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Abstract 
Tiny Machine Learning is the process of integrating machine learning algorithms into 

resource-constrained edge devices. The technology is already embedded into applications 

from smart home speakers to industrial pipeline leak detection and will continue to make a 

growing impact on businesses, hobbyists and industries alike. Currently, there is little 

engaging educational material available on Tiny Machine Learning for students. With the help 

of a tangible educational kit and by project-based learning materials this research aims to fill 

in this void. 

In order to achieve engaging and interesting learning experiences, research was conducted 

to establish effective learning methods as well as gain background knowledge about Tiny 

Machine Learning. The resulting findings helped shape the design requirements for the 

realisation of the end product, an educational kit called TinySpark, that teaches Tiny Machine 

Learning with the help of a custom development board and interactive online platform. 

The educational kit was evaluated through a user experience test, which was followed by a 

semi-structured interview. Test participants were enthusiastic about TinySpark and noted that 

their engagement and interest in the topic had grown. According to some participants, the kit 

could be easily expanded by adding more modules and project material in the future. Overall, 

the user experience testing was a success, as participants gained knowledge on complex 

concepts and could autonomously deploy Tiny Machine Learning models to the development 

board. 

In conclusion, educational kits proved very engaging and useful in teaching Tiny Machine 

Learning to users. The development board and interactive online platform enhanced their 

comprehension and knowledge. By applying teaching methods like these, it is possible to 

effectively prepare students for a future filled with Tiny Machine Learning applications.  
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Glossary 

AI 

Artificial Intelligence is the overarching term for software that can perform (seemingly) 

intelligent decisions using its inbuilt algorithms. AI is both used for pre-programmed 

intelligent behaviour, as well as learned intelligence e.g. through machine learning algorithms. 

Development Board 

A circuit board containing a microcontroller chip as well as supporting hardware to enable 

engineers or users to interact with the chip easily. Most commonly used for prototyping and in 

hobby projects, e.g. the Arduino Uno development board. 

Edge Device 

A device which is located at the edge of a network, in this context, an edge device is 

considered any appliance which is meant to be used by an end user. E.g. smart speaker, fitness 

tracker, autonomous car, digital dog collar. 

IMU 

An Inertial Measurement Unit is a mechanoelectrical sensor which can measure forces in 

different directions. Most commonly, these sensors are used to detect acceleration and 

rotation in various axes. 

Machine Learning 

The act of letting computers ‘learn’ certain tasks without explicitly telling the program what to 

do. Machine learning uses algorithms to analyse a dataset and mathematically calculate how 

to correctly predict outcomes based on certain inputs. 

SDK 

A Software Development Kit is a specialised piece of software that can be used to write and 

compile code for specific hardware. It often includes all necessary configurations for this 

hardware and can help developers when writing software functions. 

Tangible learning 

The way of learning concepts using physical objects, e.g. understanding physical properties 

through playful interaction. 

TinyML 

A branch of machine learning that focuses on optimising algorithms to be able to run on edge 

devices and perform using little power and processing power.  
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1 Introduction 

Tiny Machine Learning (TinyML) powers detection in a wide range of applications from smart 

home speakers to pipeline leak prevention. This relatively new field within computer science 

enables engineers to integrate powerful Artificial Intelligence (AI) into so-called edge devices. 

These appliances are low-power, low-cost and often do not require an internet connection to 

function. Combined with sensors, edge devices are ideally suited for a multitude of functions 

and they enable designers and engineers to explore new avenues for the integration of this 

technology. 

Presently, only two approaches to integrate TinyML into projects and devices exist. The 

first, ‘bare-metal’ approach, requires intrinsic knowledge of complex mathematical and 

computer science topics. This method relies on fundamentally programmed AI, which calls for 

an understanding of low-level programming languages such as C, as well as mathematical 

knowledge of linear algebra and statistics [1]. The second approach relies heavily on cloud 

services, offering TinyML through a ‘Platform as a Service’ (PaaS) [2]. Users upload their data 

and let the platform take care of teaching the algorithm and programming the AI. A general 

approach for learning TinyML is lacking, and existing development and learning systems are 

complex and scarce.  

The research presented aims to solve this problem by designing a self-supported 

educational kit (TinySpark) for learning and implementing TinyML into projects and devices. 

Machine learning projects in this kit could for example be used to detect human presence in 

rooms or to analyse vibration patterns to identify maintenance problems. The educational kit 

will be aimed at college and university-level students, as they are the designers and engineers 

of the future. Teaching them new technologies early on is important to ensure proper 

adoption and usage. The kit will be designed for students who have an application-level 

understanding [3] of programming concepts. 

The objective of this research was to determine if educational kits and project-based 

learning systems can teach students TinyML effectively (Research Question). To properly 

answer this question, two additional subjects needed to be investigated. First, teaching 

methods were explored to find which methods can be used to enable successful self-supported 

learning of complex topics such as TinyML (Sub Research Question 1). In addition, a self-

supported educational kit for learning and implementing TinyML was produced. Second, the 

educational kit was analysed to see if it was suitable for teaching complex topics in a 

comprehensible and engaging way to university students (Sub Research Question 2). Combined, 

these investigations provide valuable insights for answering the initial research question. 

The research is structured as follows: In chapter 2, background literature and the state of 

the art on educational kits and TinyML are presented. In chapter 3, the methodology for 

answering the research goals is given. Chapter 4 discusses the preliminary ideation that took 

place to develop an educational kit around TinyML, and at the end of the chapter, 

requirements for the product are discussed. In chapter 5, the realisation of the educational kit 

will be demonstrated. In chapter 6, the product is evaluated through user experience testing. 

The results of the user test will be discussed in chapter 7. Finally, this research is concluded in 

chapter 8, where findings are summarised and future work recommendations will be given. 
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2 Background 

To make well-informed decisions during the rest of the research and product development, it 

is important to examine existing research and products. This chapter comprises expert 

opinion(s) on the subject, comprehensive literature research, explores popular educational 

methods and investigates the influence of adding tangibility to the learning process. After 

that, the origins of machine learning and the importance of TinyML are investigated. Lastly, 

an important insight into the current state of the art is gained. Here, the currently available 

development boards used for TinyML, available online learning material, programming 

languages as well as online learning platform systems are compared. 

Educational Methods 

There has been growing interest in different educational methods besides the ‘traditional’ 

teacher-centred learning. Tangible and self-supported learning have emerged as alternative 

methods to engage pupils and students with varying curricula and subjects. Tangible learning 

describes the act of understanding topics or functions through the use of physical structures, 

such as model representations or even highly technical devices [4]. Horn et al. [5] show that 

tangible learning can facilitate the learning process by increasing engagement and 

understanding. Students face increasingly complex concepts and problems, which could 

become easier to understand by incorporating tangible teaching into their learning process.  

Successful learning and teaching methods 

To evaluate educational methods, it is important to establish what factors contribute to 

successful learning and teaching methods. There are many different aspects that influence 

learning; not only the teaching environment and style, but also less obvious effects such as 

peers in the classroom and framing of learning materials.  

Teaching in a way which enables exploration of the subject matter at hand is one of the 

key principles of successful teaching. Inquisitive behaviour is a strong motive for learning new 

things [6]. Matthews et al. [7] support this by stating that ‘curiosity driven learning is very 

important for development’. Similarly, Resnick and Silverman [8] implement a system of ‘low 

floors and wide walls’ in their educational recommendation, supporting a wide range of 

exploration opportunities. Students who are allowed to participate in learning activities 

together, collaborating on assignments, problem solving and participating in discussions 

about the material, seem to gain a deeper understanding in the subject matter. The 

collaborative experiences foster the formation of different perspectives and teach important 

skills such as negotiation, tolerance and listening [6]. Matthews et al. [7] also observed that 

students witnessing other students think about and act on inputs stimulates the exploration of 

new connections.  

Besides an open and inquisitive approach, learning should be tailored to the specific 

context it is presented in. Information should be fitting to the intended target audience, be it 

for a certain grade or scholarly environment. Bekker et al. [9] state that teaching materials 

have to be age appropriate, because if they are too easy, students lose interest. On the other 

hand, if materials do not fall within students’ realm of imagination, they might be perceived as 
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too hard to grasp [10]. Furthermore, by targeting specific topics in context, for example 

animals in their natural habitat, much more student engagement can be achieved according to 

Stanton et al. [11]. The incorporation of context can be extended to include support for 

multiple learning styles. M. Resnick and B. Silverman [8] describe this as encouraging ‘many 

paths’, in which the students are let free to choose which learning path they want to seek out. 

Traditionally, teacher-centred teaching methods may not always be the best choice for course 

materials. That is why Bekker et al. [9] suggest that deeper understanding and applied 

knowledge of subject matter can often be heightened using alternative teaching methods such 

as tangible learning. Playful learning is another opportunity to change teaching styles: it can 

enable students to participate in technologies that they may not be familiar with, or do not 

have the domain knowledge for to fully understand [7].  

Teaching materials not only need to be tailored to students’ specific context, but the 

material should also carefully consider where to apply abstraction of concepts. By employing 

so-called ‘black-boxes’ [8], teachers can purposefully obscure facts or knowledge to explain 

concepts without focussing on unnecessary details. While this can lead to greater participation 

even for students without intrinsic domain knowledge according to Matthews et al. [7], 

Resnick and Silverman [8] point out that designers should be careful to not create unnecessary 

confusion by leaving out critical components. Experimentation and exploration are strong 

motivators for learning [6]. Additionally, ‘curiosity driven learning is very important for 

development’ according to Matthews et al. [7]. 

 

As seen in this part of the review, there are many aspects that influence the effectiveness of 

teaching and learning methods. Experimentation and exploration prove fairly effective in 

teaching new concepts, while collaborating with peers can increase learning as well as improve 

understanding of a topic. Furthermore, providing material that is well-tailored to the student 

population and that enables multiple paths of learning can contribute to engaging teaching 

that reaches a broad audience. Lastly, educators should be mindful to not obscure (parts of) 

concepts that might prove important to garner a good understanding of the topic. By using 

these pointers, educators may deliver effective and engaging learning experiences to their 

students. 

Effects of tangible learning 

Successful learning and teaching methods involve many different aspects of education. 

Tangible learning, in which physical commodities that support the teaching topic or context 

are used alongside other educational methods, could have a profound impact on students. It is 

important to explore in what way tangible interactions influence the students' learning 

process. 

Tangible artefacts can have a great impact on the collaboration between students in the 

classroom. Stanton et al. [12] note that especially large tangibles slow down interactions and 

make student experiences more deliberate. The researchers however find that one downside of 

this approach is that it can make individual interactions and decisions more difficult. 

Zuckerman et al. [13] refute this, stating that collaboration actually has a positive impact on 

learning as it can lead to discussion. This can lead to greater understanding of concepts and 



11 

improve classroom cohesion. The finding is confirmed by research from S. Somyürek [14] and 

Bekker et al. [9]. 

Tangible learning methods also provide ways to discover difficult topics in a participatory 

and hands-on way. Price et al. [6] find that being able to handle objects and interact with 

them enables creativity, forms knowledge and stimulates awareness. Furthermore, physically 

interacting with tangible objects can immerse students into the learning process and raise 

awareness of concepts [15]. P. Marshall [12] is more careful in this regard, stating that in 2007, 

frameworks for testing and studying tangible learning effects on students are lacking and need 

to be investigated further. In a literature review conducted in 2020, Matthews et al. [7] 

however find that there is (now) ample evidence to support tangible learning as a viable way 

to build effective theoretical knowledge.  

In science and technology subjects, there still exists a gap between gender participation: 

girls are less likely to follow courses in these areas. While testing tangible programming 

interfaces, Horn et al. [15] found that tangible interaction methods were not only more 

engaging and prolonging interest, but they also attracted more traditionally underserved 

groups of participants. For example, girls were even more likely to try and interact with 

tangible interfaces than boys. Tangible learning seems to be less daunting and it invites people 

to try something new, even if they are not familiar with its workings. In addition to this, M. S. 

Horn [16] finds in a later study that tangible objects ‘lure’ participants into interacting with 

them, stating that experiences that include hands-on interaction are more attractive in 

general.  

Although it might not be immediately obvious, tangibles in education were more popular 

than ever during COVID-19. Many teachers have been wondering how they could teach 

certain disciplines of academia remotely. For example, laboratory practice was made almost 

impossible due to stay-at-home regulations, even though many in higher education consider it 

an essential part of scientific education. Even before it became a mandatory practice, J. P. 

Oliver and F. Haim [17] already proved in 2009 that at-home laboratory experiments can be 

successfully applied. Their research even shows that take-home labs led to a better 

understanding of subject matter, as well as higher acceptance and motivation, which in turn 

resulted in higher grades. Additionally, students acquired more academic skills and developed 

a more responsible attitude towards laboratory work in general. This is corroborated in a more 

general educational study by Jones et al. [14], who not only found improved achievements, but 

also a more investigative mindset which led to important individual reflection. 

 

As seen above, tangibles can impact students and their learning experience in many different 

ways. Not only do lessons augmented with physicalities improve the collaboration between 

students, but they can also lead to a more positive classroom environment. This added 

dimension can lead to a better understanding of tough concepts and can improve even the 

engagement of students who otherwise might not have been interested in learning certain 

subjects, one good example being female students exploring science. Additionally, many 

different types of educational activities such as lab work can benefit from added tangible 

interaction, as improvements in grades and level of understanding show. When analysing all 

effects of tangible learning, a positive influence on students' abilities to learn can be found. 
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Comparing teaching methods 

After analysing factors that influence how effective education can be for students, as well as 

the benefits of tangible learning methods, it is appropriate to also look at a direct comparison 

between more traditional, teacher-centred education and tangible learning methods. By 

analysing both methods side-by-side a better decision can be made when choosing an 

educational model. 

First, tangible learning methods can lead to ineffective education if the material is 

implemented poorly. Bekker et al. [13] as well as Dickerson et al. [18] find that tangible 

learning is only useful if teachers fully understand the underlying materials and subject. When 

this is the case, teachers can facilitate learning through tangible methods successfully. 

Additionally, teachers with more experience in their subject already use tangible methods 

more often in their lessons than less experienced teachers [14]. Experienced teachers were 

furthermore observed to be more confident in lessons with opportunities for open inquiry 

from students. Second, teacher-centred lessons also seem to be less optimal for teaching time, 

as more time is spent on explaining concepts and materials than answering questions, 

discussing with students and evaluating results [17]. Students seem to appreciate this more 

open approach to lessons: S. Somyürek [14] states that students found tangible problem-

solving activities more useful and expedient than traditional education. Not only that, but 

Dickerson et al. [18] also find that tangible learning can empower populations of students that 

may not otherwise be able to approach certain subject matter.  

By directly comparing different teaching methods, a clear effect of tangible learning on 

students can be observed. The most important discovery concerns teacher knowledge: it 

becomes clear that curriculum material needs to be fully comprehended by teachers to 

implement tangible methods. Although there might exist some caveats about the adoption of 

tangible education, there are definitive indicators that implementing them benefits students. 

 

This literature review aimed to ascertain whether tangible educational methods can benefit 

students more than traditional, teacher-centred learning methods. Through investigation of 

the aspects of teaching that influence successful learning, it was observed that methods 

including an open and inquisitive approach, tailored materials as well as collaborative learning 

benefit students most.  

Tangible learning methods were also evaluated and found to have a profound effect on 

students’ ability to understand arduous topics, but also to help spark interest among 

underserved student groups for specific courses. Further, in direct comparisons between 

educational methods, benefits of implementing tangible materials into learning have been 

shown. 

In conclusion, tangible educational methods seem to benefit students, although it is 

important to consider when, how and why they are implemented, to ensure that they are 

deployed effectively. 
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(Tiny) Machine Learning 

The earliest mention of machines being able to learn using mathematics is in the 1943, in the 

paper ‘A logical calculus of the ideas immanent in nervous activity’ by McCulloch and Pitts 

[19]. The authors propose a system which can mathematically describe the neural activities in 

the brain, leading to the first description of artificial neurons. In 1950, Alan Turing introduced 

a new technique for testing if a machine can think, commonly known as the ‘Turing Test’, by 

checking if answers from said machine are good enough to convince a human interviewer they 

are talking to another human [20]. Rosenblatt [21] was the first researcher to implement the 

concept of neurons into physical hardware, by building the Mark I Perceptron, a machine the 

size of a closet that was supposed to recognize images taken by the camera mounted to its 

front panel. His attempts had limited success. Two years later, in 1959, Samuel et al. [22] 

coined the term machine learning, showing that a computer was able to learn to play checkers 

by training itself only on simple rules it was given. 

Plunging further into the historical development of machine learning, it is clear to see that 

major advancements were made in the field: in 1967 the introduction of the ‘Nearest 

Neighbour’ algorithm to solve the travelling salesman problem [23], in 1979 the Stanford Cart 

[24] which was able to autonomously navigate an obstacle course without human 

intervention, after that came NETTalk in 1986, a system developed by Sejnowski and 

Rosenberg [25] that could learn to speak words in a similar way to babies, then came 

DeepBlue, which beat chess champion Garry Kasparov in 1989 [26], leaping forward, in 2011 

IBMs Watson computer successfully competed in Jeopardy!, a popular American quiz show 

[27] and later in 2015, Google’s AlphaGO managed to beat the world champion in Go (an 

ancient Chinese board game long thought to be too difficult to master for a computer) [28].  

Around 2016, big companies like Google and Meta (formerly Facebook) became 

increasingly interested in the use of machine learning and began developing their own 

frameworks to simplify the implementation of ML algorithms. This resulted in two popular 

open-source tools; TensorFlow [29] and PyTorch [30], which enable researchers and 

developers to easily build and deploy complex machine learning models for various 

applications. These frameworks also facilitated the advancement of deep learning, a subset of 

machine learning that uses multiple layers of artificial neural networks to learn from data. 

With the widespread adoption of smartphone technology came mobile machine learning, 

which enabled applications on mobile devices to learn from data they generate. Currently, 

many smartphone manufacturers, as well as smartphone operating systems, use machine 

learning to recognise speech commands and images as well as generate recommendations for 

its users [31]. This historical overview shows that machine learning was and still is a fast-

evolving field that has revolutionised numerous domains and continues to shape our modern 

world. 

With the increasing popularity of machine learning and its applications in various 

domains, there has been a growing interest in extending its capabilities to tiny devices, hence 

the emergence of TinyML. Introduced in 2016 by Han et al. [32], Tiny Machine Learning or 

then rather ‘Deep Compression’ of existing machine learning algorithms was primarily 

focussed on reducing the power consumption of the memory used to store prediction models. 

While memory might not be the main power factor in modern microprocessors anymore, 

optimising machine learning models to run on the tiny devices is still a very significant topic. 
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Considering that an estimated 28 billion microcontrollers were shipped in 2020 alone [33], and 

smart appliances such as voice assistants [34], gait analysing fitness trackers [35] and many 

more are increasingly becoming popular, interest in TinyML is growing. The push towards 

using more Edge Computing devices and running machine learning inference on them is well 

summarised by Jeff Bier [36] using the acronym BLERP. Bier [36] concludes that Bandwidth, 

Latency, Economics, Reliability and Privacy are the main aspects that interest companies and 

developers to employ machine learning techniques on the edge.  

 

Bandwidth is important because edge devices often collect vast amounts of data from their 

embedded sensors, however they rarely have the transmission capability or even the power to 

send all data to the cloud for analysis. Furthermore, data uploading into the cloud seems 

universal, however when looking at large data volumes and commercial use, there are often 

bandwidth limits in place, which can become problematic when ingesting for example video 

data. Added to this, edge devices might not even have a connection to the internet, for 

example, when they are deployed in remote regions. 

Latency is another key factor, as even connections with a very high bandwidth can have 

significant delays in transmission and reception of data. For some applications of edge 

machine learning, for example autonomous driving, a faster response is needed to resolve 

critical decisions. 

Economics influence machine learning enormously. Not only does bandwidth access to 

data centres cost a lot, large servers that are needed to run machine learning algorithms are 

also expensive and require vast amounts of energy to operate. Most hardware used in TinyML 

applications is low-cost and very available, making it ideal to deploy at a large scale. 

Reliability ties back to devices needing to be connected to the internet to function. If 

controllers are running critical tasks, it should become clear that a dependence on internet 

connectivity is impractical. If machine learning models can run locally on the device itself 

however, the risk of failures and intermittency in service is reduced. 

Privacy is another key factor in TinyML. Since prediction (and sometimes even training) 

of the machine learning algorithm is performed locally, there exists no need for constant data 

uploading and sharing to external storage or computing nodes. Because of this, devices can 

function completely independently, even when outside services might not be available. This 

can give not only peace of mind to privacy-conscious persons, but also to companies and 

institutions whose data might be a valuable resource. 

 

Early research in TinyML was mostly focussed on implementing PC-based machine learning 

algorithms on microcontrollers using compression and consolidation functions. So called 

pruning of machine learning nodes and features often required complex algorithms, like the 

Bonsai algorithm as introduced by Kumar et al. [37]. Compression techniques were later 

introduced, using algorithms like the Huffman Coding [38] to store complex features using 

less memory. In more recent years, Google's Tensorflow has gotten an entire software branch 

dedicated to running on resource constrained devices, called Tensorflow Lite Micro [39]. 

Additionally, STMicroelectronics [40], the manufacturer of the popular STM32 line of 

microprocessors has added X-CUBE-AI to their integrated development environment (IDE), to 

add support for many different machine learning libraries to its chips [41].  
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State of the Art 

TinyML Development Boards 

Below in Table 1 is an overview of development boards currently marketed as ‘TinyML ready.’ 

The boards were found by evaluating the ‘Development board’ section of the major electronics 

retailers Digikey1, RS2 and Sparkfun3 as well as the Arduino4 online shop. The selection was 

based on product descriptions and -titles, specifically focussing on mentions of ‘TinyML,’ 

‘Edge Machine Learning,’ ‘TensorFlow compatible’ and ‘AI.’ The Target Audience was deduced 

from the product description and marketing information. Table 1 was generated in the spring 

of 2023. 

 

Product 
Programming 

environment 
Chip & Memory Sensors Target Audience Cost 

Arduino Nano 

33 BLE Sense 

Arduino IDE, 

MicroPython, 

Edge Impulse 

SDK 

nRF52840@ 

64MHz, 1MB 

ROM, 256KB RAM 

9-axis IMU, 

Humidity, 

Pressure, 

Temperature, 

Microphone, 

Gesture 

Hobby, School, 

Semi-professional 
€ 35 

Arduino Nano 

RP2040 

Connect 

Arduino IDE, 

MicroPython, 

Mbed 

RP2040 @ 

133MHZ + 

133MHZ, 448KB 

ROM, 264KB 

RAM, 16MB Flash 

6-axis IMU, 

Microphone, 

Temperature 

Hobby, School, 

Semi-professional 
€ 26 

Arduino Nicla 

Sense Me 
Arduino IDE 

nRF52832 @ 

64MHz, 512KB 

ROM, 64KB RAM, 

2MB Flash 

9-axis IMU, 

Humidity, 

Temperature, 

Pressure, CO2 

Semi-professional € 69 

Arduino Nicla 

Voice 
Arduino IDE 

NDP120 + 

nRF52832 @ 

64MHz, 512KB 

ROM, 64KB RAM, 

16MB Flash 

9-axis IMU, 

Microphone 
Semi-professional € 69 

 

1 https://www.digikey.nl/en/products/category/development-boards-kits-programmers/33 (accessed 
Apr. 14, 2023) 
2 https://nl.rs-online.com/web/c/raspberry-pi-arduino-development-tools /development-tools-single-
board-computers/microcontroller-development-tools/ (accessed Apr. 14, 2023) 
3 https://www.sparkfun.com/categories/393 (accessed Apr. 14, 2023) 
4 https://store.arduino.cc/collections/boards (accessed Apr. 14, 2023) 
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Product 
Programming 

environment 
Chip & Memory Sensors Target Audience Cost 

Arduino Nicla 

Vision 

Arduino IDE, 

OpenMV 

STM32H747AII6 

@ 480MHz + 

240MHz, 2MB 

ROM, 1MB RAM, 

16MB Flash 

6-axis IMU, 

Camera, 

Microphone 

Semi-professional € 99 

Arduino 

Portenta H7 + 

Vision shield 

Arduino IDE, 

MicroPython, 

Mbed, OpenMV 

STM32H747XI @ 

480MHz + 

240MHz, 2MB 

ROM, 1MB RAM 

Camera Professional € 130 

SeeedStudio 

Wio Terminal 

Arduino IDE, 

MicroPython, 

CodeCraft 

ATSAMD51P19 @ 

120MHz, 4MB 

ROM, 192KB RAM 

3-axis IMU, 

Microphone, 

Illumination 

Hobby, School, 

Semi-professional 
€ 40 

M5Stack Core2 

ESP32 

Arduino IDE, 

MicroPython, 

FreeRTOS, 

UIFlow 

ESP32 @ 240MHz 

+ 240MHz, 8MB 

ROM, 512KB RAM, 

8MB PSRAM 

6-axis IMU, 

Microphone 

Hobby, School, 

Semi-professional 
€ 50 

Himax WE-I 

Plus 

Edge Impulse 

SDK 

HX6537-A @ 

400MHz, 2MB 

ROM, 2MB RAM 

3-axis IMU, 

Microphone, 

Camera 

Professional € 70 

Arducam 

Pico4ML 

Arducam 

toolchain 

RP2040 @ 

133MHZ + 

133MHZ, 2MB 

ROM, 264KB 

RAM 

9-axis IMU, 

Microphone, 

Camera 

Hobby, School, 

Semi-professional 
€ 25 

SparkFun Edge 
Ambiq Micro 

SDK toolchain 

Apollo3 Blue @ 

48MHz, 1MB 

ROM, 384KB RAM 

3-axis IMU, 

Microphone, 

Camera 

Semi-professional, 

Professional 
€ 27 

OpenMV Cam 

H7 

MicroPython, 

OpenMV 

STM32H743VI @ 

480MHz, 2MB 

ROM, 1MB RAM 

Camera 
Semi-professional, 

Professional 
€ 80 

Sipeed M0 

Sense 

TinyMaix, 

FreeRTOS 

BL702 @ 144MHz, 

192KB ROM, 

132KB RAM, 512KB 

Flash 

6-axis IMU, 

Microphone 

Hobby, Semi-

professional 
€ 10 
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Product 
Programming 

environment 
Chip & Memory Sensors Target Audience Cost 

Syntiant 

TinyML 

Arduino IDE, 

Edge Impulse 

SDK 

NDP101 + 

ATSAMD21G18 @ 

48MHz, 256KB 

ROM, 32KB RAM, 

2MB Flash 

6-axis IMU, 

Microphone 
Semi-professional € 35 

STM32 B-

L4S5I-IOT01A 

Discovery 

STM32 Cube, 

Edge Impulse 

SDK 

STM32L4S5VIT6 

@ 120MHZ, 2MB 

ROM, 640KB 

RAM, 8MB Flash 

9-axis IMU, 

Humidity, 

Pressure, 

Temperature, 

Microphone, 

Gesture 

Hobby, School, 

Semi-professional 
€ 50 

Espressif 

ESP32-S3-Box 

ESP-IDF, 

FreeRTOS, 

MicroPython 

ESP32-S3 @ 

240MHz + 

240MHz, 8MB 

ROM, 512KB RAM, 

8MB PSRAM 

6-axis IMU, 

Microphone 

Hobby, Semi-

professional 
€ 45 

Espressif ESP-

S3-EYE 

Arduino IDE, 

ESP-IDF, 

FreeRTOS 

ESP32-S3 @ 

240MHz + 

240MHz, 8MB 

ROM, 512KB RAM, 

8MB PSRAM 

3-axis IMU, 

Microphone, 

Camera 

Semi-professional € 55 

Espressif ESP-

S3-Korvo-2 

ESP-IDF, 

FreeRTOS 

ESP32-S3 @ 

240MHz + 

240MHz, 8MB 

ROM, 512KB RAM 

Microphone, 

Camera 

Semi-professional, 

Professional 
€ 90 

Nordic Semi 

Thingy:53 

Edge Impulse 

SDK, nRF 

connect SDK 

nRF5340 @ 

128MHz, 1MB 

ROM, 512KB RAM 

9-axis IMU, 

Humidity, 

Temperature, 

Pressure, CO2, 

Colour, 

Microphone 

Professional € 60 

Nordic Semi 

Thingy:91 

Edge Impulse 

SDK, nRF 

connect SDK 

nRF52840 @ 

64MHz, 1MB 

ROM, 256KB RAM 

3-axis IMU, 

Humidity, 

Temperature, 

Pressure, CO2, 

Colour 

Professional € 110 
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Product 
Programming 

environment 
Chip & Memory Sensors Target Audience Cost 

Adafruit 

EdgeBadge 
CircuitPython 

ATSAMD51J19 @ 

120MHz, 512KB 

ROM, 192KB 

RAM, 2MB Flash 

3-axis IMU, 

Microphone, 

Illumination 

Hobby, School € 35 

Table 1: Development boards marketed as ‘TinyML’ ready. 

From the comparison Table 1, some interesting findings regarding the specifications of 

development boards aimed at TinyML can be found.  

First, many of the development kits support the Arduino IDE [42] and Edge Impulse SDK 

[43], although quite a few chips can also only be programmed by using proprietary software 

development kits (SDKs). This can have several (dis)advantages. By using a proprietary SDK, 

companies retain full control over how software is written for their specific chip, efficiency 

improvements can be implemented as well as specialised functionality of chips can be fully 

utilised. However, because these SDKs are often closed source, they do not adapt to specific 

users’ needs as well as more generalised programming environments such as the Arduino IDE 

[42], which has a lot of community support.  

Second, many development boards feature 32-bit microcontrollers that have more 

processing power than most popular chips [44] such as the ATmega328P (8-bit, 16MHz), 

PIC16F877A (8-bit, 20MHz), STM32F103 (32-bit, 72MHz) or the ESP8266 (32-bit, 80MHz). 

Additionally, many ‘TinyML ready’ development boards contain more storage (ROM) and 

working memory (RAM) than the popular chips. Given the need for the storage of inference 

models, as well as available memory during prediction, this makes sense.  

Furthermore, boards made for TinyML applications typically feature a selection of sensors 

on-board, so that developers do not need to connect external hardware to get started with 

programming. The most common sensors include an Inertial Measurement Unit (IMUs, 

specifically 6- to 9-axis), a Microphone, environmental sensors like Temperature or Humidity 

and a Camera. Last, the average price of ‘TinyML ready’ development boards is around €60. 

Tiny Machine Learning Educational Kits 

Even though TinyML is not a completely new field anymore, and multiple microcontroller 

manufacturers have created development boards as seen in the previous sections, learning kits 

for TinyML are still scarce. Although all board developers include code examples with their 

product, not many prepare a full educational experience around their device. The availability 

of educational material for TinyML development boards was established by inspecting the 

product descriptions and company websites of all board manufacturers from Table 1. At the 

moment of writing, there are three manufacturers who do provide learning materials to some 

extent: 
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1. Arduino5: The Arduino Tiny Machine Learning Kit can be used in conjunction with 

two different EdX / HarvardX online courses, aimed at introducing students to TinyML 

and using ML prediction on the Arduino Nano 33 BLE Sense. The courses focus on 

keyword spotting, visual wake words, anomaly detection and gesture recognition [45]. 

The course uses the online platform Edge Impulse [2] for data capture, model training 

and deployment. The usage of the camera module as well as the environmental sensors 

on the development board included in the kit are not explained. In the Arduino blog 

[46] there is another guide on implementing TinyML using TensorFlow Lite Micro, but 

this only concerns two use cases and is more of a tutorial. 

2. Seeedstudio6: TinkerGen, the education division of Seeedstudio has developed a 

TinyML course using the Wio Terminal development board. The course covers two 

types of gesture recognition, audio detection, a people counter and a smart weather 

station project. The model training and deployment uses the online platform Edge 

Impulse [2]. The manual for the course contains some inaccuracies regarding the 

capabilities of the target device, as well as missing source code for some examples. 

Seeedstudio also has tutorials available for their own software development suite 

CodeCraft, in which basic TinyML models can be trained and deployed. 

3. ArduCam7: The ArduCam Pico4ML board is accompanied with several tutorials. These 

cover different types of image recognition, wake word detection and gesture 

recognition. The tutorials use pre-trained models and the online platform Edge 

Impulse [2]. 

 

From this analysis, it becomes apparent that most development boards that can be used for 

TinyML applications lack comprehensible educational materials following a curriculum that 

builds up step-by-step. Most tutorials primarily focus on using an (online) platform like Edge 

Impulse [2], as well as deploying pre-trained machine learning models to the development 

board. This limits the learning effectiveness of the material, since users lack the possibility to 

produce applications of their own. Additionally, most learning materials available are bound 

to specific development boards or (online) code platforms. This segmentation could hold back 

users in their learning process, since they only explore one specific facet of TinyML, instead of 

learning about the concept as a whole. 

  

 
5 https://store.arduino.cc/products/arduino-tiny-machine-learning-kit (accessed Apr. 14, 2023) 
6https://files.seeedstudio.com/wiki/Wio-Terminal-TinyML/No-
code_Programming_to_Get_Started_with_TinyML.pdf (accessed Apr. 14, 2023) 
7 https://www.arducam.com/product/arducam-pico4ml-tinyml-dev-kit-rp2040- board-w-qvga-camera-
lcd-screen-onboard-audio-b0330/ (accessed Apr. 14, 2023) 



20 

Product Research 

In the process of designing the product two more highly relevant background topics appeared 

that need to be discussed: programming languages and online platforms. These more compact 

research topics were used as reference during the Realisation in Chapter 5. 

Development Board Programming Languages 

As discovered in the comparison of TinyML development boards, the Arduino IDE [42] and 

the Edge Impulse SDK [43] are often used to program development boards. Because there are 

many programming languages available for microcontrollers, it is worthwhile to investigate 

the differences between them. The aim of this comparison is to have a clear overview of the 

available programming languages on popular development boards. 

C / C++ 

The C and C++ programming languages are the most well-supported on microcontrollers. 

Before the advent of popular SDKs, all microcontroller code had to be written in these 

languages, since it is easily converted into machine code (the actual processor instructions 

used by microcontrollers). Like the Arduino language, C and C++ code needs to be compiled 

and then uploaded as a binary file to the development board. The programming languages are 

used in many platforms such as STM32 and Espressif microcontroller ecosystems. 

Arduino8 

The Arduino programming language might be the most used embedded programming 

language in hobby and semi-professional applications. The language, based on C++, is used 

across many different development boards and relishes widespread support and integration of 

sensor libraries. Code written in Arduino needs to be compiled and then uploaded as a binary 

file to the development board. The programming language is also integrated into many SDKs 

such as the Edge Impulse SDK [47] and is used on many platforms, including the Arduino 

microcontroller ecosystem. 

MicroPython9 

The MicroPython programming language is relatively young (2014) and is based on the 

popular Python 3 language. MicroPython code is interpreted, so it does not need to be 

compiled before uploading to the development board. This also enables users to see actual 

code they uploaded to a board at a later date, since the plain-text program is saved to the 

microcontroller. MicroPython is integrated into some SDKs such as the Edge Impulse SDK 

[47] and the OpenMV SDK [48]. It is also used on many platforms such as the Espressif and 

Raspberry Pi Pico microcontrollers. 

  

 
8 https://www.arduino.cc/reference/en/ 
9 https://micropython.org/ 
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CircuitPython10 

CircuitPython is a branch of the MicroPython, made by Adafruit Ltd. Subsequently, the 

language shares many similarities with MicroPython. The company wanted to make 

programming modern development boards even easier, and implemented easy code editing as 

well as a plethora of sensor libraries that were previously not available in MicroPython. The 

programming language supports many platforms such as modern Arduino, Espressif and 

STM32 microcontrollers. 

FreeRTOS11 

The last programming language is FreeRTOS, which is a C-based, speciality language focussed 

on real-time applications. Because of this, FreeRTOS lends itself well to the requirements of 

(Tiny) machine learning. The language is compiled, so it uploads the compile program as a 

binary file to the microcontroller. The programming language is integrated into Espressifs 

development environment and can be used on many platforms such as Espressif and STM32 

microcontrollers. 

Online Platforms 

There are many different online platforms available for the publishing of (educational) 

materials. Some of the popular platforms are discussed below, comparing their ease-of use, 

unique features, accessibility and price. 

Google Classroom12 

Google Classroom offers a simple and user-friendly interface, making it easy for teachers and 

students to navigate and engage in virtual classrooms. It integrates well with other Google 

tools and the service is free for educational institutions, which makes it an accessible option 

for educators and students. The software platform offers a complete learning environment and 

student management system. 

Skillshare, Coursera and Udemy13 

Many for-profit online learning platforms like Skillshare, Coursera and Udemy offer paid video 

courses taught by industry as well as college and university professors from around the world. 

The platforms boast extensive opportunities for studying assorted topics. Services are mostly 

paid, with some one-time buy options as well as subscription models. Teachers do not pay to 

set up a course on these platforms. 

  

 
10 https://circuitpython.org/ 
11 https://www.freertos.org/ 
12 https://edu.google.com/workspace-for-education/classroom/ 
13 https://www.skillshare.com/en/, https://www.coursera.org/, https://www.udemy.com/ 
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Personal Website 

This option gives the most freedom in terms of possibilities and features, but since it would be 

required to program and research the website from scratch, this approach might suffer from a 

high starting cost in terms of development time. Apart from hosting costs, the teacher is 

completely free to choose any payment model they prefer. 

GitHub Pages14 

GitHub Pages is an accessible platform for hosting static websites and web projects. It has 

seamless integration with Git, so developers can effortlessly apply version control to their 

projects and collaborate with others. GitHub Pages supports various frameworks and 

technologies, such as the site builder Jekyll. While some functionality might need to be 

developed, the extensive community support makes GitHub Pages a popular choice among 

developers. The Pages environment gives a free domain and storage where projects can be 

presented. 

EdX15 

EdX is an online learning platform which provides a wide range of courses from prestigious 

universities and institutions. It has interactive learning features, including discussion fora and 

quizzes, which enhance student engagement and knowledge retention. The service is free, but 

the platform can be upgraded to include more advanced features such as class management 

and administration.  

 
14 https://pages.github.com/ 
15 https://www.edx.org/ 
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3 Method 

TinyML can be quite a complex topic, nevertheless it has many interesting and useful 

applications. It was also found that tangible learning methods such as kit-based learning can 

be a powerful tool for instruction. From the state-of-the-art research in Chapter 2, it is obvious 

that the current options for studying TinyML are lacking. To address this shortcoming in the 

field and try to find a solution, a new kit-based learning system was designed (see Product), 

subsequently tested by students and then analysed (Evaluation) to find out, if this modern 

approach facilitates a better and deeper learning about and understanding of TinyML. 

Product 

The design process of the product was led by the Waterfall design framework [49], a 

sequential methodology that is split into several key phases.  

● Requirements: all necessary requirements are collected, including information on the 

background of the research, functional- and non-functional requirements, learning 

goals, scope, cost and timelines. The requirements and learning goals are defined in 

the MVP development process in Chapter 4. 

● Design: solutions for the requirements proposed in the first phase are designed. These 

include hardware design, content outlines, user flows and the overall design of the 

product.  

● Implementation: the (technical) implementation of the research takes place. This 

includes the software development, content writing, requirement implementation and 

product finalisation. The design and implementation phases are described in Chapter 

5. 

● Verification: the developed product is verified by user experience testing. Additionally, 

all requirements are evaluated. If major unexpected errors are found, it may be 

necessary to revise the design stage of the product, to comply with the requirements 

set in the first phase. This is generally very expensive and laborious to resolve. The 

verification process is discussed in Chapter 6. 

● Finalisation: the product is ready and the research can be finalised. In accordance with 

the GP-track, this includes writing the GP thesis and preparing the GP defence. 

Additionally, the requirements are evaluated and the Research Questions posed are 

answered in the conclusion, in Chapter 8. 

 

The Waterfall design framework was chosen because of its proven effectiveness in time 

planning [50]. Additionally, due to the structured nature of the framework, progress can be 

easily analysed and requirements are known upfront, reducing the variability in the 

implementation phase. This structure can be seen in Figure 1. 
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Figure 1: The waterfall method illustrated. Source: adapted from 

https://business.adobe.com/blog/basics/waterfall 

Evaluation 

To evaluate the effectiveness of the product, qualitative research was conducted. This method 

was chosen over quantitative research because of limited resources to construct the product. 

The research was conducted with participants from the target group, students in higher 

education, who used the product to learn TinyML concepts and applications. The test 

participants were given a product to take home and try out and interviews were conducted 

after using it. These interviews were semi-structured to evaluate participants’ (learning) 

experience. Participants were asked about their baseline experience in programming and 

educational experiences. In the interview, participants were questioned on their experience 

with the product, the way of instruction, the supporting materials, any positive or negative 

occurrences as well as their level of knowledge on TinyML. After concluding the interviews, 

they were evaluated and key participant observations were identified. The results were 

analysed to identify the impression of the product, accomplished learning outcomes and 

overall valuation of the product. 

 

The final evaluation of the product was conducted by using the Honeycomb UX framework 

[51], a seven-faceted model that helps assess products (see Figure 2 for a visual representation). 

While the framework was originally developed for analysing websites, it is now used for a 

wider range of assessments as well as product evaluation. Through its approach, the 

Honeycomb model ensures that products are not only valued on their usability, but also on 

other critical needs. By evaluating different approaches, it is easy to improve the product in 

small sections. The framework facets are:  

● Useful: A product should be useful, where possible creating innovative solutions to 

requirements.  

● Desirable: a product should be desirable, either for its value or looks.  

● Accessible: products and designs should respect everyone, even if they want to use 

them with a disability. 

● Credible: users of the product should be able to trust the information they receive. 
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● Findable: the product should be easy to navigate, and information is accessible and 

logically structured. 

● Usable: designs should remain usable, meaning that they should not sacrifice usability 

for beauty for example.  

● Valuable: the product should deliver value to its user, through gained knowledge, or by 

de-mystifying concepts. 

 
 

Figure 2: The honeycomb UX framework illustrated. Source: https://semanticstudios.com/wp-

content/uploads/2004/06/honeycomb.jpg 
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4 MVP Development 

The analysis of relevant literature and state of the art in Chapter 2 identified an important 

research gap. Although there seems to be an increasing interest in TinyML and multiple 

companies have released machine learning ready development boards, the instruction on 

implementing TinyML is lacking. While most companies include some examples to point new 

users of their development boards in the right direction to getting machine learning inference 

to run on the boards, underlying knowledge is missing. This could be solved through the 

design of a hands-on course in Tiny Machine Learning, which demystifies some of the 

common black-box principles of machine learning in general, while also teaching students to 

implement TinyML successfully for a wide variety of real-world problems. 

 

This chapter explores the development of a Minimum Viable Product (MVP) and its key 

components, including a stakeholder analysis, the definition of learning goals and 

requirements, and the introduction of the MVP itself. In line with the Waterfall methodology 

in Chapter 3, it is important to lay the foundation before moving forward with the subsequent 

stages of the development process. The sections in this chapter provide guidance and 

structure to the design process later in the research. 

Stakeholder Identification 

To develop a targeted and mindful product to the proposed problem, it is important to 

identify the different stakeholders that affect the design process and product usage. In Table 2 

below, the different stakeholders are identified and described. 

 

Stakeholder Description of stakeholder Expectations of product 

Students Primary users of the product. 

Effectiveness of product will have an 

immediate impact on students’ 

knowledge of the topic. 

Easy to understand, 

interesting, fun and 

engaging. 

Industry Needs engineers / students who have 

relevant skills in the field. Effectiveness 

of product has an impact on the 

availability of well-trained staff. 

Informative, good 

preparation for the real 

world. 

Teachers Can implement the product to teach 

relevant skills. Effectiveness of the 

product has an impact on the quality of 

teaching. 

Easy to implement into 

existing curricula, 

informative, high quality. 

 

  



27 

Society This is an indirect stakeholder. Since 

products might be used in the real world 

(through industry or otherwise), users of 

the product will possibly affect this 

stakeholder. 

Safe, ethical, unbiased. 

Table 2: Stakeholders, their description and the expectation of the proposed product. 

Learning Goals 

By defining learning goals, it becomes clearer for both the designer and the users what an 

educational kit on (Tiny)ML might achieve. Learning goals can be used to guide the 

structuring of learning materials and can give a good overview of concepts to be covered. The 

learning goals are formulated as follows.  

 

After the completion of the educational kit on (Tiny)ML, the user: 

1. Understands the basic functionality of a neuron in a neural network. 

2. Understands the basic network structure of a neural network, including the 

interconnectivity of neurons. 

3. Understands the training algorithm used to tune a simple neural network. 

4. Understands the inner workings of a neural network. 

5. Can model the mathematics needed for calculating the prediction and training of a 

neural network. 

6. Can implement a neural network in a programming language. 

7. Can deploy a simple neural network to an edge device. 

8. Can develop and deploy a neural network based on sensor input(s) independently. 

Requirements 

After the identification of stakeholders and learning goals, it is possible to determine design or 

product requirements. These can be split into two different categories: functional- and non-

functional requirements. Functional requirements should describe what the product should 

do in a measurable way, while non-functional requirements define in what way the product 

should solve the problem [52]. 

Functional requirements 

1. The content on TinyML that is included in the product is up to date. 

2. The content on TinyML that is included in the product is accurate. 

3. The content of the learning material covers the described Learning Goals. 

4. Users of the product can design TinyML applications on their own after learning 

techniques using the product. 

5. The product uses a mainstream programming language such as Python, Java or C++. 

6. The product provides all necessary components to test and build various TinyML 

applications. 

7. The instructions in the product are distributed in either a digital repository or in print. 
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8. The hardware included in the product follows all electrical safety guidelines. 

9. The software used in the product is in line with the industry standards for software in 

TinyML. 

10. The product links presented concepts to real life applications of TinyML. 

11. The algorithms used in the product should not rely fully on platforms such as Edge 

Impulse [43]. 

12. The product should be affordable for the intended target audience. The current target 

price is below the average development board price as found in the Background 

Research - Chapter 2, €60. 

Non-functional requirements 

13. The product is suitable for students with an application level [3] knowledge of 

programming. 

14. The product is fun and engaging to use. 

15. The information presented in the contents of the product is divided into manageable 

sections. 

16. Applications that are made by using (components of) the product are safe and ethical. 

17. Machine learning is explained in a way which demystifies the common black-box 

principles. 

18. The product supports multiple learning styles. 

19. The presentation of the product is attractive and aesthetic. 

MoSCoW Analysis 

To prioritise the preliminary requirements drafted in the previous section and aid the 

selection of a concept, the requirements are ordered according to the MoSCoW methodology 

[53]. This method orders requirements according to four categories: 

● Must have: the fundamental requirements, without them the product will not be 

successful and might not be safe to use. 

● Should have: the product would benefit from implementation of these requirements, 

however it will work without them and be safe to use. 

● Could have: these requirements would be nice to implement, however their impact 

on the final product is minimal. 

● Won’t have: while these requirements might be valid, due to the current objective of 

development or design, they will not be implemented in the product.  

 

Must have Should have Could have Won’t have 

1, 2, 3, 4, 7, 12, 13, 16, 18 5, 8, 9, 11, 14, 15 6, 10, 17, 19 - 

Table 3: MoSCoW division of product requirements. 
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The division of the requirements, which can be seen in Table 3, was established as follows: 

● Requirements 1 and 2 were categorised as Must have, because the field of TinyML is 

complex and quickly evolving, making outdated or inaccurate information detrimental 

to the product goals. 

● Requirement 3 was categorised as Must have, because the Learning Goals are 

specifically designed to ensure comprehensive understanding and proficiency in key 

concepts. 

● Requirement 4 was categorised as Must have, because empowering users to 

independently design TinyML applications is crucial for fostering creativity, 

innovation, and autonomy within the technology field. 

● Requirement 5 was categorised as Should have, because the product and its 

subsequent users would benefit from having a mainstream programming language. 

However it would be possible to teach or learn another programming language to 

successfully use the product. 

● Requirement 6 was categorised as Could have, because while providing all necessary 

components to test and build various TinyML applications is desirable, it may be 

subject to resource or time constraints during the implementation. 

● Requirements 7 and 18 were categorised as Must have, because clear and accessible 

instructions are essential for users to effectively use the product and overcome 

potential obstacles or challenges. By providing instructions in either a digital 

repository or in print, the product ensures that users have multiple options to access 

the necessary guidance, catering to different preferences and situations.  

● Requirement 8 was categorised as Should have, since ensuring the safety and 

preventing hazards is of foremost importance. Due to the nature of low-power 

electronics however, the importance is recognised and encouraged but not strictly 

necessary at this stage of the product.  

● Requirements 9 and 11 were categorised as Should have, since the adherence to 

industry standards and algorithms (through platforms like Edge Impulse) is desirable, 

however it is important to remain flexible and compatible with a wide range of 

systems. 

● Requirement 10 was categorised as Could have, because establishing connections 

between the presented concepts and real-life applications of TinyML is advantageous 

for enhancing practical understanding and fostering tangible use cases. However, 

while it is acknowledged, it may not be an essential aspect for the immediate 

functionality or success of the product. 

● Requirement 12 was categorised as Must have, since the affordability of the product 

would determine the interest of the target group. As such, the price-point could 

determine the overall success of the product. 

● Requirement 13 was categorised as Must have, since the intended target audience are 

specifically students with some programming experience. 

● Requirement 14 was categorised as Should have, since a fun and engaging product 

could lead to more interest in and subsequently more success for the product. 

● Requirement 15 was categorised as Should have, because structure can enhance the 

overall accessibility, comprehension and ease of learning for users, however it is not 

considered a crucial part of the product. 
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● Requirement 16 was categorised as Must have, because ensuring that the product is 

safe and ethical has the utmost importance for user well-being, legal compliance, and 

underscores the fundamental responsibility of machine learning developers. 

● Requirement 17 was categorised as Could have, since the demystification of the 

common ‘black-box’ of machine learning might help some users conceptually, 

however, it does not impact the product much. 

● Requirement 19 was categorised as Could have, because the product does not represent 

a final, marketable product and therefore does not have to rely upon aesthetics to sell. 

Minimum Viable Product 

After determining the stakeholders, learning goals and requirements, it is possible to define a 

Minimum Viable Product (MVP) according to the must-have requirements. The MVP is an 

implementation of the product which covers all necessary parameters to validate the 

effectiveness of the product [54]. In the MVP description, the requirements are be noted by 

their number, for example requirement 1 would be noted as (#1). 

 

The MVP in this research is an educational kit on TinyML. The kit contains a microcontroller 

development board as well as a (digital) publication with educational material on TinyML. The 

microcontroller is custom design, since the price of conventional development boards capable 

of handling TinyML tasks is high for the intended target group (#12). Additionally, the 

construction of educational materials is easier if the designer has an intrinsic knowledge of the 

hardware. 

 

The educational material was structured accordingly: 

● Introduction to the field of TinyML; including current applications (#1) 

● Machine learning basics; inputs and outputs, perceptrons (#17) 

● Machine learning basics 2; networks, prediction (#17) 

● Machine learning intermediate; training, network structures (#17) 

● Machine learning advanced; classification types, optimization (#17) 

● TinyML libraries; Tensorflow Lite Micro 

● TinyML platforms: Edge Impulse 

● Applications; real life example applications (#1). 

 

These contents could be included as chapters in a book or digital publication (#7). All chapters 

should be accompanied by examples and projects that users can explore themselves (#4). The 

users should be able to program examples using the knowledge gained from the material and 

their prior programming experience (#3). To ensure the quality of materials, all content 

should be based on leading and current literature and software (#1, 2). The material should 

additionally contain insets on responsible and respectful Machine Learning development, as 

well as ethical guidelines (#15). A rendition of the proposed TinyML educational kit can be 

seen in Figure 3. 
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Figure 3: Rendition of the proposed TinyML educational kit.  
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5 Realisation 

To properly evaluate the effects of tangible learning systems, combined with the requirements 

from Chapter 4, it was decided to design an educational kit, called TinySpark. The kit includes 

a development board and online platform for instructions, as described in previous chapters. 

As could be seen in the background research, there are already numerous development boards 

marketed as TinyML capable, as well as platforms that teach TinyML. However as discussed in 

Chapter 4, there are some valid points of improvement in terms of price, sensor integration, 

level of required pre-knowledge and non-proprietary of platforms.  

Development Board 

Price and sensor integration could be influenced during the design of the development board. 

Through careful component selection, the component price can be kept low, and the sensors 

that are integrated into the development board determine its capabilities. 

After careful recall of the discovered requirements in the comparison of TinyML ready 

development boards, the main microcontroller chip was chosen. The requirements call for a 

chip that has a fast clock frequency as well as ample storage capacity. Additionally, it is 

beneficial to have many interfacing options such as Inter-Integrated Circuit (I2C), USB, Serial 

Peripheral Interface (SPI), Analog as well as Digital interfaces. Due to the ongoing chip 

shortage [55], it was also important to choose a chip that is widely available. 

The decision was made to select a ESP32-S3 chip from Espressif [56]. The chip features two 

fast processing cores, high-speed storage options and broad selection of peripheral interfaces. 

In addition to this, the chip features a multitude of expansion options for future development, 

including Wi-Fi and Bluetooth capabilities, and AI acceleration using the manufacturers’ own 

software platform. Moreover, Espressifs chips are regarded as versatile and very cost-effective. 

The features of the ESP32-S3 are recognised in the researchers’ own positive experience with 

this chip architecture. 

For the selection of sensors, the criteria were similar; common interfacing options such as 

I2C, as well as availability at a reasonable price. Because of the plethora of sensor options 

available, sample projects that should be executable using the development board were 

collected in the list below. Then, the selection was made to include as many sample projects as 

possible with available and cost–effective sensors. 

 

The following sample projects were considered: 

● Logic gates using physical inputs and outputs 

● Vibration and Fall detection using motion detection 

● Gesture detection using motion detection 

● Wake word detection using sound decoding 

● Weather prediction using environmental factor analysis 

● Game intelligence for snake using logic 

● Morse-code decoding using timing analysis 

● Plant health monitoring using environmental factor analysis 

● Room occupancy detection using environmental and ambient factor analysis 

● Driving behaviour analysis using motion detection 
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● Smart lighting control using ambient factor analysis 

● Food quality analysis using environmental factor analysis 

 

The following sensors were selected to be included on the development board: 

● LSM6DS3TR-C inertial motion sensor 

● ICS-43434 microphone 

● APDS-9930 light and distance sensor 

● BME-280 environmental sensor 

● AH-49E hall effect sensor (magnetic) 

● H638T-TR2 infrared receiver 

 

Additionally, some additional inputs and outputs were added, such as two user-programmable 

input buttons, one output LED and five addressable RGB LEDs. The connectivity to the 

development board was managed by the ESP32-S3s internal USB peripheral, and it was 

attached using an USB-C connector due to its widespread adoption. There were two more 

external connectors added, one for connecting Stemma QT and Qwiic sensors16, and one for 

connecting generic sensors using standard digital and analog peripherals. Lastly, some passive 

components such as voltage regulators, capacitors and resistors were chosen. A full 

breakdown of components including the final product cost can be found in Appendix I. The 

final electronics schematics can be found below in Figure 4 and as a larger image in Appendix 

II. 

 
Figure 4: Development board electronics schematic. 

  

 
16 Stemma QT and Qwiic are connection standards developed by Adafruit Ltd. and Sparkfun respectively. 
They interface I2C connections through a proprietary connector, which is also implemented on the 
development board. 
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After selection of components, a printed circuit board (PCB) was designed. For this, 

considerations on the size and layout were explored in the PCB design software. Amongst 

others, it was considered how the development kit would be used during learning. Because all 

sensors and connectors are on-board of the PCB, the form factor was chosen to be a square, 

with all inputs and outputs positioned around the edges, and the microcontroller chip at the 

top (see Figure 5). All components are placed on the topside of the PCB, mostly in rows, to 

make assembly easier. The circuit board was complemented with explanatory text, as well as 

symbols depicting each sensors’ main capability (e.g. a magnet symbol for the hall effect 

sensor). 

 

 
Figure 5: Development board, PCB layout. 

After finalising the design of the circuit boards, they were put into production and the 

required components were ordered. Later, the PCBs were assembled by hand (due to the low 

volume), at home and in the SIL-EE lab at the University of Twente [57]. The circuit boards 

were pasted with soldering paste, after which all components were placed using tweezers. 

Lastly, the soldering paste was molten using a reflow oven. Some complications occurred with 

the soldering of the USB-C connectors, which have several small-pitched pins. After manual 

rework using a soldering station, all development boards were technically functional. Lastly, a 

3D-printed base was made for each development board, to electrically isolate the underside of 

the circuit board, as well as to give the development board some bulk and stop it from moving 

around. See Figures 6 and 7 below for an impression of the finished development board. 
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Figure 6: The finished development board, including the 3D printed base. 

 
Figure 7: Detail of the finished development board. 
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The last element to be finished for the development board was the software. As discussed in 

Chapter 4 - MPV, it was important for the user to not require proprietary software to program 

the development board. After evaluation of the different available programming languages 

introduced in Chapter 2, CircuitPython was chosen for its ease of use and open ecosystem. The 

language offers good support for the on-board sensors on the designed development board 

and makes programming very easy for the end user through the USB functionality. 

Additionally, the Python language is used as a basis for CircuitPython, meaning that anyone 

with some experience with regular Python can quickly gain an understanding of the 

programming language.  

To use the CircuitPython language, it was necessary to build firmware for the 

development board. The programming language requires the definition of all inputs and 

outputs available on the board, as well as setting the correct chip version and build settings 

such as processor frequency. It was also possible to include pre-made software libraries into 

the firmware. This enables easier development, since no external inclusions are needed to 

write software when the libraries are already internally stored. The custom firmware enables 

users to easily interface with all components on the development board and makes explaining 

of its functions clear. After the configuration was done, the firmware had to be built inside of a 

Linux virtual computer. The Adafruit build guide [58] was of major help. However, the Linux 

system as well as the code needed to be altered to make sure the firmware was compiled 

correctly. The firmware then needed to be installed on the development boards. This required 

some additional steps to properly configure the microcontrollers storage and registers. After 

this however, users could easily upload their own code to the development board, through the 

built-in USB-C connection. 

For all but one sensor, software libraries were already pre-programmed. However, for the 

APDS9930 distance and light sensor, no CircuitPython-specific library was available. Due to 

this, a software library was developed for this sensor [59], including all functions and settings 

from the sensor. The library was written with the help of existing libraries from Adafruit as 

well as the datasheet for the respective sensor.  

To evaluate all functionality, as well as provide reference code for the online platform, 

example code for every sensor, input and output was written. All five produced development 

boards were successfully tested and ready for evaluation by the test participants. 

Online Platform 

After a brief evaluation of all options for the delivery of learning materials and instructions, 

such as paper-based, a book or online, an online platform was chosen. Having material online 

means that additions and edits can be easily implemented where needed, code can be tested 

directly online and concepts can be explained using interactive visualisations. In addition to 

this, material is also conveniently accessible and can be adapted to different languages or 

teaching methods easily. 

There is a plethora of available online platforms for hosting information or learning 

material. A selection of platforms was analysed in the Background Research in Chapter 2, after 

which the final platform was chosen. This was GitHub Pages [60] in combination with the 

static website template system MkDocs, and the graphic layer Material. The combination was 

picked for its simple setup, modern look and feel, as well as range of possibilities for 
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integration with code plugins, mathematical notation systems and interactive elements. The 

integration with Github was furthermore especially useful, since all standard version control 

systems could now be used for easy synchronisation and error tracing. 

Initially, the platform was set up as a placeholder, including a page which contained all 

sorts of useful pre-made structures, code-blocks, images and notations. This page was 

extensively used throughout the development of the online platform as a quick reference to 

the various options of the chosen platform. 

Then, the chapter structure of the learning material was selected, based on research on 

TinyML conducted in Chapter 2 and the requirements from Chapter 4. This structure can be 

seen in Table 4 below. Please note however that it was changed over the course of writing the 

educational material due to time constraints, this change is discussed in Chapter 7. 

 

Chapter 1 - Introduction to neurons 

Chapter 2 - Introduction to networks 

Chapter 3 - Introduction to training 

Chapter 4 - Larger models and input shaping 

Chapter 5 - Optimization, compression and more projects 

Table 4: Initial chapter structure of the online material. 

To explain the underlying mathematics of various topics, a plugin was used to properly display 

mathematical formulas on the online platform. The MathJax library enables the use of LaTeX 

mathematical notation to render formatted formulas in every browser. Additionally, 

interactive elements were coded using the P5.js programming language. The P5.js framework 

allows easy graphical program making, using standard website elements such as sliders and 

frames. 

While composing the learning material, it became apparent that it would be beneficial to 

include code right into the online platform. This would make for easy lookup of functions and 

enables users to quickly copy or change code. To facilitate this, all Python code used in the 

learning material is on Google Colaboratory, an online coding platform that can run Python 

programs directly in the browser. All CircuitPython code is hosted alongside the educational 

material on Github, since it cannot be run directly in the browser. The code is displayed inside 

of code blocks in the online platform, this is shown in Figure 8. 
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Figure 8: Python code from Google Colaboratory displayed on the online platform. 

For each of the chapters of the online platform, an engaging example as well as a mini project 

was composed to keep the material interesting and engaging. This also ensures that the user 

can utilise the development board for their own applications, because they would gain 

familiarity with it during the learning process. 

Due to time constraints, the chapter structure of the learning material was truncated at 

chapter 3. Although the following chapters would have contained interesting and relevant 

information, it was decided in consultation with the thesis supervisors to limit the amount of 

writing. This decision made it possible to focus more on the three main chapters. The content 

from chapters 4 and 5 was not lost however, as it was partially added to the recommended 

readings at the end of the online material. Additionally, possible further project ideas were 

also added, to stimulate users to implement some more applications on their own. 

A precursory section of the online platform focuses on explaining the development board 

itself. Although it is assumed that users of the online platform have some prior experience 

with programming and development boards / embedded programming such as Arduino, the 

development board has some interesting and complex sensors and functions which need to be 

explained. The section was called ‘Get started’ hinting to the user that this would be the first 

point of contact with the material and development board. The section does not only include 

pointers and relevant information on the sensors of the development board, but also on 

programming and the workings of the online platform. 

Lastly, the media on the online platform, including graphics and pictures, were unified in 

their styling according to a common colour scheme, to match the modern look and feel of the 

platform. Where possible, interactive elements such as neural network simulations were 

added to clarify concepts of the learning material. After the last chapter, a section was added 

that contained links to further learning material, machine learning frameworks and more 

mini-project ideas. 

 

The online platform is currently available at 

https://web.archive.org/web/20230624094219/https://j-siderius.github.io/TinySpark/ 

(Archived June 2023). Some impressions of the TinySpark platform can be found in Figures 9, 

10 and 11. 

 

https://web.archive.org/web/20230624094219/https:/j-siderius.github.io/TinySpark/
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Figure 9: Landing page of the online platform. 

 
Figure 10: Excerpt from the first chapter of the online platform. 
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Figure 11: Example project and code on the online platform. 

Educational Kit - TinySpark 

Subsequently, the educational kit TinySpark was assembled. It comprises the development 

board, a USB-C cable and a quick-start guide (see Figure 12 below). The quick start guide gives 

an overview of the development board, including the sensors and connectors. Furthermore it 

links to the online learning platform that was presented in the previous section. The kit was 

packaged in a cardboard box and packing paper, to keep the packaging small and easy to 

open.  

 

 
Figure 12: The educational kit TinySpark and its contents. 
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Testing 

To evaluate the product, it was decided to perform qualitative user experience testing using a 

small pool of test participants. The testing procedure was designed to get a realistic 

impression of participants’ interaction with the development board as well as the online 

learning platform.  

Any user testing requires approval from the University of Twente Ethics Committee. To 

get a positive approval, all facets of ethics related to the user testing, such as personal data, 

recording methods, testing activities, burdens and risks, needed to be evaluated. 

Subsequently, a testing plan was drawn up and user information brochures as well as consent 

forms were created (see Appendices III and IV).  

Because of the limited number of educational kits as well as available testing time, the 

number of participants evaluating the product would be restricted. In qualitative research 

participant selection is purposeful. In this product testing, only participants with some 

experience in programming were chosen to obtain valuable insight into possible 

improvements of the kit and (tangible) learning methods. However, the participants were not 

selected on their knowledge of (Tiny) Machine Learning. 

Participants in the user experience testing received an educational kit and were asked to 

perform tasks involving the learning materials and development board. All needed 

information could be found on the online platform. 

 

After the actual testing phase, the participants were invited to a semi-structured interview to 

analyse their experiences with the TinySpark kit. The interview questions can be found in 

Appendix V. First, an overview of the background knowledge of the participants on relevant 

topics was established. Then, the participants responded to questions about the development 

board, the online platform and the educational kit. Lastly, the participants were asked about 

the overall user experience, including improvements to the material or development board. 

The interview questions were structured to maximise insight into the research questions 

posed in this research. Questions on the educational material incorporated in the online 

platform try to establish if the participants were able to comprehend and learn about complex 

topics as (Tiny)Machine learning. The participants were asked if the development board 

which applies hands-on learning had added value. Moreover, information was gathered on the 

effectiveness of adding tangibility and project-based learning. Furthermore, the questions 

about user experience gave insight into the level of engagement of the participants, and 

information on (dis-)advantages of the educational kit in comparison to literature or other 

online courses about TinyML. 
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6 Evaluation 

In this chapter, the effectiveness and usability of the educational kit TinySpark that was 

developed during this research was thoroughly examined and assessed. The primary objective 

was to verify if the product covers the requirements and learning goals introduced in Chapter 

4 - MVP Development. Additionally, the product will be assessed according to the Honeycomb 

UX evaluation framework laid out in Chapter 3 - Method. This chapter provides an in-depth 

analysis of the user testing outcome and presents the key findings derived from their 

experiences.  

User testing 

The interview after the user experience testing was split into multiple sections, as can be seen 

in Appendix V.  

The initial impressions of the educational kit TinySpark as well as the response to the 

online learning platform were very positive. Several participants mentioned that the 

development board and packaging looked very professional and well-designed. Participants 

enjoyed the easy navigation around the online platform, as well as the clear descriptions. 

Overall, the initial impression was that the educational kit would be “a very useful and 

complete proof of concept to further develop” (Participant 2). 

The learning material was evaluated next. The chapter explaining the concept of neurons 

was regarded as simple or basic, but effective. One participant said that “the material was very 

comprehensible, better than some [university] courses” (Participant 3). The second chapter, 

explaining the basics of networks and structures, was perceived as more difficult. Some 

participants did not understand the example presented here, however, the mathematics and 

theory were explained well. The interactive visualisation was insightful to play with, yet 

“impossible to solve [by hand], although I guess that is the point of machine learning” 

(Participant 3). The third and final chapter was perceived as fun and interesting, because of its 

more elaborate theory and examples. The material was “intuitive” and gave participants the 

opportunity to “experiment with programming my own network” (Participants 1 and 2). 

Next, the participants were asked if they thought the content of the learning material was 

complete or should be complemented, several suggestions were made. One participant found 

the example in the second chapter of the material to be “somewhat confusing” (Participant 1). 

Another participant thought that adding “another chapter, with a more challenging project” 

(Participant 2) could make the experience even more attractive. 

Additionally, participants were asked about advantages and disadvantages of the online 

learning platform. All participants mentioned that the interactive, online experience added to 

their “motivation to learn and progress through the material.” Nevertheless, one suggestion 

was to change the code platform from Google Colaboratory to an embedded system, because 

“switching to an external code platform is cumbersome and breaks continuity” (Participant 1). 

As defined in one of the requirements, participants were also asked about the impact of 

the black-box that surrounds machine learning and the apparent ‘lifting’ of that box in the 

learning material. Most participants found the chosen approach to “explain the complexities 

of a neural network better [than closed approaches]” (Participant 2) and one even said that the 
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online material opened the way to a “faster transition into more complex systems for machine 

learning” (Participant 3). 

The development board that accompanied and aided the learning materials was also 

assessed. Most participants found the board an asset to the experience, with the added benefit 

that “all sensors are on-board and ready to use” (Participant 2). One participant, however, 

mentioned that the development board was “not integrated and used sufficiently, with only 

few projects” (Participant 1), although at the same time, the participant mentioned that it was 

“fun to use”. When asked for their experience with the development board, all participants 

commended the ease of installation using CircuitPython, one stating “I wish all products were 

this easy to connect, just plug it in and it works” (Participant 3). On another note, two 

participants did experience a sensor inconsistency or failure when using the distance sensor 

and environmental sensor, respectively. 

Last, the overall user experience was evaluated. Most participants found the experience to 

be “motivating” and “great” (Participant 1), with an emphasis on the “strength [of combining] 

theory and practice” (Participant 3). The online platform was “clean and modern” (Participant 

2), which supported learning and made the experience “much better than [traditional] 

lectures” (Participant 3). The self-paced character of the material is also attributed to its 

engaging nature. Finally, most participants said that additional learning material on more 

complex topics as well as more mini-projects would “extend and enhance” the product. 

Honeycomb UX framework 

The user experience test was not only qualitatively analysed, but also with the help of the 

Honeycomb UX [51] framework that was introduced in Chapter 3 - Method. All seven aspects 

of the framework are discussed through the synthesis of interview answers from participants. 

Additionally, the analysis of the research gaps that were identified in Chapter 2 - Background 

is considered. 

The product should be useful.  

According to several user test participants, the educational kit offers relevant and practical 

knowledge regarding machine learning and TinyML. Additionally, the content was found to be 

engaging and aligned well with the defined learning goals. The modern approach to learning 

using an online platform which included interactivity added to this. 

The product should be desirable.  

The educational kit adds value to the learning experience concerning machine learning and 

TinyML. It included interactive visualisations on the online platform and the product presents 

theoretical concepts in accessible quantities according to participants. Furthermore, several 

participants mentioned that the educational kit was very appealing, both aesthetically and 

content wise. The kit motivated all participants to want to learn more. 
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The product should be accessible.  

The educational kit presents the learning material in multiple ways, enabling various learning 

styles, which the participants appreciated. The physical accessibility of the online platform 

however leaves some room for adaptation. The pages are, for example, not particularly 

suitable for colour blind people. 

The product should be credible.  

The kit provides accurate and up-to-date information on machine learning and TinyML. 

Participants also recognised that there was a multitude of externally linked information 

included, which gave them the opportunity to explore topics further and find relevant 

additional information.  

The product should be findable.  

The development board included in the educational kit is accompanied by an extensive online 

guide. Most participants found this to be very helpful, however, some pointed out that not all 

sensors and peripherals of the development board were detailed enough. The navigation 

options as well as the search functionality available on the online platform were appreciated 

by all participants. Lastly, the chapter structure of the learning materials was found to be 

logical and well structured.  

The product should be usable.  

As mentioned in the UX trait above, all participants appreciated the ease of navigation of the 

online platform. Additionally, all participants were pleased with the connectivity and 

programming interface of the development board. The information about the development 

board available on the online platform however, was not always easily found by all 

participants.  

The product should be valuable.  

All participants recognised the added value of practical applications that the development 

board offered. Additionally, most participants responded positively to the interactive elements 

present on the online platform. One participant commented that, with some minor additional 

material, the product could be used as an educational tool. 

 

The analysis of the Honeycomb UX framework indicates a positive overall user experience. 

The kit was found to be useful, offering relevant and practical knowledge while aligning well 

with the defined learning goals. Its desirability was evident, as participants expressed 

enthusiasm and eagerness to learn more, appreciating the appealing aesthetics and consistent 

presentation. Overall, the evaluation highlights the strengths and areas for improvement, 

providing valuable insights for further enhancing the user experience of the educational kit for 

learning TinyML. The discussion of areas of improvement can be found in Chapter 7- 

Discussion and Recommendations. 
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Learning Goals 

The learning goals were evaluated by synthesising interview answers from the user testing 

participants. During the interviews, specific questions regarding the three main topics of 

learning were asked, and additional observations are derived from the interview answers. The 

observations are noted in the Notes section of the evaluation Table 5. 

 

Learning goal Notes Achieved 

1. The user understands the basic 

functionality of a neuron in a neural 

network. 

All participants mentioned that the 

functionality of a neuron was 

properly explained and that the 

accompanying mathematics were 

understandable. 

Yes 

2. The user understands the basic 

network structure of a neural network, 

including the interconnectivity of 

neurons. 

Several participants mentioned that 

the principles of the network 

structure were explained well and 

that the accompanying mathematics 

were understandable. 

Yes 

3. The user understands the training 

algorithm used to tune a simple neural 

network. 

Several participants mentioned that 

the training algorithm was made 

very clear by inclusion of the mini-

projects, and that the accompanying 

mathematics were understandable. 

Yes 

4. The user understands the inner 

workings of a neural network. 

All participants mentioned that their 

understanding of neural networks 

increased, and that they could 

explain the structures within neural 

networks. 

Yes 

5. The user can model the mathematics 

needed for calculating the prediction 

and training of a neural network. 

All participants mentioned that their 

understanding of neural networks 

increased, and that they could 

explain the mathematics needed for 

predictions within neural networks. 

Yes 

6. The user can implement a neural 

network in a programming language. 

All participants implemented 

multiple (small) neural networks 

using the provided code examples in 

the Python programming language. 

Yes 
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7. The user can deploy a simple neural 

network to an edge device. 

All participants deployed multiple 

(small) neural networks to the 

educational kit development board. 

Yes 

8. The user can develop and deploy a 

neural network based on sensor 

input(s) independently. 

Untested. No 

Table 5: Learning goals evaluation using the user testing interviews. 

The evaluation of the learning goals demonstrates that all but one of the learning goals were 

adequately met in the educational material. Participants expressed a clear comprehension of 

the main theoretical concepts and were able to implement neural networks using the Python 

programming language. In addition, they successfully deployed neural networks to the 

educational kit development board, highlighting practical application on an edge device. 

While the independent development and deployment of a neural network based on sensor 

input remains untested due to time constraints, the evaluation highlights the educational kit's 

effectiveness in delivering comprehensive knowledge and practical skills in the field of 

TinyML. 

Requirements 

The evaluation of the functional requirements was performed after the product was fully 

finished and actively being tested by the user experience test participants. The testing of 

functional requirements was performed by either observing or measuring the product, or by 

evaluating the material on the online platform. The testing method is described in the Notes 

section of the evaluation Table 6. The requirements are ordered according to the MoSCoW 

method as stated in MVP Development in Chapter 4. 

 

Requirement Notes Achieved 

MoSCoW: Must have   

1. The content on TinyML that is included 

in the product is up-to-date. 

Compared to recent literature the 

material is up-to-date. 

Yes 

2. The content on TinyML that is included 

in the product is accurate. 

Compared to popular literature, 

the material is accurate. 

Yes 

3. The content of the learning material 

covers the described learning goals. 

See the learning goal evaluation 

above for more details. 

Yes 

4. Users of the product can design TinyML 

applications on their own after learning 

techniques using the product. 

The development board includes 

more on-board sensors and 

expansion options. 

Yes 
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7. The instructions in the product are 

distributed in either a digital repository or 

in print. 

The materials are available 

online. 

Yes 

12. The product should be affordable for 

the intended target audience. The target 

price is below the average development 

board price as found in the Background 

Research - Chapter 2, €60. 

The total (material) cost of the 

educational kit is €21.15. (See 

Appendix I) 

Yes 

MoSCoW: Should have   

5. The product uses a mainstream 

programming language such as Python, 

Java or C++. 

The product is programmed in 

Python and CircuitPython. 

Yes 

8. The hardware included in the product 

follows all electrical safety guidelines. 

All hardware components were 

integrated using their provided 

and relevant design 

considerations. However, the 

development board was not 

subjected to an official electrical 

safety inspection. 

Partially 

9. The software used in the product is in 

line with the industry standards for 

software in TinyML. 

The educational kit uses Python, 

which is one of the main 

languages in machine learning. 

Partially 

11. The algorithms used in the product 

should not rely fully on platforms such as 

Edge Impulse. 

The algorithms used in the 

educational kit are completely 

coded from scratch, using only 

built-in Python libraries. 

Yes 

MoSCoW: Could have   

6. The product provides all necessary 

components to test and build various 

TinyML applications. 

The development board contains 

many on-board sensors and has 

expansion options. 

Yes 

10. The product links presented concepts to 

real life applications of TinyML. 

All mini-projects included in the 

learning material represent a real-

life application of TinyML. 

Yes 

Table 6: Functional requirement evaluation according to the MoSCoW method. 
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The analysis of functional requirements shows that most of the requirements for the product 

have been achieved. While some requirements were partially met, the evaluation highlights 

the educational kit's strong alignment with functional needs, positioning it as a valuable 

resource for learning TinyML. 

The non-functional requirements were evaluated through the synthesis of interview 

answers from user experience test participants. The observations are described in the Notes 

section of the evaluation Table 7. The requirements are again ordered according to the 

MoSCoW method as stated in MVP Development in Chapter 4. 

 

Requirement Notes Achieved 

MoSCoW: Must have   

13. The product is suitable for students 

with an application level knowledge of 

programming. 

Several participants mentioned 

that the required programming 

knowledge was very minimal and 

accessible. 

Yes 

16. Applications that are made by using 

(components of) the product are safe and 

ethical. 

Participants mentioned the 

inherent safety of the 

development board, with its 

built-in error handling. Ethics of 

the product were not discussed by 

the participants. 

Partially 

18. The product supports multiple learning 

styles. 

Several participants mentioned 

that they liked the variety in 

explanation and experiments, for 

example the complex 

mathematics were supported by 

interactive visualisations. 

Yes 

MoSCoW: Should have   

14. The product is fun and engaging to use. All participants mentioned it was 

fun to use the educational kit, 

and that they were engaged in the 

content. 

Yes 

15. The information presented in the 

contents of the product is divided into 

manageable parts. 

Several participants mentioned 

that the division into chapters 

and sections helped oversee the 

different aspects of the learning 

material. 

Yes 
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MoSCoW: Could have   

17. Machine learning is explained in a way 

which demystifies the common black-box 

principles. 

All participants mentioned that it 

is best to learn Machine Learning 

without a black-box, which this 

material supports. 

Yes 

19. The presentation of the product is 

attractive and aesthetic. 

All participants mentioned the 

clean and professional look of 

both the development board and 

online platform. 

Yes 

Table 7: Non-functional requirement evaluation according to the MoSCoW method. 

From the evaluation of the non-functional requirements, it becomes clear that most of the 

drafted requirements were partially or fully implemented into the product. While some 

requirements were partially achieved, overall, the evaluation demonstrates the educational 

kit's effectiveness in addressing non-functional aspects and delivering an engaging and 

comprehensive learning experience.  
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7 Discussion and Recommendations 

During the background research, design of the product, as well as the user testing, some 

problems were identified. Many of these were resolved during the design process and user 

experience testing. Nevertheless, it is important to recognize the boundaries and limitations of 

this research. 

Background Research 

Tangible educational methods were one of the explored topics of the literature review. It is 

important to note that the background research identified many different tangible methods, 

however, not all could be included in the background research due to the scope of work. The 

selection was based on the most relevant published work, meaning that less universally 

adopted, but valid and meaningful methods were disregarded. 

Another facet of the background research was TinyML development boards. Due to the 

vastness of the electronics industry, it was only possible to index boards featured on popular 

marketplaces such as Adafruit and Digikey. However, this could mean that development 

boards built by less well-known companies and only sold in specialty stores might have been 

excluded from the overview. It is also important to note that development boards only tell a 

story of convenience, as there are many hundreds (or even thousands) of additional 

microcontroller chips available on the market. These chips might be purpose built for 

applications including machine learning, but due to their specific target audience or device, 

they are not broadly and conveniently available on development boards. 

Lastly, in the evaluation of educational material available for TinyML, the exploration was 

limited to easily accessible and free teaching materials. Although general principles and 

techniques are covered, it is possible that there is more material available about this topic that 

might be enclosed in paid courses or even university and college courses. These were not 

included because of cost and time constraints. 

Product - Educational Kit TinySpark 

As discussed before, most of the design decisions regarding component selection for the 

development board were made based on availability and partly guided by the preference of the 

researcher. There were two points of attention for the selection of on-board sensors. The 

chosen microphone type (Inter Integrated Sound, I2S) was later found to not be compatible 

with the chosen programming language, CircuitPython. While there is active development on 

the integration of this type of microphone, there was no working integration at the moment of 

firmware compilation. Secondly, the chosen light and distance sensor had an inadequate 

performance during the measurement of distance. The sensor is originally designed for use in 

hand detection, in devices such as soap dispensers. Due to this, the distance sensing abilities 

are not as accurate as expected. 

Next, the chosen online platform has some compromises. While the modern look and feel 

of the website certainly contribute to legibility and understanding, it can also decrease 

accessibility for people with disabilities. The main colour scheme as well as some diagrams are 

less suitable for people with colour blindness or reduced vision.  
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The coding platform itself, Google Colaboratory, reduces accessibility as a Google account 

is needed to evaluate code. In addition to this, the user also needs to leave the online platform 

to go to the Colaboratory code page to evaluate and change code. 

Due to time constraints, two chapters in the learning material were excluded in the final 

product. The respective chapters would have covered larger models and input shaping and 

Optimization and compression, respectively. The first topic would have enabled users of the 

educational material to expand their gained theoretical knowledge into more extensive and 

capable prediction models. The second topic could give users the tools to employ more 

extensive machine learning models on their development board, through optimisation. 

Although these are both interesting and relevant subjects that need to be explored in future 

research, the core knowledge on (Tiny) machine learning was still adequately covered in the 

first three chapters. 

The last observation concerns the use of teaching methods incorporated in the online 

learning platform. There was a lot of background research conducted on the most effective 

teaching methods in Chapter 2. During the writing of the learning material, the most 

important pointers of the findings were certainly included. However, all material could have 

been checked against the most important findings again, to ensure compliance with these 

guidelines. 

Testing 

The UX testing measured and assessed user satisfaction, user interaction and ease of use of the 

TinySpark development board as well as the online learning platform. The testing was 

conducted with a small number of participants. While this limits the number of responses 

gained from the user test, as one would get from quantitative testing, the qualitative approach 

meant that the results were expansive and insightful. Furthermore, due to the free and 

unsupervised exploration of the product that was given to the test participants, they were able 

to gather detailed observations on all aspects of the product. While the real-world settings 

where the product was evaluated were variable and somewhat uncontrolled, the observations 

were more natural and comprehensive. The semi-structured interviews allowed for more 

flexibility in participants’ answers and comments. 

Future recommendations 

There are four elements that are interesting to consider for further research and testing. They 

concern extended background research, product alterations, learning material and testing 

development. 

In the background research, tangible learning was one of the main pillars. One potential 

oversight was the inclusion of mainly popular teaching methods. In future research, it would 

be interesting to include different educational approaches, such as cooperative learning. 

Another valuable source of information that could not be included in this background 

research due to time constraints is the well-regarded book Mindstorms by Seymour Papert 

[61]. The author worked extensively on researching “learning theories” and has received praise 

for the inclusion of novel technologies into his teaching models. 
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The development board could also be altered. One of the chosen sensors, the microphone, 

could not be used fully due to software incompatibility. In addition, the included distance 

sensor was perceived as somewhat hard to work with. With more elaborate component 

selection and testing, a new revision of the development board could be produced. This could 

improve the overall quality of the experience users have with the educational kit. 

As already mentioned in this chapter, some sections of the online learning material were 

excluded. Although the proposed topics were not of highest importance to gain a basic 

understanding of (Tiny) machine learning, they would have added valuable information. The 

whole learning experience might become more rounded, since important concepts for the 

expansion of machine learning models are discussed here. Additionally, the information 

contained in these chapters could enable users to explore more interesting applications using 

the development board. 

Finally, the user experience testing of the current educational kit TinySpark could be 

extended. Even if the number of participants of the current user experience test is relatively 

small, valuable insights into their experiences and behaviour and the usability of the product 

have been gained. If the user experience testing would be expanded and the number of 

participants increased, quantitative data could be analysed to further support the findings and 

in-depth insight of this user experience test. Additionally, it would be recommendable to 

choose participants from different backgrounds for testing. For example, it would be good to 

include people without extensive programming knowledge. By doing this, the evaluation 

would be conducted on many different levels of understanding and pre-existing knowledge, 

which could further expose possible unaccounted facets of the learning material and 

development board.  
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8 Conclusion 

TinyML is an interesting and fast-growing field of AI. The technology offers many useful 

opportunities for numerous industry sectors as well as consumer products. As shown in the 

State-of-the-Art research, there exist very little learning materials covering TinyML. In a 

society that is adopting AI to an increasingly impactful extent, it should be obvious that the 

engineers of the future must have enough knowledge on the topic, to make better decisions. 

Research into educational methods has shown that adding tangible aspects to learning 

materials enriches the obtained knowledge and increases engagement. Project based learning 

was also identified as being effective in gaining deep understanding of subject matter and 

developing problem-solving skills. By incorporating tangible and project-based learning in 

educational methods, the learning process empowers students to master complex topics like 

TinyML (Sub Research Question 1). 

To test the hypothesis that tangible learning would benefit students, an educational kit 

was developed and produced. The TinySpark kit and accompanying online platform provide 

easy opportunities for learning and interaction with real world contexts. The educational kit 

offers great interactivity and user experience testing shows that the kit is a valuable addition 

to the learning material. 

The analysis of educational kits aimed at teaching complex topics to university students 

revealed that the TinySpark kit not only met all the necessary requirements, but also proved to 

be highly engaging, professional, user-friendly, comprehensible, and provided an excellent 

foundation for learning TinyML. The positive outcomes from the user experience test validate 

the suitability of these educational kits for effectively transferring knowledge and facilitating 

comprehension of complex topics. With their engaging and accessible nature, these kits hold 

significant potential for enhancing the teaching and learning experience in the field of TinyML 

(Sub Research Question 2). 

The overall conclusion is that this research demonstrates that educational kits and 

project-based learning are highly effective in teaching students TinyML (Research Question). 

The exploration of these approaches revealed multiple ways in which they can contribute to 

the learning process, including enhancing engagement, promoting hands-on experience, 

fostering problem-solving skills, and facilitating a deeper understanding of TinyML concepts.  

The effectiveness of educational kits for teaching TinyML holds significant relevance 

within the field of AI. Society is increasingly adopting AI technologies, prompting a heated 

debate about AI as many people fear the role it may play in our future. Therefore it will be of 

utmost importance to understand this new technology well. By showing the potential of 

educational kits and project-based learning, this research offers valuable insights and practical 

solutions for educators as well as the industry, enabling them to enhance the learning 

experience and equip students with the necessary competencies in the rapidly evolving field of 

TinyML. 

It is evident that TinyML and related technologies are not going to slow down or 

disappear. Thus, as educators, researchers, and policymakers, it is crucial to incorporate 

innovative approaches in educational materials regarding these technologies. By doing so, it is 

possible to empower the current and future generations of learners to drive innovation even 

further and make a positive contribution to our future. 
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Appendix III - Consent form 
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Appendix IV - Interview questions 
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Appendix V - Educational Kit cost breakdown 

Unit Price 

Circuit board (unit price/qty 10) € 2.84 

ESP32-S3-WROOM-1 N16R8 (unit price/qty 5) € 4.71 

LSM6DS3TR-C (unit price/qty 10) € 1.34 

ICS-43434 (unit price/qty 5) € 1.98 

APDS-9930 (unit price/qty 10) € 0.87 

BME-280 (unit price/qty 10) € 3.07 

AH-49E (unit price/qty 50) € 0.10 

H638T-TR2 (unit price/qty 10) € 0.83 

Neopixels (WS2812B) (unit price/qty 100) € 0.19 

Voltage regulators (unit price/qty 50) € 0.17 

USB-C connector (unit price/qty 10) € 0.21 

Stemma QT / Qwiic connector (unit price/qty 20) € 0.15 

Expansion header (unit price/qty 10) € 0.19 

LEDs (unit price/qty 100) € 0.10 

Buttons (unit price/qty 50) € 0.13 

Passive components (Resistors and Capacitors) (unit price/qty 1000) € 0.34 

3D printed case € 0.25 

Mounting hardware (unit price/qty 100) € 0.07 

Soldering consumables € 0.50 

USB-C cable € 1.99 

Packaging and Printing (unit price/qty 10) € 1.12 

  

Total/Educational Kit € 21.15 

 

All components were purchased in the quantities as described. Shipping, handling and VAT 

are included in the price. Assembly costs such as machine time, wear and tear, labour time are 

not included in the price. All prices are accurate as of June 2023. 
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