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This thesis explores the effectiveness of adversarial attack methods in evad-
ing AI-text detection. Experimenting on three attack categories, prompt
engineering, parameter tweaking, and character-level mutations, this re-
search employs a mixed-methods approach to examine the effectiveness of
such attacks with the recently released GPT-3.5 model. Results from this re-
search reveal the low robustness of existing detectors towards practical and
resource-efficient attack methods. The findings demonstrate how prompt
engineering, parameter tweaking and character-level mutations can be ex-
ploited to evade detection effectively. Additionally, the study shows that
detector algorithms struggle with the GPT-4 model and highlights the need
for urgent improvement in existing detectors.
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1 INTRODUCTION
Recent advancements in deep learning resulted in significant im-
provements in Natural Language Processing (NLP), with GPT-3,
GPT-3.5, and GPT-4 showing exceptional performance in language
understanding and text generation. Concurrently, AI-generated text
detectors (Models that are trained to detect whether a text is AI-
generated) also became increasingly sophisticated. Because of the
widespread deployment of these NLP models, the detection of AI-
generated texts is becoming more important. AI-generated text
detectors have become increasingly sophisticated, making them an
interesting target for adversarial attacks.
Such attacks exploit the fact that any Machine Learning (ML)

model works by identifying patterns in the data rather than by
understanding actual underlying concepts [7, 23]. Consequently,
introducing even tiny human-unnoticeable perturbations to the
sample could result in misclassification by the model [7, 23]. These
modified inputs are typically referred to as adversarial examples.

Adversarial attacks can be categorised into black-box and white-
box attacks [19]. In white-box adversarial attacks, the attacker has
full access to the target model, including its parameters, architecture
and loss function [5, 6]. In contrast, during the black-box attack, the
adversary can only input queries and observe the outputs without
any insights into internal processing [6].
Furthermore, adversarial attacks can be classified into targeted

and untargeted attacks, where targeted attacks aim at triggering
misclassification towards a specific label, while untargeted aim to
cause any misclassification. A further distinction can be made be-
tween individual and universal adversarial attacks, with the former
aiming at finding unique perturbations for each input sample and
the latter - at finding perturbation patterns applicable to all samples
in the dataset. [20]
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Although there is much literature on adversarial attacks on im-
age detection, the text domain is less explored due to its discrete
nature [8, 19]. This discrepancy also results from the difficulty in
introducing human-imperceptible perturbations to text, contrary
to the image data, where a change in a few hundred pixels can
go unnoticed [19]. Although recent studies have begun to address
this gap [10, 22], the most recent generation of models is yet to be
investigated.

Several black-box adversarial attack methods exist. Still, the ma-
jority of them fall under the following categorisation:

• Surrogatemodel attacks: A simple surrogatemodel is trained
locally to craft adversarial examples for the target model. This
technique approaches a black-box environment as a white
box with some limitations. [12]

• Transfer-based attacks: Adversarial examples are crafted
on a different available classification model and then trans-
ferred to the target model. [2, 27]

• Query-based attacks: Adversarial examples are produced by
repeatedly querying the target model and adapting based on
the feedback received. Produces significant model overhead.
[3, 4, 8, 10, 25]

The first two methods assume the transferability of adversarial at-
tacks between models. The only difference between them is whether
a new model is trained. Contrarily, the third method works directly
with the target model, potentially leading to a higher success rate
but producing significant model overhead.

With the arrival of ChatGPT, prompt engineering has emerged as
a potential newmethod for adversarial attacks. In the context of NLP,
prompt engineering refers to crafting model inputs to customise
interaction and outputs [24].
This research explores prompt engineering, GPT 3.5 parameter

tweaking and character-level mutations for creating targeted adver-
sarial attacks against widely-used detectors in a black-box scenario
with minimal resources. The ultimate goal is to assess whether
an effective and resource-efficient universal attack strategy can be
developed in this scenario.

2 RESEARCH QUESTION
During this study, the following research question is answered:What
adversarial attack methods can successfully bypass AI-generated text
detectors in a black-box, limited-resource environment on the GPT-3.5
model? Various experiments were conducted to create adversarial
samples from GPT-3.5-generated texts. The adversarial samples
were fed to the Turnitin AI detector1, OpenAI classifier2 and GPT-2
Output detector3. The attack strategies were assessed to answer the
research question and draw conclusions.

1https://www.turnitin.com/solutions/ai-writing
2https://platform.openai.com/ai-text-classifier
3https://openai-openai-detector--jsq2m.hf.space/
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3 LITERATURE REVIEW
Although the literature on adversarial attacks on NLP models is
limited, a larger volume of research exists within a similar field
of image recognition and computer vision, which provides an im-
portant reference point. However, their applicability is hindered
due to the discrete nature of the text domain and the difficulty in
introducing human-imperceptible perturbations.
Several studies operating in an image black-box environment

explore the concepts of surrogate models and transfer-based attacks
[2, 12, 27]. While using different methods, they all require estimat-
ing the target model loss function to compute the gradient. This
requirement contrasts the strategies proposed in the research on
query-based image attacks [3, 4] and text attacks [8, 10, 25], which
operate independently of the loss function, thereby enhancing re-
source efficiency.
Various studies of the current detection mechanisms and their

robustness to adversarial attacks provide valuable insights for this
research. For instance, a study [1] discusses that GPT-2 detection
could be augmented by integrating different statistical features,
although it notes that further research is necessary. Another article
[26] introduces a flexible method, Robust Density Estimation (RDE),
for identifying adversarial examples in GPT-2 samples.

One of the novel detection methods is watermarking: embedding
specific statistical patterns into the texts, which are invisible to the
human eye but can be quickly picked by a detector [9]. Though
watermarked text can quickly degrade under an adversarial attack,
the method offers computational simplicity and might limit prompt
engineering and parameter tweaking attack strategies. In contrast,
more common attack approaches based on mutations [8] and para-
phrasing [21] are less affected.

A promising improvement to the detector algorithms is the Zero-
shot learning technique called DetectGPT, based on the observation
that LLM-generated texts tend to occupy negative curvature regions
of the model’s log probability function [13]. Nevertheless, recent
research [21] proves that the current state-of-the-art methods, such
as watermarking [9], zero-shot detection [13] and detector neural
networks, are not robust to paraphrasing and might not be robust
to other adversarial techniques for GPT-2 generated texts.
Finally, a recent study on detector biases [11] shows that GPT-

3.5 detectors are biased towards non-native speakers, as they tend
to classify less diverse texts as AI-written. Additionally, the study
shows that the accuracy of most state-of-the-art GPT-3.5 detectors
can be decreased with a simple prompt asking the model to rewrite
the text using literary language. These findings lay the groundwork
for this research project.

Nevertheless, there is a noticeable gap in the literature: the major-
ity of the aforementioned studies target GPT-2, and none consider
the recently released Turnitin classifier, which is advertised as one
of the most accurate and is widely used in the educational environ-
ment.

4 METHODOLOGY
The research is a mixed-methods study involving multiple experi-
ments and manual text assessments. The experiments were designed

to investigate the robustness of GPT-3.5 generated content detec-
tors - Turnitin AI writing detector, OpenAI classifier and GPT-2
output detector against limited resource attack strategies. Due to
the variety of experiments conducted, python code was written
with the assistance of GPT-4 combined with extensive proofreading
and testing. Additionally, some functionality had to be implemented
manually due to GPT-4 limitations. The code and data are available
on GitHub 4.

4.1 Research design
In order to answer the research question, first, accessible and resource-
efficient attack strategies were selected: parameter tweaking, prompt
engineering and character-level mutations. The selection is justified
by resource efficiency and the high practicality of the above attacks,
as anyone can reproduce them quickly. In contrast, most approaches
presented in the literature are computationally heavy and require
complex implementations, hindering their practicality.
The research involved generating text samples using different

prompts and essay topics with the GPT-3.5 model and assessing
the detection accuracy of the selected detectors. The dependent
variable was the prediction score for the text being AI-generated,
where 0% represents that the detector does not classify the text
as AI-generated, and a 100% score would mean that the detector
considers the text to be completely AI written. Each experiment was
designed to test either a specific attack strategy or the modification
of that strategy. The research process was exploratory, meaning that
some of the experiments were sequential, and this paper presents
them in the same sequence they were explored.

4.2 Experimental setup
The experiments are divided into three categories: parameter tweak-
ing, prompt engineering, and character-level mutations. Parameter
tweaking consists of experiments exploring how different GPT-3.5
model parameters affect the detection. Prompt engineering is based
on qualitative text analysis of anomaly cases to derive a pattern that
could be reliably replicated with a prompt. The character mutation
category explores the resilience of the detectors towards traditional
resource-efficient adversarial attack methods.
The research used the GPT-3.5-turbo model via OpenAI API for

generating text samples. OpenAI regards the model as having im-
proved performance and lower cost than other models from the
GPT-3.5 family [17]. Additionally, for one of the experiments, texts
were generated manually using GPT-4 because, as of June 2023, the
GPT-4 API is in a limited beta. The text samples were produced as
500-word essays, with the topic taken from a list of 200 best essay
topics [14]. The essay format was consistent across all experiments,
though the precise prompts, essay genre, number of texts generated
and corresponding topics varied between experiments. As the GPT-
3.5 model requires specifying the number of tokens to be allocated
for the request, the standard value for all of the experiments was set
to 800 tokens, utilising the estimation of OpenAI that each token is
roughly equal to 0.75 of a word [18]. Then, for the robustness of the
text generation, the number of tokens was increased by 20%. How-
ever, the specific length of the text was checked in each experiment.

4https://github.com/Lolya-cloud/adversarial-attacks-on-neural-text-detectors
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The text was regenerated if the number of words did not fall under
the range specified separately in each experiment.

Most experiments followed the same prompt format to decrease
environmental uncertainty: "Write a five-hundred-word argumen-
tative essay on the topic ‘topic’.", where the topic was selected from
the list of essay topics defined above. Further in the text, this prompt
format is referred to as a standard or baseline.

4.3 Measurement and Data collection
Three detectors were selected for the study: the Turnitin AI detector,
the OpenAI classifier, and the GPT-2 Output detector. As the OpenAI
classifier returns one of the five labels instead of a score, the results
were mapped onto the numerical scales using the middle points
of the corresponding score ranges provided by OpenAI [15]: "very
unlikely" = 0.05, "unlikely" = 0.275, "unclear if it is" = 0.675, "possibly"
= 0.94, "likely" = 0.99.
The Turnitin detector returns a score between 0 and 100, rep-

resenting the confidence for the text being AI-generated. Conse-
quently, the scores for Turnitin were kept without conversion. In
contrast, the GPT-2 Output detector and OpenAI classifier (after
mapping) scores were floats; thus, when the detectors were com-
pared, the scores were multiplied by a hundred and rounded to the
nearest digit.

Texts were uploaded to Turnitin and OpenAI detectors using Sele-
nium in Python since, as of June 2023, the APIs to these detectors are
not publicly available. The results were scraped similarly. Contrary,
the GPT-2 Output detector was analysed using a Demo server, as
the model is publicly available.

4.4 Data analysis
Due to diverse and skewed distributions of the results, a more qual-
itative analysis approach was performed instead of statistical tests,
as the assumptions for most statistical tests were not satisfied. The
procedure included generating boxplots, histograms and distribu-
tion diagrams using Python libraries: Matplotlib and Seaborn. The
statistical significance of the results was not explored due to the
aforementioned diversity and skewness of the data.

4.5 Parameter tweaking
This category of experiments explored the relation between GPT-
3.5 model parameters and the detection rates of the three detectors.
Firstly, the linear search over the parameter range was performed.
Sequentially, the grid search was conducted based on the linear
search results.

4.5.1 Linear search. Four parameters were selected from the list
of parameters provided by the OpenAI [16]: Temperature, Top P,
Frequency penalty, and Presence penalty. Temperature and Top P
control randomness in the text, though the methods and range of
acceptable values differ. The temperature ranges between 0.0 and
2.0 and defaults to 1.0 [16]. With an increment in value, the output
becomes more random. However, it was found that increasing the
value beyond the default of 1.0 made the model too unpredictable
to test reliably. The length of the outputs started fluctuating beyond
20% of the tokens, and the quality of the texts was found to drop
gradually. Consequently, the temperature was limited to the range of

0.0 - 1.0. Top P ranges from 0.0 to 1.0, defaults to 1.0, and represents
the percentage of tokens selected based on their probability mass
[16]. Generally, OpenAI recommends tweaking either temperature
or top p since tweaking both makes the model unpredictable [16].
The frequency penalty ranges from -2.0 to 2.0, defaults to 0.0, and
controls the frequency of tokens appearing in the text, with higher
values leading to more diverse verbatim [16]. During the testing
phase, it was found that increasing the frequency penalty beyond 1
degrades the quality of the texts rapidly. Additionally, as decreasing
value beyond 0 increases the repetitiveness, the experiment range
was set to 0.0 - 1.0. Finally, the presence penalty ranges from -2.0 to
2.0, defaults to 0.0, and controls the model’s likelihood of repeating
tokens in the text [16]. Higher values of presence penalty lead to the
model producing more diverse texts and talking about new topics
[16]. Following consideration similar to the frequency penalty, the
negative values were discarded, and the range was set to 0.0 - 2.0.

The justification for selecting the four parameters lies in resource
efficiency and the expected impact on the target text. Tweaking
them is a simple procedure of setting a variable to a different value
with substantial results. OpenAI provides other parameters, such as
logit bias [16], but they are not considered in this research due to
complexity.
Three topics from the argumentative essay genre were selected

for text generation following the standard prompt format. A linear
search was performed separately for each parameter with a step of
0.1 while fixating the other parameters. Three texts were generated
for each step in the parameter range (one per essay topic), and their
detection scores were recorded. The acceptable deviation of the
text size was set to 10% of the original word count, and the sample
was regenerated otherwise. Sequentially, the linear search for each
parameter was plotted on a two-dimensional graph displaying the
parameter value and average score of the three texts for that value.
Three data sets were plotted for each value, corresponding to the
three detectors. This would allow observing the parameter changes’
effect on the detection and comparing the detectors’ performance
against prompt tweaking. A qualitative analysis was performed on
the texts to identify the changes prompt tweaking induces on the
quality of the texts.

4.5.2 Grid search. As frequency and presence penalties decreased
detection rates in the first experiment, an extensive grid search was
performed on their combinations within the ranges not impairing
text quality: frequency penalty between 0.0 and 0.6; a presence
penalty between 0.0 and 0.5. A grid search was performed with
a step of 0.1; however, only a single text was generated for each
parameter combination following the standard prompt for a single
topic from the argumentative essay genre. The range for acceptable
text length deviation was increased to 15% due to a larger text size
fluctuation observed when tweaking both parameters. The results
were plotted on a scattered plot with two parameters as axes and
colour mapping indicating the score. Plots for each of the detectors
were then combined to compare the performance.

4.6 Prompt engineering
The second branch of experiments explored the effect of GPT-3.5 and
GPT-4 prompt engineering on detection rates. Firstly, a detection
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comparison test was conducted between different essay genres.
Secondly, the first experiment’s results were used to design a prompt
asking the model to imitate the discrepancy between the scoring of
various texts and essay genres. Followingly, the effect of the new
prompt on detection rates was explored. Intriguing quantitative and
qualitative results of the experiment led to a test of the same prompt
on the GPT-4 model, bringing forward new insights. A broader
experiment on the GPT-3.5 model was designed sequentially based
on the insights from the following article [11]. All of the experiments
from this category utilised a single topic from the argumentative
essay genre.

4.6.1 Genre difference. Two hundred essay topics were selected
from the list of the best essay topics [14] and grouped by gen-
res: argumentative, cause-effect, compare-contrast, controversial-
argumentative, descriptive, expository, funny-argumentative, nar-
rative, persuasive, and research. The standard prompt format was
used for each topic, and the acceptable range of length deviation was
set to 10% due to a smaller variation in sizes observed. The results
were plotted as boxplots, violin plots and histograms, allowing for
in-depth analysis.
Qualitative analysis of the differences between texts with lower

and higher detection rates revealed a series of patterns distinguish-
ing anomalous samples:

• Variability in sentence lengths and paragraph structures.
• Use of rhetorical questions and less formal language.
• Inclusion of contextual and personalization data.

4.6.2 Simple prompt engineering - GPT-3.5. Based on the qualitative
analysis of the results of the genre difference test and anomalous
samples with low detection rates, a prompt asking to replicate the
patterns was devised and tested on GPT-3.5.

In this experiment, the essay formality requirement was omitted
for both the baseline and modified prompts due to the informality
pattern. Additionally, the acceptable length deviation was set to 15%
due to larger fluctuations observed in the texts generated with the
modified prompt.
Twenty texts were generated for both the standard prompt and

the modified one using a single essay topic. The results were anal-
ysed qualitatively with box- and distribution plots for each detector.
Overall, no difference was found between the detection rates.

4.6.3 Simple prompt engineering - GPT-4. The unexpected findings
of the previous experiment resulted in a smaller-scale test of the
modified prompt on GPT-4 to identify whether the results were due
to the prompt being ineffective or the model not being able to follow
it to the required extent. Due to the limitation of manual uploads,
only ten texts were generated for each prompt, and the limit on
length deviation was lifted. The results were analysed similarly to
the GPT-3.5 test; however, only means are presented due to paper
size limitations.

4.6.4 Advanced prompt engineering. A hypothesis emerged during
the previous tests: providing regeneration instructions as a separate
prompt might change the probability distribution of the worlds in
the texts, which could lower the detection. This hypothesis was

tested with the advanced prompt engineering experiment. Firstly,
four prompts were defined:

• Standard
• Standard second-query: "Regenerate the essay."
• Modified: Refined prompt from previous experiments
• Modified second-query: "Regenerate the essay. (Modified
prompt insertion).

Four essay groups were generated using the above prompts, con-
taining ten texts with a text length deviation of 25% due to large
fluctuations observed. Two groups were generated using a single
query to the model. The other two groups utilised a two-query sys-
tem, with the first query being the standard prompt and the second
asking to rewrite following specific instructions. Additionally, the
modified prompt for this test was the improved version of the pre-
viously used modified prompt, following the qualitative analysis of
the texts produced during previous experiments.

4.6.5 Advanced prompt engineering - perplexity-burstiness. This
experiment aimed to test a different approach to prompt engineering
based on the commonly advertised prompt on the internet asking the
model for increment in text perplexity and burstiness. Ten prompts
were designed, and for each, ten texts were generated with a text
length deviation of 25%. Prompts sent to the model ask to increase
the burstiness and perplexity of the text in different ways. The
first five prompts use single-query architecture, while the others
utilise a two-query concept. The following methods were tested
with different prompts:

• Explaining burstiness and perplexity, then asking to imple-
ment them.

• Explicitly asking to maximise either perplexity, burstiness or
both.

• Explicitly asking to rewrite to avoid detection.
The last prompt followed the baseline format for comparison

purposes. The results were analysed using boxplots, distribution
plots, and mean histograms.

4.7 Character-level mutations
This approach aimed to test the robustness of the detectors against
traditional adversarial attack vectors. Three character level muta-
tions were taken as a basis: replacing either Latin lowercase “a”
or “e” with the corresponding Cyrillic analogue; replacing Latin
lowercase “L” with Latin uppercase “I”. Ten texts were generated
using ten argumentative essay topics with a text length deviation
of 10%. Then, each mutation was applied to the samples, and the
results were displayed visually.

5 RESULTS

5.1 Parameter tweaking
Parameter tweaking experiments aimed at exploring the relationship
between parameter values and detection rates.

5.1.1 Linear search. The linear search experiment assessed how
each variable independently influences detection rates and text
quality.
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Fig. 1. Frequency penalty tuning.

Quantitatively, the detection rate of all three detectors dropped
with an increment in either frequency or presence penalties (See Fig-
ures 1, 2). Starting from a frequency penalty of 0.3-0.4 and a presence
penalty of 1.0-1.2, the detection rate fell under 50%, though some
fluctuations were present. Expectedly, lowering the temperature
and top p below the default resulted in more deterministic outputs
leading to higher detection rates, while the increment resulted in
model unpredictability.
Qualitatively, the increment in either the frequency or presence

penalty led to the diversity of the texts spiking. A higher frequency
penalty caused awider vocabulary variety. Starting from a frequency
penalty of 0.6-0.7, the occurrence of punctuation mistakes and un-
clear wordings skyrocketed. At the same time, the values below
that range were found to increase the complexity of the texts while
preserving quality and readability. In contrast, the presence penalty
primarily influenced the diversity of perspectives and text engage-
ment. However, starting from the range of 0.6-1.0, the coherence and
logical progression plummeted, with texts becoming less focused
and more exploratory.
To summarise, it was found that the increment of frequency

penalty in the range of 0.0-0.6 and the presence penalty in 0.0-0.5
decreases detection rates while maintaining high text quality. A
strong correlation between model parameters and detection rates
was observed, with the detection rates plummeting following an
increment in either one of the two parameters.

5.1.2 Grid search. The experiment aimed at researching combi-
nations of frequency and presence penalties that could drop the
detection rates while maintaining text quality. Figure 3 shows that
the detection rates dropped for all three detectors with an increment
in frequency and presence penalty. GPT-2 showed the worst perfor-
mance among the three, with detection dropping to 0 even with a
small parameter increment. Overall, the detection rates were found
to drop with an increment in parameters, reaching an extremum at
the upper portion of the parameter ranges.

5.2 Prompt engineering
This category of experiments explored the effectiveness of prompt
engineering in bypassing detection.

Fig. 2. Presence penalty tuning.

5.2.1 Genre difference. The experiment tested whether there is a
significant difference between detection in different essay genres.
The texts with low detection rates were compared to the analogues
with high detection, and a list of patterns that could contribute to
lower detection was derived.
Statistically, no significant results could be derived as all distri-

butions differed. However, the boxplot of the funny argumentative
genre had a lower median across all three detectors (see Figures 4,
5, 6). Furthermore, the Interquartile ranges (IQR) for most styles
differed across the detectors, with Turnitin having the smallest and
GPT-2 - the largest.

Qualitative analysis of differences in the low and high detection
samples resulted in the identification of the following patterns:

• Texts with lower detection had higher diversity in sentence
lengths and paragraph structure.

• Texts with lower detection were found to employ rhetorical
questions and less formal language more often.

• Texts with lower detection often included contextual and
personalized elements.

5.2.2 Simple prompt engineering - GPT-3.5. Based on the results
of the previous experiment, a prompt embodying identified pat-
terns was designed and tested against a baseline. No significant
differences were found in the detection rates, although the derived
prompt showed a slightly higher average detection rate for all three
detectors.

5.2.3 Simple prompt engineering - GPT-4. As simple prompt en-
gineering on the GPT-3.5 model did not show any difference in
detection rates, a similar test was conducted on GPT-4 model to
test whether the prompt was ineffective or the model could not
follow it to the needed extent. The texts crafted with the modified
prompt resulted in a lower detection rate, with the mean falling
close to zero for all three detectors (See Table 1). Additionally, it was
found that the detectors struggle with text generated by the GPT-4
model, where OpenAI showed a mean probability near 30%, and the
GPT-2 Output detector identified all the texts as overwhelmingly
human-written.
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Fig. 3. Grid search results.

Fig. 4. Genre differences for OpenAI classifer

Fig. 5. Genre differences for GPT-2 Output detector

Table 1. GPT-4 prompt engineering mean detection scores (0-100)

Openai GPT-2 Turnitin
Normal 29 0 62
Smart 5 0 7

5.2.4 Advanced prompt engineering. Firstly, a hypothesis that the
multi-query approach has lower detection rates than the single-
query was tested. However, the regeneration experiment did not

Fig. 6. Genre differences for Turnitin AI detector

provide interesting insights, as no pattern could be derived from
the distributions.

Secondly, a perplexity-burstiness approach was tested both with
single-query and two-query implementation. The detection rate
dropped for the texts produced utilizing a two-query approach
and perplexity-burstiness prompts across the three detectors. The
attack was found especially effective for the GPT-2 Output detector
(See Figures 7, 8, 9), leading to a significant drop for all second-
prompt attack methods in the experiment. Contrary, the OpenAI
and Turnitin detectors performed better, with the median of the
detections staying above 60% probability for the majority of attack
methods. However, Turnitin had anomalous detection results for
the second-prompt attack asking to improve both burstiness and
perplexity without specifying the definitions. The median of the
results lies at zero, with the upper quartile around 50% probability.
Additionally, for the OpenAI, a label corresponding to the median
values of second-prompt perplexity, burstiness, and both attacks is
“unclear if it is”, showing that such samples were not identified as
AI-generated in most cases.

Overall, second-prompt perplexity-burstiness attack methods led
to a decrement in detection rates across all detectors. The GPT-2
Output detector was impacted most, with the detection medians
dropping under 20% probability. Additionally, the second-prompt
burstiness-perplexity attack led to a median of 0% detection by the
Turnitin detector.
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Fig. 7. GPT-3.5 prompt engineering effect on OpenAI classifier

Fig. 8. GPT-3.5 prompt engineering effect on GPT-2 output detector

Fig. 9. GPT-3.5 prompt engineering effect on Turnitin AI detector

5.3 Character-level mutations
This experiment assessed the effectiveness of character-level mu-
tations on the detection rate. Three mutations were conducted:
replacing the Latin “a” with Cyrillic “a”, replacing the Latin “e” with
Cyrillic “e”, and replacing the Latin lowercase “L” with uppercase
“i”.

Table 2. Character-level mutation mean detection score (0-100)

GPT-2 OpenAI Turnitin

Standard 67 77 75.4
Replace a latin-cyrilic 0 52 Flag
Replace e latin-cyrilic 0 48 Flag
Replace l - i(uppercase) latin 0 38 2.1

All three mutations were found to be human-unnoticeable and
dropped the detection rates significantly for the GPT-2 Output detec-
tor and OpenAI classifier (See Table 2). In contrast, Turnitin marked
the first two mutations as a red flag and a potential fraud attempt,
refusing to perform the detection. However, the third mutation was
not flagged and effectively dropped Turnitin detection rates to 0 (See
Table 2). Numerically, OpenAI performed better against character-
level mutation attacks than the other two detectors (See Table 2).
However, the textual labels corresponding to mean values range
from “unlikely” to “unclear if it is”.

6 LIMITATIONS
Due to the nature of the data and limited resources, various limita-
tions were identified, presenting future-research opportunities.

6.1 Timeframe
The experiments were conducted in May-June 2023. Thus, tech-
niques found might become ineffective, leading to the irreproducibil-
ity of the results.

6.2 Sample size
The main limitation of the methodology is the sample size, where
the number of texts generated per experiment ranged from 10 to 20
based on the experiment setup due to simulated manual uploads and
web scraping. Nevertheless, the mixed-methods approach, careful
design and consideration of limitations ensure that the findings offer
valuable insights into the research topic.

6.3 Limited topics and genres
Most experiments except the essay genre difference test utilised
1-3 topics from the argumentative essay genre, which impacts the
applicability of the results in the real-world environment.

6.4 Analysis
The samples’ distributions and variances were vastly different for
each sample. Additionally, the distributions were skewed signifi-
cantly and differently due to the specific nature of the data. Com-
bined with the small sample size, this led to the inapplicability of
statistical tests. Although the qualitative analysis of the graphs,
means, and medians shows that some techniques are effective on
the samples, the significance of the findings for the entire popula-
tion could not be determined, limiting the real-world applicability.
In future research, the bootstrapping technique could be tested to
identify the statistical power of the results.
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Secondly, the quality of the texts was assessed only by the au-
thor, leading to a possibility of a bias. Ideally, evaluation should
be performed with multiple people involved. However, the task is
challenging due to the large number of total texts produced. Ad-
ditionally, automation procedures could be designed to partially
overcome this limitation, which is a point for future research.

6.5 Regeneration and text length
Although all experiments used a prompt asking for a five-hundred-
word essay, the deviation of text sizes fluctuated greatly, especially
in parameter tweaking and regeneration experiments. Consequently,
the allowed fluctuation of text sizes differed per experiment from
10% to 25% due to the observed discrepancies in text lengths for
different parameters and prompts. The texts were regenerated if
they did not fall under the specified range of length deviation. Grid
search experienced a larger number of text regenerations. Thus, the
deviation was set to 15%. The second-query approach from advanced
prompt engineering tests produced the most regenerations, with
some prompts requiring 10-15 regeneration attempts.

6.6 Parameter tweaking
Four parameters were selected as a base, and two were discarded due
to the heavy impact on text quality and length. Thus, the solution
proposed could be sub-optimal. Additionally, the parameter ranges
selected and tested in the controlled environment are based on the
observed influence of outside-range values on the text lengths and
quality, which is limited to the sample and is not necessarily rep-
resentative of reality. The linear search produced only three texts
per set of parameter values, undermining real-world applicability.
Furthermore, the grid search experiment utilised only a single text
per parameter combination, preventing drawing conclusions sepa-
rately. Finally, the step used for both searches is 0.1, which might
not allow an accurate evaluation of the detection function.

Nevertheless, a similar strong trend was observed in both experi-
ments, providing valuable insights into detection evasion.

6.7 Prompt engineering
Genre difference test explored ten common genres from essay for-
mat. However, the list does not cover the entire essay domain, and
there might be genres with lower detection rates. Additionally, the
prompt derived from the patterns observed in the experiment might
not influence the GPT-3.5 model to replicate patterns consistently
and to the needed extent.

7 CONCLUSION
This study explored the effectiveness of different practical adversar-
ial attacks on the three AI-text detectors: Turnitin, OpenAI classifier,
and GPT-2 Output detector. Based on the practicality assessment,
three attack methods categories were selected: parameter tweak-
ing, prompt engineering and character-level mutations. The results
provided valuable insights into how different practical techniques
could effectively manipulate the detection rates for GPT-3.5 texts.
Firstly, the relationship between frequency, presence penalties,

and detection rates was apparent. An increment in any of the two
parameters led to a decrease in detection rates at the cost of text

coherence and quality. These findings implicate a tradeoff between
text quality and detection rates. However, limiting the ranges of
parameter tweaking and combining the two parameters revealed
that detection can be reliably bypassed while still maintaining text
quality.

Secondly, the study revealed how specific patterns identified from
low-detection texts could be exploited to improve detection evasion.
These include a higher diversity in sentence length and paragraph
structure, utilisation of rhetorical questions, informal language, and
addition of personalised and contextual elements. However, prompt
engineering aimed at replicating these patterns had mixed results,
showing little to no improvement for GPT-3.5 and significant im-
provement for GPT-4 model. Additionally, it was found that the
researched detectors struggle even with standard GPT-4 outputs,
with Turnitin having a mean under 60% probability and the GPT-2
Output detector not being able to identify a single text piece.

Thirdly, the study explored burstiness-perplexity prompt attacks
with single- and double-query approaches. The findings revealed
that applying a second-query approach consistently decreased de-
tection rates, especially for the GPT-2 Output detector, where the
detection medians dropped to zero. In contrast, Turnitin and OpenAI
displayed higher robustness towards second-query methods, with
medians of probability not dropping under 60% for most samples.
However, in the case of OpenAI, the corresponding textual label
median was equal to “unclear if it is AI-written”, undermining the
detection performance. The phenomenon of second-query attack
effectiveness could be explained by a larger input to the GPT-3.5
model, including the first text generated. However, this hypothesis
requires further testing. A detection anomaly was also observed in
Turnitin, where the second-query attack asking to rewrite the text
while increasing both perplexity and burstiness resulted in a me-
dian detection rate of zero. This questions the reliability of Turnitin
against the specific attack and provides an opportunity for future
research to identify the potential causes.
Fourthly, the study revealed the effectiveness of character-level

mutation attacks for detection evasion. All three mutations dropped
detection rates for OpenAI and GPT-2 Output detectors, while Tur-
nitin managed to identify two of the three attacks. Nevertheless,
replacing the lowercase “L” with a capital “i” evaded detection and
plummeted detection rates. However, as these mutations are simple
and easy to implement, detection algorithms are expected to adapt
to identify and flag these types of mutations in the future.
Several limitations were identified in the study, including small

sample sizes, topic-specific focus, lack of qualitative evaluators, and
inability to explore the statistical significance of the results. The
above limitations could hinder the applicability of findings to real-
world situations, and the results might not apply to other models,
detectors and text styles. Future research is required to confirm the
findings while addressing the limitations.
In conclusion, this study offers valuable insights into the ma-

nipulation of AI text generation and text mutations for detection
evasion. The need to improve existing detectors to keep pace with
the evolution of generation models is highlighted. The research find-
ings contribute to the broader discussion on AI detection, revealing
vulnerabilities of existing detectors.
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