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Modern manufacturing facilities are increasingly utilizing industrial Internet
of Things networks, these networks enable various machines and devices to
establish connections, thereby enhancing operational efficiency. One crucial
aspect of these types of networks is the ability to predict machine operations
allowing them to optimize schedules and improve overall productivity.

This research paper will explore a novel idea of utilising Channel State
Information in Industrial Internet of Things networks for the purpose of
predicting the operational state of machines, specifically distinguishing
between the set-up, active, and off states. Additionally, this research aims
to explore optimal node positioning for the machine used and assess the
impact of the environment on the model’s accuracy.

To aid in this research, data is gathered from an industrial setting through
uplink channels. The Channel State Information phase is utilized, and a
Convolutional Neural Network is employed to analyze this information. The
network classifies the collected data and predicts the state of the machine.
To evaluate the effectiveness of the proposed approach, the approach is
evaluated on average testing accuracy, precision, recall and f1-score.

The findings demonstrate that the states can be accurately classified with
an accuracy close to 90%. The optimal node position for this experiment is the
southeast position relative to the machine. Furthermore, the study confirms
that the environment has an influence on the experimental accuracy.

Additional Key Words and Phrases: WiFi Channel State Information (CSI),
Industrial IoT (IIoT), Convolutional Neural Network(CNN)

1 INTRODUCTION

The Fourth Industrial Revolution (4IR) represents the integration
of previous revolutionary eras, encompassing physical and digital
domains. This latest generation has exerted a profound impact on
numerous industries worldwide, fundamentally reshaping their op-
erational frameworks. Simultaneously, the advent of the Internet of
Things (IoT) has emerged alongside the 4IR, giving rise to the In-
dustrial IoT (IIoT), a convergence that synergizes the technological
advancements of 4IR with the capabilities of IoT. The advent of the
Industrial Internet of Things (IIoT) has opened up new possibilities
for establishing a wireless network that connects IoT sensor devices.
This network enables the seamless collection of data from these de-
vices to collect data continuously and share it over the network for
the purpose of maintenance [2]. Later this data could be processed
to detect if there is any problem with the machines in the lab.
The emergence of wireless communication technologies in IIoT,

allows CSI to be used in IIoT. CSI encompasses signal scatter, environ-
mental attenuation, and distance, and also functions as a reference
signal for characterizing wireless communication link attributes [6].
CSI demonstrates remarkable stability with minimal environmental
impact and delivers satisfactory outcomes [7].
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Even though there has been research on CSI used in IIoT[3],
there is little to no literature on how CSI can be used in finding
machine states(off, set-up, and on) in an industrial environment.
According to the author’s best knowledge, the experiment has never
been attempted, hence there is a gap between the theory behind the
paper and the reality of the results and how achievable they are.

Machine operation prediction in IIoT networks may benefit from
CSI data to a number of benefits. First of all, it sheds light on the
machine’s physical surroundings by capturing the impacts of inter-
ference, obstacles, and multipath propagation. Second, since CSI
data is easily accessible through the wireless communication in-
frastructure, it may be collected without requiring extra sensors
or gear. This enables scalable and affordable implementation in
already-existing IIoT systems.

This study aims to explore the utilization of CSI within an indus-
trial context to predict the operational state of machines (off, set-up,
and on) and determine the optimal placement of Nodes to maximize
accuracy. The methodology employed for data collection draws in-
spiration from the experiment conducted by Anbalagan et al. [1].
To effectively analyze the collected data, a Convolutional Neural
Network (CNN) will be utilized, inspired by the work of Begave et
al. [1], who achieved high accuracy in motor speed classification
using this type of deep learning algorithm.

The findings of this experiment demonstrate that the CNN model
can achieve accuracies nearing 90% across two of the three Nodes
in both controlled and uncontrolled environments. This allows for
the differentiation of optimal Node placement and evaluation of
the method’s resilience in crowded environments. The primary
contribution of this research is to showcase the practical application
of CSI data for predicting machine states within an industrial setting.
The rest of the paper is organized as follows, Section 2 presents

an overview of available literature related to CSI works. The exper-
imental setup and the data acquisition are discussed in Section 3.
The methodology employed for data analysis is elaborated upon in
Section 4. Moving forward, Section 5 presents the results and dis-
cussion, providing a deeper understanding of the implications and
significance of the findings. Section 6, outlines potential avenues
for future research. Lastly, Section 7 presents the conclusion of the
research.

2 RELATED WORK

To the author’s best knowledge identifying machine states using
CSI data is a novel idea, hence why there is no referenced literature
on the exact concept.

As mentioned in the previous section, CSI can be used as a refer-
ence signal to describe the characteristics of a wireless communica-
tion link [5], and it can providemore stability and less environmental
disturbance while still yielding satisfactory result rates.
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While CSI has been successfully used in conjunction with CNN
to classify speeds in small motors, it has been observed to be sensi-
tive to small variations in speeds under ideal network conditions
[2]. Additionally, the application of this technique in an industrial
environment remains an area for future exploration [2]. This study
differs from the mentioned experiment in two key aspects: the use
of a metal lathe machine in a metal laboratory setting with con-
trolled and uncontrolled environments instead of small motors in a
controlled environment. Nonetheless, the study provides valuable
insights into preprocessing techniques to reduce data complexity
and the use of a CNN model with the collected data.

Anbalagan et al. [1] conducted an experiment that closely aligns
with the present study, investigating the effects of macro processes
(e.g., operation shifts) and micro processes (e.g., machines with
rotating components) on RSSI. Their experiments took place in
the same metal workshop, and the machine used in this study was
one of the machines they investigated. However, they focused on
monitoring downlink data instead of uplink data. Their findings
demonstrated that machine operation in a factory-like environment
significantly influences the reliability of the IIoT network, resulting
in a 16% variation in the packet reception rate of a node [1].
The main difference between their study and the present one

lies in the focus on different metrics. While Anbalagan et al. [1]
examined RSSI and downlink data, this paper focuses on CSI.

The results of Ghany et al. [5] demonstrated that CSI fingerprint-
ing performs better than RSSI in terms of positioning and temporal
stability, showing that it can be used to monitor macro processes as
well.

Another notable application of CSI is the detection and classi-
fication of human activities. Damodaran et al. [4] showed that it
is possible to detect and classify activities such as walking, sitting,
standing, and running using CSI data. By combining the findings
of Damodaran et al. [4], Bagave et al. [2], and Ghany et al. [5], it
can be inferred that CSI can be utilized to identify micro and macro
processes in an industrial environment, creating a more similar
experiment to that of Anbalagan et al. [1].

3 EXPERIMENTAL SETUP AND DATA ACQUISITION

The experiment took place in one of the metal workshops at the
University of Twente in The Netherlands. This workshop serves as a
resource for university personnel and students to utilize machinery
for their experiments during regular working hours on weekdays.
The specific machine used for this experiment was a metal lathe
with dimensions measuring 1.5m x 0.5m. To ensure safety, only
individuals possessing the appropriate license were permitted to
operate the equipment. Therefore, the experiment was conducted
on two separate days when supervised access was granted.

Ideally, the workshop should have been empty or, at the very least,
for individuals to be as far away as possible from the network setup
in order to obtain the most desirable and unbiased results. On one
of the designated experiment days, the workshop was indeed empty,
allowing for the acquisition of the desired data under controlled
conditions. However, on the other day, the workshop was crowded

with people using various machines, which affected the accuracy of
the experiment.

Normally metal lathe machines are commonly used for sharpen-
ing metallic workpieces. However, due to time constraints and the
complex calculations involved in metal sharpening, it was deter-
mined that this task fell outside the scope of the project. Therefore,
it was decided to proceed with the experiment by allowing the
machine’s "engine" to spin without any attached metal. This config-
uration was essential to facilitate the active phase of the experiment
and gather relevant data.

In order to effectively capture the required data, a WiFi network
was established around the machine. The network consisted of four
Asrock NUC box-1220p devices as nodes, with one node dedicated to
data transmission and the other three for reception. The experiments
were performed at a 6GHz subcarrier frequency. For the communi-
cations, an injection mode setup was utilized, which allowed the
transmitter to control the size of the packets, sampling rate, data
rate, number of packets, and channel number for communication.
The nodes were positioned on one of the four edges of the ma-

chine. These nodes were installed using three stools and one wooden
drawer, arranged according to the configuration depicted in Figure1.

Fig. 1. Experimental setup.

The placement of the nodes was carefully chosen to ensure op-
timal data collection of CSI packets. The main objective of the ex-
periment was to investigate the correlation between the CSI phase
with the three distinct machine states: setup, active, and off. These
states corresponded to three distinct classes, labelled 0, 1, and 2,
respectively. The key difference between the active state and the
other classes was the presence of vibrations at varying frequencies
during proper machine operation. To accurately simulate these vi-
brations, different speeds were utilized since the machine did not
have a metallic rod.
For the off classes, two datasets were collected each day, with

varying time durations of 3-4 minutes. During this time, the machine
was switched off, and efforts were made to keep people away from
the network setup. For the setup class, a person stood between
Nodes 2 and 3, as depicted in Figure2. The data collection time for
this class was the duration required for the person to set up the
machine and transition it from an off-state to a ready-to-operate
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state. Consequently, the dataset for the setup class was the smallest
among the three classes.

Regarding the active class, two datasets were collected each day,
with durations of 3-4 minutes at different speeds. Similar to the off-
class, precautions were taken to prevent people from entering the
network area during data collection. Subsequently, all the collected
data were divided into sections of a quarter of a second for further
analysis.

Fig. 2. Different position of notes, where R represents the Receiver

4 METHODOLOGY FOR DATA ANALYSIS

4.1 Preprocessing of the data

In the data preparation phase of the experiment, several steps were
undertaken before inputting the collected CSI phase data into the
classification network. The initial step involved extracting the phase
information from the CSI packets, which consist of two sections:
magnitude and phase. The phase component was chosen due to its
higher sensitivity to small vibrations compared to magnitude.
Subsequently, the data was divided into three sections, one for

each receiver, and further, split into classes: "off," "set-up," and "ac-
tive". To ensure sufficient data for processing and enhance the accu-
racy of the CNN model, the data were segmented into sections of a
quarter of a second. Furthermore, a bandpass filter was applied to
the data.
Each node in the experiment comprised three antennas, two for

transmitting and one for receiving. Each CSI packet contained data
from 52 sub-carriers, forming a matrix of dimensions 52 sub-carriers
x 2 transmitting antennas x 1 receiving antenna. Furthermore, arrays
of the format (x, 52, 2, 1) were created, where ’x’ denotes the amount
of data collected during the experiment’s duration. The sampling
frequency used in the experiment was 200 Hz.
To ensure improved accuracy of the model and an adequate

amount of data for processing, images were generated for the CNN
by resizing the matrices. The resizing dimensions were determined
as the sampling frequency (200 Hz) multiplied by the time span of a
quarter of a second (0.25 sec) multiplied by the dimensions (52 x 2).
Consequently, the resulting image shape was 50 x 52 x 2. This trans-
formation aimed to provide a more comprehensive representation
of the data for the CNN model.

In order to assess the reliability of the data, we meticulously
examined the packet arrival rate. Our findings indicated that the
observed packet arrival rate aligned with our initial expectations.
In order to reduce noise and enhance the network’s accuracy, a

bandpass filter was applied to all the classes (off, set-up, and active).
The purpose of this filter was to eliminate human activities and
environmental frequencies above the machine’s vibrations. The
chosen frequency range for filtering was from three to forty-two, of
which three represent human activity frequencies, and forty-two
corresponds to the maximum desired frequency from the machine.
The value of forty-two was determined by dividing the machine’s
maximum spinning speed (2500) by 60 seconds and rounding up to
the nearest integer, resulting in the frequency that will be filtered
out.
Following the bandpass filter, a data normalization process was

implemented to eliminate data redundancy and reduce processing
time. The normalization technique involved scaling and adjusting
the pixel values of the data. Scaling normalization ensured that each
image was appropriately scaled within its own range, standardizing
the values within each image independently. Pixel-level normaliza-
tion further standardized the pixel values across the entire dataset,
facilitating improved comparison and analysis.

4.2 Model Architecture

In order to prevent overfitting and monitor the training process, a
k-fold cross-validation technique with five folds was utilized. Addi-
tionally, to ensure that the model was tested with unseen data, 20%
of the data was randomly set aside as a separate test set to evaluate
the training accuracy.
For this experiment, three models were developed, each with a

different number of convolutional layers: two, three, and four. The
network architecture that yielded the best results was the one with
three convolutional layers. The model with four layers proved to be
too deep and complex for the given problem, leading to overfitting
even with various techniques applied to mitigate the issue. The two
and three-layered models were comparable, but the one with three
layers ultimately produced better results. Further discussion about
the two and three-layered networks will be presented in the results
and discussion section.
To provide a visual representation of the model, refer to Figure

4 and Figure 3 for the summary. Each convolutional layer in the
model utilizes a kernel size of (3,3). This size is commonly used in
CNN architectures as it is small enough to capture local patterns
and edges in the input data while keeping the number of parameters
manageable. Using small filter sizes in multiple layers allows the
network to capture more complex patterns by stacking multiple
non-linear transformations on top of each other.
The model incorporates leaky ReLU as the activation function,

with a negative gradient of 0.3. Leaky ReLU helps avoid the problem
of "dead ReLU" by introducing a small negative gradient, ensuring
that the network continues to learn even for negative inputs. Addi-
tionally, a MaxPooling layer is included to down-sample the features
with parameters of (2,1). This downsampling operation reduces the
height of the feature maps by a factor of 2 while keeping the width
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unchanged. This approach allows for the capture of important fea-
tures along the vertical axis while maintaining resolution along the
horizontal axis.
To prevent overfitting, a dropout layer with a value of 0.8 is in-

cluded in the network. Dropout randomly sets a fraction of input
units to 0 during training, which helps prevent the model from
relying too heavily on specific features and promotes better gener-
alization.
After the convolutional layers and dropout layer, the data are

flattened. This flattening operation connects the output of the con-
volutional layers to dense layers, enabling the network to learn
high-level features and make predictions based on the extracted in-
formation. Following flattening, there are two dense layers. The first
layer is an Exponential Linear Unit (ELU) layer with one hundred
neurons, which incorporates L1 and L2 regularization with values
of 0.1 and 0.3, respectively. The ELU activation function introduces
non-linearity to the network and aids in capturing complex patterns
in the data. Although the model could have used Rectified Linear
Unit (ReLU), leaky ReLU and ELU were employed to avoid the dead
ReLU problem by introducing a negative gradient.

L1 regularization helps minimize overfitting by adding a penalty
to the loss function. This penalty encourages some coefficients to
become zero, effectively removing less important features from
the model. By reducing the number of features, the model avoids
memorizing noise or less significant patterns in the training data,
resulting in improved generalization and reduced overfitting.
L2 regularization also mitigates overfitting and enhances model

performance by introducing a penalty that discourages the model
from relying too heavily on a few features. Finally, the network
concludes with a SoftMax dense layer with three neurons, corre-
sponding to the three states being classified.

5 RESULTS AND DISCUSSION

In the upcoming section, the testing outcomes, including precision-
recall and F1 scores, will be presented for the uplink data of the CSI
phase collected on day one and day two. Additionally, the rationale
for choosing the three-convolutional layer network over the two-
layered network will be discussed.

5.1 Model comparison
By comparing Figures 5 and 6 with Figures 7 and 8, we observe
that the average accuracy during training is slightly higher when
employing a three convolutional layer network as compared to a two
convolutional layer network. However, it is important to note that
higher accuracy alone does not necessarily indicate the superiority
of one model over the other. The next step involves evaluating
whether any of the models exhibit overfitting or underfitting and
then comparing precision, recall, and F1 scores.

Throughout the training process, both models demonstrate simi-
lar loss values, with the two-layered model displaying slightly lower
accuracy. However, neither model shows signs of overfitting or un-
derfitting. By comparing Table 1 and Table 2 with Table 3 and Table
4, it becomes evident that the three-layered network consistently

Fig. 3. Summary of the Network.

Fig. 4. Visualisation of the Network.

Fig. 5. Box plot of the two convolutional layer Day 1.

yields better results compared to the two-layered network. Hence,
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Fig. 6. Box plot of the two convolutional layer network Day 2.

the three-layered network is selected as the preferred model for this
experiment.

5.2 Nodes position
It is worth noting that the sameCNNmodel is used for both days, and
its performance varies when confronted with unseen data during the
testing phase. The results clearly indicate that the model’s accuracy
is influenced by the position of the node as well as the activities
occurring in the laboratory.

As mentioned earlier, each node is associated with three classes:
"set-up" represented by 0, "on" represented by 1, and "off" repre-
sented by 2. The positions of each node are depicted in Figure 2.
The following figures present the average testing values for the data
collected on both days, while the tables provide precision, recall,
and F1 scores for each class of every node.
On the first day, the data collection was conducted to assess if

there were any discernible differences in the results without con-
sidering the positions of the nodes. As depicted in Figure 7, Node
1 and Node 2 exhibit similar average accuracies, both close to 80%.
This suggests that their positions are good candidates for collecting
data compared to Node 3, which has an average accuracy of 60

Fig. 7. Box plots of the average testing accuracy of Day 1 collection.

Moving on to the second day, as shown in Figure 8, Node 1 demon-
strates significantly higher accuracy compared to any other node in
the experiment, with an average close to 95%. This notable increase
can be attributed to a person walking through the network and us-
ing the machine in front of the monitored machine. It appears that
the signal from Node 1 was monitoring the experimental machine,
the person, and possibly the machine that the person was working
on. Node 2 achieves an average accuracy close to 90%, while Node
3 has an average of 75%, making it the least favourable position
among the three.

Fig. 8. Box plots of the average training accuracy of Day 2 collection.

Furthermore, by referring to Table 3 and Table 4, Node 2 exhibits
scores similar to Node 1, and in some cases, it even outperforms
Node 1, making Node 2 the most suitable node among the Nodes
for this experiment.

Table 1. Precision-Recall-f1-score Day 1 collection(2 Conv layers).

Node 1
Precision Recall f1-score

0 0.78 0.80 0.79
1 0.68 0.48 0.56
2 0.68 0.86 0.76

Node 2
0 0.69 0.60 0.64
1 0.47 0.60 0.53
2 0.79 0.68 0.73

Node 3
0 0.40 0.41 0.41
1 0.47 0.21 0.30
2 0.42 0.64 0.51

To conclude, the highest accuracies were observed when using a
model with three Convolutionary layers. Referring to Figure 2, the
machine’s engine is located on the line between point R and point
1. It is noteworthy that Node 3 consistently exhibited the worst
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Table 2. Precision-Recall-f1-score Day 2 collection(2 Conv layers).

Node 1
Precision Recall f1-score

0 0.67 0.75 0.71
1 0.95 0.58 0.72
2 0.76 0.97 0.85

Node 2
0 0.89 0.75 0.81
1 0.79 0.91 0.85
2 0.97 0.97 0.97

Node 3
0 0.59 0.69 0.63
1 0.54 0.72 0.62
2 0.72 0.36 0.48

Table 3. Precision-Recall-f1-score Day 1 collection(3 Conv layers).

Node 1
Precision Recall f1-score

0 0.83 80 0.81
1 0.65 0.84 0.73
2 0.71 0.80 0.75

Node 2
0 0.82 0.90 0.86
1 0.74 0.57 0.65
2 0.71 0.8 0.75

Node 3
0 0.70 0.46 0.56
1 0.45 0.62 0.52
2 0.70 0.67 0.68

performance. This outcome was expected because the path from
Node 3 to the receiver has limited interaction with the machine,
resulting in minimal changes in the CSI phase. On the other hand,
Nodes 1 and 2 demonstrated similar accuracies due to their shared
path, which involves passing through the machine engine to point
R. This path introduces significant vibrations, and since the CSI
phase is highly sensitive to even slight deviations, better results
were obtained.

Although Node 1 exhibited higher accuracies compared to the
other nodes, on a busy day, its performance was affected by the
environment by approximately 15%, Node 2 experienced an average
impact of only 5%. Consequently, Node 2 can be considered the
optimal position for this particular scenario. However, it should be
noted that in a different laboratory architecture, the same position
might yield different results. Thus, it is safe to assume that no model
fits all.

Table 4. Precision-Recall-f1-score Day 2 collection(3 Conv layers).

Node 1
Precision Recall f1-score

0 0.90 74 0.81
1 0.75 0.75 0.75
2 0.71 0.83 0.77

Node 2
0 0.79 0.97 0.87
1 0.97 0.85 0.9
2 1 0.91 0.95

Node 3
0 0.73 0.69 0.71
1 0.8 0.67 0.73
2 0.73 0.89 0.8

5.3 Limitations
The limited time available, the unavailability of large computational
resources, and scheduling difficulties in the metal lab imposed con-
straints on the experiments conducted with the data. The unavail-
ability of large computational resources played a significant role,
causing delays of several hours in data processing when testing
different parameters. The time limitations further restricted the
exploration of additional possibilities, such as experimenting with
alternative deep learning algorithms or identifying the optimal pa-
rameters for the network. Consequently, the experiment did not
reach its full potential in various aspects, which will be discussed
in the future work section.

Another challenge encountered was the lack of control over the
environment, leading to certain imbalances in the data. However,
this situation provided an opportunity to compare and analyze
how the environment can impact the data. Despite the limitations
posed by the uncontrolled environment, valuable insights can still
be gained from understanding the effects of such factors on the
experimental outcomes.

In summary, the experiment faced limitations due to limited time,
hardware constraints, and uncontrolled environmental conditions.
These factors hindered the exploration of additional possibilities
and optimization of the experiment. However, the challenges also
provided opportunities for examining the influence of the environ-
ment on the data, contributing to valuable insights and potential
avenues for further research.

6 FUTURE WORK

For future research or replication of this experiment, several rec-
ommendations can be considered to further improve the analysis
and evaluation of the proposed approach, leading to more accurate
outcomes.

Firstly, increasing the duration of data collection would provide a
larger dataset, allowing for more in-depth analysis and evaluation.
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This would provide a more comprehensive understanding of the
proposed approach and potentially yield better results.

Additionally, in this experiment, only the uplink data was utilized,
and the cyclic feature of the nodes was not explored. Future work
could involve incorporating the cyclic feature into the analysis,
which could provide additional information on how the environment
affects the network.

Comparing this experiment to Anbalagan’s [2], it could be noted
that the heterogeneous effects of the macro processes could have
been avoided if the cyclic feature of the network had been utilized.
Furthermore, a dissimilar relationship between features mentioned
in Anbalagan’s work was addressed in this experiment by imple-
menting a deep learning algorithm. For better comparison with
Anbalagan’s experiment, future work could involve exploring the
downlink data.
Another avenue for future research is to investigate whether

there are better deep-learning algorithms for analyzing CSI packets.
In this experiment, only a CNN was used due to time constraints.
Exploring other algorithms or fine-tuning the parameters of the
CNN could potentially lead to improved results.

Furthermore, conducting a more detailed investigation into how
the environment affects the network would be beneficial. For ex-
ample, analyzing how the presence of a human passing through
the network compared to the absence of a human or the impact of
having an active machine in close proximity to the network on CSI
packets. Understanding these environmental factors can provide
valuable insights for optimizing network performance.

Additionally, a more complex experiment could involve predicting
the next stage of the machine, such as transitioning from off to idle
and then to active or predicting the worker’s position in the lab.
Since a user operating the machine cannot leave the lab without
walking, an algorithm could be developed to detect human activity
in the lab.
In summary, future research directions include increasing data

collection time, exploring the cyclic feature and downlink data, in-
vestigating alternative deep learning algorithms, conducting a more
detailed analysis of environmental effects, and exploring more com-
plex prediction tasks related to machine stages or worker positions
in the lab.

7 CONCLUSION

Based on the results, we can conclude that CSI can be used to classify
different machines’ states when combined with a CNN model, with
accuracies close to 90% in detecting machine states and finding
that the best position to place a Node is position 2. However, it is
important to acknowledge some of the limitations of this experiment.
The sample size of collected data per Node was limited due to time
constraints. Also, having an uncontrolled environment was not
ideal, but this allowed for investigating how humans can affect the
network. Lastly, the positioning chosen for this experiment was
based on the lab’s architecture, trying to surround the machine with
the network while at the same time minimising the interaction with

the environment; different lab architecture might interact differently
with this Node positioning.

Overall this is a novel concept. A lot of things could have been
done better, and there are a lot of things to investigate. I think this
experiment can spark ideas for new experiments and explore CSI’s
full potential when it comes to monitoring in an IIoT environment.
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