

A

B

I

SA

SB

||dAB||

α

β

γ
ẋA

ẋB

ẍAB

ẍBA

Figure 6: The paths of person A and B intersect.

See figure 6. The first step is to compute angles α and β. There is a distance vector
between the two persons denoted by dAB, where dAB = xB − xA. From that and the two
velocities ẋA and ẋB we can calculate α and β with equation (3.12) and (3.13).

α = cos−1

(
ẋA · dAB

||ẋA||||dAB||

)
. (3.12)

β = cos−1

(
ẋB · dAB

||ẋB||||dAB||

)
. (3.13)

In equations (3.12) and (3.13) dAB is the distance vector from point A to B.

In the case that4 α+ β < 180◦, we now have a so-called angle-side-angle triangle. We can
calculate sides SA and SB in equation (3.15). But first we calculate γ in equation (3.14).

γ = 180◦ − α− β. (3.14)

Now we can compute the sides:

SB

sinα
=

SA

sinβ
=

||dAB||
sin γ

. (3.15)

4Otherwise A and B do not converge.
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These sides represent the distance each person has to walk in order to reach the intersec-
tion of paths, denoted by I. A collision occurs when they both reach this intersection at
roughly the same time. This is all dependent on the speed (absolute value of the velocity)
of each person.

Person A knows their own speed. We can calculate an interval of speeds for person B such
that A and B collide or come uncomfortably close to each other. First we must calculate
the time until A reaches the intersection and then we can compute interval. The formula
for both these problems is given in equation (3.16).

s = vt. (3.16)

Here s is the distance, v is the speed and t is the time.

The interval can be computed by taking s ∈ [SB − (r + r∗), SB + (r + r∗)], where r∗ is
the distance people want to keep away from other people, and t from having computed the
time it takes A to reach I. With those s’s and t’s, the interval of v’s is computed.

If person ||ẋB|| falls within that interval, A must apply an acceleration ẍAB given by equa-
tion (3.5), otherwise it will collide with person B. If B’s speed does not fall within that
interval, there will be no collision and therefore no acceleration need to be applied.

Similarly, B will also sense a collision and must also react, in the case that they are able
to see A.

It becomes more complicated when there are more than two people. Then a person might
have to change course for multiple different people. The accelerations will be added up as
per equation (3.3).

3.3 Assumptions

Before the model can be simulated a few assumptions have to be made clear.

• Humans cannot apply infinite force, so there must be a limit on the acceleration.
According to the article "Will Humans Ever Be Able to Outrun A Car?" by Rilind
Elezaj, Usain Bolt accelerates at a maximum of 8 to 10 m/s2. Assuming that in
the simulation we do not have any Olympic athletes and no-one is sprinting, the
maximum acceleration is given by a, where a = 3 m/s2.

• The radius of a person is r = 0.25 m.

3.4 Obstacles

In this paper the influence of obstacles is also being researched. More specifically, we will
add a pillar to the simulation on different coordinates. It will now be describes how a
person interacts with a pillar.
First of all, a person must know if it is going to collide with the pillar.
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α

||dAB||

SA

SB

ẋA

A

B

A’

y

Figure 7: A person (grey) waling towards a pillar (dark grey).

See figure 7. If the angle between ẋ and dAB is smaller than α, we can see that the person
will run into the pillar. If that is the case, the person must take action.

For optimal efficiency, the person wants to steer away from the pillar such that it just does
not run into the pillar. In figure 7 this is shown by the circle with the dashed outline.
A’ is the position that person A wants to steer to, such that it does not hit the pillar.
Therefore an acceleration must be applied to push the person in that direction. The
following equation describes the acceleration.

ẍi.pillar = −c
||ẋi.relative||2

||di.pillar|| − ri − rpillar

yi

||yi||
(3.17)

First of all, ẋi.relative is the relative velocity5 of person i with respect to the distance to the
pillar. Furthermore, yi is the direction vector that is perpendicular to ẋi, defined as:

yi =

[
0 1
−1 0

]
ẋi if ẋi is below di.pillar. (See figure 8.)

yi =

[
0 −1
1 0

]
ẋi if ẋi is above di.pillar.

And rA and rB denote the radii of the person and pillar respectively.
5In figure 7 ẋA.relative is the projection of ẋA onto dAB , where dAB = xB − xA.

14



5 meter

5
m

et
er

Wall 1

Wall 2

Wall 3

Wall 4

Wall 5

Figure 8: The simulated room which is 5 m by 5 m. The exit is in the middle of
the right wall with width 1 m. Each circle represents a person with radius r = 0.25
m. A pillar (black circle) with a radius of rpillar = 0.5 m is added 1.25 m in front
of the exit.

As a result equation (3.3) now becomes

ẍi = ẍi.exit +
K∑
k=1

ẍik +
n∑

j=1

ẍij + ẍi.pillar. (3.18)
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4 Results

After the model is finished it is time to make simulations. This section provides the results
obtained from the simulations. Moreover, the validity of the model is checked and it is
shown how a change in choice for the parameters affects the model.

For the simulations the room is always 5 m by 5 m. If not specified, the width of the exit is
1 m. The simulations will be done for different number of people, but that will be specified
with the result. Finally, for every instance, the simulation will be run 10 times, since the
initial positions of the people are random. Furthermore ẋi = 0 for every i = 1, . . . , n.

4.1 Validation

A model has to be validated in order to confirm whether it is realistic. The best way to do
this is by comparing the results of the model to field data. For this project, however, that
is not possible. Therefore the only comparison that can be made is with the expectations
of human behaviour in a crowd.

In section 3 three important things were highlighted for a crowd model: do not collide with
walls, do not collide other people, walk towards the exit. This model seems to do all those
things well. People make way for other people and all move towards the exit at the same
speed. It is clear from the simulations that people try to avoid the walls and other people.

This model is also a relatively smart model: people change their path in order to not
collide. In that sense it is a realistic projection of real life. However, it seems that people
will give way too much for other people even in panic situations, whereas one could expect
people would rush to reach the exit.

4.2 Analysis of different floor plans

In this section the sub question "How can a floor of a building be designed such that a
crowd of people can leave through the exit doors as quick as possible?" will be answered.
There are three specific instances that are researched. The first is how the width of the
exit influences the flow time. The second is whether adding a pillar in front of the exit
somehow influences the flow time. Finally, it will be researched what happens when the
door is split in two, such that there are two exits in the same wall.

4.2.1 Variation of door width

Intuitively, the bigger the door, the more people can fit through, the shorter the flow time
is. This reasoning is not hard to believe. However, nothing can yet be said about the exact
effect in door width. This paragraph will showcase the influence of the width of the exit
on the flow time.

The door width ranges from 80 cm to 2 m. The optimal flow time would of course occur
when we take a much larger width, but that is not realistic in building design. For these
simulations the intitial positions are completely random.

As expected, the flow time increases as the door becomes less wide. However, the flow
time does not decrease by much when the door is wider than 1.6 m.
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Figure 9: Flow time for different widths of the exit door where the maximum and
minimum flow time is also shown. The simulation was done in a room of 5 m by 5
m. Here, ∆t = 1/20, n = 10, τ = 1, vi.0(0) = 1 m/s for all i, R = 2 m, r∗ = 0.5 m
and c = 0.5.

4.2.2 Addition of a pillar

Since obstacles and walls exert forces on individuals, the design of the space plays an
important role in the flow time of people. There are many variations in space design,
some more efficient than others. An example of this is placing a pillar in front of the exit.
This could reduce the pressure on the exit, potentially decreasing the flow time. In this
paragraph, this is tested using the model explained in section 3.
By using a pillar, a dual exit is created in a sense that people go through the exit from two
different sides. The influence of the pillar’s placement on the flow time will be examined.
Only the x-coordinate of the pillar is varied (this is the distance from the exit to the pil-
lar). The distance is varied from 0.75 m to 2 m and is compared to a simulation without
a pillar. For the simulations, the people start at random positions close to the leftmost
wall (furthest away from the exit) such that they all have to avoid the pillar. This way the
influence of the pillar can be best seen. The results can be found in figure 10.

There does not seem to be any influence of the pillar, especially with the door width set
to 1 m. When the width of the door is 1.5 m it is even the case that the flow time slightly
increases with the addition of a pillar. This might be due to the fact that people cannot
walk in a straight line to the exit anymore. They have to go around the pillar. That means
that the relieving effect on the exit is not as significant as before speculated.
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(a) Door width is 1 m in these simulations.

(b) Door width is 1.5 m in these simulations.

Figure 10: Flow time for different positions of a pillar to the exit door where the
maximum and minimum flow time is also shown. The simulation was done in a
room of 5 m by 5 m. Here, ∆t = 1/20, n = 10, τ = 1, vi.0(0) = 1 m/s for all i,
R = 2 m, r∗ = 0.5 m and c = 0.5.

4.2.3 Addition of an extra exit

Instead of using a pillar to create a sort of dual exit, why not actually make two exits? By
adding an extra exit, the pressure on one exit is halved. Intuitively this must decrease the
flow time. In this section the effect of two exits on the flow time will be shown. The two
exits are always on the same wall, but they will be placed at different distances from each
other, ranging from 0.5 m to 3 m. In figure 12 the doors are placed 1 m apart. Both doors
are 1 m wide.

For these simulations the people start at random positions close to the leftmost wall.
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Figure 11: The simulated room which is 5 m by 5 m. The rightmost wall contains
two exits of 1 m in width, placed 1 m apart. The circles represent people with
radius r = 0.5.

As can be seen in figure 12, the spacing between the two exits is not of great influence.
However, there is a small peak when the distance is 2 m and 2.5 m. Comparing the results
from figure 12 to the results from figure 9 it can be seen that two separate exits does not
decrease the flow time as much as making one bigger exit.

Figure 12: Flow time for different between the two exits where the maximum and
minimum flow time is also shown. The simulation was done in a room of 5 m by 5
m. Here, ∆t = 1/20, n = 10, τ = 1, vi.0(0) = 1 m/s for all i, R = 2 m, r∗ = 0.5 m
and c = 0.5.

There does seem to be an improvement when the exits are spaced 3 m apart. This is
because the exits now border the top and bottom wall which means that people can only
come from one side. As a consequence, there is less of a queue at the exit.
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4.3 Variation of the deceleration constant

For the results above, it was chosen that c = 1/2. In this section, it will be shown what
happens when c is chosen to take on a different value.

In figure 13 it can be seen that the flow time is significantly higher for c = 1/2 than for
other values of c. The higher the value of c, the quicker a person brakes. An explanation
for the results in figure 13 could be that for c = 1/4, the people decelerate very little and
push themselves through the exit, and for c = 1, 2 it could be due to the fact that a higher
deceleration constant results in more space at the exit, which reduces a congestion at the
exit.

Figure 13: Flow time for different values of c where the maximum and minimum
flow time is also shown. The simulation was done in a room of 5 m by 5 m. Here,
∆t = 1/20, n = 10, τ = 1, vi.0(0) = 1 m/s for all i, R = 2 m and r∗ = 0.5 m.

In section 4.2.2 it was suggested that adding a pillar in front of the exit might reduce
the congestion at the exit, but, against expectations, it turned out this is not the case.
However, this was only simulated for c = 1/2. It is interesting to see what will happen for
the pillar simulation when c = 1. Since the people are more cautious, more space should
be created which could give the addition of a pillar the desired effect.

Figure 14a shows that the flow time reduces significantly when the pillar is place around
1.25 m in front of the exit. This is the result that was expected in section 4.2.2. In figure
14b it is less easy to see the influence of the distance, but it somewhat agrees with the
data from the graph above it. However, at no position does the pillar reduce the flow time
compared to the simulation with no pillar when the door is 1.5 m wide. When the width
of the door is 1.5 m, the congestion at the exit is not that big to start with, hence the lack
of decrease in flow time.
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(a) Door width is 1 m in these simulations.

(b) Door width is 1.5 m in these simulations.

Figure 14: Flow time for different positions of a pillar to the exit door where the
maximum and minimum flow time is also shown. The simulation was done in a
room of 5 m by 5 m. Here, ∆t = 1/20, n = 10, τ = 1, vi.0(0) = 1 m/s for all i,
R = 2 m, r∗ = 0.5 m and c = 1.
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5 Discussion

Most of the time the simulation looks realistic. There are instances, though, where the
model does not seem to produce a realistic simulation. In this section, some of the limi-
tations of the model are highlighted and discussed, as well as some problems encountered
along the way for which a solution has been found

5.1 Collisions and behaviour at the boundaries

Firstly, it is of course important that people cannot move through the walls. In the first
few simulations people would avoid all the walls perfectly, except at the wall where the
exit is located. This is due to ẍi.exit. To make sure that does not happen, the state
representations below are implemented.{

xi(t+∆t) = projwall(xi(t));

ẋik.wall(t+∆t) = 0.
(5.19)

These formulas are only used if a person happens to be outside of the room without having
gone through the exit. In (5.19) the first equation says that the position of person i should
be projected onto the wall such that the person finds itself inside the room again whilst not
jumping to a completely different position. In the second equation ẋik.wall is the relative
velocity6 of person i.

Furthermore, when the model was first simulated, the people would sort of morph into
each other (as in the distance between the two mid points of the people would be smaller
than their combined radii), and they would walk towards the exit that way (stuck while
morphed into each other). This is of course very non-realistic. To get rid of that, an extra
acceleration was implemented.

ẍij = −c
dij

||dij ||
, if ||dij || < ri + rj . (5.20)

Here, dij is the distance vector from the mid point of person i to the mid point of person
j, and ri and rj denote the radii of i and j respectively.

After implementing this solution people are still slightly morphing into each other, but
they quickly push each other away. Still, this may not be the most realistic representa-
tion of a human crowd, since people in real life cannot physically move into each other’s
bodies, but it does give the idea of people of being squashed against each other. It is de-
liberately chosen not to implement the same solution as for the walls, because that would
result in a simulation where people bounce off of each other, which is not the desired result.

When a person bumps into a pillar, however, a different method was implemented as to
not have people morph into the pillar. The following state representations make sure that
people cannot move through the pillar.

xi(t+∆t) = xpillar − (ri + rpillar)
di.pillar

||di.pillar|| ;

ẋi(t+∆t) = 0; if ||di.pillar|| < ri + rpillar.

ẍi.pillar(t+∆t) = −c yi
||yi||

(5.21)

6The relative velocity with respect to a wall is the projection of ẋi onto the normal vector of the
respective wall.
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In (5.21) di.pillar denotes the distance vector from xi to xpillar, and yi is a direction vector
defined as:

yi =

[
0 1
−1 0

]
ẋi if xi is below xpillar;

yi =

[
0 −1
1 0

]
ẋi if xi is above xpillar.

This is not a smooth solution, since ẋi abruptly goes to 0. The difference with how
Helbing’s model [2] works is that the model described in this paper does not bounce of
the pillar whilst keeping the same speed. In the simulations, when people hit the pillar,
they do not travel back the way they came from, but accelerate away from and around the
pillar.

5.2 Two people heading straight for each other

See figure 15 and recall section 3.2.1. If two people are heading straight for each other,
that is α = β = 0◦, γ = 180◦, (3.15) produces an error in the simulation caused by dividing
by zero. Therefore, if that is the case, the steps laid out in section 3.2.1 can be skipped.
If two people are directly headed for each other, it is obvious that they will collide, hence
(3.5) shall be applied, in figure 15 these accelerations are depicted by the dashed arrows.

ẋi ẋj
ẍij ẍji

Figure 15: Two people i (left) and j (right) are directly headed for each other.
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6 Conclusion

How can a floor of a building be designed such that a crowd of people can leave through
the exit doors as quickly as possible? That was one of the research questions of this paper,
and the one most easily answered, since it can be concluded from section 4.

The results showed a decrease in flow time (the time it took until everyone had left the
room became shorter) when the door was made wider. The decrease is large ranging from
a width of 0.8 m to 1.5 m, whereas even wider exits did not decrease the flow time signifi-
cantly. It was then simulated how adding a pillar in front of the exit would influence the
flow time. It can be concluded that for c = 1/2 it did not seem to affect the time at all,
while for c = 1 it improved the flow time rather significantly for certain distances to the
exit. Finally, it was researched what adding an extra exit would do. Based on the results,
it did a lot better than adding a pillar, but compared to the wider doors, the flow time
was still much larger. Also, the distance between the two exits does not matter according
to the data.

To answer this question, a wider door is the best strategy to decrease flow time according
to this model.

Is the model based on the Buckingham π-theorem realistic? That is the main research
question of this paper. This one is harder to answer, since there is not empirical evidence
to support the case. Though based on sections 4.1 and 5, it can be concluded that the
model has its limitations and is therefore not completely realistic. It does, however, abide
by the three rules mentioned in section 3.1, and based on that, the model does exactly
what it is meant to do, disregarding of its flaws.
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7 Recommendations

Unfortunately, since this is a bachelor’s thesis, the time spent on this paper is limited. For
that reason some ideas were not able to be researched or implemented. In this section a
few of these ideas will be highlighted so that they may be looked at and perhaps used in
future research in crowd modelling.

7.1 Prioritising

In the model, the acceleration of a person is determined by a sum of different accelera-
tions each caused by a specific person or object. The consequence is that the resulting
total acceleration does not guarantee that the person will not hit for example a wall or a
neighbour. This problem could be fixed by setting priorities.

What that means is that, instead of summing all different acceleration in order to obtain a
total acceleration, the acceleration is determined by what obstacle is closest to the person,
and only taking that specific acceleration. That way it can be guaranteed that the person
does not bump into its closest obstacle.

There might be some faults in prioritising. For example, if a person only focuses on one
obstacle, it could become blind to other obstacles. A consequence is that the person will
not be able to react in time. Another thing that could happen is that the person will steer
away from an object and than get too close to another object and steering back and forth
and so on. This would create not per se a bouncing effect, but something similar, which is
not realistic.

7.2 Sensitivity analysis

In sensitivity analysis, it is examined how sensitive the model is to small changes. If a model
yields significantly different results when constants and variables are slightly altered, it may
indicate that the model is not valid. Additionally, this analysis reveals the outcomes when
certain variables are varied. In this paper is has already been shown how variation in c
influences the simulations, but there are still some parameters that could be examined.
The expectation is that the varying these parameters will not influence the outcome a lot,
the model will still work the same way. However, it is always better to support this with
actual data.

7.2.1 Increasing n

One parameter that is interesting to examine is the total number of people n, especially
increasing n. The flow time will of course increase with more people in the simulation.
What is unknown however, is whether the simulation will change a lot now that one person
is affected by more people than before.

7.2.2 Varying vi.0 and vi.max

It could be interesting to see how the desired speed affects the simulations. The assumption
is that a higher value for desired speed correlates to panic, which has a negative affect on
the flow time, that is it will take the crowd longer to leave the room.
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7.2.3 Varying ẋi(0)

Finally, for all the simulations people started from rest. It has not been researched if
the simulations change significantly if a different initial speed is chosen. There are many
variations possible. For example, each person i = 1, . . . , n could have a random value for
ẋi(0).
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