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Ransomware is and has been a growing problem for years now and as
Ransomware-as-a-Service (RaaS) is becoming increasingly popular, the bar-
rier to entry into deploying ransomware attacks is lowered for anyone, and
it has become feasible for users without technical knowledge to deploy a
ransomware attack. This study attempts to contribute to understanding
how ransom profits are split between stakeholders and focuses on crypto
locker ransomware, henceforth ’ransomware’. Understanding profit split
might contribute to improving the detection of Bitcoin addresses linked
to ransomware attackers or to derive information on the amount of work
contributed by different parties in relation to the share they receive for it.
This study will focus specifically on differences in money flow between RaaS
and non-RaaS attacks. The questions posed will be assessed by combining
publicly available data sources, the Bitcoin blockchain, and insights from
related research.

CCS Concepts: • Security and privacy → Malware and its mitigation.

Additional Key Words and Phrases: ransomware, RaaS, Bitcoin, stakeholders

1 INTRODUCTION
Although ransomware is not a new development, according to re-
ports by cyber security companies, the amount of commodity attacks
and damage done has grown in recent years [7]. The SonicWall cy-
ber threat report 2023 finds that ransomware attacks have become
increasingly common, with 2021 as an outlier [24]. Because ran-
somware is a global phenomenon, it is often difficult for national
police to track attacks and catch the attackers.

Ransomware attacks require knowledge to set up. Filling this ’gap
in the market’ is a relatively new development called Ransomware-
as-a-Service (RaaS) [19, p.2]. One of the first such services appeared
in 2016 [13]. Cybercrime groups developing RaaS ransomware usu-
ally provide a web portal for victims to pay and their customers to
negotiate with the victims. The growth of RaaS provides an incentive
for this study to focus on classifying and determining differences in
money flow between RaaS and non-RaaS (commodity) attacks.
Currently, it is difficult for law enforcement to track down the

criminals behind ransomware attacks. Although Bitcoin is not fully
anonymous, connecting Bitcoin addresses to natural persons is
challenging. Many criminals are thus not punished, leaving victims
with injustice. A better understanding of the ransomware process
provides additional information to help punish cyber criminals.

Understanding the general order of operations and actions taken
in a ransomware attack is essential for understanding and interpret-
ing the data presented in this research. Figure 1 provides a general
overview of a successful ransom attack. Victims receive a ransom
note, usually displayed by the ransomware software. If the victim
decides to pay, they purchase Bitcoin. This research focuses on
what happens after that, as there is no data on the ransom note in
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Fig. 1. This is how an average ransom attack is carried out and how the
money generally flows in such an attack.

the dataset. After purchasing the Bitcoins, the victim transfers the
Bitcoin to the attacker (green), where the ransom is split between
multiple stakeholders or laundered first (pink). In a RaaS attack, the
customer is one of the stakeholders and receives part of the split.

Minimal research has been done to classify different stakeholders
in ransomware attacks and the profit split between stakeholders
or methods to determine this statistic. Understanding money flow
in ransomware is essential to prevent attacks and increase the like-
lihood of attackers being caught. Additionally, the money flow to
different stakeholders provides insight into the inner workings of
a ransomware family. Understanding what happens in cybercrime
groups and on the blockchain in each step is crucial to improve
detection and traceability. Answering the research question: "What
conclusions about how a ransom attack generally works can be
drawn from blockchain transactions that are known ransomware
payments?" is likely to improve understanding of ransomware at-
tacks, which might lead to catching more cybercriminals.
The problem is split into smaller questions to help answer the

main question:
• How can a victim account be classified, and building on that,
how long before payment to the attackers does a victim gen-
erally purchase the Bitcoin for payment?
Understanding victim behavior is essential for mapping the
target demographic for ransomware, which could improve
education and prevent future victims.

• How is the profit distributed in a ransomware attack after a
ransom payment has been made?
Uncovering the inner workings of a cybercrime group is
helped by understanding where in the group money flows.
Additionally, it might indicate different stakeholders or meth-
ods of laundering the ransom.
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• Grouping the data collected in earlier sub-questions into ran-
somware families, what conclusions can be drawn about the
differences in ransom payment behavior and how it is dis-
tributed after payment?
Some ransom families might target specific demographics
or targets. Understanding relevant threats can increase the
effectiveness of detection and prevention measures and link
multiple families to the same cybercrime group.

To answer these questions, extensive use of the ransomwhe.re [8]
dataset will be used as a basis. It contains data from ransom notes
uploaded by victims of ransomware attacks, with information like
the ransom address and payment transactions. Additional data, like
transactions associated with the victim and attacker addresses, will
be added to this dataset.
This research paper will describe the technologies used for col-

lecting, storing, and processing the data, then outline the data flow.
Complications encountered during the tool’s development process
will be discussed, after which results will be presented and conclu-
sions will be derived.

2 RELATED WORK
Ransomware and malware attacks are generally well-understood
topics. Research outlines different types and tactics [6]. The his-
tory [13], attack and spread factors [25], detection and prevention
[16][20] of ransomware are all well-understood topics as well. Ad-
ditionally, extensive studies that focus more on defensive strate-
gies against different families and types of ransomware exist [17].
Specific research into the cybercrime group behind the Conti ran-
somware has led to a better understanding of communication and
cash flow between group members [14].
Ransomware-as-a-Service (RaaS) poses a unique challenge for

victims defending against ransomware and an opportunity for at-
tackers who want to set up a ransomware attack even when they do
not have the technical knowledge or skills to do so. Mainly on the
dark web, criminals offer tools to easily set up such an attack [18].
Understanding this market also leads to a better understanding of
money flow in RaaS.

Detecting suspicious Bitcoin transactions is essential for the early
detection of new ransomware attacks, and research has been done
into classifying transactions as nominal or potentially malicious. Al-
though a large dataset was used and the model reportedly has good
accuracy (>98%), the researchers did not test the models in actually
detecting ransomware-related transactions on the blockchain in
real-time [5]. More profound research into ransomware payments
and connecting related transactions and addresses has been done
with a different approach and a smaller dataset [22]. This study will
build upon the methods and data used in these studies.
Understanding the profit split between different stakeholders in

a ransomware attack is made more difficult by the frequent use
of mixers [10, p.627]. A mixer is a service that takes Bitcoin from
many customers and ’mixes’ these Bitcoins through multiple trans-
actions before taking a fee and returning the coins to the customers
[21, p.120]. Tracking Bitcoins through mixers is complex, making
them a popular tool for laundering money. Attempts have been
made to classify transactions obfuscated by different mixers [27].

However, concerns are raised that such services will change the
mixing process, invalidating the current methods of detecting them.

An interesting study into methods to track the entire ransomware
process from attack to payment and profit split has been done [10].
However, this research lacks focus on comparing RaaS with com-
modity attacks. It is challenging to map the full extent of damage
done by ransomware. However, studies have been done into dif-
ferences between ransomware families, and total ransom paid [19].
The ransomwhe.re tracker was created for this research, making it
an important way of validating the results found in this research.

3 SOFTWARE STACK OVERVIEW
For requesting information from the Bitcoin blockchain, Bitcoin
Explorer is used. Although it provides a publicly hosted instance,
the number of requests required would put a significant load on this
server. Therefore, the self-hosted approach was chosen. Self-hosting
also provides the benefit of eliminating most network latency.
Bitcoin Explorer: Bitcoin Explorer uses Bitcoin Core and an elec-
trum server to allow for lookup of addresses and transactions through
an easy-to-use API1 [15].
Bitcoin Core: Bitcoin Core is an open-source utility for interacting
with the Bitcoin blockchain and provides the other tools with trans-
actions and block information [4].
Electrs: electrs is a utility that uses Bitcoin Core to provide address
information, such as inbound and outbound transactions and the
balance [28].

4 METHODOLOGY AND DATASET OVERVIEW
The source code for building the dataset used in this research has
been published in a public GitHub repository [23] and is open for
contributions. An important focus of this research is to make the
script export a reliable dataset, so it would also be usable for future
research. The script interacts with the following data sources:
Ransomwhe.re: the ransomwhe.re dataset, used in prior research,
is used as a basis for the generated dataset for this study [8].
Bitcoin Explorer: the self-hosted software stack provides an ac-
cessible interface to the Bitcoin blockchain.
Blockchain.info: blockchain.info is a tool similar to Bitcoin Ex-
plorer and is used as a backup. Bitcoin Explorer does not parse
every transaction properly, and the missing data is requested from
bitcoin.info [1].
PostgreSQL database: the data is stored in a high-speed, local
database.

4.1 Data flow diagram
A simplified data flow diagram, providing an overview of the essen-
tial parts of the data flow, abstracting away insignificant details, can
be found in Figure 2.

1An Application Programming Interface (API) provides a simple and well-
documented way to interact with a software package and facilitate interconnection
between software packages.
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Fig. 2. A simplified data flow diagram containing all database tables used for statistics. Different colors denote the source of data.

4.2 Data import
The initial data collection step can take a day, up to a few days,
limited mainly by Bitcoin Explorer, which is limited by the speed
of electrs and Bitcoin Core. In addition, if a transaction cannot
be deserialized properly by Bitcoin Explorer, a request is made to
blockchain.info, which is rate-limited to 1 request per 10 seconds.
To improve speed in subsequent imports, a cache is maintained for
every requested entity. The data collection step takes only a few
hours to complete using this cache and is comprised of the following
steps:

• The script starts with downloading the latest data from the
ransomwhe.re API.

• After this import succeeds, all addresses associated with the
transactions supplied by ransomwhe.re are requested and
stored in the database. Because of the scope of this research
and the feasibility of building the dataset in a reasonable
time, electrs is limited to only returning the transactions of
addresses with 100 transactions or less.

• For all addresses within the limits, all transactions into and
out of the addresses are stored in the database.

• Attacker addresses are provided in the ransomwhe.re dataset.
Only transactions out of the address are stored, as this pro-
vides information about the ransom split to stakeholders or
the start of money laundering. This data is also added to the
database.

4.3 Data processing
During data importing, part of the data is already processed and
imported into the correct tables. Additionally, most tables have
fields that are processed later, as they require the full dataset. The
following steps are taken to process the data:

• Profit split: the ransom division is calculated, as well as the
amount left in the ransom address (which is where victims
pay the ransom to).

• Deposit time delta: the time between the Bitcoin deposit into
the victim account and the ransom payment.

• Is the victim a prior Bitcoin holder? This step uses the num-
ber of previous transactions and the time delta between the
ransom payment and the first transaction in the account to
determine whether the victim address has been used to ex-
change Bitcoins before the ransomware payment.

4.4 Unreliable data
There are various ways in which the data outputted by the script
can become unreliable. It is important to understand which data
might be affected by this and how to filter out these cases, to prevent
drawing invalid conclusions.

• For performance reasons, only addresses with 100 transac-
tions or less are returned by electrs, which causes some ad-
dresses to have no transactions according to the database.
This is mitigated by adding a ’Success’ field.

3



TScIT 39, July 7, 2023, Enschede, The Netherlands Justin Ruiter

Table 1. Actor data

Category Data count Percentage
Failed imports 0 0.00%
Ransom still in address 19 0.18%
Ransom not paid 2,938 28.13%
Single case 6,639 63.57%
Extended case 848 8.12%
RaaS cases 7,389 70.75%
Non-RaaS cases 3,055 29.25%
Total cases 10,444 100%

*Note: a ransom is considered not paid if a ransomwhe.re entry does not include any
transactions.

Table 2. Victim data

Category Data count Percentage
Failed imports 9,314 44.56%
Simple case 5,569 26.64%
Extended case 6,021 28.80%
RaaS cases 12,196 58.34%
Non-RaaS cases 8,708 41.66%
Total cases 20,904 100%

• Various checks are implemented to ensure data reliability,
such as calculating that the stakeholder output percentages
add up to 100% and verifying results with actual blockchain
data.

All data in the database is built upon the ransomwhe.re dataset,
stored in the ’RansomData’ and ’RansomTransactions’ tables. The
former contains the ’Failed’ and ’FailedVictims’ columns, indicating
if this data point is reliable for calculating actor and victim statistics,
respectively.

4.5 Data composition
The failed imports referred to in Table 1 and Table 2 are cases that
include addresses with more transactions than the limit. Because
the limit was only applied to victim addresses, there are no failed
imports for ransom addresses. Although more than 9,000 cases were
marked as failed, because of how analysis is done, a ransom address
is marked as failed if only one of the victim payments contains an
address with more transactions than the set limit.

For this research, only the single case is considered. Failed imports
and ransom still in the address cases2 are edge cases and thus not
considered either. The single case consists of ransom addresses with
one input and output. Table 1 provides the case count for these cases.

Similar to the actor data, only the ’Simple case’ is considered for
victim data. In this case, only transactions with one source address
(one address pays the entire ransom) are considered.

2’Ransom still in address’ cases are only cases where nothing, or part of the ransom
payment is withdrawn from the address.

Fig. 3. A comparison between the amount of ransom paid in RaaS and
non-RaaS attacks and several ransomware families and the number of cases.
A logarithmic scale is used for the ransom amount.

In Figure 33, the distribution of ransom paid per family is shown.
Although some ransomware families show high or low outliers,
most focus on a specific ransom range. Interestingly, commodity
(Non-RaaS) ransomware families generally seem to focus on a much
narrower range, while RaaS families show a broader range of ran-
som demands, with lower average requested. Although the dataset
cannot substantiate it, because RaaS has a range of different cus-
tomers with ranging requirements, which likely results in a broader
range of ransom amounts.

5 RESULTS
In this section, the data collected will be presented. Any ransomware
flow starts with ransom payment, so first, the victim results will be
analyzed, after which the ransomware actor data will be assessed.

5.1 Findings in victim behavior
Any ransom payment starts with the deposit of Bitcoin into the
address from which the ransom will be paid. Only the ’simple cases’,
referred to as the ’dataset’, will be discussed, consisting of victims

3For this figure, the actual ransom amount paid is used. No filter is applied to this
data, except for showing only families used later in the results.
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Table 3. Victim payment count across ransomware families in the simple
case

Family Simple
cases

All cases

Locky 4,587 10,411
Netwalker 421 514
Conti 57 133
SamSam 31 65
TripleM 18 30
Ryuk 19 55
RaaS cases 5,186 12,196
RaaS cases without Locky 599 8,708
Non-RaaS cases 383 8,708

whose addresses had all transactions successfully imported. Addi-
tionally, the ransom payment transaction may only have one source
address. Table 3 provides the amount of payments per family. Locky
introduces a significant bias in the RaaS cases. Hence RaaS case
count excluding Locky is also provided.
The dataset contains many ransomware families consisting of

only a few reported payments. Therefore, except for the five largest,
all families will be grouped in the ’Other’ category. In Figure 4, a
difference is apparent between the most prominent ransomware
families. An outlier in the right column is the Locky family, which
rarely transfers the ransom soon after the victim’s payment. The
ransomware actors section will elaborate on this finding.
Interesting outliers are Netwalker, which sees few instant pay-

ments, and Conti, which sees relatively many. Although some fami-
lies with lower case counts show differing results, the low number
of cases might cause this data to not be representative of the family.

The amount of ransom paid might affect the handling of the trans-
action. Figure 5 compares the ransom paid with the time between
Bitcoin purchase and ransom payment. Distinct ransom amount
’levels’ can be observed, primarily with Locky, showing in the figure
as ’bands’ of payments that share the same ransom amount. There
does not seem to be a clear correlation between the amount of ran-
som and the time from Bitcoin purchase to payment, although a
difference in ransom paid is apparent between families. The amount
of ransom requested by different ransomware families can be found
in Figure 3.

5.2 Findings in ransomware actors
Definition: In this section, transactions refer to individual transac-
tions from the ransom to the attacker’s address.

Moving along the ransom process, in this section, the process of
transferring the ransom to an attacker’s address will be discussed.
The single case, called the ’dataset’, contains transactions from
ransom addresses that have received only one ransom payment and
transfer the ransom in one transaction to the attacker’s address.
Table 4 shows a significant reduction of cases among the top 5 most
common families, except in RaaS families.
Although Locky is the most prominent family of the dataset, it

only contains 298 unique transactions to an attacker’s address. This
behavior is, with a few exceptions, not observed in other families

Table 4. Ransom to attacker address transactions count across ransomware
families in the single case

Family Single case All cases
Locky 12,376 15,435
Netwalker 51 301
Conti 155 247
SamSam 10 104
TripleM 0 44
Ryuk 19 108
Karakurt 22 39
Cuba 34 37
RaaS cases 12,719 17,307
RaaS cases without Locky 343 1,872
Non-RaaS cases 65 9,526

and is also apparent in Figure 6. This figure shows the number of
victim payments clustered in transactions to an attacker’s address,
compared to the time from ransom payment to the laundering trans-
action. A family called ’QLocker’, a non-RaaS family applies a similar
technique4 to Locky. By contrast, most ransomware families start
laundering only a day to a few days after the ransom has been paid,
but generally not much later.
Comparing only RaaS and non-RaaS clusters yielded no inter-

esting results besides the discussed outliers. The range of ransom
amount is chosen because the average time to laundering is, with
only a few exceptions, not longer than 31 days, and the total ransom
amount in a cluster is not filtered.
The dataset contains four laundering transactions that seem to

combine attacker addresses from two ransomware families. Three
such transactions have sources classified as APT and TripleM family
attacker addresses, while the others are classified as Cryptowall and
JigSaw family addresses. There does not appear to be a clear link
between these families, so this is a suspected misclassification in
the ransomwhe.re dataset. These transactions were not in the single
case.

Interestingly, although the Conti (and its predecessor Ryuk) gen-
erally do not cluster ransom payments, laundering starts within
the first day after the ransom payment. Its clusters, consisting of
only one victim payment, are worth more than most Locky clusters.
The Cuba ransomware family shows similar behavior and contains
even more valuable clusters. From Figure 3, it becomes apparent that
these families generally target a higher ransom amount from their
victims, whereas Locky primarily targets lower ransom amounts,
explaining the observed difference in the total cluster amount.
To determine whether there is a pattern in the split between

attacker addresses, enough cases are required to discern a pattern.
Because of this, only Locky, Conti, Netwalker, Cuba, Karakurt, and
Ryuk are considered. Figure 7 shows that Conti’s ransom split forms
a distinct pattern that changes over time. The split percentages used
by Ryuk before the Conti family emerged are similar to what Conti
used in the first attacks. Additionally, all of Ryuks cases precede
every Conti case. This is not surprising, as Conti and Ryuk originate

4QLocker clusters are the two larger circles in the ’Other’ category, to the right of
the bulk of the Locky data points
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Fig. 4. Timing of different stages of the ransom flow. Only families with data for both victim payment and stakeholder split, with a minimum of 5 payments
are shown. Figure 8 provides a version of this figure with all families included.

Fig. 5. A comparison of the ransom amount with the time between Bitcoin
deposit and ransom payment.

from the same cybercrime group [14, p.6]. Trickbot, which is also
interconnected according to this research, does not occur in the
ransomwhe.re dataset as of yet. Time of day analysis did not yield
any interesting results.

6 DISCUSSION
In this section, the data presented in the previous section will be
analyzed, and observations will be discussed.
An interesting difference in instant ransom payments between

Netwalker, Locky, and Conti can be observed in Figure 4. Instant pay-
ments could suggest the use of tools to transfer purchased Bitcoins
to the ransom address in one action. In screenshots of the Netwalker
online interface, no such system nor a reference to a similar, external
system seems to be made however [3]. Locky’s interface provides
the user with more detailed instructions on where to purchase Bit-
coins and even mentions how simple it is [2]. Conti does provide a
chat service, however, similar to Netwalker; no mention is made of

Fig. 6. Ransom payments grouped by the laundering or stakeholder split
transaction, comparing the sum of ransom payments laundered in a transac-
tion against the average time between ransom payment and laundering for
that cluster. The size of the circles denotes the number of ransom payments
present in a laundering transaction.

a simple method to automate Bitcoin purchasing and transferring
[11].
Comparing the families, the hypothesis would suggest Conti

provides such a system, whereas Netwalker would not. However,
neither seems to offer or mention a simple method to purchase and
transfer Bitcoins in one transaction. The years the family was active
might also influence the number of instant payments. Figure 7 shows
that Locky precedes Netwalker and Conti by a few years. However,
there appears to be no clear correlation. Additionally, uncovering
conclusions from this data does not seem to be a focal point of
related research, so no additional insights were drawn from related
studies.
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Fig. 7. A comparison between the time of profit split transactions and the
percentage of the split.

In Table 4, a notable difference in case reduction between RaaS
and non-RaaS cases was observed. This could mean that commodity
ransomware reuses the ransom payment addresses. Oosthoek et al.
concluded that RaaS families typically generate a unique address
per victim, whereas commodity ransomware indeed typically uses
a single address [19, p.5]. In this research, it is suggested that this
might be to improve operational security, and their data seems to
indicate a focus on operational security in RaaS attacks. However,
our dataset cannot substantiate that claim.

Moving on to the second part of a ransomware attack: laundering
the victim’s payment. Locky differentiated its method by grouping
many ransom addresses into a single laundering transaction. Re-
search focussing on the financial impacts of ransomware payments
found similar behavior for Locky [22, p.6]. Their dataset included
additional transactions after the transaction from the ransom to
the actor’s address. They found that the transactions were sent
to exchanges and mixers in their respective clusters. However, no
apparent reason was presented for the different methods used for
Locky attacks. Tracing one of these transaction chains uncovers a
long chain of so-called ’scrape off’ transactions. This refers to a pop-
ular technique to make tracing payments to an actual person more
challenging. This technique results in a long chain of transactions
where in every transaction, a small amount of the input is sent to
a different address than the more significant part, so a part of the
input is scraped off. Later, through many transactions, the money is
regrouped in one or multiple addresses to cash out or buy goods or
services with [19, p.7].
The effects of the scrape-off technique are also seen in Figure 7.

As the input amount represents 100% of the amount laundered, the
transactions with only two outputs will show as being symmetrical.
In the dataset, only Locky (with a few exceptions in families with
fewer cases) seems to be using the scrape-off technique. The sym-
metry it causes is also visible for Conti and Ryuk laundering, with
a few exceptions. Because the split percentages for these families
are larger and more consistent, it doesn’t seem to indicate the use
of the scrape-off technique.

Figure 1 shows ransom payments usually flow into one or mul-
tiple attacker addresses. Multiple stakeholders contribute to a ran-
somware attack, such as programmers, general managers, and spam-
mers [14, 7-9]. Although a clear split in the Ryuk and Conti ran-
somware is evident, the data does not prove this is a split among
multiple stakeholders. However, prior research has found simi-
lar split percentages, such as a study into the inner workings of
the cybercrime group behind Conti [14, p.4] and elliptic, using a
smaller dataset [12]. The focus of the study into Conti enabled the
researchers to conclude the ransom is split between the Conti col-
lective and affiliates. From the blockchain data alone however, they
could similarly not conclude the possible roles of the affiliates.

7 PROBLEMS ENCOUNTERED
During the research process, some problems were encountered. In
this section, these issues and their solutions will be described.

Setting up the self-hosted software stack took some time as I was
unfamiliar with the tools used for this research. However, after a
few days of troubleshooting the electrs server and Bitcoin Explorer
and re-indexing the blockchain with Bitcoin Core with different
settings, the software stack was up and running.
Although I have written scripts like the script used for building

the dataset, the amount of data processed by this script and the
variety of data did lead to a few issues further in development.
There were many edge cases in the data returned by Bitcoin Explorer.
One example is addresses with more than 1000 transactions, which
would take a long time to produce a result because of electrs. These
addresses were filtered out of the dataset before analyzing the data.
Additionally, I did not anticipate that improving the reliability of
the dataset would take a couple of weeks, as new edge cases kept
appearing.

Although the amount of data to import posed some problems, pri-
marily for electrs, there might be gains from expanding the dataset.
After gathering the initial dataset with a maximum of 50 transac-
tions per address, it was expanded to include up to 100 transactions
per address. Because of this, the victim dataset decreased failed
imports with 1,704 cases to 9,314. This expansion was made possible
by a new version of Bitcoin Explorer which can also parse input
addresses to transactions, drastically reducing the requests needed
to fill the dataset. Because of this increase, the data became more
representative of the entire ransomwhe.re dataset, and the simple
victim cases increased from 4,996 to 5,569, including many non-RaaS
cases.
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8 LIMITATIONS AND FUTURE WORK
Many limitations originate from the amount of time that could be
dedicated to this research. As described in the ’Data composition’
section, although the dataset is extensive, only simple cases were
considered for this research. This means a significant part of the
data was not analyzed. With more time, dedicated processing cases
and procedures could also be written to consider this data. Because
the dataset still includes other cases, it is possible for future research
to process this data further and expand upon the conclusions drawn.
Only using part of the data also introduced biases in the study, as
seen in previous sections. Few non-RaaS simple cases remained, and
RaaS cases consisted mainly of Locky. The latter was mitigated by
splitting RaaS cases in RaaS with and without Locky. In comparable
research, Locky is a similarly large percentage of the total dataset
[26, p.7:19][19, p.4][22, p.7].
Importing the data through Bitcoin Explorer is the biggest bot-

tleneck when building the dataset, as it relies on and is limited by
the tools it receives data from. Directly interacting with the electrs
and Bitcoin Core RPC API would remove one source of latency,
but it is difficult to predict the impact of this change. While this
research focuses entirely on ransom payments collected through the
Bitcoin blockchain, other cryptocurrencies are also used for ransom
payments [9, p.10].

To fully map a ransom attack, which starts with infecting a victim
device and delivering the ransom note, information about the ran-
som note might yield additional insights. The time delta between
the delivery of the ransom note and ransom payment might indicate
the difficulty a victim had paying.
A different limitation is that using only this dataset, it is impos-

sible to differentiate between a personal address with prior activ-
ity and a shared address. This can partially be solved by adding a
lookup table to the dataset with shared addresses that belong to
certain Bitcoin exchanges. However, finding and combining this
data would take additional time and not all exchanges publish this
data. Additionally, because ransomware is a global phenomenon,
many exchanges would need to be added to the dataset to draw
any useful conclusions. Determining whether a victim was already
active in trading Bitcoin before the ransom payment is not a primary
objective of this research, so collecting this data was not pursued.

A techniquementioned in the stakeholder results section is ’scrape
off’. This technique makes it difficult to follow the ransom from
payment to exchange. It should be possible to detect this behavior
and follow the ’money trail’. Additionally, only cases where a unique
address per victim is used and a single transaction is used to split
profits between stakeholders are considered. As a result of this, only
a few Non-RaaS attacks were considered. In future research, better
data processing methods can be developed.

Because in Figure 6 only the simple case is considered, this graphic
does not give a complete overview of all ransomware families in
the dataset. The simple case contains significantly fewer non-RaaS
cases (Table 3), not many interesting insights could be concluded
comparing RaaS with commodity cases. Processing more of cases
in the extended case is likely to increase the usefulness of this
comparison.

9 CONCLUSION
This research aims to improve understanding of the money flow
in ransomware attacks, focusing on comparing Ransomware-as-a-
Service with commodity attacks. To achieve this goal, a tool was
developed to extend the ransomwhe.re dataset [8] with victim and
attacker address data.
After applying the filters, Locky ransomware is the most com-

mon family in the datasets for victim behavior and ransom split
classification. Comparing different ransomware families, an inter-
esting difference in the time between Bitcoin deposit and ransom
payment was found, with Conti as an outlier having significantly
more instant payments than different families. No correlation could
be determined between the amount of ransom and the time between
deposit and payment.
A different yet interesting finding is that the Locky family of

ransomware is the largest of only a few families that group different
ransom addresses in a single transaction to scrape off the profits.
Although a sub-goal of this research is to identify stakeholders
in a ransomware attack by the split of the ransom, because most
ransomware families use a laundering technique before dividing
the ransom between stakeholders, it is difficult to identify different
stakeholders based on the dataset available. Although Locky uses
unique ransom addresses, it groups multiple addresses in a single
transaction to an atttacker’s address, an exception in the dataset.

An interesting pattern in ransom split was observed for the Conti
and Ryuk ransomware families when comparing how the ransom is
split over time. The pattern was observed to not change between
Conti and Ryuk operations, making it possible to identify Conti
as the successor of Ryuk, a conclusion also drawn in the literature
discussed.
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A EXTENDED DATA FOR FIGURE 4

Fig. 8. Timing of different stages of the ransom flow.
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