A Systematic Evaluation of Microservice Architectures Resulting from
Domain-Driven and Dataflow-Driven Decomposition

ILIE SEBASTIAN MIHAI, University of Twente, The Netherlands

At some point in their lifecycle, monolithic applications can reach a threshold
where their continuous deployment, integration, and scalability processes
become problematic to handle. Tackling this, the Microservice Architecture
(MSA) is advocated to compile individually executable services, each of
whom is distinctively deployed and serves a unique functional segment of
the system. This paper addresses two of the most general and systematically
applicable decomposition techniques, namely Domain-Driven Design (DDD)
and Dataflow-Driven Development (DFD), which we have used to break
down a medium-sized, actively maintained monolithic application. The most
suitable metrics derived from relevant literature, and suitable for DDD and
DFD, have been compiled and assessed. A metric-based comparison of the
two approaches has been performed, evaluating each decomposition tech-
nique individually. The aim of this paper is to assist architects in further
understanding the general applicability of the aforementioned decomposi-
tion methods, given the limited number of comparative studies between the
two, and the plethora of evaluation concerns arising from domain-specific
influence factors.

Additional Key Words and Phrases: Microservices, Domain, Dataflow, Archi-
tecture, Event, Monolith, Destructuring, Metric, Evaluation

1 INTRODUCTION

Microservice Architectures (MSA) is a concept introduced in 2014,
advocated to tackle the concerns of legacy systems regarding rising
complexity, high dependency, and high coupling. This type of archi-
tecture directly targets the limitations of monolithic applications,
by providing a unique way of service-oriented structural design,
which splits the functionality of a system into microservices [1, 31].
The interaction between microservices can be achieved via "light-
weight" processes, usually decentralized or via brokers, following
rule-based communication interfaces [1, 26]. Since the introduc-
tion of MSA, plenty of structural algorithmic ways of achieving
microservice-based architectures have been presented. However,
choosing the most suitable decomposition method for an application
is a complex task, as the business models and functions for each
such system can highly differ, thus interfering with the destruc-
turing processes, which can lead to biased evaluation outcomes or
unsuitable architectural designs [14, 31, 41, 43]. Approaches to han-
dle this concern had also followed, yet it was shown that extensive
inquiries regarding such domain-related criteria do not invariably
offer better results [4, 6]. Our literature analysis concluded that the
most suitable and standardized decomposition techniques, given the
highly extensive profile of this paper, are Domain-Driven Design
(DDD) and Dataflow-Driven Development (DFD). With regards to a
direct comparison, based on qualitative metrics between DDD and
DFD, there are no systematic, comparative studies between the two
[34, 41]. The goal of this paper is to fill in this gap by providing

TScIT 37, July 7, 2023,

© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in , https://doi.org/10.
1145/nnnnnnn.nnnnnnn.

a thorough analysis of the two techniques that could further help
designers understand their applicability. The research questions that
were answered in this paper are:

e What set of qualitative metrics is suitable for evaluating
microservice-based architectures, and out of these, which
are most suitable for DDD and DFD?

e How do DDD and DFD compare to each other with regard to
their relevant set of qualitative metrics?

To answer the first question, our analysis consisted of a literature
review, which resulted in a set of qualitative criteria applicable to
DDD and DFD. The second question is answered based on the indi-
vidual evaluation of each architecture, with regard to the compiled
metric-based evaluations. The diagrams, although relevant only
for the context of the paper, can be used as a tool to visualize the
rationale of decomposition techniques and benefits advocated by
MSA.

The following sections are organized as follows: Section 2 presents
the common metric-based concerns regarding static analysis and
the drawbacks of runtime-dependent evaluation criteria, by means
of literature analysis. Section 3 briefly addresses the background
and concerns that current monolith decomposition techniques en-
counter. Section 4 presents an analysis of DDD and DFD techniques,
as well as considerations for the most appropriate representatives for
each, by briefly assessing criteria such as domain boundaries, granu-
larity, and modularity. Section 5 presents the models we considered
in the research steps, such as the domain and dataflow concerns
of DDD and DFD, selection aspects for the appropriate monolith
candidate, and influencing factors that can lead to biased analysis.
Section 6 presents the extracted set of metrics, alongside their re-
lated evaluation procedure steps, and addresses their applicability
for DDD and DFD. Section 7 discusses the processes and steps that
were followed to destructure the monolith and describes the yielded
diagrams. Section 8 refers to the results of Section 7 to evaluate
each resulting architecture by means of the compiled metric set.
During such a process, it objectively addresses contextual gaps and
drawbacks of both architectures, while assessing the results of the
metrics.

2 RELATED WORK

The benchmarking processes presented by Bjerndal et. al [5] re-
semble, to a great extent, the rationale of our paper. In this work,
a systematic metric study was presented, gathered by means of a
literature review, and then assessed by designers. Although present-
ing promising results, the decomposition process is not detailed,
and the environment on which the metrics were benchmarked is
highly dependent on cloud-based deployment aspects such as pods
or CPU allocation, whose set-up processes were proven problematic
to handle. A similar approach is followed by Taibi et. al, whose
paper discusses similar metrics, with the rationale of function-based

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TSclIT 37, July 7, 2023,

analysis. However, the data collected to evaluate such metrics are
runtime-based, which can be problematic to set up and whose envi-
ronment specifications are hard to objectively evaluate in different
contexts [45].

Another paper, presented by Vera-Rivera et. al [47] follows the
same decomposition process and assesses the result, given a set
of metrics similar to ours. The "backlog" presented in the paper
is said to be compiled from a literature review, yet the queries or
methodologies of such review are not thoroughly detailed. The gran-
ularity specification is said to be "intelligent" and follows a machine-
learning-based model. The decomposition processes specify DDD
and Service Cutter, yet the latter approach has a considerable outlier:
one microservice contains 10 services, while the previous one, has
only 2. This may yield biased results, given the vector-based metric
evaluation methodology of the paper.

Another broadly applicable framework, proposed to "align with
industry requirements” [14], presents a similar set of metrics. The
selection is backed by a broad survey, yet the contextual use is in-
tended for "semi-automatic decomposition" techniques. The paper
continues to contextualize DDD and DFD, and although most of
the metrics are said to be suitable for both, domain use and limi-
tations are not mentioned. Some metrics, such as granularity, are
evaluated given LoC, a criterion that was proven to be rather "in-
formative" than reliable. Furthermore, other metrics are evaluated
without using proper weights for their parameters, such as "number
of operations".

3 DECOMPOSITION TECHNIQUES BACKGROUND

This section presents the wide range of decomposition alternatives
that have already been proposed [43], with a systematic search
for "Service discovery" and "Data management" techniques, which
are the two most recurrent approaches to identifying microservice
candidates [42].

Richardson et al. [38] introduced a novel concept of decomposing
monoliths based on "business capabilities" which was later proven
[21, 32] to need outsourced involvement, and therefore a systematic
approach cannot be followed. A decomposition method proposed by
Baresi et al. [4] presents a monolith system decomposition method
using "API specification analysis". However, this approach needs
clearly determined boundaries with regard to the interfaces used
[21, 32]. Another novel proposal uses transactional contexts [35],
a principle that advocates against using domain interdependency
factors to decompose a monolith, and instead promotes the "aggre-
gation of domain entities". However, the analysis assumes explicit
"business logic" distinction and a clear predefined assessment of its
implications in the decomposition process, aspects that were found
crucial in our metric analysis. One algorithmic process, proposed
by Zhamak Dehghani et al. [16], provides a set of steps to decouple
elements of the business context, thus minimizing dependencies.
However, this was proven to be inefficient, lacked the measure-
ment steps, and the decomposition process was found tedious and
complex. [29, 41]

Out of all the popular techniques, including the previous ones, it
is advocated that Domain-Driven Design is the most common and
objective design choice for the decomposition of processes [14, 46].

llie Sebastian Mihai

DDD decomposition yields modular microservice candidates, with
a high degree of generality, thus making it suitable for a wide range
of applications [20, 23, 27]. Dataflow-Driven Development (DFD)
yields microservice candidates with a high degree of granularity
(granular, "rational, and understandable” candidates), as opposed to
other data-related decomposition methods, which involve database
segmentation steps, dependency graphs, or facade adaptations [28].
Both DDD and DFD are highly popular decomposition techniques,
preferred by many designers given their wide applicability range
[20, 27, 34] or granular resulting candidates. For these reasons, they
represent suitable representatives for the context of this paper and
will be further detailed in the next section.

4 DECOMPOSITION TECHNIQUES
4.1 DDD techniques

First introduced by Evans in 2003 in his book "Domain Driven
Design" [18], the method encapsulates "organizational units" into
"domain contexts". This laid down the foundation of the Microser-
vice architectures later on, as the concept of "bounded contexts"
can easily compile service processes and interfaces, which fit MSA.
The boundaries of the business functions are clearly extracted and
the bounded contexts are in direct relation to the domain models
of the organization [14, 18, 48]. One technique that leverages the
concepts of DDD is proposed by Brito et. al [10] and makes use
of Topic Modelling techniques. The threats to the validity of this
approach were considerable, as the reliability of the used measures
was not checked for correctness, and the scope of the approach
was narrowed down to a too-small list of applications. Another
DDD-related approach was proposed by Jin et al. [27], whose per-
formance and reliability metrics were not considered, and instead,
the approach focused on leveraging "functionality and evolvability"
[23, 27]. Another notorious DDD application is Context Choreog-
raphy Domain-Driven Design [24]. It was however stated that the
implementation is based upon DDD patterns and UML profiles [37].
The most representative DDD method within the context of this
paper appears to be the UML Profile proposed by Rademacher et al.
[37]. This method introduces UML design choices into the microser-
vice architecture context. It further proposes semantics and domain
choices with regard to the UML profile for Domain-driven MSA
Modelling (DDMM), while making use of already-existing contri-
butions in the area of UML modeling and its characteristics/design
units. This approach provides a solid and general ground base for
domain model representations and is highly suitable given its "selec-
tive abstraction of conceptual knowledge" approach and concepts
that leverage Ubiquitous Language to join "domain experts and
technologists together" [18].

4.2 DFD techniques

Leveraging the design choices of DFD [13], a "semi-automatic de-
composition” technique was proposed [32], introducing the novel
concept of "process-datastore” for DFD (DFDPS) that oversees the
business functions. The authors demonstrated that the method in-
troduced by Chen et al. is indeed efficient, and validates the high
granularity of the resulting microservice candidates. However, the

A Systematic Evaluation of Microservice Architectures Resulting from Domain-Driven and Dataflow-Driven Decomposition

main drawback is that DFDPS is useful only if the system archi-
tecture is so cluttered that it cannot be contained within a single
resulting DFD. Another DFD approach was proposed by Taibi et
al. [44], who introduced a decomposition framework that leverages
the concept of "process mining". One concern with regard to this
method is that the tool used to evaluate the effectiveness could not
be proven to yield objective and unbiased results [2]. The most repre-
sentative DFD method is the "Purified/Decomposed DFD" approach,
proposed by Chen et al. [13]. This paper introduces rules and pat-
terns that have been proven to significantly reduce the complexity
of decomposition processes, based on constructing and evaluating
"purified" and "decomposed" dataflow diagrams, while the resulting
microservice architectures consist of "rational, and understandable"
candidates [21, 28, 32].

5 RESEARCH METHODOLOGY

The first step of the research was to find appropriate decomposition
methods. Our search aimed at finding highly applicable, generaliz-
able, and popular approaches, that would not greatly influence the
impact of very specific domain models on the final analysis. Several
alternatives were analyzed, and DFD and DFD were selected. For
each of these approaches, the most representative technique was
chosen, given the same criteria, and a brief analysis of each tech-
nique was conducted. Techniques that were highly dependent on
database communication, highly dataflow dependent (which could
only be analyzed dynamically), or whose results were highly depen-
dent on the domain models have been ignored. Following this, the
monolith was chosen using the following criteria:

(1) Domain considerations: the structure of the chosen monolith
had to contain a clear overview of its domain models. The sep-
aration of concerns should have clearly defined boundaries,
thus an MVC architecture was regarded as highly appropriate.

(2) Dataflow considerations: the flow of data throughout the com-
ponents of the system needed to be easy to identify, in order
to gain a systematic overview needed for later destructuring
processes.

(3) The number of files & commits: These 2 criteria (and the LoC)
of each application were analyzed and only applications with
1000+ commits were considered. For these, we looked for a
proportional number of files with a (median) factor of around
40 times the number of commits.

Given these three factors, a set of 14 applications were selected
as suitable candidates for the monolith. Lower outliers had approx-
imately 24000 commits & 100 files, whereas the highest one had
around 275000 commits & 2000 files. A median candidate, which
also matched the domain and dataflow considerations, was chosen
to be a popular library called Healthchecks [22]. It has a Django-
based MVC architecture for cron monitoring tools, with scheduled
tasks, a web dashboard, API integrations, authentication, and team
management features, with a REST-based communication protocol.

The following step was to select appropriate metrics for com-
paring DDD and DFD. This stage involved analyzing pre-existing
case studies and evaluating their results. The chosen metrics had
to already be evaluated for effectiveness, with a strong pre-existing

TScIT 37, July 7, 2023,

technical ground. The main criterion was that the case study re-
sults had to be applicable to both DDD and DFD. Moreover, the
analysis considering these metrics should be doable without exten-
sive help of tools or highly dynamic analysis, evaluating runtime
data, or anything related to deployment/integration, such as PaaS
or orchestration mechanisms. In order to yield an unbiased result,
the analysis of such metrics requires a complex environment and
careful resource allocation [5], aspects that could not be objectively
assessed due to time limitations.

The next step was to decompose the chosen monolith using the
DDD and DFD techniques. Initially, the domain models and the
source code of the application were analyzed. Afterwards, the two
chosen techniques were followed step by step, the appropriate de-
sign considerations were applied, and multiple diagrams represent-
ing the resulting architectures were produced. Having compiled
all the results up to this point, each chosen metric was analyzed,
alongside their applicability degree and domain considerations. The
analysis focused on qualitative evaluation, and no runtime data or
orchestration elements were considered.

6 METRICS

The criteria that are chosen with respect to metric evaluation follow
an objective and rational structure (no relative, tool-based, or highly
dynamic attributes). Most of the existing criteria in microservice
architecture case studies (as well as automated tools) rely on the
runtime quantitative data [4, 7, 33] and some are proven to be highly
dependent on the environment, and thus hardly generalizable.

6.1 Granularity

The granularity degree of a service can be perceived as a "trade-off
between size and number of microservices" [4]. Determining the
size of service is a complex task and the current literature proposes
a wide range of, sometimes, contradicting criteria [9, 12, 33]. One
proposed model is called "MM4S for maintainability considerations"
[9], which sees criteria in a pyramid-like hierarchy, where just below
maintainability are “service properties”. It also proposes a granular-
ity metric called Weighted Service Interface Count (WSIC) which
accounts for "the number of exposed interface operations of service
S" and applies weights to each of them depending on their number
of arguments [9], while also taking implementation into considera-
tion. The exact weight assignment methodology is not unanimously
agreed upon and is up to the designer, and additional papers sug-
gest that besides the number of parameters, the granularity of such
operations also needs to be considered [15]. Extending on the WSIC
definition, Bogner et. al [8] propose that in order to find an unac-
ceptable (too large) granularity level, each service’s WSIC should be
compared to the general WSIC of the architecture, using Formula
(1) for WSIC.

2sey WSIC(S))
Y]

Another size-related metric, introduced again by Bogner et. al, is
"Total Response for Service (TRS)" [8], where RFO is the number of
operations that can be called in response to an incoming request for
operation O, given its specific interface. Formula (2) is the general
TRS formula presented in Bogner et. al [8].

WSICay(Y) =

TSclIT 37, July 7, 2023,

TRS(S) = Z RFO(0) @)

O€eSlIs

A literature review [36] mentions another set of popular criteria
to evaluate Size and Complexity: for Size, they mention "number of
synchronous cycles", "distribution of synchronous calls" or "average
size of asynchronous messages"[17]. Moreover, size itself is said to be
more helpful in finding outliers across candidates, instead of being
a qualitative metric per-se [14], as there is no unanimously agreed
range. One of the most popular quantitative evaluation metrics is
Lines of Code (LoC) [30], which builds upon granularity. However,
this metric is not objective since it is conditioned by coding styles,
scaffolding, boilerplate code, or programming language [14].

6.2 Database Connectivity

Monoliths that are highly reliant on data flow might yield complex
issues with regard to data connectivity and consistency [11]. Two
suitable methods proposed are CQRS (Command Query Respon-
sibility Segregation), and "Role Separation (RS)", used to separate
databases and redirect read/write operations to core and replica
database instances, based on the "actor use of available [REST]
operations" [11], where "queries can be efficiently performed" [39].

6.3 Event Sourcing and Async Messaging

Event sourcing is a pattern [39] that can leverage responsibility
segregation by chaining the states (of objects, entities) as a "sequence
of events". One solution mentioned in the literature is "Gateway
Aggregation" [39], which creates aggregated access calls. When
it comes to messaging, Faustino et. al proposes that the size of
the event should increase as much as the cache permits, and the
developers need to carefully consider the threshold such that the
data is actually used [19]. Furthermore, in cases where calls affect
multiple services, services cannot hold "ACID properties between
them". Another suitable metric is the "number of interface calls" and
its corresponding database-sharing optimizations.

6.4 Structural Coupling

Suitable coupling metrics are the "number of clients that invoke at
least one operation to the service", "the number of other services that
a service depends on" or "the number of service pairs bidirection-
ally dependent on each other" [40]. Other metrics are [9] Absolute
Dependence of the Service (ADS), and Services Interdependence
of the System (SIY) or Absolute Importance of the Service (AIS)
[8]. Automatic validation frameworks tend to only count "outward
dependencies” for an emergent candidate, in order to form the de-
pendency graph without the risk of cyclic dependencies [15]. The
result of SCC should be null, and ideally, each service should present
one outward link and no cycles [15]. The same framework also pro-
poses cohesion-degree criteria such as evenly distributed methods
(without duplicated entities), the "responsibilities composition" (all
services should have a similar weighted purpose, and advocates for
a "single responsibilities principle"), or "semantic similarity", which
advocates that all methods/classes should be functionally related to
each other [15].

llie Sebastian Mihai

6.5 Cohesion

Given its "semantic" implications, literature review [14, 36] showed
that the most frequent metrics for Cohesion are "the similarity of
the parameters data types", and "used operations per client". An-
other study [9] showed the following metrics are relevant: Service
Interface Data Cohesion (SIDC) (operation’s similarity of passed
data, resulted from dividing the number of “common data types” by
the number of "discrete data types", whose result should preferably
be 1), or Service Interface User Cohesion (SIUC), based on the user
similarity actions, whose value is calculated by the number of "op-
eration calls" made by users divided by total call possibilities [8, 9].
An additional metric is "Total Service Interface Cohesion (TSIC)"
[8], which is the weighted system average of SIDC and SIUC, and
whose purpose is to be compared against all individual services.

6.6 Dynamic Similarity Index

Andrade et. al defines similarity as the "distance between domain
entities”, where the dependency tree between bounded contexts is
outlined using graph theory elements [3]. Designers can compile
similar domain entities within the same bounded context, should
their similarity measurement be low, which can highly reduce the
number of interface calls between services. Such similarity index is
based on the number of "domain entities that are frequently accessed
in sequence”. Formula (3) presents the "sequence similarity measure”
between two entities el and e2, proposed by Andrade et. al [3],
where "sumPairs" represents the "number of consecutive accesses”
between the two entities, and "maxPairs", the longest sequence of
graph calls for the same entities.

sumPairs(el, e2)

©)

smsequence(el) e2) = -
maxPairs

6.7 Evolvability

Sometimes considered a sub-criteria of maintainability, "evolvabil-
ity" is referred to as the "degree of effectiveness and efficiency with
which a system can be adapted or extended" [7]. The most common
characteristics are "very decentralized [...] very autonomous teams
vs centralized governance" and "varying degree of team autonomy"
[7]. The survey of [7] further suggests that designers should also
account for test coverage values, yet its results can be problematic
as one can find a workaround to surpass linting settings/use fake
coverage.

7 MONOLITH DESTRUCTURING
7.1 DDD Destructuring Process

Following the paper of Rademacher et al. [37], the following DDD
destructuring processes revolve around domain models and the
concept of "Bounded Context", which encapsulates each emergent
microservice. The textbook definition of the process, as the paper
has it, is leveraging "informal UML class diagrams to express domain
models". An initial UML class diagram was constructed, based on
the classes in the models, database schema, and the source code of
the application. Figure (1) presents the microservices architecture
resulting from DDD decomposition, by means of an ER diagram,
providing a detailed visualization of the implemented concepts. First,
the domain considerations are outlined. This defines boundaries

A Systematic Evaluation of Microservice Architectures Resulting from Domain-Driven and Dataflow-Driven Decomposition

to separate the result into domain models, which were used to de-
fine a "ubiquitous” language to leverage the initial UML elements
and provide a common communication ground. The following con-
straints were applied, based on the constraint specification method-
ology and notation presented in the paper [37]: AggregatePart C1
and C2 for [accounts-project, accounts-credential, auth-group, and
api-ping], AggregatePart C3 for [api-ping, api-notification], C4 for
[api-ping, api-notification, auth-group]. AggregateRoot C5 and C6
for [auth-user, api-check, and accounts-project]. Entity C7 for all
entities. Repository C10 to [Channel, Group, and Project reposito-
ries]. Service C11 and C12 to all services. Spec C14 to [Payment
and Notification Specs], Spec C15 to all specs. SideEffectFree C21 to
Payment validation function. BoundedContext C25 to Auth context.
As paper [37] mentions, one has to define proper "shared model
interfaces" between bounded contexts, denoted by Value Objects
(User Shared, Project Shared).

The decomposition process resulted in an architecture with three
services: Accounts, Auth and API. The communication between
them can be accomplished using REST interface calls, which are
needed to expose entities "as instances of" Value Objects [37] (in
our context, User Shared and Project Shared). Furthermore, as men-
tioned in Section 8.2, each microservice can incorporate a separate
database, consisting of "all parts of the domain model". Horizon-
tal scalability is easily achievable for the resulting architecture, as
bounded contexts can be developed, deployed, and replicated inde-
pendently, and the "distribution of synchronous requests provided
by the exposed interfaces" [14] can be handled effectively, given the
clearly outlined REST interfaces.

7.2 DFD Destructuring Process

Initially, a traditional DFD diagram (figure 2) was created. The ap-
plication source code was checked, and based on the resulting log-
ging, the processes were determined. Tthe external entities and data
stores were determined, given their link to the processes resulting
from the call graph tree. The traditional diagram’s purpose is to
showcase the data flow from a "business function" perspective [13].
The main difference between DFD and DDD is that DFD only uses
processes that "manipulate data" and therefore, elements such as
"auth-group-permissions" which do not manipulate data are not
taken into account as in DDD. Afterward, the purified DFD (whose
purpose is to hide the information like "data store and external enti-
ties") is used to construct the decomposable version "DDF" (figure
3), by "combining the same operations with the same type of output
data" [13]. This layer is said to improve maintainability, metric that
was previously found crucial in the literature. Finally, the candidates
(so-called modules) are selected, by aggregating "individual modules
of operation and its output data" [13]. API checks operations were
abstracted into a facade that encapsulated all types, given that they
have related output data. Although the service-finding algorithm
suggests that each operation resulting after applying the decom-
posed DFD rules should be a separate service alongside its relevant
data, the paper mentions that the designers need to consider their
contextual use as well.

The decomposed architecture consists of five services: Auth, Pay-
ment, Project, User, and APIL. The communication between them

TScIT 37, July 7, 2023,

can be asynchronous, using a central buffer, or by means of gate-
way aggregation [19, 39]. Data Stores, which are repositories "of
data manipulated by operations” [13], can be used as databases for
the resulted microservices architecture, optimized by introducing
database replicas with different interfaces for the User and Admin
agents.

8 RESULTS
8.1 Granularity

As the DDD and DFD-based decompositions result in different num-
bers of services, we calculated the average WSIC instead of the
individual WSIC, so as to not bias the results. Empty parameters and
constructor methods were not considered, as the weight cannot be
accurately estimated. Tests were also excluded, as the authorization
service needs extensive testing, thus unbalancing the result. Each
parameter gets the weight of one. Table (1) gives an overview of the
method count (including decorators and Django-specific methods)
based on the parameter size, for each service resulting from DDD
decomposition.

Service 0/1 parameter | 2 parameters | 3 parameters
Accounts 38 33 24
Auth 33 47 21
API 152 44 26

Table 1. The number of service methods based on parameter size, for the
microservices architecture resulted from DDD decomposition

38%14+33%2+24%3+...+44%2+4+26%3

WSICqug(Y) = ;

228
4)

We see that the Accounts (190 WSIC) and Auth (176 WSIC) ser-
vices are close to each other. However, the API service is an outlier.
The methods within API are more concerned with external integra-
tion, thus a lot of boilerplate and external integration needs to be
set up. Although non-granular, the weights can be deceiving as that
data is not all transported through the other interfaces, and thus
the async events’ data structure size is smaller.

With regards to DFD, Table (2) presents the service method count,
for each service, based on parameter size:

Service || 0/1 parameter | 2 parameters | 3 parameters
Auth 25 35 17
User 38 30 21
Payment 8 12 4
Project 29 12 7
API 123 33 22

Table 2. The number of service methods based on parameter size, for the
microservices architecture resulted from DFD decomposition

Again, the Auth and User services have similar WSIC. The API
management is broken down, as now the focus is on the data flow.
The outlier introduced is Payment management. The payment and

TSclIT 37, July 7, 2023,

llie Sebastian Mihai

Fig. 3. Final decomposed DFD diagram of the microservices architecture after the rules have been applied

member registration operations were separated for the Auth Man-
agement service and User Management service respectively.

When it comes to TRS, DDD is considerably more granular. As
seen from the diagrams, the relatively small number of interface
interactions indicate low coupling. For example, between User and
API services, the connection is done via two projects and channel
metadata. The shared Value Object of project data can be designed
to yield as little information as possible for the channel, which can
now be set up independently on the project dashboard, while all API
processing is done separately of Account context. This is not the
case for DFD however, as the interface needs higher complexity (and
thus higher TRS) to ensure data consistency. However, the WSIC
index has a better value for DFD. With regard to the other metrics,

the number of interfaces is smaller for DDD. However, in the DFD
case, the Project service is separated, thus the distribution and size
of asynchronous calls can be spread out more efficiently. Our DDD-
resulted architecture is "the core basis for all granularity-based
decisions" [25], and as every service is meant to be encapsulated
within a bounded context, while the granularity is automatically
based on domain "functionality” and not on other metrics such as
LoC [25].

8.2 Database Connectivity

In our resulting DDD architecture, a designer can store "all parts
of the domain model [...] in the same database" [19], such that the
"need to share databases between microservices" decreases [39], and

A Systematic Evaluation of Microservice Architectures Resulting from Domain-Driven and Dataflow-Driven Decomposition

all operations/function calls between the entities can be done via
interface calls. Such interface calls can be minimized by correlating
a "database access index" to "domain entities exported to other
modules" [19]. Moreover, the bidirectionally related services are
now combined, as the literature suggests [40]. Such a step removed
the old monolithic interdependencies between entities yet added
"indirect relations between databases" [19]. For the resulting DFD
architecture, optimized replicas were in front of the interface for
faster accessibility. If applied at the "functional level", this method
facilitates scalability and avoids maintainability issues. In order to
maintain consistency across calls, the write calls of the interface
should be the last in the chain [19]. This is especially relevant when
such a state is being deserialized and validated, and as Faustino et. al
point out, states can be consistent and yet still yield deserialization
errors. The deserialization step is however more problematic for
DFD, as opposed to DDD, as the data state has to be made consistent.
A big factor in this problem is the nature of the DFD architecture,
given the high flow of pings, API checks, and async notifications,
especially in the API service. Thus, a "centralized service" can be
hard to attain, making the CQRS metric more suitable for DDD
instead. Different from RS, the read accesses are all redirected toward
the replica database, optimized for such operations. However, one
drawback could be inconsistent accesses or deadlocks, and such a
method requires low coupling systems with high data consistency.
In order to handle this, our DFD implementation would need a
centralized separate service for updating the optimized replicas,
which introduces overhead [39]. As an optimization aspect, in our
context of DDD, the architecture is configured to have different
request contexts (user, admin) separated, and a unique interface is
exposed for each. Replicas of such databases can thus be created,
cached, and optimized for each set of operations, such as put/delete
accesses for admins, with prioritized and more efficient access calls
[39]. This technique was proven to provide better results for RS
[19].

8.3 Event Sourcing and Async Messaging

When it comes to event sourcing, decoupling databases using chained
events in the context of DFD was shown to improve database access
times and lower the number of interfaces calls [19, 39]. However, this
poses the problem of data consistency, already mentioned before.
Our resulting DFD architecture can, however, introduce asynchro-
nous messaging between components using a broker and a central
buffer [39]. The downside would be the overhead added by tools such
as Kafka or using MACH-related worker thread pools. However,
such an approach needs to account for sender/receiver identification
and data deserialization [19]. On the other hand, an advantage of
our resulting DDD architecture is that there is no need for gateway
aggregation, given the principles of shared Value Objects between
bounded contexts. However, for DFD, such a gateway (usually for
Network Address Translation) introduces security and availability
overheads, and eventual complications of reverse proxies.

In event-driven architectures, the event data is "transferred in
the form of Data Transfer Objects (DTO)" [19], which is generally
encoded in a JSON format, and which should hold as little infor-
mation about sender and receiver microservices as possible. The

TScIT 37, July 7, 2023,

Event Sourcing pattern argues that the "state of a business entity
is persisted as a sequence of events" [39]. In order to optimize in-
terconnectivity, one needs to think about the trade-off between a
number of interface calls and the actual payload size that this se-
quence of events carries, yet as it was previously mentioned, this
can sometimes be deceiving for DDD (API bounded context).

8.4 Structural Coupling

When it comes to AIS (and its "sibling metric" ADS [8]), the number
of clients calling methods on the service interface is significantly
lower in the DDD approach, as previously mentioned. Between the
bounded contexts, the User is connected to the Accounts entities
only via user-id and owner-id, and the User Shared (Value Object)
instance. On the other hand, the rules applied to the decomposed
DFD ensure that "operation and its output data" modules promote
individual service workflow while having a low dependency degree
between each other [13], therefore enforcing loose coupling.

When it comes to SIY, by design, neither architecture has strongly
connected components, and thus no bidirectional dependency. When
it comes to semantic similarity, DFD yields significantly better re-
sults. During the decomposition process, the modules are extracted
by an "operation and its output data" identification mechanism,
leveraged by the decomposition rules. As already mentioned, this
ensures a high cohesion degree, and combined with the WSIC4y g
results for the services resulting from DFD decomposition, it can be
seen that the methods within such modules are more functionally
related to each other, as opposed to the case of DDD decomposition.
However, responsibility distribution tends to be lacking in some
places of DFD architecture. For example, the Payment service has a
lower workload than the rest. The others, as the WSIC metric sug-
gested, are quite even. However, a gateway is sometimes considered
a "common practice” [30] for DDD, as the facade can be easily built
on bounded contexts, combining its elements to create a "tailored"
interface. In our context of DDD, gateways also require abstraction
and anticorruption layers [19]. The interfaces also provide mini-
mum data, thus being a testimonial to the low coupling degree of
the resulting architecture.

8.5 Cohesion

As already mentioned, the internal similarity of each service is more
linear in DFD as the rules applied for the decomposed DFD are
used to extract "operation and its output data modules [...] into
microservice candidates" [13]. Such rules therefore also ensure a
high cohesion degree between the modules. In DDD however, this
can be more problematic. In the Auth bounded context, most meth-
ods have the self, request, and response parameters. However, in
the API-bounded context, the parameters are more diverse: status,
message, query set, captcha-challenge, etc. This is easier solvable in
DFD, yet in DDD it is hard to overcome as the domain models are
the same, yet external integrations need different values. Therefore,
SIDC’s resulting value is closer to 1 in DFD, given the decomposable
DFD rules that aggregate the same operations with their data types.
However, in DDD this is hard to achieve automatically and needs
further consideration from developers. When it comes to Service
Interface Usage Cohesion, DFD again yields more promising results.

TSclIT 37, July 7, 2023,

By design, the "operations with the same output data" [13] need to
be compiled into the same process, which makes the usability index
of the resulting services very high. Thus, the "abstract meaning con-
cepts” introduced by the decomposed processing make DFD yield
a high value for SIUC. The value of TSIC is the weighted average
of SIDC and SIUC, which given the previous results, is generally
higher for DFD. In our case, the exact value of this metric is de-
termined by the abstraction degree previously mentioned, given
the data model resulting from the purified DFD. The most notable
example is within the Project management service, where as shown
by the decomposed DFD (figure 3), DDD’s contextual operations are
reformatted into "Account Profile Management", "Project Manage-
ment", "Member invitation Management", etc. This value would be
even more prominent should there be additional complexity within
the User bounded context.

8.6 Dynamic Similarity Index

Although two different approaches, the microservices yielded by
DDD and DFD, in this case, tend to be similar in places where
abstraction cannot be defined [3]. One of these is, for example,
the “project” bounded context. In the context of DFD, we can see
that the sumPairs has more instances where entities have consid-
erable consecutive accesses. For example, in the API service, the
ping/event/notification entities are closely related in functionality,
therefore the similarity metric will be close to 1. On the other hand,
DDD provides little to no similar degree, shared between bounded
contexts, as all API preprocessing is done inside the API bounded
context. The “maxPair” value is proportional to the sumPairs out-
liers, indicating a correct application of decomposition rules. By the
proposed Similarity Index (Formula (3)), it can be easier to evaluate
DDD rather than DFD, as using graph calls, the architect can decide
whether two domain elements should be in the same bounded con-
text given their frequent interconnection. On the other hand, the
previously mentioned high index would improve the performance
of interfaces and gateway APIs since it removes complexity from
API communication.

8.7 Evolvability

As previously mentioned, DFD sometimes requires a “centralized
governance” entity, in order to preserve data states and consistency.
On the other hand, the exact comparison factor of “autonomous
teams” can be seen in DDD. The other metric is "non-patronizing
usage of tools and metrics" [7], which in the case of DFD must be
essential to assure data consistency (brokers, messaging queues,
etc.). In our context, the clear winner is DFD, although it is also
advocated that it is enough to be highly uniform, highly cohesive,
and low coupling [14]. Moreover, the correct general application of
granularity is in direct relation to this criterion, as a better-sized
and low-coupled set of services directly improve maintainability.
For our DDD-resulted architecture, maintainability is high as the
workload can be decentralized and teams do not have to coordinate
to ensure consistency, which imposes additional overhead using
various DevOps rules or comprehensive documentation [7].

llie Sebastian Mihai

9 THREATS TO VALIDITY

The evaluation of the two decomposition approaches has been per-
formed without loss of generality. The most important thread to the
validity of this analysis is the business context and business func-
tions of each initial monolithic system. Systematic studies for each
individual decomposition process have been conducted given a cer-
tain degree of prerequisite business functions. However, this paper
had a general applicability approach in mind, thus neglecting the in-
dividual business logic side. This can have major implications when
it comes to unbiased analysis. However, this concern regarding the
correlation between business functions and decomposition methods
is widely recognized amongst architects and researchers, which can
be a topic of further discussion and research in itself. When it comes
to metric-based analysis, given the current state of the art, there
are not generally approved and applicable metrics, and frequently
the evaluation criteria are contradicting, as mentioned throughout
the paper. Therefore, the set of criteria previously compiled is ap-
plicable to only a subset of microservice architectures, especially
based on either DDD or DFD. Moreover, some approaches were
not fully evaluated in an absolute way. For example, the framework
proposed by Cojocaru et. al [15] presented some tests with only
two microservices, which by the metrics for coupling and cohesion,
might lead to biased results.

10 CONCLUSION

This research paper analyzed two microservices architectures, re-
sulting from the destructuration process of a monolithic system
using DDD and DFD. The results of the metric-based comparison
yield different results, given the contextual use and applicability
degree of the two approaches. For instance, DFD yields better results
when considering Cohesion, or DDD performs better when it comes
to async communication. As the evaluation has been performed
in an objective and function-oriented manner, this differentiation
can be easily outlined. The related contextual use, and the benefit
of one decomposition method over the other, have both been dis-
cussed throughout the metric definition and evaluation sections.
DDD can help designers understand granularity levels, helping them
achieve more granular and modular microservices [25]. DFD can
help designers understand data serialization, centralization, and
consistency issues. Async messaging concerns were discussed and
contextual solutions were proposed. The benefits of introducing
bounded contexts were described throughout the evaluation, and
formula-based reasoning was given for the corresponding sections,
whose benefits tend to outweigh the ones introduced by DFD in
numerous cases where data consistency is problematic. Further
areas where developer implication is crucial, and method-based
evaluation is questionable, such as cohesion, were also analyzed
and tackled. A future improvement that could build upon the con-
clusions of this study can be the dynamic evaluation of the same
metrics. Comprehensive runtime-based evaluation can follow, and
with it, a more extensive set of metrics could be considered, which
could further cover runtime-based or orchestration-based metrics
while encompassing both static and dynamic metric-related factors.

A Systematic Evaluation of Microservice Architectures Resulting from Domain-Driven and Dataflow-Driven Decomposition

REFERENCES

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

2014. Microservices. martinfowler.com (2014). https://martinfowler.com/articles/
microservices.html

Omar Al-Debagy and Peter Martinek. 2021. A microservice decomposition method
through using distributed representation of source code. Scalable Computing:
Practice and Experience 22, 1 (2021), 39-52.

Bernardo Andrade, Samuel Santos, and Anténio Rito Silva. 2022. From Monolith to
Microservices: Static and Dynamic Analysis Comparison. arXiv:2204.11844 [cs.SE]
Luciano Baresi, Martin Garriga, and Alan De Renzis. 2017. Microservices identifi-
cation through interface analysis. In Service-Oriented and Cloud Computing: 6th
IFIP WG 2.14 European Conference, ESOCC 2017, Oslo, Norway, September 27-29,
2017, Proceedings 6. Springer, 19-33.

Nichlas Bjerndal, Luiz Aradjo, Antonio Bucchiarone, Nicola Dragoni, Manuel
Mazzara, and Schahram Dustdar. 2021. Benchmarks and performance metrics for
assessing the migration to microservice-based architectures. Journal of Object
Technology (08 2021). https://doi.org/10.5381/jot

Grzegorz Blinowski, Anna Ojdowska, and Adam Przybylek. 2022. Monolithic
vs. Microservice Architecture: A Performance and Scalability Evaluation. IEEE
Access 10 (2022), 20357-20374. https://doi.org/10.1109/ACCESS.2022.3152803
Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann. 2019.
Assuring the Evolvability of Microservices: Insights into Industry Practices and
Challenges. https://doi.org/10.1109/ICSME.2019.00089

Justus Bogner, Stefan Wagner, and Alfred Zimmermann. 2017. Automatically
Measuring the Maintainability of Service-and Microservice-based Systems — a
Literature Review. https://doi.org/10.1145/3143434.3143443

Justus Bogner, Stefan Wagner, and Alfred Zimmermann. 2017. Towards a Practical
Maintainability Quality Model for Service-and Microservice-based Systems. 195—
198. https://doi.org/10.1145/3129790.3129816

Miguel Brito, Jacome Cunha, and Jodo Saraiva. 2021. Identification of microser-
vices from monolithic applications through topic modelling. In Proceedings of the
36th Annual ACM Symposium on Applied Computing. 1409-1418.

Matteo Camilli, Carmine Colarusso, Barbara Russo, and Eugenio Zimeo. 2020.
Domain Metric Driven Decomposition of Data-Intensive Applications. 189-196.
https://doi.org/10.1109/ISSREW51248.2020.00071

Roberta Capuano and Henry Muccini. 2022. A Systematic Literature Review on
Migration to Microservices: a Quality Attributes perspective. 120-123. https:
//doi.org/10.1109/ICSA-C54293.2022.00030

Rui Chen, Shanshan Li, and Zheng Li. 2017. From Monolith to Microservices:
A Dataflow-Driven Approach. In 2017 24th Asia-Pacific Software Engineering
Conference (APSEC). 466-475. https://doi.org/10.1109/APSEC.2017.53

Michel Cojocaru, Ana-Maria Oprescu, and Alexandru Uta. 2019. Attributes As-
sessing the Quality of Microservices Automatically Decomposed from Monolithic
Applications. 84-93. https://doi.org/10.1109/ISPDC.2019.00021

Michel Cojocaru, Alexandru Uta, and Ana-Maria Oprescu. 2019. MicroValid:
A Validation Framework for Automatically Decomposed Microservices. https:
//doi.org/10.1109/CloudCom.2019.00023

Zhamak Dehghani. 2018. How to break a Monolith into Microservices. martin-
Fowler. com, Apr 24 (2018), 12.

Thomas Engel, Melanie Langermeier, Bernhard Bauer, and Alexander Hofmann.
2018. Evaluation of Microservice Architectures: A Metric and Tool-Based Approach.
74-89. https://doi.org/10.1007/978-3-319-92901-9_8

Eric Evans. 2004. Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional.

Diogo Faustino, Nuno Gongalves, Manuel Portela, and Anténio Rito Silva. 2022.
Stepwise Migration of a Monolith to a Microservices Architecture: Performance
and Migration Effort Evaluation. arXiv:2201.07226 [cs.SE]

Jonas Fritzsch, Justus Bogner, Alfred Zimmermann, and Stefan Wagner. 2019.
From monolith to microservices: A classification of refactoring approaches. In
Software Engineering Aspects of Continuous Development and New Paradigms of
Software Production and Deployment: First International Workshop, DEVOPS 2018,
Chateau de Villebrumier, France, March 5-6, 2018, Revised Selected Papers 1. Springer,
128-141.

Sara Hassan, Rami Bahsoon, and Rick Kazman. 2020. Microservice transi-
tion and its granularity problem: A systematic mapping study. Software: Prac-
tice and Experience 50, 9 (2020), 1651-1681. https://doi.org/10.1002/spe.2869
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2869

Healthchecks. [n. d.]. Healthchecks/healthchecks: A cron monitoring tool written
in python amp; django. https://github.com/healthchecks/healthchecks
Benjamin Hippchen, Pascal Giessler, Roland Steinegger, Michael Schneider, and
Sebastian Abeck. 2017. Designing microservice-based applications by using a
domain-driven design approach. International Journal on Advances in Software 10,
3&4 (2017), 432-445.

Benjamin Hippchen, Michael Schneider, Pascal Giessler, and Sebastian Abeck.
2019. Systematic Application of Domain-Driven Design for a Business-Driven
Microservice Architecture. International Journal on Advances in Software Volume
12, Number 3 & 4, 2019 (2019).

[25]

[26]

[27]

(28]

™~
20,

[30

(31

[32

@
&

(34]

(35]

[36

®
=

[38

[39

[40

[41

[42

[43

[44

[45

[46

(48

TScIT 37, July 7, 2023,

Garvit Jain, Urjita Thakar, Vandan Tewari, and Sudarshan Varma. 2021. A Survey
on Trending Topics of Microservices. International Journal 9, 8 (2021).

Pooyan Jamshidi, Claus Pahl, Nabor Mendonga, James Lewis, and Stefan Tilkov.
2018. Microservices: The Journey So Far and Challenges Ahead. IEEE Software 35
(05 2018), 24-35. https://doi.org/10.1109/MS.2018.2141039

Wouxia Jin, Ting Liu, Yuanfang Cai, Rick Kazman, Ran Mo, and Qinghua Zheng.
2019. Service candidate identification from monolithic systems based on execution
traces. IEEE Transactions on Software Engineering 47, 5 (2019), 987-1007.

Justas Kazanavi¢ius and Dalius Mazeika. 2019. Migrating Legacy Software to
Microservices Architecture. In 2019 Open Conference of Electrical, Electronic and
Information Sciences (eStream). 1-5. https://doi.org/10.1109/eStream.2019.8732170
Holger Knoche and Wilhelm Hasselbring. 2018. Using microservices for legacy
software modernization. IEEE Software 35, 3 (2018), 44-49.

Martin Lehmann and Frode Eika Sandnes. 2017. A Framework for Evaluating
Continuous Microservice Delivery Strategies. In Proceedings of the Second Inter-
national Conference on Internet of Things, Data and Cloud Computing (Cambridge,
United Kingdom) (ICC ’17). Association for Computing Machinery, New York, NY,
USA, Article 64, 9 pages. https://doi.org/10.1145/3018896.3018961

Alessandra Levcovitz, Ricardo Terra, and Marco Tulio Valente. 2016. Towards
a Technique for Extracting Microservices from Monolithic Enterprise Systems.
arXiv:1605.03175 [cs.SE]

Shanshan Li, He Zhang, Zijia Jia, Zheng Li, Cheng Zhang, Jiaqi Li, Qiuya Gao,
Jidong Ge, and Zhihao Shan. 2019. A dataflow-driven approach to identifying
microservices from monolithic applications. Journal of Systems and Software 157
(2019), 110380. https://doi.org/10.1016/j.js5.2019.07.008

Lei Liu, Zhiying Tu, Xiang He, Xiaofei Xu, and Zhongjie Wang. 2021. An Empirical
Study on Underlying Correlations between Runtime Performance Deficiencies
and “Bad Smells” of Microservice Systems. 751-757. https://doi.org/10.1109/
ICWS53863.2021.00103

Jodo Lourenco and Antoénio Rito Silva. 2022. Monolith Development His-
tory for Microservices Identification: a Comparative Analysis. arXiv preprint
arXiv:2212.11656 (2022).

Luis Nunes, Nuno Santos, and Anténio Rito Silva. 2019. From a monolith to a
microservices architecture: An approach based on transactional contexts. In Soft-
ware Architecture: 13th European Conference, ECSA 2019, Paris, France, September
9-13, 2019, Proceedings 13. Springer, 37-52.

Sebastiano Panichella, Mohammad Imranur Rahman, and Davide Taibi. 2021.
Structural Coupling for Microservices. arXiv:2103.04674 [cs.SE]

Florian Rademacher, Sabine Sachweh, and Albert Ziindorf. 2018. Towards a UML
Profile for Domain-Driven Design of Microservice Architectures. In Software En-
gineering and Formal Methods, Antonio Cerone and Marco Roveri (Eds.). Springer
International Publishing, Cham, 230-245.

Chris Richardson. 2018. Microservices patterns: with examples in Java. Simon and
Schuster.

Thatiane Rosa, Jodo Daniel, Eduardo Guerra, and Alfredo Goldman. 2020. A
Method for Architectural Trade-off Analysis Based on Patterns: Evaluating Mi-
croservices Structural Attributes. 1-8. https://doi.org/10.1145/3424771.3424809
Dmytro Rud, Andreas Schmietendorf, and Reiner Dumke. 2006. R.: Product metrics
for service-oriented infrastructures.

Roland Steinegger, Pascal Giessler, Benjamin Hippchen, and Sebastian Abeck. 2017.
Overview of a Domain-Driven Design Approach to Build Microservice-Based
Applications.

Mehmet Soylemez, Bedir Tekinerdogan, and Ayca Kolukisa Tarhan. 2022. Chal-
lenges and Solution Directions of Microservice Architectures: A Systematic Liter-
ature Review. Applied Sciences 12, 11 (2022). https://doi.org/10.3390/app12115507
Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. 2018. Architectural Pat-
terns for Microservices: A Systematic Mapping Study. https://doi.org/10.5220/
0006798302210232

Davide Taibi and Kari Systa. 2019. From monolithic systems to microservices: A
decomposition framework based on process mining. (2019).

Davide Taibi and Kari Systa. 2020. A Decomposition and Metric-Based Evaluation
Framework for Microservices. 133-149. https://doi.org/10.1007/978-3-030-49432-
2.7

Shmuel Tyszberowicz, Robert Heinrich, Bo Liu, and Zhiming Liu. 2018. Identifying
microservices using functional decomposition. In Dependable Software Engineering.
Theories, Tools, and Applications: 4th International Symposium, SETTA 2018, Beijing,
China, September 4-6, 2018, Proceedings 4. Springer, 50-65.

Fredy Vera-Rivera, Eduard Puerto-Cuadros, Hernan Astudillo, and Mauricio
Gaona. 2020. Microservices Backlog - A Model of Granularity Specification and
Microservice Identification. 85-102. https://doi.org/10.1007/978-3-030-59592-0_6
Hulya Vural and Murat Koyuncu. 2021. Does Domain-Driven Design Lead to
Finding the Optimal Modularity of a Microservice? IEEE Access 9 (2021), 32721~
32733. https://doi.org/10.1109/ACCESS.2021.3060895

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://arxiv.org/abs/2204.11844
https://doi.org/10.5381/jot
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1109/ICSME.2019.00089
https://doi.org/10.1145/3143434.3143443
https://doi.org/10.1145/3129790.3129816
https://doi.org/10.1109/ISSREW51248.2020.00071
https://doi.org/10.1109/ICSA-C54293.2022.00030
https://doi.org/10.1109/ICSA-C54293.2022.00030
https://doi.org/10.1109/APSEC.2017.53
https://doi.org/10.1109/ISPDC.2019.00021
https://doi.org/10.1109/CloudCom.2019.00023
https://doi.org/10.1109/CloudCom.2019.00023
https://doi.org/10.1007/978-3-319-92901-9_8
https://arxiv.org/abs/2201.07226
https://doi.org/10.1002/spe.2869
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2869
https://github.com/healthchecks/healthchecks
https://doi.org/10.1109/MS.2018.2141039
https://doi.org/10.1109/eStream.2019.8732170
https://doi.org/10.1145/3018896.3018961
https://arxiv.org/abs/1605.03175
https://doi.org/10.1016/j.jss.2019.07.008
https://doi.org/10.1109/ICWS53863.2021.00103
https://doi.org/10.1109/ICWS53863.2021.00103
https://arxiv.org/abs/2103.04674
https://doi.org/10.1145/3424771.3424809
https://doi.org/10.3390/app12115507
https://doi.org/10.5220/0006798302210232
https://doi.org/10.5220/0006798302210232
https://doi.org/10.1007/978-3-030-49432-2_7
https://doi.org/10.1007/978-3-030-49432-2_7
https://doi.org/10.1007/978-3-030-59592-0_6
https://doi.org/10.1109/ACCESS.2021.3060895

	Abstract
	1 Introduction
	2 Related Work
	3 Decomposition Techniques Background
	4 Decomposition Techniques
	4.1 DDD techniques
	4.2 DFD techniques

	5 Research Methodology
	6 Metrics
	6.1 Granularity
	6.2 Database Connectivity
	6.3 Event Sourcing and Async Messaging
	6.4 Structural Coupling
	6.5 Cohesion
	6.6 Dynamic Similarity Index
	6.7 Evolvability

	7 Monolith Destructuring
	7.1 DDD Destructuring Process
	7.2 DFD Destructuring Process

	8 Results
	8.1 Granularity
	8.2 Database Connectivity
	8.3 Event Sourcing and Async Messaging
	8.4 Structural Coupling
	8.5 Cohesion
	8.6 Dynamic Similarity Index
	8.7 Evolvability

	9 Threats to validity
	10 Conclusion
	References

