
Semantic model of the Computing Capacity matching within the FAIR Data Train TScIT 39, July 7, 2023, Enschede, The Netherlands

1

Semantic model of the Computing Capacity matching
within the FAIR Data Train

BARAN GÜLBEY, University of Twente, The Netherlands

b.gulbey@student.utwente.nl

ABSTRACT
In order to improve healthcare and science, patient data is essential.
Especially because health data records are regarded as sensitive
information. This is where the concept of FAIR Data Train (FDT)
comes into play, where ‘Trains’ are algorithms that visit ‘Data
Stations’ where health data is stored. By allowing the Train
algorithms to access the data locally at each station, the FDT model
promises safe and privacy-preserving data analysis. This research
identifies the computing capabilities of Data Stations and computing
requirements of Trains to support the evaluation of whether Data
Stations are capable of running Trains. The relevant computing
components are compiled into the ‘Computing Environment’, which
describes the Data Station’s computing capabilities and the Train’s
computing requirements. The Computing Environment and its
various computing components form the basis for the design of an
RDF semantic model, which is then validated against a set of
conditions using the Shapes Constraint Language (SHACL). By
achieving an accurate semantic model of the Computing Capacity
matching, this work optimizes interoperability and thereby
improves the overall efficiency of the FDT. The development of a
semantic model for the Computing Environment of Trains and Data
Stations will significantly contribute to the overall goals of the FAIR
Data Train.

Key Words: FAIR Data Train, Computing Capacity, Semantic Model,
Metadata, SHACL, Interoperability, RDF

1 INTRODUCTION
Over the past few years, there has been a big increase in the
production of both structured and unstructured data by
institutions and individuals around the world. Nowadays, the
trend of having a large volume of data is commonly referred
to as "big data", where most sectors are searching for ways
to utilize it for their benefit [6]. The Healthcare sector in
general is one of the biggest data producers worldwide, every
patient has their data documented constantly. While
traditionally this data is stored in hard copy format, the
healthcare industry is slowly transitioning to being fully
digital [6]. With sensitive health data becoming digital there
are a few issues that have to be dealt with carefully due to
safety and legal considerations. For example, regulations like
the European GDPR hinder data sharing by having strict
requirements regarding the protection of personal (health)
data [2]. Nevertheless, these issues are outweighed by the
number of possibilities that become available with digitized
data. By properly managing health data, a limitless amount of
analysis could be done on the big data. Scientists and doctors
can use data like never before, improving medical

procedures, using resources more efficiently, and saving time
in general.

 When doing data analysis, there is a lot of data needed.
This is a big problem when it comes to health data because of
it being sensitive information. Two options are commonly
explored: data sharing and centralization. However, both of
these solutions are unrealistic options because of their
downsides. Data sharing is dangerous because of personal
health data being sensitive information, and the increase of
cyber-attacks. Data centralization is also not optimal,
because of the time and costs it will take for the data to be
hosted and maintained.
 This is where the concept of the FAIR Data Train (FDT)
comes in as a solution. It provides an infrastructure where
instead of requesting and receiving datasets, specific
questions can be asked which will result in a specific answer
[2]. The FDT works by bringing the algorithm to the data
instead of traditionally moving the data to the algorithms.
The FDT achieves this by having the so-called ‘Trains’ and
‘Data Stations’. The algorithm is portrayed as a Train that
‘travels’ to Data Stations. The Data Station is a software
solution that is managed by a health organization, which
possesses health data. At the Data Station, the Train will run
its algorithm and start the data analysis. Once it is finished it
will travel back to its origin, with the results of the analysis
[1]. This way the data can stay where it is in the most privacy-
preserving manner.
 Interoperability is carefully thought of within the FDT,
which makes it possible for different systems (Trains and
stations) to work seamlessly together. It would be
unfortunate if a Train is deployed but it returns with no
results because of unforeseen issues along the way. Metadata
definitions play a significant part in the FDT infrastructure,
especially the Train and Data Stations where the matching
happens. This paper will focus on the Computing Capacity
matching between them. Every Data Station has a computer
system that controls the data at that location, the system has
specific computing power that is available to execute
analytics tasks [1]. The Train, however, has certain
computing power requirements that need to be minimally
available at the Data Station for it to run its algorithm without
any performance problems.

1.1 Problem Statement
At the moment, metadata in the FDT is used for facilitating
interoperability, however, some aspects of the Train and
station matching are not complete or have not been explored
yet. A metadata definition of the computing capacities for
both the Trains and the stations would enable better
metadata matching. This is important because an optimized
matching process will lead to the whole FDT infrastructure
working more efficiently.

Another aspect of why this is relevant is in the context
of the research done by Martinez, where she researches the
possibility of staging the FDT to the cloud [8, 12]. Cloud

TScIT 39, July 7, 2023, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics
and Computer Science.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

2

TScIT 39, July 7, 2023, Enschede, The Netherlands B. Gülbey

staging only takes place whenever there is not enough
Computing Capacity available at the Data Station to run the
Train’s algorithm. The dynamic cloud staging is created
based on certain computing parameters, this is where the
semantic model of this paper will be useful. By having the
Train’s computing requirements defined as metadata, the
system can easily create a virtual machine that has the
correct computing resources available. This will make the
cloud staging of the FDT more efficient by improving
precision and reducing costs.
 The goal of this paper is to research and design the
semantic model that supports the metadata matching of the
Computing Capacity within the FDT. To achieve this, the
research will be conducted by answering three research
questions.

• RQ 1: What are the computing resources that are
necessary for the matching process of the Train’s
and Data Station’s Computing Capacity?

• RQ 2: How can the semantic model of the Computing
Capacity matching be constructed?

• RQ 3: How can the semantic model be validated
using the Shapes Constraint Language?

First, the Computing Capacity metadata will be defined for
the Trains and the Data Stations. This will involve
understanding the computing resources of the Trains and the
stations, such as central processing units, memory usage, and
storage capacity. Once the relevant computing resources are
found, the semantic model will be researched. This includes
an RDF graph and a table with all the objects, paths,
cardinalities, and datatypes. Finally, the semantic model will
be validated using the Shapes Constraint Language, using the
finished semantic model.

1.2 Structure
The structure of this paper is by first describing the
background information of the key concepts of the FDT in
section 2, which will build a basis for answering the research
questions. Section 3 is for the methodology where the
approach is explained to answer each research question. In
section 4 the results and findings of the methodology will be
discussed. Lastly, in section 6 the main conclusions are
presented and recommendations for future work.

2 BACKGROUND
In this section, the knowledge module is constructed. This
knowledge will build a basis for the methodology section and
the results, which will be used to answer the research
questions.

2.1 Personal Health Train
The FDT started in 2016 with the name Personal Health
Train. It was an initiative of the Dutch Techcenter for Life
Sciences, in collaboration with multiple Dutch research
institutions. The concept of the FDT was announced with a
video animation [16] portraying the idea of an infrastructure
where data analysis on sensitive health data becomes more
accessible and safe. This concept is built on the idea of
enabling bringing algorithms to data rather than data to
algorithms.

2.1.1 Train

“The set of all artifacts required to execute the distributed
algorithm and return the results is called a ‘Train’” [1]. A
Train portrays a particular data request within the FDT
infrastructure. The Train is loaded with a lot of different
metadata information, where everything is described not
only the Train itself but also what it expects from the Data
Station and the required data. The actual algorithm is stored
within the Train’s Payload, this depends on the type of Train.
At the moment there are four types of supported Trains: The
Message Train, The API Train, the Script Train, The Query
Train, and the Container Train. For example, the payload of
the query Train could be a Python script or an R script, and
the Container Train has a Docker Image as the payload.

2.1.2 Data Station

A Data Station is a software solution that can be managed by
a health organization, such as a hospital or a health care
provider. At this station, data is stored that is ready to be
retrieved and used for an algorithm. The station provides a
secure environment and a system with Computing Capacity
for executing data analysis.

2.1.3 Computing Environment

When a Train gets deployed, it will have a certain algorithm
that will process data and do analysis. This algorithm
requires computing power for it to successfully run at a Data
Station. The algorithm will take place in the Data Station’s
system, which is why it needs to ensure that the algorithm
can be run. The system of the Data Station has computing
components that could answer if it can handle the Train’s
requirements. To be able to match the Computing
Environment requirements of the Train with the Computing
Environment components at the Data Station, a metadata
definition of it has to be made. The Computing Environment
will consist of certain computing components that are
necessary and sufficient as a basis to be able to match a Train
with a Data Station. A Computing Environment could consist
of certain parts of the central processing units, the ram, the
graphical processing unit, the storage, and more. These
components will be the basis for the Computing Environment
and its semantic model.

2.2 Principles of FAIR
In recent times, there has been growing interest in the usage
of FAIR Principles. For example, the innovative concept of the
FDT is about handling health data in a FAIR way. The FAIR
principles give guidelines to make digital resources Findable,
Accessible, Interoperable, and Reusable [15]. In the context
of the FDT, the FAIR principles ensure that health data is
effectively managed and utilized. One of the key concepts of
the FDT is the interoperability principle, which makes it
possible for different systems (Trains and stations) to work
seamlessly together. For the FDT, it ensures: Findability by
having assigned unique identifiers and providing
comprehensive metadata for a Train for example.
Accessibility by making rare health data more available for
data analysis. Interoperability by having all sorts of
algorithm work at all Data Stations. Reusability by designing
the Trains to be reused at multiple Data Stations [1].

2.3 Cloud Staging of the FAIR Data Train
The algorithm might not always be able to process the data
at the Data Station directly. In that case, the possibility for

Semantic model of the Computing Capacity matching within the FAIR Data Train TScIT 39, July 7, 2023, Enschede, The Netherlands

3

staging the data to the cloud, so the required processing can
still be executed. This possibility is researched by Martinez
[8, 12], where she first builds the framework for staging
personal health Trains in the cloud and later builds an
architecture that makes the FDT support dynamic cloud
staging of the data.

The framework was first proposed by using novel
technologies together with AWS for the hosting. One big
discussion point of the cloud staging was that the data would
have to be copied and sent to the cloud for the data analysis
to proceed. This would neglect the main idea of the FDT that
the data could stay where it is to preserve the safety of
sensitive health data. However, Martinez promised that “the
data are still within the data source realm and control,
keeping their privacy.” [8]. The proposed system would also
comply with the main legal regulations for processing
personal data in the cloud to keep the information as secure
and private as possible, given that the cloud environment
does not have technical problems or does not have been
hacked [8].

In the second paper, she researches and implements the
architecture of dynamically deploying a staging site in the
FDT. The paper set out an architecture that would enable the
dynamic staging of a Data Station in the cloud whenever the
Data Station would not have the required amount of
computing power that the Train requires for its algorithm to
run successfully. Currently, the Train has two possible
outcomes whenever it arrives at the Data Station. The first is
when the Data Station has enough Computing Capacity that
is required by the Train, the second is when the data has
insufficient Computing Capacity that is required. With the
help of Martinez’s paper, it is now possible to still use that
data for analysis with the help of the cloud.

2.4 Technologies
This research makes use of various technologies, ranging
from semantic web tools and metadata systems. These
technologies form the base for creating and validating the
proposed semantic model for matching computing capacities
in the FDT. The following sections will explain more about
these technologies and why they are important for the
research.

2.4.1 Semantic technologies

In order to give meaning to digital content in a way that
computers can evaluate and comprehend, semantic
technologies have been an essential component of this study.
They are the foundation of the Semantic Web, an extension of
the internet created to provide data with more context and
better machine comprehension. The semantic web is
advantageous for the FDT, ensuring smooth interoperability
between Data Stations and Trains, but it also lays a
foundation for future-proofing these processes. The value of
the Semantic Web's capacity to organize and clarify data
increases as data volume and complexity continues to rise.

Furthermore, the structure of the Semantic Web is
dependent on key standards, such as the Resource
Description Framework (RDF) [7] and the Web Ontology
Language (OWL) [11]. RDF serves as a conduit for data
exchange on the web, effectively mapping relationships
between different pieces of data. OWL is a tool used to
describe or explain complicated information structures and
the connections between them. This allows datasets to have

more detail and variety in the information they contain.
These technologies together form the basis of the proposed
Computing Environment model. By building the Semantic
Web, they provide a structured, standardized, and scalable
framework for managing data within the FDT infrastructure.
They not only ensure efficient communication and data
exchange but also enable more precise data analysis, thereby
enhancing the overall efficacy of the system.

Semantic technologies help to look ahead, keeping the
approach for managing data within the FDT up to date and
adaptable, ready for whatever the future of data has in store.
It is about providing meaningful identifiers to data and
maintaining easy communication across systems, to make
the data-handling approach strong regardless of what comes
in the way.

2.4.2 Metadata management

Metadata is a term used to describe information about other
data. This type of data helps understand the contents of a
dataset and makes it easier to process and analyze. In this
research, a detailed metadata definition for the Computing
Capacity of the Data Station and the requirements of the
Train will be created. To make sure this metadata is reliable,
Shapes Constraint Language (SHACL) is used. SHACL helps to
validate RDF graphs against certain conditions, which is
important for making sure the Computing Environment's
metadata fits with the requirements of the FDT.

3 METHODOLOGY
In this section, the methodologies are addressed that are
employed during this research to handle the three research
questions of this paper. The approach is designed to be
practical and flexible, adapting as required to ensure each
research question is sufficiently addressed. The methodology
is broken down into three primary parts, each corresponding
to a specific research question.

To answer the first research question, several existing
research papers are reviewed. This review is not as in-depth
as a traditional literature review but instead focuses on
identifying and understanding the necessary computing
resources. The materials fall into two categories; First of all,
a few key papers on hardware components will be examined
to better understand the necessary resources for a
Computing Environment, such as central processing units
(CPU), memory, and storage capacity. Secondly, several
documents detailing the PHT model will be examined. With
the knowledge of the domain, the computing requirements
and capacities can be identified based on its use cases and
constraints. This early research leads to the identification of
a comprehensive list of computing components that can
accurately define the Computing Environment for the
matching.

Using the identified list of computing components, a
semantic model will be created to answer the second
research question. This model sets out how computing
components are connected inside the FDT concept, acting as
a map or blueprint. The semantic model offers an RDF-based
graphical representation of the Data Station's capacity and
the Train's requirements, that will allow an automatic
matching procedure. The creation of the semantic model
follows the principles of the Resource Description
Framework (RDF). The RDF's entity-path graph visualization
provides a convenient way of illustrating how each

4

TScIT 39, July 7, 2023, Enschede, The Netherlands B. Gülbey

component of the Computing Environment (entity) is related
to the others via paths. Each entity-path pair will be further
described in a metadata scheme table.

Additionally, this paper will also take steps to make the
architecture of dynamic cloud staging more accurate and
efficient. The architecture would be able to read the Train’s
computing requirements and specifically stage a cloud
environment that has enough computing power. This will
make the cloud staging of the FDT more efficient by
improving precision and reducing costs.

To answer the third research question, the semantic
model will be validated by applying the Shapes Constraint
Language (SHACL). SHACL is a description model that allows
for the definition of conditions that the data must satisfy for
the model to be by definition valid. It helps enforce
constraints such as cardinality and datatypes, among others.
This research question makes sure the model is reliable and
follows the relevant requirements. The methodological
approach uses domain-specific knowledge from literature
review and technical expertise in semantic modeling. This
comprehensive approach makes sure that the semantic
model from the second research question and its SHACL
definitions are both theoretically and practically applicable.

4 RESULTS
The first step of the results section is to find the most
important and relevant computer components that can be
used in the semantic model. This step is the foundation for
creating the model, and later on validating it using the SHACL
language. The results of all these steps will form the goal of
this research paper: Researching and designing the semantic
model that supports the metadata matching of the
Computing Capacity within the FDT.

4.1 Identification of Computing Resources
Every computer system is made up of many parts. Each
system is distinct because of the many different components,
and every small detail in these components. A basic system
consists of at least a processing unit, a memory unit, a data
storage unit, and an output unit [10]. Details of the memory
unit like the storage capacity, its generation, and the storage
speed, make each component distinct and thus define the
computer system.

In the FDT model, each Data Station system is different
because they are managed by different health organizations.
The Train, on the other hand, carries specific needs that must
be met by the Data Station's computer system to run its
algorithm correctly and without problems. Therefore,
making sure that the Train's needs match the Data Station's
capacity is important in the FDT model. To help with this, a
semantic model that shows all the important computing
components and how they relate to each other needs to be
made.

 4.1.1 Central processing unit

The Central Processing Unit (CPU) is one of the primary
components of a computer system. It is responsible for
interpreting and executing instructions in a computer
program, and the CPU is an integral part of the computational
functions [7]. For the FDT, both the number of cores and
clock speed can be identified as important attributes. The
number of cores relates to the parallel processing
capabilities, impacting the speed at which the algorithm can

run [10]. Alternatively, properties like cache memory [11],
CPU architecture, and the number of threads are seen to be
less significant. This is mostly because having all of them
offers an amount of detail that is not required for the
matching process. To match the computing needs of the Train
with the processing power of the Data Station, the core count
and clock speed are necessary to accurately describe the CPU
in its basis.

4.1.2 Graphical processing unit

The Graphical Processing Unit is primarily designed for
image rendering and performing very efficient parallel
processing with lots of cores [10]. However, GPUs can also be
used for data processing. The advantage of GPUs is that they
can do several calculations at once, which makes them ideal
for the complex matrix operations frequently used in
machine learning applications [9]. They are also essential for
deep learning due to their skill at processing massive data
structures. For the FDT, both the number of GPU cores and
the VRAM capacity are of importance. The number of cores
influences parallel processing capabilities, while VRAM
determines the volume of data the GPU can handle
simultaneously. GPU speed is considered an unnecessary
detail for the FDT matching process because the cores and
VRAM give enough details about the GPUs capacities.

4.1.3 Random access memory

The Random Access Memory is the main memory of the
computer. RAM functions as the temporary data storage of
the CPU, enabling quick access to important information [7].
By having important information temporarily stored in the
RAM, the overall speed of the computer becomes faster and
works more efficiently. For the FDT, the RAM capacity of the
Data Station is important as it determines the volume of data
that can be simultaneously processed in the system. Other
parts of the RAM are less important for the FDT matching
process and thus will not be added to the model. These parts
are the RAM speed and generation which could be interesting
for deeper analysis.

4.1.4 Storage

The part of the computer where information is stored for
long-term storage and access [7, 10]. Storage is where the
FDT health organization stores its data. For the matching
process of the FDT, it is important to know how much
available storage there is. Having storage available is
necessary for temporarily reserving storage space for the
data analysis of the algorithm to take place. For the semantic
model in its current state, it does not add value to add the
type of drive that is used. Not only because a data center
could be very big with many different drives, but the type
does not change the way data will be processed in general.

4.1.5 Data transfer rate (Throughput)

The Data Transfer Rate also called the Throughput, is the rate
at which data can be transferred within the computer system
from one part to the other [10]. In Chapter 6 of the
“Computing with Data” book written by G. Lebanon, it is said
that: “Processing data at scale requires considerations of
performance, throughput, and correctness.” [7]. This rate is
critical in the FDT context, as it affects how quickly data can
be moved from storage to the CPU and RAM for data
processing.

Semantic model of the Computing Capacity matching within the FAIR Data Train TScIT 39, July 7, 2023, Enschede, The Netherlands

5

Figure 1 Computing Environment Semantic Model

4.1.6 FLOPS

FLOPS is a measure of a computer system’s performance [7].
In the FDT, it can serve as an indicator of both CPU and GPU
performance [14]. The FLOPS amount is something that is
less accessible because it needs to be calculated. When
available, FLOPS allows for a more accurate matching
process by providing a universal measure of processing
capacity.

4.2 Semantic Model
The goal of this section is to create an accurate semantic
model of Computing Capacity matching by going into the
approach and findings related to the second research
question. By focusing on the key components from section
4.1 that make up the Computing Environment, it will be
ensured that computing capacities are effectively matched
between Trains and Data Stations.

4.2.1 From components to Computing Environment

Let's start by going back to the components that are
identified in the previous section. These are not just chosen
at random, they are chosen to provide an accurate
representation of the computer environment. Grouping
components that are related to each other helps to create a
clear and organized structure. The groups that have been
made are the ‘CPU’, ‘GPU’, ‘RAM’, ‘Storage’, and ‘Data Transfer
Rate’. All these are the parent entities to their children entity
which they relate to. For example, the CPU is positioned as
the parent entity of the cores, clock speed, and CPU FLOPSs.
Just like the CPU, the GPU is the parent entity of the cores,
VRAM, and GPU FLOPSs. The RAM, Storage, and Data
Transfer Rate are all parents of two entities, which are the
amount and their corresponding unit, all of which are further
explained in section 4.2.2.

4.2.2 The semantic model

The creation of the semantic model starts with the definition
of the primary entities and their relationships with each
other. This forms the foundation of the semantic model.
Building upon this, each primary entity is dissected into its
parts, as determined by section 4.1’s findings. These

components were then grouped to make an accurate
depiction of the Computing Environment.
 At the highest level of the graph, there are the already
existing Train and Data Station entities of the FDT ontology,
these are connected to the central entity: “Computing
Environment”. The Train and the Data Station are added to
the graph to show their relationships to the Computing
Environment. The Train has the path
‘requiredComputingEnvironment’, which makes it clear that
the Train has a Computing Environment metadata list
consisting of required components that are needed to run its
algorithm. The Data Station has the path
‘hasComputingEnvironment’, which shows that the Data
Station has a set of components that together would form the
Computing Environment of the Data Station. This list
‘tells’ the Train what it is capable of and thus if it can run the
algorithm at the Data Station. The central entity branches out
into each of the component groups: CPU, GPU, RAM, Storage,
and Data Transfer Rate, each having its child entities.

The model is pretty complex at first glance, so to
simplify things, in Figure 2 the Storage ‘branch’ is singled out
from the full semantic model. This smaller graph should help
in understanding the overall structure. The Storage is related
to the Computing Environment entity with the path
hasStorage. Which indicates that there is a Storage entity
stored in the Computing Environment metadata. This storage
is connected to two child entities, the amount of storage and
the storage unit. The amount of storage is the integer value
of how much storage there is. The Storage Unit is the Unit in
which the amount of storage is measured. Therefore, if there
is 200 GB of storage in its Computing Environment, the 200
is the integer value and the GB is the unit, stored as a literal.

Figure 2 The Storage branch ‘singled-out’ of the semantic model

6

TScIT 39, July 7, 2023, Enschede, The Netherlands B. Gülbey

Table 1 FAIR Data Train Computing Environment metadata schema

Moving on to the whole semantic model in Figure 1,
patterns can be noticed that seem similar to the Storage
entity. The Data Transfer Rate entity and the RAM entity are
similar in structure to the Storage. Both have two child
entities, which are the respective amount and the units. The
CPU and GPU are more complex entities than these other
three. The CPU and GPU both have three child entities that
are related. The CPU has the child entities: the number of
cores, Core Clock Speed, and CPU FLOPS. Where the number
of cores is stored as an integer. The Core Clock Speed has the
amount stored as a float, and its corresponding units as a
literal. The GPU has the child entities: the amount of cores,
VRAM, and GPU FLOPS. Where the amount of cores is stored
as an integer, just like the CPU. The VRAM is stored as an
integer, and its corresponding units as a literal. Both the CPU
and the GPU have the FLOPS as a child entity, this is stored as
a float and has the FLOPS Unit as a literal.

Every entity within this model is labeled with its
cardinality, data type, and prefixes for each ontology. The

cardinality of zero to one signifies that not every component
is required to exist in the Computing Environment, offering
flexibility in terms of which components are present.
However, the more components are included, the more
accurate the depiction of the system's Computing
Environment requirements or capacity. Each entity in the
model is distinguished by a unique ontology prefix. Which is
the cev., and the FAIR Data Train (fdt.) [5] for the already
existing Train and Data Station, thereby ensuring clarity and
ease of identification

4.2.3 Metadata scheme

Besides the semantic model, Table 1 is made. This is a
metadata scheme that is made alongside the semantic model
to provide a more accessible view of the model [3]. This
metadata scheme is formatted as a table, detailing individual
entity information like the data types, and their descriptions.
 In the path column, the ontology prefixes can be
identified. These prefixes are essential in maintaining clarity

Property Path Datatype Description

Data Station fdt:isDataStation A software solution that can be managed by a health
organization, where it hosts and controls specific

health datasets within the FAIR Data Train
infrastructure.

Train fdt:isTrain A privacy-preserving algorithm that travels to Data
Stations within the FAIR Data Train infrastructure for

data analysis.

Computing Environment cev:hasComputingEnvironment /
cev:requiredComputingEnvironment

 The combination of hardware resources either
available at a Data Station or required by a Train for

performing data analysis tasks.

CPU cev:hasCPU Central Processing Unit, the primary hardware for
processing instructions within a computer system.

CPU Cores amount cev:cpuCoresAmount integer The number of independent processing units within
the CPU. Measured with an integer amount (n).

CPU Core cev:cpuCore The individual processing units in a CPU, whose speed
is defined by the clock rate.

CPU Clock Speed cev:coreClockSpeedAmount float The operating speed of the CPU cores.

Core clock speed unit cev:hasCoreSpeedUnit literal Measured in Gigahertz (GHz).

RAM cev:hasRAM Random Access Memory, is the volatile memory used
by a computer for temporary storage of data during

processing.

RAM Amount cev:ramAmount integer The amount of RAM.

Storage cev:hasStorage The part of the computer where information is stored
for long-term storage and access.

Storage amount cev:storageAmount integer The amount of data storage space.

Storage unit cev:hasStorageUnit literal Measured in Gigabyte (GB).

Data Transfer Rate cev:hasDataTransferRate The speed at which data can be transferred within a
computer system.

Data Transfer Rate amount cev:hasDataTransferRateAmount float The amount of data transfer speed.

Data Transfer Rate unit cev:hasDataTransferRateUnit literal Measured in Gigabit per second (Gb/s).

GPU cev:hasGPU Graphics Processing Unit, is a processor dedicated to
complex mathematical computations, like machine

learning data analysis.

GPU Cores amount cev:gpuCoresAmount integer The number of processing units within the GPU.
Measured with an integer amount (n).

VRAM cev:hasVRAM Specialized memory is used by the GPU to store image
and video data.

VRAM amount cev:vramAmount integer The amount of VRAM within the GPU.

GPU FLOPS cev:hasFLOPS A measure of GPU computing performance, based on
calculations performed per second.

CPU FLOPS cev:hasFLOPS A measure of CPU computing performance, based on
calculations performed per second.

FLOPS amount cev:flopsAmount float The amount of FLOPS.

FLOPS unit cev:hasFLOPSUnit literal Measured in Teraflops (TFLOPS).

Semantic model of the Computing Capacity matching within the FAIR Data Train TScIT 39, July 7, 2023, Enschede, The Netherlands

7

and coherence within the model. In line with the existing
FAIR Data Train (FDT) infrastructure [4], the "Train" and
"Data Station" entities have the prefix "fdt". However, all
other entities have the custom-created prefix "cev", which
stands for Computing Environment Vocabulary and can be
found on the w3id website1.

4.3 Semantic Model Validation Using SHACL
The third and final research question is about validating the
semantic model using the Shapes Constraint Language
(SHACL). SHACL provides a way to verify that the RDF graphs
follow a set of conditions [3]. These conditions, or
constraints, are expressed as shapes and provide the
requirements for metadata definition.

4.3.1 SHACL and its Role in Semantic Model Validation

SHACL is a language recommended by the World Wide Web
Consortium (W3C) [13] for defining and validating RDF
graphs and semantic models. It provides a way to express
conditions that data should satisfy, making it ideal for
checking the integrity and correctness of RDF data. In the
context of this research, SHACL provides the necessary tools
to verify if the Computing Environment of Trains and Data
Stations matches the defined shapes as represented in the
semantic model.

4.3.2 SHACL Implementation for the Semantic Model

The SHACL validation used for the semantic model includes
definitions (shapes) for each primary entity of the model
(Train, Data Station, Computing Environment, CPU, GPU,
RAM, Storage, and Data Transfer Rate). Each shape specifies
the expected properties, their cardinality (minCount and
maxCount), and data type. The validation ensures that the
data in the semantic model adheres to the structural
requirements and data types as laid out in the shapes.

1 www.w3id.org/cev

In Figure 3 a limited version of the SHACL is visible,
while the full SHACL can be seen in the GitHub repository2, It
can be seen that the "Train" shape requires a
"requiredComputingEnvironment" property that references
a "ComputingEnvironmentShape" node, and it must exist
exactly once (minCount 1, maxCount 1). Within the
"ComputingEnvironmentShape", the component group
shapes are defined. Each of these has a variety of properties
such as core counts, FLOPS, VRAM amounts, and storage
units, with each having its cardinality and datatype defined.

5 DISCUSSION
The results section aimed to develop a semantic model to
support the metadata matching of the Computing Capacity
within the FDT infrastructure. The methodological approach
starts with identifying the relevant computing components
for this model. These components are then used for the
semantic model creation and validation using SHACL.

Computer systems are highly diverse due to their
various amount of components, and each component has its
details. With elements like a processing unit, memory unit,
data storage unit, and output unit being basic parts of any
system, it is the specific details within these components that
differentiate one system from another. Such diversity is seen
in the FDT model since all the Data Stations are maintained
by different health organizations. Each of these stations is a
system with its own set of computing components that must
be matched with the computing requirements of the Train for
the algorithm to work properly. Therefore, the goal is to
develop a semantic model detailing the relevant computing
components and their relationships.

Relevant components such as the CPU, GPU, RAM,
Storage, Data Transfer Rate, and FLOPS for the CPU and GPU
are identified. Each of these components has specific
attributes that play important roles within the FDT data
analysis context. While some attributes are not identified,
such as cache memory, and the CPU architecture in the case
of the CPU. Attributes like the number of cores and clock
speed are enough to accurately describe the computing
power of the CPU. Similar evaluations are made for the other
components, choosing the components necessary for the
matching process without overcomplicating the model by
adding every detail.

Components that are not chosen are the network speed
and the operating system. Recall the main idea behind the
FDT where the Train goes to the data. The data does not have
to be sent over the network for this reason, making the
network speed irrelevant to the semantic model of the
Computing Environment. The operating software could be
relevant for future improvements of the semantic model. As
this could be a requirement for certain programs that need
to be run at the station, like the Docker software of the
specific Container Train. Therefore, while the operating
software could be a relevant component of the semantic
model, it is not necessary for the current Computing
Environment of the FDT.

The semantic model is designed to combine these
critical components and provide a structure that supports
effective matching between Trains and Data Stations. The
model's parent-child relationships provide a structured

2 https://github.com/baran2411/ComputingEnvironment

Figure 3 SHACL of the Train Shape and Computing Environment Shape

8

TScIT 39, July 7, 2023, Enschede, The Netherlands B. Gülbey

graph and address the components that are identified as
relevant. This resulted in a semantic model that is flexible in
terms of the components present, yet provides an accurate
depiction of the system's Computing Environment
requirements or capacity. The semantic model is flexible by
having the units and amounts separately in the metadata.
This gives the ability to store all the components with various
unit sizes, for example, the storage can be stored in ‘MB’, ‘GB’,
and ‘TB’. This ability to adapt to advancements in technology
ensures the longevity of the model.

The final step is the validation of the semantic model
using the SHACL language. SHACL provides a way to express
conditions that data should satisfy, making it ideal for
checking the integrity and correctness of RDF data. It is a
validation layer ensuring that the semantic model adheres to
the structural requirements and data types as laid out in the
shapes. The already existing ontology prefix "fdt" for the
FAIR Data Train, and newly made "cev" for Computing
Environment Variables, are important in providing an easy
method for identification and interpretation.

5.1 Limitations
The research was not without limitations. The exclusion of
certain computing components like CPU threads and GPU
speed from the semantic model could impact its applicability
in scenarios where these factors matter. The model's design
is yet to be tested in real-world situations, leaving potential
challenges unexplored. Also, the structural validation offered
by SHACL may not be sufficient for complex scenarios that
require deep validation rules.

Nevertheless, this research offers valuable insights into
the design of a semantic model to match a Train and Data
Stations within the FDT. The systematic identification of
relevant computing components and their representation
within a flexible, organized structure provides a significant
contribution to the field. It establishes a good basis for future
research to refine the model and validate it within practical
applications, improving the efficiency of data processing in
diverse Computing Environments.

6 CONCLUSION
The goal of this research is to research and design a semantic
model that supports the metadata matching of Computing
Capacity within the FDT. This paper ensures that the
computing needs of the Train can match the capacities of the
Data Station, therefore providing the tools to make data
processing and analysis more efficient. Furthermore, this
semantic model allows a more effective dynamic cloud
staging process. The goal of this research paper is to
construct around three main research questions.

The first research question dealt with identifying the
most relevant computing components that need to be
included in the semantic model. It is found that the relevant
computing components to consider are the Central
Processing Unit, Graphical Processing Unit, Random Access
Memory, Storage, Data Transfer Rate (Throughput), and
FLOPS. Each component has unique attributes which define
the general Computing Environment of a Data Station.

The second research question is about the creation of
the semantic model itself. The finalized semantic model
represents a structured view of the Computing Environment
of both Trains and Data Stations within the FDT model. The
model successfully combines and relates the relevant

computing components, resulting in a detailed model of the
Computing Environment. The model also allows the
necessary flexibility for variations in the specific
configurations of different Trains and Data Stations.

The third research question focused on the validation
of the semantic model using the SHACL language. Using
SHACL, conditions are set to ensure that the defined model
meets the standards for accuracy. The SHACL validation
checks that all data in the semantic model adheres to the
structural requirements and data types as laid out in the
defined shapes.

6.1 Future Work
There are several areas where this work could be expanded.
For one, the semantic model could be extended to
accommodate the requirements of the specific types of
Trains, such as Query Trains and Container Trains, which
could have their different computing requirements. In
addition, the model could be tested for compatibility with the
dynamic cloud staging system, by checking the two possible
states a Train can enter during its matching process.

Furthermore, certain computing components could be
required in all cases. For example, by determining that a
Train should always match with at least the CPU Cores.
Having certain components always be required could
improve the efficiency, however, this also leads to it being a
bit less accessible. This could be further researched.

Lastly, the practical application of the semantic model
could be tested in real-world scenarios, assessing its
effectiveness in accurately matching computing capacities
and needs within the FDT infrastructure. Future research
and practical application would shed more light on the full
potential of the semantic model in optimizing the data
processing within the FAIR Data Train framework.

REFERENCES
[1] Beyan, O. et al. 2020. Distributed Analytics on Sensitive Medical Data:

The Personal Health Train. Data Intelligence. 2, 1–2 (Jan. 2020), 96–
107. DOI:https://doi.org/10.1162/dint_a_00032.

[2] Choudhury, A. et al. 2020. Personal Health Train on FHIR: A Privacy
Preserving Federated Approach for Analyzing FAIR Data in
Healthcare. Machine Learning, Image Processing, Network Security and
Data Sciences (Singapore, 2020), 85–95.

[3] FAIR Data Point specifications: https://specs.fairdatapoint.org/.
Accessed: 2023-06-23.

[4] FAIR Data Train specifications: https://specs.fairdatatrain.org/.
Accessed: 2023-06-23.

[5] Index of /fdt: https://w3id.org/fdt/. Accessed: 2023-06-25.
[6] Kumar, S. and Singh, M. 2019. Big Data Analytics for Healthcare

Industry: Impact, Applications, and Tools. Big Data Mining and
Analytics. 2, (Mar. 2019), 48–57.
DOI:https://doi.org/10.26599/BDMA.2018.9020031.

[7] Lebanon, G. and El-Geish, M. 2018. Essential Knowledge: Hardware.
Computing with Data: An Introduction to the Data Industry. G. Lebanon
and M. El-Geish, eds. Springer International Publishing. 7–36.

[8] Martinez, V.G. et al. 2021. A Framework for Staging Personal Health
Trains in the Cloud. Proceedings of the 17th International Conference
on Web Information Systems and Technologies, WEBIST 2021, October
26-28, 2021. SCITEPRESS. 133–144.

[9] Pandey, M. et al. 2022. The transformational role of GPU computing
and deep learning in drug discovery. Nature Machine Intelligence. 4, 3
(Mar. 2022), 211–221. DOI:https://doi.org/10.1038/s42256-022-
00463-x.

[10] Patterson, D.A. and Hennessy, J.L. 2012. Computer Organization and
Design: The Hardware/Software Interface. Elsevier.

[11] Ryabko, B. and Rakitskiy, A. 2017. Application of the Computer
Capacity to the Analysis of Processors Evolution. arXiv.

[12] Santos, L.O.B. da S. et al. 2023. Personal Health Train Architecture with
Dynamic Cloud Staging. SN Computer Science. 4, 1 (Jan. 2023), 14.
DOI:https://doi.org/10.1007/s42979-022-01422-4.

[13] Shapes Constraint Language (SHACL): 2017.
https://www.w3.org/TR/shacl/. Accessed: 2023-06-25.

Semantic model of the Computing Capacity matching within the FAIR Data Train TScIT 39, July 7, 2023, Enschede, The Netherlands

9

[14] Welten, S. et al. 2021. DAMS: A Distributed Analytics Metadata
Schema. Data Intelligence. 3, 4 (Oct. 2021), 528–547.
DOI:https://doi.org/10.1162/dint_a_00100.

[15] Wilkinson, M.D. et al. 2018. A design framework and exemplar metrics
for FAIRness. Scientific Data. 5, 1 (Jun. 2018), 180118.
DOI:https://doi.org/10.1038/sdata.2018.118.

[16] 2015. Personal Health Train - English.

