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Blockchain systems have risen in popularity in recent years, and many in-
dustries started adopting this technology. This can be attributed to their
features, such as decentralization, consistency, anonymity, and transparency.
Despite these advantages, as with other technologies, they are not immune
to anomalous activities. The distinct characteristics of the blockchain make
it more difficult to detect anomalies in such networks than the traditional
ones. This research paper focuses on detecting anomalies within a dataset
of Bitcoin transactions. It aims to improve understanding of anomaly be-
haviours within blockchain networks and explore how these anomalies can
be effectively identified. Moreover, it tries to enhance existing methods for
static anomaly detection and provide a comprehensive theoretical analysis
of dynamic anomaly detection techniques.
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1 INTRODUCTION

Blockchain technology represents a distributed database that records
transactions across a network of computers in a decentralized man-
ner. This entails that each transaction is validated and maintained
by a peer-to-peer network through specific protocols rather than a
central authority, as is usually the case. The data within the network
is made of linked blocks; each has a timestamp, a link to the previous
block, and a list of transactions. These blocks are encrypted; there-
fore, altering any entry once added to the chain is nearly impossible.
[21].

Most cryptocurrencies rely on this technology to ensure fast
and accurate execution. Their transparency and decentralization
allow for high trust between parties without needing a third party
to mediate transactions [6]. These virtual currencies’ evolution
and underlying blockchain technology have been rapid and dy-
namic [12], and with their sudden increase in popularity, the net-
works supporting them have also increased in complexity. There
is still much to learn about the fundamental properties of these
networks and their evolution due to their novelty. This is espe-
cially true when detecting anomalies in these networks. Anomalies
are data points that deviate from normal behaviour. In the context
of blockchain and cryptocurrency, anomalies may indicate mali-
cious activities that require further investigation and mitigation.
Even though the protocols, anonymity, cryptography, and numer-
ous other features of blockchain technology highlight its potential
for securing transactions and preventing attacks, it is essential to
note that the blockchain is not entirely immune to all sorts of fraud
and other malicious activities [19].

The current literature on anomaly detection methods for blockchain-

based networks is relatively new. This research project aims to ex-
amine the problem of anomalies in the context of such networks.
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Significant improvements in blockchain technology and cryptocur-
rencies have increased efficiency and transparency for all transaction
parties. However, the immutability property means that anomalous
transactions cannot be reversed. Therefore, quick detection of anom-
alies is of utmost importance for preventing damage or developing
mitigation methods in due time. Anomaly detection in blockchain
networks is more complex than in conventional networks due to the
complexity of the former. All in all, the following research question
is used as the basis for this research.

o Research Question: "How can we integrate data science meth-
ods to effectively identify anomalies in both static and dy-
namic cases within blockchain networks?"

The research question needs to be answered through an in-depth
Bitcoin network analysis. Anomalies in the network can be identified
using several data science techniques, such as machine learning,
deep learning and statistical techniques. Furthermore, the main
goals of this research can be categorized as follows:

Firstly, to investigate the evolution of leading cryptocurrencies
and blockchain-based networks over time. Detecting abnormal data
in these networks is a challenge, which requires understanding the
fundamental properties and structures of these networks. Bench-
marks for normal conditions need to be established.

Secondly, to examine the static case of anomaly detection using
existing statistical and data mining methods, as a single method
often results in a high rate of false positives. Therefore, existing
methods are expanded and combined to improve detection accuracy.

Last, to analyze the theoretical foundations of dynamic methods
for anomaly detection in blockchain-based networks. As these net-
works continually generate new data, real-time anomaly detection
is crucial. A deeper understanding is gained by delving into the the-
ory, potential applications and limitations of the dynamic anomaly
detection methods.

2 RELATED WORK

In order to gain more insight into the topic at hand and gather
related literature to the research domain, Google Scholar, Scopus,
and IEEE were used. Many research documents related to blockchain
technology, network graph analysis, and anomaly detection were
collected using these search terms.

The research conducted by Signorini et al.[17] explore a machine-
learning approach for detecting anomalies in blockchain networks.
It works by extracting several characteristics from the blockchain
network data and then using these features to train a machine learn-
ing model. In this way, the model is able to identify deviations from
the norm within the blockchain network. The solution is scalable
and can be applied to blockchain networks. However, it requires a
significant amount of computational power.

In his research, A. Bogner leverages an unsupervised learning
method with the aim of enhancing the anomaly detection process.
His approach involves several key features, including the average
count of transactions within a block over a specific period, the
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frequency distribution of block times, the volume of transactions
gauged by gas expenditure, and the gas usage per block tracked over
a time interval. These selected features contribute to the model’s
training, subsequently augmenting the precision of anomaly detec-
tion. In this context, ’gas’ is the measuring unit for the computational
exertion needed to execute a specific blockchain operation.

In his work, A. Bogner [9] uses an unsupervised learning algo-
rithm to enhance the anomaly detection process. His approach is
specifically designed for the Ethereum blockchain network, and it
involves several features: the average number of transactions per
block over time, the number of transactions based on gas consumed,
and the gas consumption per block over time. All these features
are used to train the algorithm and improve anomaly detection ac-
curacy. In this context, ’gas’ is defined as the measuring unit for
the computational effort required to execute a specific blockchain
operation.

The paper presented by T.Ide [13] proposes a method for collab-
orative anomaly detection on blockchain that combines data from
multiple sensors. He argues that sensor data can be noisy and quite
challenging to interpret. Therefore he comes up with an approach
that combines data from multiple sensors to improve anomaly de-
tection accuracy.

Thai T. Pham and colleagues [15] directed their attention towards
anomaly detection, specifically within Bitcoin transaction networks.
They employed k-means clustering, Mahalanobis distance, and un-
supervised support vector machines to identify suspicious users and
transactions. The study utilized a dataset containing two graphs,
with one graph representing users as nodes and another represent-
ing transactions as nodes.

Despite several studies investigating anomalies in blockchain
networks, the existing literature has significant potential for further
development, as it is still in its early stages since blockchain itself
as a technology is relatively novel.

3 METHODOLOGY

The steps taken to address the research question are described in
depth in this section. The methodology enables the speedy detec-
tion of anomalous data, which is helpful for blockchain networks.
The analysis used data from an extensive dataset of 2011 Bitcoin
transactions made available by the Harvard Institute, accessible
in the Appendix section. Pandas, Scikit-learn, TensorFlow, Keras,
and other data science and machine learning libraries are used to
implement the analysis in Python. The three components of the
suggested research design are as follows:

I Analysis of the evolution of blockchain-based networks and their
properties. The initial phase involves investigating and analyzing
the key properties of blockchain networks and their evolution. This
crucial investigation aspect must be finished before we analyze
current anomaly detection techniques and create new ones. Be-
cause normal and anomalous data concepts are not as well-defined
and well-understood in this context, many assumptions concerning
anomalies in other network types may not apply to such networks.

II. Analysis of static anomaly detection methods. The second phase
focuses on enhancing the existing anomaly detection methods within
blockchain networks. When attempting to detect anomalies in these
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networks, using a single method frequently results in a high rate
of false positives due to the scarcity of labelled data. Therefore, the
objective is to expand and combine existing methods to improve
basic detection accuracy.

III. Analysis of dynamic anomaly detection methods. In the final
phase of the research, the primary focus is on the theoretical analysis
of dynamic anomaly detection within blockchain networks. Due to
the rather limited time of this research, this phase consists only of
theoretical analysis of such detection methods, without trying to
enhance or apply them to some data, as is the case with the second
phase.

4 RESULTS

The findings of this research project are divided and categorized
based on the three phases that were also reflected in the methodol-

ogy.

4.1 First phase

The first phase of the research comprises the analysis of the evolu-
tion of blockchain networks along with their key properties and the
establishment of benchmarks to be used during the implementation.

4.1.1  Evolution over time.

In recent years, blockchain networks significantly impacted by cre-
ating a secure way to conduct transactions without an intermediary.
These networks are decentralized since a network of nodes validates
transactions within the network instead of a central authority. Each
transaction is recorded on the blockchain and cannot be altered
from that point. This highlights the immutability property and en-
sures that the network is tamper-proof, providing high security and
transparency.

As these networks quickly evolved, the need for updated architec-
tures and mechanisms that improve the network’s performance and
scalability also increased. For example, Bitcoin uses an algorithm
called proof-of-work to verify transactions. This algorithm involves
having miners solve complex mathematical problems using compu-
tational power. Other nodes in the network later assess the validity
of the transactions based on the algorithm’s output[6]. However, it
comes with limitations. It can limit the transaction throughput of
the network due to its slow speed. To address these issues, other
consensus mechanisms generally considered faster were developed,
such as proof-of-stake, used by networks like Ethereum, and dele-
gated proof-of-stake, used by networks like EOS. These mechanisms
use more efficient alternatives and no longer rely on miners. [18].

Besides various mechanisms, other factors, such as the size of
the network and the transaction volumes they can handle, have
also changed throughout time. The Bitcoin network has grown sig-
nificantly and currently has over 16000 active nodes, according to
[4]. Similarly, other cryptocurrencies, such as Ethereum, showcased
similar growth. Despite this, these networks have scalability prob-
lems because of their low throughput, high transactional latency,
and rising resource requirements. For example, in September 2017,
the blockchain size of Bitcoin was about 158GB, with a bootstrap
time of around four days for a new node to take part. As of 2021,
its size has roughly reached 350GB. Ethereum seems to suffer from
similar limitations.[20].
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4.1.2  Benchmarks.

Benchmarks are essential during this research since they represent
a baseline for detecting anomalies or unusual behaviour within the
network. The focus needs to shift toward distinguishing between
normal and abnormal data. Determining "normal conditions” bench-
marks for network statistics can later be used as input for anomaly
detection methods. According to [2], which is a reliable website that
offers real-time data on the current status of the Bitcoin network,
the most popular metrics/benchmarks used include average block
size, market price, mining hash rate, average transaction fee, total
confirmed transactions per day and so on. These benchmarks can
provide a baseline for what is considered normal behaviour in the
Bitcoin network, and deviations from these metrics may indicate
anomalous activity.

However, the dataset of Bitcoin transactions tested consists of
over 6 million transactions from 2011. Each transaction entry has the
following attributes available: timestamp, source address, destination
address and size in Satoshi, which is transformed in Bitcoin (BTC) for
the sake of this research. Since it is made solely of unlabeled data,
it is quite challenging to understand what constitutes anomalous
data based on the available information alone. Thus, given the lim-
ited data attributes available, some benchmarks to establish normal
conditions for Bitcoin transactions include:

e transaction volume: The number of transactions per day/week
over time is used as a benchmark. This can help establish the
average number of transactions during a specific period and
identify any unusual spikes in the transaction activity.

e transaction amount: Each transaction amount can be used as

a benchmark. This can help establish the average transaction

size during a specific period and identify any unusual patterns

in transaction amounts.

transaction frequency: The frequency of transactions between

specific addresses can be used as a benchmark. This can help

establish the typical frequency of transactions between spe-
cific addresses and identify any unusual activity.

time between transactions: This is the interval between con-

secutive transactions made by a specific source. This feature

can help in identifying irregularities in transaction patterns.

e transaction ratio: This is the ratio of each transaction amount
to the average transaction amount of a specific source. This
feature can reveal if a transaction significantly differs from a
source’s usual amount.

4.2 Second phase

4.2.1 Existing static detection methods.

In recent years, the rise of blockchain technology and cryptocurren-
cies has increased interest in anomaly detection methods for these
systems. Various statistical, machine, and deep learning techniques
were used to detect anomalies in blockchain networks, as presented
in the Related Work section.

Machine learning approaches use complex tools to find unusual
patterns in data. Instead of using statistics to set a normal behaviour,
they learn from the data, finding things that do not fit the usual
patterns. It is divided into supervised learning and unsupervised
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learning methods, but due to a lack of labelled data, only the latter is
used during this research. The following techniques are employed:

o Clustering: This technique groups similar objects into clusters.
Clustering algorithms can detect anomalies without prior
knowledge.

Local Outlier Factor: is a density-based anomaly detection
method that can identify anomalies based on local density
deviation in a dataset [11]. In blockchain networks, based on
benchmarks such as transaction volume, amount, frequency,
and time between transactions, it calculates a score reflecting
the degree of abnormality of data points, which can point out
potential anomalies.

Isolation Forest: This is a tree-based detection algorithm that
isolates anomalies by randomly selecting a feature and a split
value between the min and max values of the selected feature.
Then, the points that do not fit with the rest represent anom-
alies/outliers. These points will stand out early on, making
them easy to spot and separate from the rest of the data [1].

Deep learning can be viewed as a subset of machine learning.
While machine and deep learning involve learning from data, the
main difference lies in their complexity. Machine learning can use
more straightforward, linear models to make predictions without
requiring specific programming to execute a particular task. On
the other hand, deep learning uses artificial neural networks that
contain several layers. While a neural network with a single layer
can still make approximate predictions, additional hidden layers can
significantly increase the performance [5]. Deep learning uses a lot
of architectures and techniques that can help to detect anomalies,
but for the relevance of this research project, only the following is
explained:

e Long Short-Term Memory Networks: These networks are
particularly effective for sequential data [10]. In anomaly de-
tection, they can identify anomalies in temporal data by learn-
ing what a ‘normal’ sequence looks like and then identifying
any sequences that deviate from this. In blockchain transac-
tions, their use can provide valuable insights into anomalous
behaviour.

I) The first approach entails the use of unsupervised learning
methods to analyze the case of anomalies within the data. The first
technique is clustering based on transaction-level metrics, such as
the benchmarks defined in the 4.1.2 Benchmarks section. By grouping
similar transactions into clusters, transactions that deviate signifi-
cantly from their group’s typical behaviour can be identified. Next,
data is scaled, and algorithms such as Isolation Forest and Local
Outlier Factor are applied to the identified clusters. The reason for
using both methods is that they can provide a more comprehensive
and diverse anomaly detection approach. Since they were identified
by two complementary procedures, anomalies found by both meth-
ods are likely to be quite robust. These anomalies require further
investigation. However, one crucial fact should be kept in mind,;
when working with unlabeled data, as is the case here, the interpre-
tations are indeed hypothetical and based on the assumptions of
the models used.

II) The second approach involves creating an anomaly detec-
tion model using an LSTM recurrent neural network (RNN). Using
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LSTM layers, these networks can retain information for long peri-
ods, which is useful when dealing with sequential data[10]. This
model can recognize transactions that differ from the norm by learn-
ing temporal patterns within the data. These transactions are then
flagged as potential anomalies. However, it needs further refining
with additional layers for better detection accuracy. More details
are given in the implementation section below.

Nevertheless, it should be kept in mind that the cryptocurrency
market is constantly fluctuating, with new currencies arising and
trying to make an impact quite often.[12]. Therefore, static anomaly
detection models may need help adapting to these changing con-
ditions and require practical improvements. The previously men-
tioned approaches offer some alternatives that may improve the
effectiveness of static methods.

4.2.2  Analysis of the first method and implementation in Python.
After exploring the key characteristics of blockchain networks and
investigating the available static anomaly methods that can be used
to detect anomalous data in such networks, it is time to use these
findings through Python implementation, which is accessible in the
Appendix section. The following steps were conducted:

I) Firstly, the focus was on a descriptive analysis before delving
too deep into complex algorithms. This involved summarizing the
main characteristics of the data, gaining some distribution insights,
and identifying patterns by plotting graphs. All the graphs can be
visualized in Appendix C. The graphs in figure 1 and 2 indicate a
steady increase in the amount of Bitcoin transferred and the total
number of transactions conducted. This increase makes sense as
the popularity and use of cryptocurrencies such as Bitcoin have
increased since their initiation. Additionally, the histogram depicted
in figure 3 represents the distribution of logarithmic values of Bit-
coin. In this chart, the most frequent logarithmic Bitcoin values are
on the left, while the least frequent ones are on the right, suggesting
a right-skewed distribution. This means that most data points have
lower values and fewer high-value ones. Regarding anomaly detec-
tion, the transactions corresponding to the distribution’s far right
could be considered anomalous since they differ significantly from
the majority. Nevertheless, just because an anomaly is considered
anomalous according to the distribution, further investigation is
needed to assess that.

II) For the second step, clustering was done through K-means,
an unsupervised machine learning algorithm aiming to partition
a given dataset into K clusters. Since there is no definitive rule for
choosing the correct number of clusters, one proper technique to
determine the optimal number is elbow technique. It is a heuristic
technique that tries to balance between having too few clusters,
which may result in an oversimplified representation of data, or
too many clusters, which may result in overfitting [8]. Using this
technique suggested six as the optimal number of clusters.

The K-means algorithm was then used with the number men-
tioned above. Figure 5 depicts the clustering done based on daily
data, however, since we want to analyze transactions individually
and not the aggregate daily transaction metrics, clustering was
applied differently. As a result, Figure 4 represents the output of
the clustering algorithm that uses transaction volume (x-axis) and
average transaction amount (y-axis) as features for visualization.
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Due to the enormous number of transactions, which is almost
seven million, it is almost impossible to point out some cluster
points, such as the ones contained by clusters three or four. To get
a better view, figure 6 plotted the clusters without cluster 0, while
figure 7 went even further and only plotted values from Cluster 1.
Even though there are a lot of data points in this cluster, almost all
of them overlap, indicating that they might have almost identical
values.

One solution would be to use different features for visualization,
but this is not the main focus of this research. Nonetheless, clustering
aims to discover meaningful patterns in the data rather than produce
clusters that can be easily visible. The identified clusters, alongside
their statistics, are expanded upon in the following section.

Each cluster represents a group of transactions with similar char-
acteristics in terms of transaction volume, average transaction amount,
transaction frequency, time between transactions, and transaction
ratio. These enumerated features have been explained in the Bench-
marks section. To avoid formatting errors in generated LaTeX tables,
the features will be labelled as follows:

*F0 -> transaction volume
*F1 -> average transaction amount
*F2 -> transaction frequency
*F3 -> time between transactions (in seconds)
*F4 -> transaction ratio
- Fo F1 F2 F3 F4
mean 3756.304 88.25 40.117 20916.961  0.990
std 17406.6  1064.5 452.13  159538.2 2.856
min 1 0 1 0 0
max 122710 122710 8425 3166045  695.57

Table 1. Cluster 0 statistics
Cluster 0: This is the largest group, with 6,318,031 transactions.

The transactions in this cluster have a small average amount (88.25),
also a relatively small transaction volume (3756.3), and their fre-
quency is also low (40.117 on average). The time between transac-
tions is relatively high, indicating that these transactions are hap-
pening infrequently. This cluster could represent regular, low-value
transactions.

- Fo F1 F2 F3 F4
mean 422834 3.4 210.817  45.189 0.653
std 0 0 316932 4184 8.214

min 422834 3.4 1 0 0
max 422834 3.4 1956 2688635 817.79

Table 2. Cluster 1 statistics
Cluster 1: This cluster contains 422,751 transactions. The trans-

actions in this cluster have a small average amount transferred (3.4)
and identical transaction volume. The latter indicates a high degree
of regularity, which could represent automated payments, a fact
highlighted by the relatively high transaction frequency. However,
the maximum transaction ratio of 817.790 is significantly higher
than the mean, suggesting there may be a few highly anomalous
transactions within this cluster.

Cluster 2: This cluster, with 61,102 transactions, also shows an
identical volume and average transaction amount for all its transac-
tions. The higher ratio suggests these transactions are more signifi-
cant than the user’s average amount.
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- FO F1 F2 F3 F4

mean 122710 1749 61102 58.95 1.868
std 0 0 0 315.1  2.369
min 122710 175 0 0 0

max 122710 175 61102 8322 36.31
Table 3. Cluster 2 statistics

- Fo F1 F2 F3 F4
mean 365400 8.5 71.27  6827.9 1665.189
std 132101 53.876 27.10 62827.57 233.8
min 1002 0 1 0 921.31
max 422834 539 83 623453 1766.37

Table 4. Cluster 3 statistics

Cluster 3: This is the smallest cluster, with only 99 transactions.
However, these transactions have the highest volume (365,400 on
average). Given the minimal size of this cluster, it means that the
sources inside the clusters are involved in many transactions. More-
over, the transaction ratio in this cluster is very high compared
to other clusters. Such a high ratio indicates that the transaction
amounts in this cluster are quite large compared to the average
transaction amount made by the corresponding sources. It could be
indicative of outliers or anomalous transactions.

- Fo F1 F2 F3 F4
mean 37.528 70.649 5.730 6296197  0.555
std 145.11 881.17 101.49 3439394 1.5
min 2 0 1 3439394 0
max 8492 79193 8425 31120628 126.8

Table 5. Cluster 4 statistics

Cluster 4: This cluster contains 20,420 transactions and has a
high degree of feature variability, indicating diverse transaction
behaviour within this cluster. For example, the high time between
transactions, with a mean of approximately 73 days, may indicate
infrequent transactions. Even though great values do not represent
the mean of transaction volume and average transaction amount,
their relatively high standard deviation shows greater variability in
their values.

- Fo F1 F2 F3 F4
254125.34 1.008 5056.6 1231

mean 1.8

std  0.588  72616.5 0.09  132053.9 0.866
min 1 129948.5 1 0 1
max 6 499246.5 2 4467637  3.33

Table 6. Cluster 5 statistics

Cluster 5: This cluster has 1,231 transactions with very high
average transaction amounts (254,125.34), the highest among all
clusters. The transaction volume is relatively low, with a mean
value of 1.8 and a maximum of 6. This suggests that sources in this
cluster are involved in a few transactions but with high Bitcoin
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amounts. Furthermore, the time between transactions within this
cluster varies significantly, with some entities showing a significant
time gap between their transactions. This cluster’s behaviour, es-
pecially the low volume and frequency combined with very high
amounts transferred, stand out the most among all clusters and
suggests the presence of anomalies.

We observe distinct behaviours for each in interpreting the trans-
action patterns across the clusters. Specifically, Cluster 3 and 5 are
potentially anomalous due to their distinct traits. Cluster 3, while
the smallest cluster, has an exceptionally high transaction volume
and transaction ratio, making it stand out from the other clusters.
Its high transaction ratio could be a flag for anomalies, given that
it is way more prominent than in other clusters. Meanwhile, Clus-
ter 5 is characterized by infrequent transactions but significantly
high value. The average transaction amount for this cluster is also
substantial, hinting at potential outlier behaviour. Furthermore, a
wide gap in the time between transactions is observed, adding to
this cluster’s unusual pattern.

IIT) The last step involved applying anomaly detection algorithms
such as Isolation Forest and Local Outlier Factor post-clustering,
which allowed the identification of outliers within each cluster
separately. As these clusters represent groups of similar transactions,
the benefit of applying anomaly detection post-clustering could be
the identification of anomalies within each cluster. Separating the
data into clusters can establish each group’s "normal" behaviour.
Anomalies can then be detected as deviations from the norm within
their respective groups.

Both algorithms used on the identified clusters yielded the fol-
lowing output: 68234 anomalies found by Local Outlier Factor and
68141 anomalies found by Isolation Forest. Running both algorithms
on the same data can provide a more comprehensive view of the
anomalies. This statement is reinforced by the fact that these al-
gorithms approach anomaly detection from different angles and
may identify anomalies that the other is incapable of. Local Outlier
Factor is based on density, whereas Isolation Forest is based on data
partitioning. In both cases, the anomalies appear to be characterized
by unusually high values for several variables.

In scenarios where a single method is utilized, the chance of data
points being incorrectly flagged as anomalies may increase. These
can often be false positives, data points incorrectly identified as
anomalies due to certain limitations or biases of the model used.
For this reason, anomalies detected by both methods are likely to
be highly robust as they are identified by two separate techniques
that employ different approaches to anomaly detection. The total
number of common anomalies - that is, anomalies identified by both
Isolation Forest and Local Outlier Factor is: 1181. The values from
Table 7 represent the summary statistics of the data points identified
(common anomalies).

The statistical differences between normal and anomalous data
can offer valuable insights regarding the diverse characteristics
of anomalous behaviour in Bitcoin transactions. The results show
that anomalies frequently involve significant amounts of Bitcoin.
This implies that anomalies are more likely to occur in high-value
transactions. This can indicate possible criminal activities, such as
money laundering or scams, usually involving larger amounts.
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The attributes’ labelling and what they stand for have already
been explained in the previous section.

- Fo F1 F2 F3 F4 Type
mean 120028.4 9065.9 1902.6 386130.7 20.2 Anomalous
std 178678.3 170744  8318.2  1950503.6  100.7
mean  30477.4 99.4 572.771 49841.1 0.94 Normal
std 102724.6 3582 5755.5 48340 6.75

Table 7. Comparison of Anomalous and Normal Data

e transaction volume, this benchmark shows the number of
transactions made by each source and is significantly higher
for anomalies.

e transaction frequency, between each unique combination of
source and destination addresses, is also higher in anomalous
cases. This implies that anomalous transactions occur more
frequently between certain addresses, hinting at unusual trad-
ing behaviours.

e average time between transactions, is also higher for anom-
alies. This may suggest that anomalous transactions are not
uniformly distributed over time but rather occur in rapid
succession.

e transaction ratio, for this benchmark as well, the value is more
substantial for anomalies. Transactions with a notably high
ratio could represent illicit activities like money laundering,
usually characterized by more incoming transactions than
outgoing ones.

These metrics showcase the patterns that characterize anomalous
Bitcoin transactions within the data. These unsupervised learning
algorithms use a variable called the “contamination factor” that re-
flects the percentage of anomalies in the data. The actual percentage
of anomalies is unknown due to the lack of labelled data. However,
by considering the domain and the fact that anomalies are usually
rare, we can assume a small percentage of 1%.

4.2.3  Analysis of the second method and implementation in Python.
The second approach used a Long Short-Term Memory (LSTM) neu-
ral network. Each Bitcoin transaction is not isolated but part of a
larger chain of events influenced by various interactions between
addresses within the network. Thus, for the sake of the analysis,
the transactions were modelled as a directed graph using NetworkX
Python library [3]. Each node represents a Bitcoin address, and each
edge is a transaction between two addresses. In contrast to the previ-
ous approach, which mainly relied on transaction-level features, this
e different employs features. Initially, it runs using network-related
features. Subsequently, in a separate training session, the model is
fed with temporal features.

The model can learn to predict patterns within these features.
This knowledge can be used to detect anomalous data. The model
is tested using different configurations to ensure a comprehensive
view of the results.

The model uses bidirectional LSTM layers, which enable it to
analyze data in both forward and backward directions. This fea-
ture increases its efficiency in recognizing patterns in the data. Be-
sides the LSTM ones, it also incorporates Dropout layers to prevent
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overfitting and the ’Adam’ optimizer, one of the most widely used
optimization algorithms nowadays due to its effectiveness.

The model is trained using either the Mean Squared Error (MSE)
or Mean Absolute Error (MAE) loss function. After training, the
model makes predictions on the test set. Each transaction’s error
is then calculated by comparing the predicted and actual values.
Transactions with errors exceeding the 95th percentile threshold
are classified as anomalies. This threshold ensures that the model fo-
cuses on identifying the most extreme inconsistencies, representing
transactions that deviate significantly from the expected patterns
captured by the model. This threshold was chosen since it balances
the need to detect anomalies, which are rare by definition, with the
need to limit false positives.

The test set is made of 1705909 transactions, which represents
25% out of the total number from the original dataset.

Experiment | Feature Number Dropout | Anomalies
No. Type of LSTM | Rate identified
Units
1 Network 50 0.1 85827 (MAE)
85245 (MSE)
2 Network 150 0.2 85287 (MAE)
85257 (MSE)
3 Network 50 03 85287 (MAE)
85251 (MSE)
4 Network 100 0.3 85287 (MAE)
85256 (MSE)
5 Temporal 50 0.1 85296 (MAE)
85253 (MSE)
6 Temporal 100 0.2 85296 (MAE)
85296 (MSE)
7 Temporal 150 0.1 85296 (MAE)
85254 (MSE)
8 Temporal 100 0.3 85296 (MAE)
85255 (MSE)

Table 8. Experiments with different model configurations.

The model ran with different configurations to check whether the

change in LSTM units (neurons) or the Dropout rate and loss func-
tion would heavily impact the outcome. Table 8 displays the results,
which are almost identical in terms of the number of anomalies
identified. This suggests the model is quite robust to configuration
changes. The fact that the number of anomalies identified is very
similar across different configurations suggests that these anomalies
are quite distinct and can be identified by the model regardless of
these hyperparameters.

The network features are more suited to identify anomalous
nodes (addresses) rather than anomalous transactions. However,
it can be justified that transactions that involve anomalous nodes
might be considered suspicious and require further investigation.
The following were used:

o degree centrality - the in-degree and out-degree metrics rep-
resent the fraction of nodes’ incoming and outgoing edges
connecting a node and are calculated for source and destina-
tion addresses.
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e eigenvector - measures the importance of a node within the
network based on its centrality.

- in-degree  out-degree eigenvector Type
mean 1.12 1.56 7.1
Anomalous
std 8.6 5.67 7.87
mean 1.25 1.38 7.9
Normal
std 7.72 484 6.67 orm

Table 9. Anomalous and Normal Data using Network features

According to table 9, the average centrality Measures (in-degree,
out-degree, eigenvector) are lower for anomalies than those for nor-
mal transactions. This implies that anomalous transactions usually
involve nodes less central to the network. This idea makes sense
when considering malicious activities since individuals engaging in
them may attempt to evade detection by minimizing their interac-
tions with the main network. Additionally, the standard deviation
of most features for anomalous transactions is higher than that of
normal transactions. This indicates that anomalous transactions are
those that are varied and less predictable.

On the other hand, the temporal features provide a chronologically-
oriented perspective to the transactions. This can help identify pat-
terns or anomalies that are not just based on the transaction values
or the network structure but also on the timing and regularity of
transactions. The following features were used:

e time since the last transaction (F0)

e transaction count in last 24h (F1)
e average transaction value last 24h (F2)

- Fo F1 F2 Type
mean 3.89 2643 1.49 Anomalous
std 2.52 106.2 44.7
mean 5.22 3.08 1.28
Normal
std 4.21 9.09 4.44

Table 10. Anomalous and Normal Data using Network features

Based on the information in Table 10, transactions classified as
anomalous display distinctive characteristics. The average time
since the last transaction is shorter for anomalous transactions, sug-
gesting a more frequent occurrence. Furthermore, the transaction
count for anomalous transactions in the last 24 hours is signifi-
cantly lower, implying less frequent activity on a day-to-day basis.
Despite this, these transactions involve larger Bitcoin amounts, as
evidenced by anomalous transactions’ slightly higher average trans-
action value. These patterns could indicate potentially suspicious
behaviour within the network.

It is worth reminding that, due to the lack of labelled data, unsu-
pervised learning models aim to identify potential data points that
may require further investigation rather than drawing definitive
conclusions about the nature of these data points.

4.3 Third phase

In the final phase of the research, the main focus was on the theoret-
ical analysis of dynamic anomaly detection in blockchain networks.
As these networks continue to generate more data with each new
transaction, the need for reliable real-time anomaly detection also

TSclT 39, July 7, 2023, Enschede, The Netherlands

increases. The main challenge is represented by blockchain systems’
evolving characteristics, making relying only on static anomaly
detection models incredibly difficult. The dynamic nature of these
networks means that the data distribution can change over time,
making it challenging for models to adapt.

Methods for dynamic anomaly detection in these systems usually
involve graph-based techniques. These techniques exploit the graph
structure of blockchain transactions to detect anomalous patterns.
For instance, a sudden increase in the transaction volume between
two entities may indicate an anomaly. However, these methods of-
ten face scalability issues due to the large size and complexity of
blockchain networks, as noted by [7]. The authors introduce an
end-to-end unsupervised framework for detecting edge anomalies
in dynamic multiplex networks in the same paper. The framework,
named "ANOMULY”, employs Graph Neural Networks (GNNs) and
Gated Recurrent Unit (GRU) cells to exploit the network’s tempo-
ral properties. Theoretically, this framework can also be used in
blockchain networks due to structural similarities between the two
types of networks, particularly in the representation and processing
of data. Both can be modelled as graphs, with entities as nodes and
relationships as edges. This graph-like structure allows for applying
similar analytical techniques, especially those from graph theory.

Moreover, it can be particularly useful in such networks, where
anomalous transactions may only represent a small fraction of the to-
tal network activity. The authors found that the model outperformed
all baselines in dynamic and static multiplex networks, improving
the best baseline results by an average of 8.18%. This suggests that
integrating GNNs, GRUs, and attention mechanisms may provide
an efficient solution to dynamic anomaly detection challenges in
blockchain networks.

Additionally, [16] offers a thorough review of anomaly detection
methods in dynamic networks, including those applicable to the
blockchain. It categorizes these methods into four types: anomalous
vertices, edges, subgraphs, and events. Methods include graph-based
techniques, similar to the previously discussed paper. However,
these methods also face scalability issues due to blockchain net-
works’ large size and complexity. The paper also discusses using
scan statistics for vertex detection, Bayesian discrete-time counting
processes for edge detection, fixed subgraphs, and other alterna-
tives. Each method can play a part in detecting anomalies within
blockchain networks.

Nevertheless, despite these advancements, there are still limita-
tions to dynamic anomaly detection in blockchain networks. Besides
scalability issues, another significant challenge is the lack of labelled
data for training and evaluating models. This is particularly prob-
lematic in the blockchain domain, where privacy is essential and
obtaining labelled data for fraudulent transactions takes much work.
The paper of Lorenz et al. [14] describes this issue regarding money
laundering identification in blockchain networks, where it is com-
plicated to get access to labelled data to train machine learning
models on. Money laundering is a malicious activity that may be
reflected by some of the anomalous transactions identified in the
previous sections. Furthermore, blockchain networks’ complex and
evolving nature can lead to new protocols, interactions and, thus,
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new anomalous behaviour not encountered. This aspect poses chal-
lenges for existing detection methods since models are trained on
past data.

5 DISCUSSION

The results have various implications for anomaly detection in

blockchain networks. The first approach used clustering on transaction-

level metrics and then applied Isolation Forest and Local Outlier
Factor algorithms on the identified clusters. The main idea was to
analyze the statistics of the common anomalies identified by both
complementary methods to provide a more comprehensive view.
This could be particularly beneficial for identifying potentially fraud-
ulent transactions or other malicious activities within the network,
improving its security and reliability. This approach is somehow
limited by the need to assume the percentage of anomalies within
the data. In this case, the 1% percentage was chosen since it is a
conservative estimate based on the assumption that anomalies are
usually rare, prioritizing the minimization of false positives.

The second approach involved a more complex model with LSTM
layers that uses network metrics and temporal features to assess
the state of a transaction. The model is trained with either a Mean
Squared Error (MSE) or Mean Absolute Error (MAE) loss function,
but the choice is negligible since they more or less identify the same
anomalies. The model identifies anomalies that exceed the 95th
percentile threshold. The results after running ten experiments with
different model configurations. Although various configurations
have been tested, using only the ’Adam’ optimizer could be a limiting
factor. Different optimizer alternatives should be explored to yield
different outcomes.

Moreover, the findings are mainly hypothetical due to the lack
of labelled data. In the preliminary stages of this research, one idea
was to categorize these anomalies based on the type of malicious
activity they represent, whether it be money laundering, scams
and other fraudulent activities. However, the idea was dropped due
to the scarcity of labelled data in this field since using supervised
learning methods to train the models was outside reach. While
the models have identified potential anomalies within the dataset,
confirming their validity as true anomalies is impossible. This un-
certainty emphasized the need for more research and development
in this area.

Lastly, delving into the theoretical aspects and potential of dy-
namic anomaly detection methods in blockchain networks resulted
in few significant findings. The current literature could is limited,
and most graph-based methods highlighted are meant to be used
in multiplex networks. This can also be applied to blockchain net-
works since they share structural similarities. However, gauging
their effectiveness at the current stage is complicated.

6 CONCLUSION

In conclusion, the research conducted in this paper delves into
the phenomenon of anomalies in blockchain networks, with an
emphasis on Bitcoin transactions. Despite their unique features
highlighting robust privacy, these networks are far from perfect. The
anomalies identified, which could be signs of malicious activities, are
more challenging to detect in these networks compared to traditional
ones.

ALEXANDRU-TUDOR NECHITI

Reflecting upon the research question established in the begin-
ning, this paper has investigated and tried to enhance the existing
methods for static anomaly detection. The analysis and implemen-
tation were made exclusively using unsupervised learning methods.
Initial descriptive analysis revealed patterns and distributions in
the data, followed by two unsupervised learning approaches. In the
final stage, the research delved into the current status of dynamic
anomaly detection methods in blockchain networks, showing that
the current advancements are quite limited.

7 LIMITATIONS AND FUTURE RESEARCH

Further research should continue exploring and developing innova-
tive anomaly detection methods in blockchain networks that address
the ongoing challenges. The biggest challenge is the lack of labelled
data, mainly due to the blockchain’s nature. While transaction data
is public, the parties involved and their identities are not disclosed
or attached to the transactions. In addition, what constitutes an
anomaly may vary depending on the context. For example, a trans-
action involving a large amount of Bitcoin might be considered
normal in business transactions but could be seen as anomalous in
other contexts. This makes it challenging to label data as 'normal’ or
’anomalous’ based on the transaction data alone, and more domain
knowledge is required.

Another challenge is the dynamic nature of blockchain networks.
These networks continually generate new data with each transac-
tion. This makes it challenging for static anomaly detection models
to adapt and detect anomalies efficiently. A lot more focus should
be on dynamic anomaly detection methods.

The scalability of anomaly detection methods is also an issue.
As blockchain networks grow in size and complexity, it becomes
increasingly difficult to process and analyze vast amounts of data
promptly.

Ultimately, it is essential to acknowledge that this field is still in
its early stages and has considerable potential for further develop-
ment. As blockchain technology evolves, so must the techniques
for detecting anomalies within its networks to mitigate malicious
actions.
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A APPENDIX

102 4
A.1  Python code
i i : : 10 4
The link with the complete Python implementation on Google Colab
can be here: https://colab.research.google.com/drive/1vTozweLs7JvK. 10° 4
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A.2 Bitcoin transactions data

The database with transactions from different years (2011 in our

B ) T Fig. 3. The distribution of (logarithmic) Bitcoin values within the data
case) is accessible through this link: https://dataverse. harvard.edu/dataset

A.3  Plots
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Fig. 1. The increase in the amount of Bitcoin transferred over a year suggestive due to the enormous amount of data points
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