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ABSTRACT 
In order to improve healthcare and science, patient data is essential. 
Especially because health data records are regarded as sensitive 
information. This is where the concept of FAIR Data Train (FDT) 
comes into play, where ‘Trains’ are algorithms that visit ‘Data 
Stations’ where health data is stored. By allowing the Train 
algorithms to access the data locally at each station, the FDT model 
promises safe and privacy-preserving data analysis. This research 
identifies the computing capabilities of Data Stations and computing 
requirements of Trains to support the evaluation of whether Data 
Stations are capable of running Trains. The relevant computing 
components are compiled into the ‘Computing Environment’, which 
describes the Data Station’s computing capabilities and the Train’s 
computing requirements. The Computing Environment and its 
various computing components form the basis for the design of an 
RDF semantic model, which is then validated against a set of 
conditions using the Shapes Constraint Language (SHACL). By 
achieving an accurate semantic model of the Computing Capacity 
matching, this work optimizes interoperability and thereby 
improves the overall efficiency of the FDT. The development of a 
semantic model for the Computing Environment of Trains and Data 
Stations will significantly contribute to the overall goals of the FAIR 
Data Train. 
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1 INTRODUCTION 
Over the past few years, there has been a big increase in the 
production of both structured and unstructured data by 
institutions and individuals around the world. Nowadays, the 
trend of having a large volume of data is commonly referred 
to as "big data", where most sectors are searching for ways 
to utilize it for their benefit [6]. The Healthcare sector in 
general is one of the biggest data producers worldwide, every 
patient has their data documented constantly. While 
traditionally this data is stored in hard copy format, the 
healthcare industry is slowly transitioning to being fully 
digital [6]. With sensitive health data becoming digital there 
are a few issues that have to be dealt with carefully due to 
safety and legal considerations. For example, regulations like 
the European GDPR hinder data sharing by having strict 
requirements regarding the protection of personal (health) 
data [2]. Nevertheless, these issues are outweighed by the 
number of possibilities that become available with digitized 
data. By properly managing health data, a limitless amount of 
analysis could be done on the big data. Scientists and doctors 
can use data like never before, improving medical 

procedures, using resources more efficiently, and saving time 
in general.  

 When doing data analysis, there is a lot of data needed. 
This is a big problem when it comes to health data because of 
it being sensitive information. Two options are commonly 
explored: data sharing and centralization. However, both of 
these solutions are unrealistic options because of their 
downsides. Data sharing is dangerous because of personal 
health data being sensitive information, and the increase of 
cyber-attacks. Data centralization is also not optimal, 
because of the time and costs it will take for the data to be 
hosted and maintained. 
 This is where the concept of the FAIR Data Train (FDT) 
comes in as a solution. It provides an infrastructure where 
instead of requesting and receiving datasets, specific 
questions can be asked which will result in a specific answer 
[2]. The FDT works by bringing the algorithm to the data 
instead of traditionally moving the data to the algorithms. 
The FDT achieves this by having the so-called ‘Trains’ and 
‘Data Stations’. The algorithm is portrayed as a Train that 
‘travels’ to Data Stations. The Data Station is a software 
solution that is managed by a health organization, which 
possesses health data. At the Data Station, the Train will run 
its algorithm and start the data analysis. Once it is finished it 
will travel back to its origin, with the results of the analysis 
[1]. This way the data can stay where it is in the most privacy-
preserving manner. 
 Interoperability is carefully thought of within the FDT, 
which makes it possible for different systems (Trains and 
stations) to work seamlessly together. It would be 
unfortunate if a Train is deployed but it returns with no 
results because of unforeseen issues along the way. Metadata 
definitions play a significant part in the FDT infrastructure, 
especially the Train and Data Stations where the matching 
happens. This paper will focus on the Computing Capacity 
matching between them. Every Data Station has a computer 
system that controls the data at that location, the system has 
specific computing power that is available to execute 
analytics tasks [1]. The Train, however, has certain 
computing power requirements that need to be minimally 
available at the Data Station for it to run its algorithm without 
any performance problems.  

1.1 Problem Statement 
At the moment, metadata in the FDT is used for facilitating 
interoperability, however, some aspects of the Train and 
station matching are not complete or have not been explored 
yet. A metadata definition of the computing capacities for 
both the Trains and the stations would enable better 
metadata matching. This is important because an optimized 
matching process will lead to the whole FDT infrastructure 
working more efficiently. 

Another aspect of why this is relevant is in the context 
of the research done by Martinez, where she researches the 
possibility of staging the FDT to the cloud [8, 12]. Cloud 
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staging only takes place whenever there is not enough 
Computing Capacity available at the Data Station to run the 
Train’s algorithm. The dynamic cloud staging is created 
based on certain computing parameters, this is where the 
semantic model of this paper will be useful. By having the 
Train’s computing requirements defined as metadata, the 
system can easily create a virtual machine that has the 
correct computing resources available. This will make the 
cloud staging of the FDT more efficient by improving 
precision and reducing costs. 
 The goal of this paper is to research and design the 
semantic model that supports the metadata matching of the 
Computing Capacity within the FDT. To achieve this, the 
research will be conducted by answering three research 
questions. 

• RQ 1: What are the computing resources that are 
necessary for the matching process of the Train’s 
and Data Station’s Computing Capacity? 

• RQ 2: How can the semantic model of the Computing 
Capacity matching be constructed? 

• RQ 3: How can the semantic model be validated 
using the Shapes Constraint Language? 

First, the Computing Capacity metadata will be defined for 
the Trains and the Data Stations. This will involve 
understanding the computing resources of the Trains and the 
stations, such as central processing units, memory usage, and 
storage capacity. Once the relevant computing resources are 
found, the semantic model will be researched.  This includes 
an RDF graph and a table with all the objects, paths, 
cardinalities, and datatypes. Finally, the semantic model will 
be validated using the Shapes Constraint Language, using the 
finished semantic model. 

1.2 Structure 
The structure of this paper is by first describing the 
background information of the key concepts of the FDT in 
section 2, which will build a basis for answering the research 
questions. Section 3 is for the methodology where the 
approach is explained to answer each research question. In 
section 4 the results and findings of the methodology will be 
discussed. Lastly, in section 6 the main conclusions are 
presented and recommendations for future work. 

2 BACKGROUND 
In this section, the knowledge module is constructed. This 
knowledge will build a basis for the methodology section and 
the results, which will be used to answer the research 
questions.  

2.1 Personal Health Train 
The FDT started in 2016 with the name Personal Health 
Train. It was an initiative of the Dutch Techcenter for Life 
Sciences, in collaboration with multiple Dutch research 
institutions. The concept of the FDT was announced with a 
video animation [16] portraying the idea of an infrastructure 
where data analysis on sensitive health data becomes more 
accessible and safe. This concept is built on the idea of 
enabling bringing algorithms to data rather than data to 
algorithms.  

2.1.1 Train 

“The set of all artifacts required to execute the distributed 
algorithm and return the results is called a ‘Train’” [1]. A 
Train portrays a particular data request within the FDT 
infrastructure. The Train is loaded with a lot of different 
metadata information, where everything is described not 
only the Train itself but also what it expects from the Data 
Station and the required data. The actual algorithm is stored 
within the Train’s Payload, this depends on the type of Train. 
At the moment there are four types of supported Trains: The 
Message Train, The API Train, the Script Train, The Query 
Train, and the Container Train. For example, the payload of 
the query Train could be a Python script or an R script, and 
the Container Train has a Docker Image as the payload. 

2.1.2 Data Station 

A Data Station is a software solution that can be managed by 
a health organization, such as a hospital or a health care 
provider. At this station, data is stored that is ready to be 
retrieved and used for an algorithm. The station provides a 
secure environment and a system with Computing Capacity 
for executing data analysis. 

2.1.3 Computing Environment 

When a Train gets deployed, it will have a certain algorithm 
that will process data and do analysis. This algorithm 
requires computing power for it to successfully run at a Data 
Station. The algorithm will take place in the Data Station’s 
system, which is why it needs to ensure that the algorithm 
can be run. The system of the Data Station has computing 
components that could answer if it can handle the Train’s 
requirements. To be able to match the Computing 
Environment requirements of the Train with the Computing 
Environment components at the Data Station, a metadata 
definition of it has to be made. The Computing Environment 
will consist of certain computing components that are 
necessary and sufficient as a basis to be able to match a Train 
with a Data Station. A Computing Environment could consist 
of certain parts of the central processing units, the ram, the 
graphical processing unit, the storage, and more. These 
components will be the basis for the Computing Environment 
and its semantic model. 

2.2 Principles of FAIR 
In recent times, there has been growing interest in the usage 
of FAIR Principles. For example, the innovative concept of the 
FDT is about handling health data in a FAIR way. The FAIR 
principles give guidelines to make digital resources Findable, 
Accessible, Interoperable, and Reusable [15]. In the context 
of the FDT, the FAIR principles ensure that health data is 
effectively managed and utilized. One of the key concepts of 
the FDT is the interoperability principle, which makes it 
possible for different systems (Trains and stations) to work 
seamlessly together. For the FDT, it ensures: Findability by 
having assigned unique identifiers and providing 
comprehensive metadata for a Train for example. 
Accessibility by making rare health data more available for 
data analysis. Interoperability by having all sorts of 
algorithm work at all Data Stations. Reusability by designing 
the Trains to be reused at multiple Data Stations [1]. 

2.3 Cloud Staging of the FAIR Data Train 
The algorithm might not always be able to process the data 
at the Data Station directly. In that case, the possibility for 
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staging the data to the cloud, so the required processing can 
still be executed. This possibility is researched by Martinez 
[8, 12], where she first builds the framework for staging 
personal health Trains in the cloud and later builds an 
architecture that makes the FDT support dynamic cloud 
staging of the data. 

The framework was first proposed by using novel 
technologies together with AWS for the hosting. One big 
discussion point of the cloud staging was that the data would 
have to be copied and sent to the cloud for the data analysis 
to proceed. This would neglect the main idea of the FDT that 
the data could stay where it is to preserve the safety of 
sensitive health data. However, Martinez promised that “the 
data are still within the data source realm and control, 
keeping their privacy.” [8]. The proposed system would also 
comply with the main legal regulations for processing 
personal data in the cloud to keep the information as secure 
and private as possible, given that the cloud environment 
does not have technical problems or does not have been 
hacked [8]. 

In the second paper, she researches and implements the 
architecture of dynamically deploying a staging site in the 
FDT. The paper set out an architecture that would enable the 
dynamic staging of a Data Station in the cloud whenever the 
Data Station would not have the required amount of 
computing power that the Train requires for its algorithm to 
run successfully. Currently, the Train has two possible 
outcomes whenever it arrives at the Data Station. The first is 
when the Data Station has enough Computing Capacity that 
is required by the Train, the second is when the data has 
insufficient Computing Capacity that is required. With the 
help of Martinez’s paper, it is now possible to still use that 
data for analysis with the help of the cloud. 

2.4 Technologies 
This research makes use of various technologies, ranging 
from semantic web tools and metadata systems. These 
technologies form the base for creating and validating the 
proposed semantic model for matching computing capacities 
in the FDT. The following sections will explain more about 
these technologies and why they are important for the 
research. 

2.4.1 Semantic technologies 

In order to give meaning to digital content in a way that 
computers can evaluate and comprehend, semantic 
technologies have been an essential component of this study. 
They are the foundation of the Semantic Web, an extension of 
the internet created to provide data with more context and 
better machine comprehension. The semantic web is 
advantageous for the FDT, ensuring smooth interoperability 
between Data Stations and Trains, but it also lays a 
foundation for future-proofing these processes. The value of 
the Semantic Web's capacity to organize and clarify data 
increases as data volume and complexity continues to rise. 

Furthermore, the structure of the Semantic Web is 
dependent on key standards, such as the Resource 
Description Framework (RDF) [7] and the Web Ontology 
Language (OWL) [11]. RDF serves as a conduit for data 
exchange on the web, effectively mapping relationships 
between different pieces of data. OWL is a tool used to 
describe or explain complicated information structures and 
the connections between them. This allows datasets to have 

more detail and variety in the information they contain. 
These technologies together form the basis of the proposed 
Computing Environment model. By building the Semantic 
Web, they provide a structured, standardized, and scalable 
framework for managing data within the FDT infrastructure. 
They not only ensure efficient communication and data 
exchange but also enable more precise data analysis, thereby 
enhancing the overall efficacy of the system. 

Semantic technologies help to look ahead, keeping the 
approach for managing data within the FDT up to date and 
adaptable, ready for whatever the future of data has in store. 
It is about providing meaningful identifiers to data and 
maintaining easy communication across systems, to make 
the data-handling approach strong regardless of what comes 
in the way. 

2.4.2 Metadata management 

Metadata is a term used to describe information about other 
data. This type of data helps understand the contents of a 
dataset and makes it easier to process and analyze. In this 
research, a detailed metadata definition for the Computing 
Capacity of the Data Station and the requirements of the 
Train will be created. To make sure this metadata is reliable, 
Shapes Constraint Language (SHACL) is used. SHACL helps to 
validate RDF graphs against certain conditions, which is 
important for making sure the Computing Environment's 
metadata fits with the requirements of the FDT. 

3 METHODOLOGY 
In this section, the methodologies are addressed that are 
employed during this research to handle the three research 
questions of this paper. The approach is designed to be 
practical and flexible, adapting as required to ensure each 
research question is sufficiently addressed. The methodology 
is broken down into three primary parts, each corresponding 
to a specific research question. 

To answer the first research question, several existing 
research papers are reviewed. This review is not as in-depth 
as a traditional literature review but instead focuses on 
identifying and understanding the necessary computing 
resources. The materials fall into two categories; First of all, 
a few key papers on hardware components will be examined 
to better understand the necessary resources for a 
Computing Environment, such as central processing units 
(CPU), memory, and storage capacity. Secondly, several 
documents detailing the PHT model will be examined. With 
the knowledge of the domain, the computing requirements 
and capacities can be identified based on its use cases and 
constraints. This early research leads to the identification of 
a comprehensive list of computing components that can 
accurately define the Computing Environment for the 
matching. 

Using the identified list of computing components, a 
semantic model will be created to answer the second 
research question. This model sets out how computing 
components are connected inside the FDT concept, acting as 
a map or blueprint. The semantic model offers an RDF-based 
graphical representation of the Data Station's capacity and 
the Train's requirements, that will allow an automatic 
matching procedure. The creation of the semantic model 
follows the principles of the Resource Description 
Framework (RDF). The RDF's entity-path graph visualization 
provides a convenient way of illustrating how each 
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component of the Computing Environment (entity) is related 
to the others via paths. Each entity-path pair will be further 
described in a metadata scheme table. 

Additionally, this paper will also take steps to make the 
architecture of dynamic cloud staging more accurate and 
efficient. The architecture would be able to read the Train’s 
computing requirements and specifically stage a cloud 
environment that has enough computing power. This will 
make the cloud staging of the FDT more efficient by 
improving precision and reducing costs. 

To answer the third research question, the semantic 
model will be validated by applying the Shapes Constraint 
Language (SHACL). SHACL is a description model that allows 
for the definition of conditions that the data must satisfy for 
the model to be by definition valid. It helps enforce 
constraints such as cardinality and datatypes, among others. 
This research question makes sure the model is reliable and 
follows the relevant requirements. The methodological 
approach uses domain-specific knowledge from literature 
review and technical expertise in semantic modeling. This 
comprehensive approach makes sure that the semantic 
model from the second research question and its SHACL 
definitions are both theoretically and practically applicable. 

4 RESULTS 
The first step of the results section is to find the most 
important and relevant computer components that can be 
used in the semantic model. This step is the foundation for 
creating the model, and later on validating it using the SHACL 
language. The results of all these steps will form the goal of 
this research paper: Researching and designing the semantic 
model that supports the metadata matching of the 
Computing Capacity within the FDT. 

4.1 Identification of Computing Resources 
Every computer system is made up of many parts. Each 
system is distinct because of the many different components, 
and every small detail in these components. A basic system 
consists of at least a processing unit, a memory unit, a data 
storage unit, and an output unit [10]. Details of the memory 
unit like the storage capacity, its generation, and the storage 
speed, make each component distinct and thus define the 
computer system. 

In the FDT model, each Data Station system is different 
because they are managed by different health organizations. 
The Train, on the other hand, carries specific needs that must 
be met by the Data Station's computer system to run its 
algorithm correctly and without problems. Therefore, 
making sure that the Train's needs match the Data Station's 
capacity is important in the FDT model. To help with this, a 
semantic model that shows all the important computing 
components and how they relate to each other needs to be 
made. 

 4.1.1 Central processing unit 

The Central Processing Unit (CPU) is one of the primary 
components of a computer system. It is responsible for 
interpreting and executing instructions in a computer 
program, and the CPU is an integral part of the computational 
functions [7]. For the FDT, both the number of cores and 
clock speed can be identified as important attributes. The 
number of cores relates to the parallel processing 
capabilities, impacting the speed at which the algorithm can 

run [10]. Alternatively, properties like cache memory [11], 
CPU architecture, and the number of threads are seen to be 
less significant. This is mostly because having all of them 
offers an amount of detail that is not required for the 
matching process. To match the computing needs of the Train 
with the processing power of the Data Station, the core count 
and clock speed are necessary to accurately describe the CPU 
in its basis. 

4.1.2 Graphical processing unit 

The Graphical Processing Unit is primarily designed for 
image rendering and performing very efficient parallel 
processing with lots of cores [10]. However, GPUs can also be 
used for data processing. The advantage of GPUs is that they 
can do several calculations at once, which makes them ideal 
for the complex matrix operations frequently used in 
machine learning applications [9]. They are also essential for 
deep learning due to their skill at processing massive data 
structures. For the FDT, both the number of GPU cores and 
the VRAM capacity are of importance. The number of cores 
influences parallel processing capabilities, while VRAM 
determines the volume of data the GPU can handle 
simultaneously. GPU speed is considered an unnecessary 
detail for the FDT matching process because the cores and 
VRAM give enough details about the GPUs capacities. 

4.1.3 Random access memory 

The Random Access Memory is the main memory of the 
computer. RAM functions as the temporary data storage of 
the CPU, enabling quick access to important information [7]. 
By having important information temporarily stored in the 
RAM, the overall speed of the computer becomes faster and 
works more efficiently. For the FDT, the RAM capacity of the 
Data Station is important as it determines the volume of data 
that can be simultaneously processed in the system. Other 
parts of the RAM are less important for the FDT matching 
process and thus will not be added to the model. These parts 
are the RAM speed and generation which could be interesting 
for deeper analysis. 

4.1.4 Storage 

The part of the computer where information is stored for 
long-term storage and access [7, 10]. Storage is where the  
FDT health organization stores its data. For the matching 
process of the FDT, it is important to know how much 
available storage there is. Having storage available is 
necessary for temporarily reserving storage space for the 
data analysis of the algorithm to take place. For the semantic 
model in its current state, it does not add value to add the 
type of drive that is used. Not only because a data center 
could be very big with many different drives, but the type 
does not change the way data will be processed in general. 

4.1.5 Data transfer rate (Throughput) 

The Data Transfer Rate also called the Throughput, is the rate 
at which data can be transferred within the computer system 
from one part to the other [10]. In Chapter 6 of the 
“Computing with Data” book written by G. Lebanon, it is said 
that: “Processing data at scale requires considerations of 
performance, throughput, and correctness.” [7]. This rate is 
critical in the FDT context, as it affects how quickly data can 
be moved from storage to the CPU and RAM for data 
processing. 
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Figure 1 Computing Environment Semantic Model

4.1.6 FLOPS 

FLOPS is a measure of a computer system’s performance [7]. 
In the FDT, it can serve as an indicator of both CPU and GPU 
performance [14]. The FLOPS amount is something that is 
less accessible because it needs to be calculated. When 
available, FLOPS allows for a more accurate matching 
process by providing a universal measure of processing 
capacity. 

4.2 Semantic Model 
The goal of this section is to create an accurate semantic 
model of Computing Capacity matching by going into the 
approach and findings related to the second research 
question. By focusing on the key components from section 
4.1 that make up the Computing Environment, it will be 
ensured that computing capacities are effectively matched 
between Trains and Data Stations. 

4.2.1 From components to Computing Environment 

Let's start by going back to the components that are 
identified in the previous section. These are not just chosen 
at random, they are chosen to provide an accurate 
representation of the computer environment. Grouping 
components that are related to each other helps to create a 
clear and organized structure. The groups that have been 
made are the ‘CPU’, ‘GPU’, ‘RAM’, ‘Storage’, and ‘Data Transfer 
Rate’. All these are the parent entities to their children entity 
which they relate to. For example, the CPU is positioned as 
the parent entity of the cores, clock speed, and CPU FLOPSs. 
Just like the CPU, the GPU is the parent entity of the cores, 
VRAM, and GPU FLOPSs. The RAM, Storage, and Data 
Transfer Rate are all parents of two entities, which are the 
amount and their corresponding unit, all of which are further 
explained in section 4.2.2. 

4.2.2 The semantic model 

The creation of the semantic model starts with the definition 
of the primary entities and their relationships with each 
other. This forms the foundation of the semantic model. 
Building upon this, each primary entity is dissected into its 
parts, as determined by section 4.1’s findings. These 

components were then grouped to make an accurate 
depiction of the Computing Environment. 
 At the highest level of the graph, there are the already 
existing Train and Data Station entities of the FDT ontology, 
these are connected to the central entity: “Computing 
Environment”. The Train and the Data Station are added to 
the graph to show their relationships to the Computing 
Environment. The Train has the path 
‘requiredComputingEnvironment’, which makes it clear that 
the Train has a Computing Environment metadata list 
consisting of required components that are needed to run its 
algorithm. The Data Station has the path 
‘hasComputingEnvironment’, which shows that the Data 
Station has a set of components that together would form the 
Computing Environment of the Data Station.  This list 
‘tells’ the Train what it is capable of and thus if it can run the 
algorithm at the Data Station. The central entity branches out 
into each of the component groups: CPU, GPU, RAM, Storage, 
and Data Transfer Rate, each having its child entities.  

The model is pretty complex at first glance, so to 
simplify things, in Figure 2 the Storage ‘branch’ is singled out 
from the full semantic model. This smaller graph should help 
in understanding the overall structure. The Storage is related 
to the Computing Environment entity with the path 
hasStorage. Which indicates that there is a Storage entity 
stored in the Computing Environment metadata. This storage 
is connected to two child entities, the amount of storage and 
the storage unit. The amount of storage is the integer value 
of how much storage there is. The Storage Unit is the Unit in 
which the amount of storage is measured. Therefore, if there 
is 200 GB of storage in its Computing Environment, the 200 
is the integer value and the GB is the unit, stored as a literal. 

Figure 2 The Storage branch ‘singled-out’ of the semantic model 
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Table 1 FAIR Data Train Computing Environment metadata schema 

Moving on to the whole semantic model in Figure 1, 
patterns can be noticed that seem similar to the Storage 
entity. The Data Transfer Rate entity and the RAM entity are 
similar in structure to the Storage. Both have two child 
entities, which are the respective amount and the units. The 
CPU and GPU are more complex entities than these other 
three. The CPU and GPU both have three child entities that 
are related. The CPU has the child entities: the number of 
cores, Core Clock Speed, and CPU FLOPS. Where the number 
of cores is stored as an integer. The Core Clock Speed has the 
amount stored as a float, and its corresponding units as a 
literal. The GPU has the child entities: the amount of cores, 
VRAM, and GPU FLOPS. Where the amount of cores is stored 
as an integer, just like the CPU. The VRAM is stored as an 
integer, and its corresponding units as a literal. Both the CPU 
and the GPU have the FLOPS as a child entity, this is stored as 
a float and has the FLOPS Unit as a literal. 

Every entity within this model is labeled with its 
cardinality, data type, and prefixes for each ontology. The 

cardinality of zero to one signifies that not every component 
is required to exist in the Computing Environment, offering 
flexibility in terms of which components are present. 
However, the more components are included, the more 
accurate the depiction of the system's Computing 
Environment requirements or capacity. Each entity in the 
model is distinguished by a unique ontology prefix. Which is 
the cev., and the FAIR Data Train (fdt.) [5] for the already 
existing Train and Data Station, thereby ensuring clarity and 
ease of identification 

4.2.3 Metadata scheme 

Besides the semantic model, Table 1 is made. This is a 
metadata scheme that is made alongside the semantic model 
to provide a more accessible view of the model [3]. This 
metadata scheme is formatted as a table, detailing individual 
entity information like the data types, and their descriptions. 
 In the path column, the ontology prefixes can be 
identified. These prefixes are essential in maintaining clarity 

Property Path Datatype Description 

Data Station fdt:isDataStation  A software solution that can be managed by a health 
organization, where it hosts and controls specific 

health datasets within the FAIR Data Train 
infrastructure. 

Train fdt:isTrain  A privacy-preserving algorithm that travels to Data 
Stations within the FAIR Data Train infrastructure for 

data analysis. 

Computing Environment cev:hasComputingEnvironment  / 
cev:requiredComputingEnvironment 

 The combination of hardware resources either 
available at a Data Station or required by a Train for 

performing data analysis tasks. 

CPU cev:hasCPU  Central Processing Unit, the primary hardware for 
processing instructions within a computer system. 

CPU Cores amount cev:cpuCoresAmount integer The number of independent processing units within 
the CPU. Measured with an integer amount (n). 

CPU Core cev:cpuCore  The individual processing units in a CPU, whose speed 
is defined by the clock rate. 

CPU Clock Speed cev:coreClockSpeedAmount float The operating speed of the CPU cores. 

Core clock speed unit cev:hasCoreSpeedUnit literal Measured in Gigahertz (GHz). 

RAM cev:hasRAM  Random Access Memory, is the volatile memory used 
by a computer for temporary storage of data during 

processing. 

RAM Amount cev:ramAmount integer The amount of RAM. 

Storage cev:hasStorage  The part of the computer where information is stored 
for long-term storage and access. 

Storage amount cev:storageAmount integer The amount of data storage space. 

Storage unit cev:hasStorageUnit literal Measured in Gigabyte (GB). 

Data Transfer Rate cev:hasDataTransferRate  The speed at which data can be transferred within a 
computer system. 

Data Transfer Rate amount cev:hasDataTransferRateAmount float The amount of data transfer speed. 

Data Transfer Rate unit cev:hasDataTransferRateUnit literal Measured in Gigabit per second (Gb/s). 

GPU cev:hasGPU  Graphics Processing Unit, is a processor dedicated to 
complex mathematical computations, like machine 

learning data analysis. 

GPU Cores amount cev:gpuCoresAmount integer The number of processing units within the GPU. 
Measured with an integer amount (n). 

VRAM cev:hasVRAM  Specialized memory is used by the GPU to store image 
and video data. 

VRAM amount cev:vramAmount integer The amount of VRAM within the GPU. 

GPU FLOPS cev:hasFLOPS  A measure of GPU computing performance, based on 
calculations performed per second. 

CPU FLOPS cev:hasFLOPS  A measure of CPU computing performance, based on 
calculations performed per second. 

FLOPS amount cev:flopsAmount float The amount of FLOPS. 

FLOPS unit cev:hasFLOPSUnit literal Measured in Teraflops (TFLOPS). 
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and coherence within the model. In line with the existing 
FAIR Data Train (FDT) infrastructure [4], the "Train" and 
"Data Station" entities have the prefix "fdt". However, all 
other entities have the custom-created prefix "cev", which 
stands for Computing Environment Vocabulary and can be 
found on the w3id website1. 

4.3 Semantic Model Validation Using SHACL 
The third and final research question is about validating the 
semantic model using the Shapes Constraint Language 
(SHACL). SHACL provides a way to verify that the RDF graphs 
follow a set of conditions [3]. These conditions, or 
constraints, are expressed as shapes and provide the 
requirements for metadata definition. 

4.3.1 SHACL and its Role in Semantic Model Validation 

SHACL is a language recommended by the World Wide Web 
Consortium (W3C) [13] for defining and validating RDF 
graphs and semantic models. It provides a way to express 
conditions that data should satisfy, making it ideal for 
checking the integrity and correctness of RDF data. In the 
context of this research, SHACL provides the necessary tools 
to verify if the Computing Environment of Trains and Data 
Stations matches the defined shapes as represented in the 
semantic model. 

4.3.2 SHACL Implementation for the Semantic Model 

The SHACL validation used for the semantic model includes 
definitions (shapes) for each primary entity of the model 
(Train, Data Station, Computing Environment, CPU, GPU, 
RAM, Storage, and Data Transfer Rate). Each shape specifies 
the expected properties, their cardinality (minCount and 
maxCount), and data type. The validation ensures that the 
data in the semantic model adheres to the structural 
requirements and data types as laid out in the shapes. 

 
1 www.w3id.org/cev 

In Figure 3 a limited version of the SHACL is visible, 
while the full SHACL can be seen in the GitHub repository2, It 
can be seen that the "Train" shape requires a 
"requiredComputingEnvironment" property that references 
a "ComputingEnvironmentShape" node, and it must exist 
exactly once (minCount 1, maxCount 1). Within the 
"ComputingEnvironmentShape", the component group 
shapes are defined. Each of these has a variety of properties 
such as core counts, FLOPS, VRAM amounts, and storage 
units, with each having its cardinality and datatype defined. 

5 DISCUSSION 
The results section aimed to develop a semantic model to 
support the metadata matching of the Computing Capacity 
within the FDT infrastructure. The methodological approach 
starts with identifying the relevant computing components 
for this model. These components are then used for the 
semantic model creation and validation using SHACL. 

Computer systems are highly diverse due to their 
various amount of components, and each component has its 
details. With elements like a processing unit, memory unit, 
data storage unit, and output unit being basic parts of any 
system, it is the specific details within these components that 
differentiate one system from another. Such diversity is seen 
in the FDT model since all the Data Stations are maintained 
by different health organizations. Each of these stations is a 
system with its own set of computing components that must 
be matched with the computing requirements of the Train for 
the algorithm to work properly. Therefore, the goal is to 
develop a semantic model detailing the relevant computing 
components and their relationships. 

Relevant components such as the CPU, GPU, RAM, 
Storage, Data Transfer Rate, and FLOPS for the CPU and GPU 
are identified. Each of these components has specific 
attributes that play important roles within the FDT data 
analysis context. While some attributes are not identified, 
such as cache memory, and the CPU architecture in the case 
of the CPU. Attributes like the number of cores and clock 
speed are enough to accurately describe the computing 
power of the CPU. Similar evaluations are made for the other 
components, choosing the components necessary for the 
matching process without overcomplicating the model by 
adding every detail. 

Components that are not chosen are the network speed 
and the operating system. Recall the main idea behind the 
FDT where the Train goes to the data. The data does not have 
to be sent over the network for this reason, making the 
network speed irrelevant to the semantic model of the 
Computing Environment. The operating software could be 
relevant for future improvements of the semantic model. As 
this could be a requirement for certain programs that need 
to be run at the station, like the Docker software of the 
specific Container Train. Therefore, while the operating 
software could be a relevant component of the semantic 
model, it is not necessary for the current Computing 
Environment of the FDT. 

The semantic model is designed to combine these 
critical components and provide a structure that supports 
effective matching between Trains and Data Stations. The 
model's parent-child relationships provide a structured 

2 https://github.com/baran2411/ComputingEnvironment 

Figure 3 SHACL of the Train Shape and Computing Environment Shape 



 

8 

TScIT 39, July 7, 2023, Enschede, The Netherlands B. Gülbey 

graph and address the components that are identified as 
relevant. This resulted in a semantic model that is flexible in 
terms of the components present, yet provides an accurate 
depiction of the system's Computing Environment 
requirements or capacity. The semantic model is flexible by 
having the units and amounts separately in the metadata. 
This gives the ability to store all the components with various 
unit sizes, for example, the storage can be stored in ‘MB’, ‘GB’, 
and ‘TB’. This ability to adapt to advancements in technology 
ensures the longevity of the model. 

The final step is the validation of the semantic model 
using the SHACL language. SHACL provides a way to express 
conditions that data should satisfy, making it ideal for 
checking the integrity and correctness of RDF data. It is a 
validation layer ensuring that the semantic model adheres to 
the structural requirements and data types as laid out in the 
shapes. The already existing ontology prefix "fdt" for the 
FAIR Data Train, and newly made "cev" for Computing 
Environment Variables, are important in providing an easy 
method for identification and interpretation. 

5.1 Limitations 
The research was not without limitations. The exclusion of 
certain computing components like CPU threads and GPU 
speed from the semantic model could impact its applicability 
in scenarios where these factors matter. The model's design 
is yet to be tested in real-world situations, leaving potential 
challenges unexplored. Also, the structural validation offered 
by SHACL may not be sufficient for complex scenarios that 
require deep validation rules. 

Nevertheless, this research offers valuable insights into 
the design of a semantic model to match a Train and Data 
Stations within the FDT. The systematic identification of 
relevant computing components and their representation 
within a flexible, organized structure provides a significant 
contribution to the field. It establishes a good basis for future 
research to refine the model and validate it within practical 
applications, improving the efficiency of data processing in 
diverse Computing Environments.  

6 CONCLUSION 
The goal of this research is to research and design a semantic 
model that supports the metadata matching of Computing 
Capacity within the FDT. This paper ensures that the 
computing needs of the Train can match the capacities of the 
Data Station, therefore providing the tools to make data 
processing and analysis more efficient. Furthermore, this 
semantic model allows a more effective dynamic cloud 
staging process. The goal of this research paper is to 
construct around three main research questions. 

The first research question dealt with identifying the 
most relevant computing components that need to be 
included in the semantic model. It is found that the relevant 
computing components to consider are the Central 
Processing Unit, Graphical Processing Unit, Random Access 
Memory, Storage, Data Transfer Rate (Throughput), and 
FLOPS. Each component has unique attributes which define 
the general Computing Environment of a Data Station. 

The second research question is about the creation of 
the semantic model itself. The finalized semantic model 
represents a structured view of the Computing Environment 
of both Trains and Data Stations within the FDT model. The 
model successfully combines and relates the relevant 

computing components, resulting in a detailed model of the 
Computing Environment. The model also allows the 
necessary flexibility for variations in the specific 
configurations of different Trains and Data Stations. 

The third research question focused on the validation 
of the semantic model using the SHACL language. Using 
SHACL, conditions are set to ensure that the defined model 
meets the standards for accuracy. The SHACL validation 
checks that all data in the semantic model adheres to the 
structural requirements and data types as laid out in the 
defined shapes. 

6.1 Future Work 
There are several areas where this work could be expanded. 
For one, the semantic model could be extended to 
accommodate the requirements of the specific types of 
Trains, such as Query Trains and Container Trains, which 
could have their different computing requirements. In 
addition, the model could be tested for compatibility with the 
dynamic cloud staging system, by checking the two possible 
states a Train can enter during its matching process. 

Furthermore, certain computing components could be 
required in all cases. For example, by determining that a 
Train should always match with at least the CPU Cores. 
Having certain components always be required could 
improve the efficiency, however, this also leads to it being a 
bit less accessible. This could be further researched. 

Lastly, the practical application of the semantic model 
could be tested in real-world scenarios, assessing its 
effectiveness in accurately matching computing capacities 
and needs within the FDT infrastructure. Future research 
and practical application would shed more light on the full 
potential of the semantic model in optimizing the data 
processing within the FAIR Data Train framework. 
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