
Teaching (Tiny)ML using

tangible educational methods

Jannick Siderius

S2100282

Creative Technology bachelor thesis

Semester 2022-2

Supervisor: M. Gerhold

Critical Observer: M. Gómez Maureira

2

3

Acknowledgement
I am very grateful to my two supervisors, Marcus Gerhold and Maro Gómez Maureira, for their

invaluable guidance, advice, and efforts in arranging various aspects of my thesis. Their

expertise and support have been very helpful in shaping the outcome of my research. I would

also like to extend my appreciation to my parents and friends, whose support and availability

as rubber duckies during programming and writing, as well as their proofreading assistance

have been incredible. I am thankful to the testers who participated in my user testing. Their

willingness to dedicate time and provide valuable insights and feedback has significantly

enriched the quality of my research. Last, I would like to thank the SIL-EE laboratory of the

University of Twente, for granting me access to their circuit board assembly facilities.

4

5

Abstract
Tiny Machine Learning is the process of integrating machine learning algorithms into

resource-constrained edge devices. The technology is already embedded into applications

from smart home speakers to industrial pipeline leak detection and will continue to make a

growing impact on businesses, hobbyists and industries alike. Currently, there is little

engaging educational material available on Tiny Machine Learning for students. With the help

of a tangible educational kit and by project-based learning materials this research aims to fill

in this void.

In order to achieve engaging and interesting learning experiences, research was conducted

to establish effective learning methods as well as gain background knowledge about Tiny

Machine Learning. The resulting findings helped shape the design requirements for the

realisation of the end product, an educational kit called TinySpark, that teaches Tiny Machine

Learning with the help of a custom development board and interactive online platform.

The educational kit was evaluated through a user experience test, which was followed by a

semi-structured interview. Test participants were enthusiastic about TinySpark and noted that

their engagement and interest in the topic had grown. According to some participants, the kit

could be easily expanded by adding more modules and project material in the future. Overall,

the user experience testing was a success, as participants gained knowledge on complex

concepts and could autonomously deploy Tiny Machine Learning models to the development

board.

In conclusion, educational kits proved very engaging and useful in teaching Tiny Machine

Learning to users. The development board and interactive online platform enhanced their

comprehension and knowledge. By applying teaching methods like these, it is possible to

effectively prepare students for a future filled with Tiny Machine Learning applications.

6

Contents
Glossary 7

1 Introduction 8

2 Background 9

Educational Methods 9

(Tiny) Machine Learning 13

State of the Art 15

Product Research 20

3 Method 23

Product 23

Evaluation 24

4 MVP Development 26

Stakeholder Identification 26

Learning Goals 27

Requirements 27

MoSCoW Analysis 28

Minimum Viable Product 30

5 Realisation 32

Development Board 32

Online Platform 36

Educational Kit - TinySpark 40

Testing 41

6 Evaluation 42

User testing 42

Honeycomb UX framework 43

Learning Goals 45

Requirements 46

7 Discussion and Recommendations 50

Background Research 50

Product - Educational Kit TinySpark 50

Testing 51

Future recommendations 51

8 Conclusion 53

References 54

Appendices 58

Appendix I - Development board schematic 58

Appendix II - Information brochure 59

Appendix III - Consent form 61

Appendix IV - Interview questions 63

Appendix V - Educational Kit cost breakdown 65

7

Glossary

AI

Artificial Intelligence is the overarching term for software that can perform (seemingly)

intelligent decisions using its inbuilt algorithms. AI is both used for pre-programmed

intelligent behaviour, as well as learned intelligence e.g. through machine learning algorithms.

Development Board

A circuit board containing a microcontroller chip as well as supporting hardware to enable

engineers or users to interact with the chip easily. Most commonly used for prototyping and in

hobby projects, e.g. the Arduino Uno development board.

Edge Device

A device which is located at the edge of a network, in this context, an edge device is

considered any appliance which is meant to be used by an end user. E.g. smart speaker, fitness

tracker, autonomous car, digital dog collar.

IMU

An Inertial Measurement Unit is a mechanoelectrical sensor which can measure forces in

different directions. Most commonly, these sensors are used to detect acceleration and

rotation in various axes.

Machine Learning

The act of letting computers ‘learn’ certain tasks without explicitly telling the program what to

do. Machine learning uses algorithms to analyse a dataset and mathematically calculate how

to correctly predict outcomes based on certain inputs.

SDK

A Software Development Kit is a specialised piece of software that can be used to write and

compile code for specific hardware. It often includes all necessary configurations for this

hardware and can help developers when writing software functions.

Tangible learning

The way of learning concepts using physical objects, e.g. understanding physical properties

through playful interaction.

TinyML

A branch of machine learning that focuses on optimising algorithms to be able to run on edge

devices and perform using little power and processing power.

8

1 Introduction

Tiny Machine Learning (TinyML) powers detection in a wide range of applications from smart

home speakers to pipeline leak prevention. This relatively new field within computer science

enables engineers to integrate powerful Artificial Intelligence (AI) into so-called edge devices.

These appliances are low-power, low-cost and often do not require an internet connection to

function. Combined with sensors, edge devices are ideally suited for a multitude of functions

and they enable designers and engineers to explore new avenues for the integration of this

technology.

Presently, only two approaches to integrate TinyML into projects and devices exist. The

first, ‘bare-metal’ approach, requires intrinsic knowledge of complex mathematical and

computer science topics. This method relies on fundamentally programmed AI, which calls for

an understanding of low-level programming languages such as C, as well as mathematical

knowledge of linear algebra and statistics [1]. The second approach relies heavily on cloud

services, offering TinyML through a ‘Platform as a Service’ (PaaS) [2]. Users upload their data

and let the platform take care of teaching the algorithm and programming the AI. A general

approach for learning TinyML is lacking, and existing development and learning systems are

complex and scarce.

The research presented aims to solve this problem by designing a self-supported

educational kit (TinySpark) for learning and implementing TinyML into projects and devices.

Machine learning projects in this kit could for example be used to detect human presence in

rooms or to analyse vibration patterns to identify maintenance problems. The educational kit

will be aimed at college and university-level students, as they are the designers and engineers

of the future. Teaching them new technologies early on is important to ensure proper

adoption and usage. The kit will be designed for students who have an application-level

understanding [3] of programming concepts.

The objective of this research was to determine if educational kits and project-based

learning systems can teach students TinyML effectively (Research Question). To properly

answer this question, two additional subjects needed to be investigated. First, teaching

methods were explored to find which methods can be used to enable successful self-supported

learning of complex topics such as TinyML (Sub Research Question 1). In addition, a self-

supported educational kit for learning and implementing TinyML was produced. Second, the

educational kit was analysed to see if it was suitable for teaching complex topics in a

comprehensible and engaging way to university students (Sub Research Question 2). Combined,

these investigations provide valuable insights for answering the initial research question.

The research is structured as follows: In chapter 2, background literature and the state of

the art on educational kits and TinyML are presented. In chapter 3, the methodology for

answering the research goals is given. Chapter 4 discusses the preliminary ideation that took

place to develop an educational kit around TinyML, and at the end of the chapter,

requirements for the product are discussed. In chapter 5, the realisation of the educational kit

will be demonstrated. In chapter 6, the product is evaluated through user experience testing.

The results of the user test will be discussed in chapter 7. Finally, this research is concluded in

chapter 8, where findings are summarised and future work recommendations will be given.

9

2 Background

To make well-informed decisions during the rest of the research and product development, it

is important to examine existing research and products. This chapter comprises expert

opinion(s) on the subject, comprehensive literature research, explores popular educational

methods and investigates the influence of adding tangibility to the learning process. After

that, the origins of machine learning and the importance of TinyML are investigated. Lastly,

an important insight into the current state of the art is gained. Here, the currently available

development boards used for TinyML, available online learning material, programming

languages as well as online learning platform systems are compared.

Educational Methods

There has been growing interest in different educational methods besides the ‘traditional’

teacher-centred learning. Tangible and self-supported learning have emerged as alternative

methods to engage pupils and students with varying curricula and subjects. Tangible learning

describes the act of understanding topics or functions through the use of physical structures,

such as model representations or even highly technical devices [4]. Horn et al. [5] show that

tangible learning can facilitate the learning process by increasing engagement and

understanding. Students face increasingly complex concepts and problems, which could

become easier to understand by incorporating tangible teaching into their learning process.

Successful learning and teaching methods

To evaluate educational methods, it is important to establish what factors contribute to

successful learning and teaching methods. There are many different aspects that influence

learning; not only the teaching environment and style, but also less obvious effects such as

peers in the classroom and framing of learning materials.

Teaching in a way which enables exploration of the subject matter at hand is one of the

key principles of successful teaching. Inquisitive behaviour is a strong motive for learning new

things [6]. Matthews et al. [7] support this by stating that ‘curiosity driven learning is very

important for development’. Similarly, Resnick and Silverman [8] implement a system of ‘low

floors and wide walls’ in their educational recommendation, supporting a wide range of

exploration opportunities. Students who are allowed to participate in learning activities

together, collaborating on assignments, problem solving and participating in discussions

about the material, seem to gain a deeper understanding in the subject matter. The

collaborative experiences foster the formation of different perspectives and teach important

skills such as negotiation, tolerance and listening [6]. Matthews et al. [7] also observed that

students witnessing other students think about and act on inputs stimulates the exploration of

new connections.

Besides an open and inquisitive approach, learning should be tailored to the specific

context it is presented in. Information should be fitting to the intended target audience, be it

for a certain grade or scholarly environment. Bekker et al. [9] state that teaching materials

have to be age appropriate, because if they are too easy, students lose interest. On the other

hand, if materials do not fall within students’ realm of imagination, they might be perceived as

10

too hard to grasp [10]. Furthermore, by targeting specific topics in context, for example

animals in their natural habitat, much more student engagement can be achieved according to

Stanton et al. [11]. The incorporation of context can be extended to include support for

multiple learning styles. M. Resnick and B. Silverman [8] describe this as encouraging ‘many

paths’, in which the students are let free to choose which learning path they want to seek out.

Traditionally, teacher-centred teaching methods may not always be the best choice for course

materials. That is why Bekker et al. [9] suggest that deeper understanding and applied

knowledge of subject matter can often be heightened using alternative teaching methods such

as tangible learning. Playful learning is another opportunity to change teaching styles: it can

enable students to participate in technologies that they may not be familiar with, or do not

have the domain knowledge for to fully understand [7].

Teaching materials not only need to be tailored to students’ specific context, but the

material should also carefully consider where to apply abstraction of concepts. By employing

so-called ‘black-boxes’ [8], teachers can purposefully obscure facts or knowledge to explain

concepts without focussing on unnecessary details. While this can lead to greater participation

even for students without intrinsic domain knowledge according to Matthews et al. [7],

Resnick and Silverman [8] point out that designers should be careful to not create unnecessary

confusion by leaving out critical components. Experimentation and exploration are strong

motivators for learning [6]. Additionally, ‘curiosity driven learning is very important for

development’ according to Matthews et al. [7].

As seen in this part of the review, there are many aspects that influence the effectiveness of

teaching and learning methods. Experimentation and exploration prove fairly effective in

teaching new concepts, while collaborating with peers can increase learning as well as improve

understanding of a topic. Furthermore, providing material that is well-tailored to the student

population and that enables multiple paths of learning can contribute to engaging teaching

that reaches a broad audience. Lastly, educators should be mindful to not obscure (parts of)

concepts that might prove important to garner a good understanding of the topic. By using

these pointers, educators may deliver effective and engaging learning experiences to their

students.

Effects of tangible learning

Successful learning and teaching methods involve many different aspects of education.

Tangible learning, in which physical commodities that support the teaching topic or context

are used alongside other educational methods, could have a profound impact on students. It is

important to explore in what way tangible interactions influence the students' learning

process.

Tangible artefacts can have a great impact on the collaboration between students in the

classroom. Stanton et al. [12] note that especially large tangibles slow down interactions and

make student experiences more deliberate. The researchers however find that one downside of

this approach is that it can make individual interactions and decisions more difficult.

Zuckerman et al. [13] refute this, stating that collaboration actually has a positive impact on

learning as it can lead to discussion. This can lead to greater understanding of concepts and

11

improve classroom cohesion. The finding is confirmed by research from S. Somyürek [14] and

Bekker et al. [9].

Tangible learning methods also provide ways to discover difficult topics in a participatory

and hands-on way. Price et al. [6] find that being able to handle objects and interact with

them enables creativity, forms knowledge and stimulates awareness. Furthermore, physically

interacting with tangible objects can immerse students into the learning process and raise

awareness of concepts [15]. P. Marshall [12] is more careful in this regard, stating that in 2007,

frameworks for testing and studying tangible learning effects on students are lacking and need

to be investigated further. In a literature review conducted in 2020, Matthews et al. [7]

however find that there is (now) ample evidence to support tangible learning as a viable way

to build effective theoretical knowledge.

In science and technology subjects, there still exists a gap between gender participation:

girls are less likely to follow courses in these areas. While testing tangible programming

interfaces, Horn et al. [15] found that tangible interaction methods were not only more

engaging and prolonging interest, but they also attracted more traditionally underserved

groups of participants. For example, girls were even more likely to try and interact with

tangible interfaces than boys. Tangible learning seems to be less daunting and it invites people

to try something new, even if they are not familiar with its workings. In addition to this, M. S.

Horn [16] finds in a later study that tangible objects ‘lure’ participants into interacting with

them, stating that experiences that include hands-on interaction are more attractive in

general.

Although it might not be immediately obvious, tangibles in education were more popular

than ever during COVID-19. Many teachers have been wondering how they could teach

certain disciplines of academia remotely. For example, laboratory practice was made almost

impossible due to stay-at-home regulations, even though many in higher education consider it

an essential part of scientific education. Even before it became a mandatory practice, J. P.

Oliver and F. Haim [17] already proved in 2009 that at-home laboratory experiments can be

successfully applied. Their research even shows that take-home labs led to a better

understanding of subject matter, as well as higher acceptance and motivation, which in turn

resulted in higher grades. Additionally, students acquired more academic skills and developed

a more responsible attitude towards laboratory work in general. This is corroborated in a more

general educational study by Jones et al. [14], who not only found improved achievements, but

also a more investigative mindset which led to important individual reflection.

As seen above, tangibles can impact students and their learning experience in many different

ways. Not only do lessons augmented with physicalities improve the collaboration between

students, but they can also lead to a more positive classroom environment. This added

dimension can lead to a better understanding of tough concepts and can improve even the

engagement of students who otherwise might not have been interested in learning certain

subjects, one good example being female students exploring science. Additionally, many

different types of educational activities such as lab work can benefit from added tangible

interaction, as improvements in grades and level of understanding show. When analysing all

effects of tangible learning, a positive influence on students' abilities to learn can be found.

12

Comparing teaching methods

After analysing factors that influence how effective education can be for students, as well as

the benefits of tangible learning methods, it is appropriate to also look at a direct comparison

between more traditional, teacher-centred education and tangible learning methods. By

analysing both methods side-by-side a better decision can be made when choosing an

educational model.

First, tangible learning methods can lead to ineffective education if the material is

implemented poorly. Bekker et al. [13] as well as Dickerson et al. [18] find that tangible

learning is only useful if teachers fully understand the underlying materials and subject. When

this is the case, teachers can facilitate learning through tangible methods successfully.

Additionally, teachers with more experience in their subject already use tangible methods

more often in their lessons than less experienced teachers [14]. Experienced teachers were

furthermore observed to be more confident in lessons with opportunities for open inquiry

from students. Second, teacher-centred lessons also seem to be less optimal for teaching time,

as more time is spent on explaining concepts and materials than answering questions,

discussing with students and evaluating results [17]. Students seem to appreciate this more

open approach to lessons: S. Somyürek [14] states that students found tangible problem-

solving activities more useful and expedient than traditional education. Not only that, but

Dickerson et al. [18] also find that tangible learning can empower populations of students that

may not otherwise be able to approach certain subject matter.

By directly comparing different teaching methods, a clear effect of tangible learning on

students can be observed. The most important discovery concerns teacher knowledge: it

becomes clear that curriculum material needs to be fully comprehended by teachers to

implement tangible methods. Although there might exist some caveats about the adoption of

tangible education, there are definitive indicators that implementing them benefits students.

This literature review aimed to ascertain whether tangible educational methods can benefit

students more than traditional, teacher-centred learning methods. Through investigation of

the aspects of teaching that influence successful learning, it was observed that methods

including an open and inquisitive approach, tailored materials as well as collaborative learning

benefit students most.

Tangible learning methods were also evaluated and found to have a profound effect on

students’ ability to understand arduous topics, but also to help spark interest among

underserved student groups for specific courses. Further, in direct comparisons between

educational methods, benefits of implementing tangible materials into learning have been

shown.

In conclusion, tangible educational methods seem to benefit students, although it is

important to consider when, how and why they are implemented, to ensure that they are

deployed effectively.

13

(Tiny) Machine Learning

The earliest mention of machines being able to learn using mathematics is in the 1943, in the

paper ‘A logical calculus of the ideas immanent in nervous activity’ by McCulloch and Pitts

[19]. The authors propose a system which can mathematically describe the neural activities in

the brain, leading to the first description of artificial neurons. In 1950, Alan Turing introduced

a new technique for testing if a machine can think, commonly known as the ‘Turing Test’, by

checking if answers from said machine are good enough to convince a human interviewer they

are talking to another human [20]. Rosenblatt [21] was the first researcher to implement the

concept of neurons into physical hardware, by building the Mark I Perceptron, a machine the

size of a closet that was supposed to recognize images taken by the camera mounted to its

front panel. His attempts had limited success. Two years later, in 1959, Samuel et al. [22]

coined the term machine learning, showing that a computer was able to learn to play checkers

by training itself only on simple rules it was given.

Plunging further into the historical development of machine learning, it is clear to see that

major advancements were made in the field: in 1967 the introduction of the ‘Nearest

Neighbour’ algorithm to solve the travelling salesman problem [23], in 1979 the Stanford Cart

[24] which was able to autonomously navigate an obstacle course without human

intervention, after that came NETTalk in 1986, a system developed by Sejnowski and

Rosenberg [25] that could learn to speak words in a similar way to babies, then came

DeepBlue, which beat chess champion Garry Kasparov in 1989 [26], leaping forward, in 2011

IBMs Watson computer successfully competed in Jeopardy!, a popular American quiz show

[27] and later in 2015, Google’s AlphaGO managed to beat the world champion in Go (an

ancient Chinese board game long thought to be too difficult to master for a computer) [28].

Around 2016, big companies like Google and Meta (formerly Facebook) became

increasingly interested in the use of machine learning and began developing their own

frameworks to simplify the implementation of ML algorithms. This resulted in two popular

open-source tools; TensorFlow [29] and PyTorch [30], which enable researchers and

developers to easily build and deploy complex machine learning models for various

applications. These frameworks also facilitated the advancement of deep learning, a subset of

machine learning that uses multiple layers of artificial neural networks to learn from data.

With the widespread adoption of smartphone technology came mobile machine learning,

which enabled applications on mobile devices to learn from data they generate. Currently,

many smartphone manufacturers, as well as smartphone operating systems, use machine

learning to recognise speech commands and images as well as generate recommendations for

its users [31]. This historical overview shows that machine learning was and still is a fast-

evolving field that has revolutionised numerous domains and continues to shape our modern

world.

With the increasing popularity of machine learning and its applications in various

domains, there has been a growing interest in extending its capabilities to tiny devices, hence

the emergence of TinyML. Introduced in 2016 by Han et al. [32], Tiny Machine Learning or

then rather ‘Deep Compression’ of existing machine learning algorithms was primarily

focussed on reducing the power consumption of the memory used to store prediction models.

While memory might not be the main power factor in modern microprocessors anymore,

optimising machine learning models to run on the tiny devices is still a very significant topic.

14

Considering that an estimated 28 billion microcontrollers were shipped in 2020 alone [33], and

smart appliances such as voice assistants [34], gait analysing fitness trackers [35] and many

more are increasingly becoming popular, interest in TinyML is growing. The push towards

using more Edge Computing devices and running machine learning inference on them is well

summarised by Jeff Bier [36] using the acronym BLERP. Bier [36] concludes that Bandwidth,

Latency, Economics, Reliability and Privacy are the main aspects that interest companies and

developers to employ machine learning techniques on the edge.

Bandwidth is important because edge devices often collect vast amounts of data from their

embedded sensors, however they rarely have the transmission capability or even the power to

send all data to the cloud for analysis. Furthermore, data uploading into the cloud seems

universal, however when looking at large data volumes and commercial use, there are often

bandwidth limits in place, which can become problematic when ingesting for example video

data. Added to this, edge devices might not even have a connection to the internet, for

example, when they are deployed in remote regions.

Latency is another key factor, as even connections with a very high bandwidth can have

significant delays in transmission and reception of data. For some applications of edge

machine learning, for example autonomous driving, a faster response is needed to resolve

critical decisions.

Economics influence machine learning enormously. Not only does bandwidth access to

data centres cost a lot, large servers that are needed to run machine learning algorithms are

also expensive and require vast amounts of energy to operate. Most hardware used in TinyML

applications is low-cost and very available, making it ideal to deploy at a large scale.

Reliability ties back to devices needing to be connected to the internet to function. If

controllers are running critical tasks, it should become clear that a dependence on internet

connectivity is impractical. If machine learning models can run locally on the device itself

however, the risk of failures and intermittency in service is reduced.

Privacy is another key factor in TinyML. Since prediction (and sometimes even training)

of the machine learning algorithm is performed locally, there exists no need for constant data

uploading and sharing to external storage or computing nodes. Because of this, devices can

function completely independently, even when outside services might not be available. This

can give not only peace of mind to privacy-conscious persons, but also to companies and

institutions whose data might be a valuable resource.

Early research in TinyML was mostly focussed on implementing PC-based machine learning

algorithms on microcontrollers using compression and consolidation functions. So called

pruning of machine learning nodes and features often required complex algorithms, like the

Bonsai algorithm as introduced by Kumar et al. [37]. Compression techniques were later

introduced, using algorithms like the Huffman Coding [38] to store complex features using

less memory. In more recent years, Google's Tensorflow has gotten an entire software branch

dedicated to running on resource constrained devices, called Tensorflow Lite Micro [39].

Additionally, STMicroelectronics [40], the manufacturer of the popular STM32 line of

microprocessors has added X-CUBE-AI to their integrated development environment (IDE), to

add support for many different machine learning libraries to its chips [41].

15

State of the Art

TinyML Development Boards

Below in Table 1 is an overview of development boards currently marketed as ‘TinyML ready.’

The boards were found by evaluating the ‘Development board’ section of the major electronics

retailers Digikey1, RS2 and Sparkfun3 as well as the Arduino4 online shop. The selection was

based on product descriptions and -titles, specifically focussing on mentions of ‘TinyML,’

‘Edge Machine Learning,’ ‘TensorFlow compatible’ and ‘AI.’ The Target Audience was deduced

from the product description and marketing information. Table 1 was generated in the spring

of 2023.

Product
Programming

environment
Chip & Memory Sensors Target Audience Cost

Arduino Nano

33 BLE Sense

Arduino IDE,

MicroPython,

Edge Impulse

SDK

nRF52840@

64MHz, 1MB

ROM, 256KB RAM

9-axis IMU,

Humidity,

Pressure,

Temperature,

Microphone,

Gesture

Hobby, School,

Semi-professional
€ 35

Arduino Nano

RP2040

Connect

Arduino IDE,

MicroPython,

Mbed

RP2040 @

133MHZ +

133MHZ, 448KB

ROM, 264KB

RAM, 16MB Flash

6-axis IMU,

Microphone,

Temperature

Hobby, School,

Semi-professional
€ 26

Arduino Nicla

Sense Me
Arduino IDE

nRF52832 @

64MHz, 512KB

ROM, 64KB RAM,

2MB Flash

9-axis IMU,

Humidity,

Temperature,

Pressure, CO2

Semi-professional € 69

Arduino Nicla

Voice
Arduino IDE

NDP120 +

nRF52832 @

64MHz, 512KB

ROM, 64KB RAM,

16MB Flash

9-axis IMU,

Microphone
Semi-professional € 69

1 https://www.digikey.nl/en/products/category/development-boards-kits-programmers/33 (accessed
Apr. 14, 2023)
2 https://nl.rs-online.com/web/c/raspberry-pi-arduino-development-tools /development-tools-single-
board-computers/microcontroller-development-tools/ (accessed Apr. 14, 2023)
3 https://www.sparkfun.com/categories/393 (accessed Apr. 14, 2023)
4 https://store.arduino.cc/collections/boards (accessed Apr. 14, 2023)

16

Product
Programming

environment
Chip & Memory Sensors Target Audience Cost

Arduino Nicla

Vision

Arduino IDE,

OpenMV

STM32H747AII6

@ 480MHz +

240MHz, 2MB

ROM, 1MB RAM,

16MB Flash

6-axis IMU,

Camera,

Microphone

Semi-professional € 99

Arduino

Portenta H7 +

Vision shield

Arduino IDE,

MicroPython,

Mbed, OpenMV

STM32H747XI @

480MHz +

240MHz, 2MB

ROM, 1MB RAM

Camera Professional € 130

SeeedStudio

Wio Terminal

Arduino IDE,

MicroPython,

CodeCraft

ATSAMD51P19 @

120MHz, 4MB

ROM, 192KB RAM

3-axis IMU,

Microphone,

Illumination

Hobby, School,

Semi-professional
€ 40

M5Stack Core2

ESP32

Arduino IDE,

MicroPython,

FreeRTOS,

UIFlow

ESP32 @ 240MHz

+ 240MHz, 8MB

ROM, 512KB RAM,

8MB PSRAM

6-axis IMU,

Microphone

Hobby, School,

Semi-professional
€ 50

Himax WE-I

Plus

Edge Impulse

SDK

HX6537-A @

400MHz, 2MB

ROM, 2MB RAM

3-axis IMU,

Microphone,

Camera

Professional € 70

Arducam

Pico4ML

Arducam

toolchain

RP2040 @

133MHZ +

133MHZ, 2MB

ROM, 264KB

RAM

9-axis IMU,

Microphone,

Camera

Hobby, School,

Semi-professional
€ 25

SparkFun Edge
Ambiq Micro

SDK toolchain

Apollo3 Blue @

48MHz, 1MB

ROM, 384KB RAM

3-axis IMU,

Microphone,

Camera

Semi-professional,

Professional
€ 27

OpenMV Cam

H7

MicroPython,

OpenMV

STM32H743VI @

480MHz, 2MB

ROM, 1MB RAM

Camera
Semi-professional,

Professional
€ 80

Sipeed M0

Sense

TinyMaix,

FreeRTOS

BL702 @ 144MHz,

192KB ROM,

132KB RAM, 512KB

Flash

6-axis IMU,

Microphone

Hobby, Semi-

professional
€ 10

17

Product
Programming

environment
Chip & Memory Sensors Target Audience Cost

Syntiant

TinyML

Arduino IDE,

Edge Impulse

SDK

NDP101 +

ATSAMD21G18 @

48MHz, 256KB

ROM, 32KB RAM,

2MB Flash

6-axis IMU,

Microphone
Semi-professional € 35

STM32 B-

L4S5I-IOT01A

Discovery

STM32 Cube,

Edge Impulse

SDK

STM32L4S5VIT6

@ 120MHZ, 2MB

ROM, 640KB

RAM, 8MB Flash

9-axis IMU,

Humidity,

Pressure,

Temperature,

Microphone,

Gesture

Hobby, School,

Semi-professional
€ 50

Espressif

ESP32-S3-Box

ESP-IDF,

FreeRTOS,

MicroPython

ESP32-S3 @

240MHz +

240MHz, 8MB

ROM, 512KB RAM,

8MB PSRAM

6-axis IMU,

Microphone

Hobby, Semi-

professional
€ 45

Espressif ESP-

S3-EYE

Arduino IDE,

ESP-IDF,

FreeRTOS

ESP32-S3 @

240MHz +

240MHz, 8MB

ROM, 512KB RAM,

8MB PSRAM

3-axis IMU,

Microphone,

Camera

Semi-professional € 55

Espressif ESP-

S3-Korvo-2

ESP-IDF,

FreeRTOS

ESP32-S3 @

240MHz +

240MHz, 8MB

ROM, 512KB RAM

Microphone,

Camera

Semi-professional,

Professional
€ 90

Nordic Semi

Thingy:53

Edge Impulse

SDK, nRF

connect SDK

nRF5340 @

128MHz, 1MB

ROM, 512KB RAM

9-axis IMU,

Humidity,

Temperature,

Pressure, CO2,

Colour,

Microphone

Professional € 60

Nordic Semi

Thingy:91

Edge Impulse

SDK, nRF

connect SDK

nRF52840 @

64MHz, 1MB

ROM, 256KB RAM

3-axis IMU,

Humidity,

Temperature,

Pressure, CO2,

Colour

Professional € 110

18

Product
Programming

environment
Chip & Memory Sensors Target Audience Cost

Adafruit

EdgeBadge
CircuitPython

ATSAMD51J19 @

120MHz, 512KB

ROM, 192KB

RAM, 2MB Flash

3-axis IMU,

Microphone,

Illumination

Hobby, School € 35

Table 1: Development boards marketed as ‘TinyML’ ready.

From the comparison Table 1, some interesting findings regarding the specifications of

development boards aimed at TinyML can be found.

First, many of the development kits support the Arduino IDE [42] and Edge Impulse SDK

[43], although quite a few chips can also only be programmed by using proprietary software

development kits (SDKs). This can have several (dis)advantages. By using a proprietary SDK,

companies retain full control over how software is written for their specific chip, efficiency

improvements can be implemented as well as specialised functionality of chips can be fully

utilised. However, because these SDKs are often closed source, they do not adapt to specific

users’ needs as well as more generalised programming environments such as the Arduino IDE

[42], which has a lot of community support.

Second, many development boards feature 32-bit microcontrollers that have more

processing power than most popular chips [44] such as the ATmega328P (8-bit, 16MHz),

PIC16F877A (8-bit, 20MHz), STM32F103 (32-bit, 72MHz) or the ESP8266 (32-bit, 80MHz).

Additionally, many ‘TinyML ready’ development boards contain more storage (ROM) and

working memory (RAM) than the popular chips. Given the need for the storage of inference

models, as well as available memory during prediction, this makes sense.

Furthermore, boards made for TinyML applications typically feature a selection of sensors

on-board, so that developers do not need to connect external hardware to get started with

programming. The most common sensors include an Inertial Measurement Unit (IMUs,

specifically 6- to 9-axis), a Microphone, environmental sensors like Temperature or Humidity

and a Camera. Last, the average price of ‘TinyML ready’ development boards is around €60.

Tiny Machine Learning Educational Kits

Even though TinyML is not a completely new field anymore, and multiple microcontroller

manufacturers have created development boards as seen in the previous sections, learning kits

for TinyML are still scarce. Although all board developers include code examples with their

product, not many prepare a full educational experience around their device. The availability

of educational material for TinyML development boards was established by inspecting the

product descriptions and company websites of all board manufacturers from Table 1. At the

moment of writing, there are three manufacturers who do provide learning materials to some

extent:

19

1. Arduino5: The Arduino Tiny Machine Learning Kit can be used in conjunction with

two different EdX / HarvardX online courses, aimed at introducing students to TinyML

and using ML prediction on the Arduino Nano 33 BLE Sense. The courses focus on

keyword spotting, visual wake words, anomaly detection and gesture recognition [45].

The course uses the online platform Edge Impulse [2] for data capture, model training

and deployment. The usage of the camera module as well as the environmental sensors

on the development board included in the kit are not explained. In the Arduino blog

[46] there is another guide on implementing TinyML using TensorFlow Lite Micro, but

this only concerns two use cases and is more of a tutorial.

2. Seeedstudio6: TinkerGen, the education division of Seeedstudio has developed a

TinyML course using the Wio Terminal development board. The course covers two

types of gesture recognition, audio detection, a people counter and a smart weather

station project. The model training and deployment uses the online platform Edge

Impulse [2]. The manual for the course contains some inaccuracies regarding the

capabilities of the target device, as well as missing source code for some examples.

Seeedstudio also has tutorials available for their own software development suite

CodeCraft, in which basic TinyML models can be trained and deployed.

3. ArduCam7: The ArduCam Pico4ML board is accompanied with several tutorials. These

cover different types of image recognition, wake word detection and gesture

recognition. The tutorials use pre-trained models and the online platform Edge

Impulse [2].

From this analysis, it becomes apparent that most development boards that can be used for

TinyML applications lack comprehensible educational materials following a curriculum that

builds up step-by-step. Most tutorials primarily focus on using an (online) platform like Edge

Impulse [2], as well as deploying pre-trained machine learning models to the development

board. This limits the learning effectiveness of the material, since users lack the possibility to

produce applications of their own. Additionally, most learning materials available are bound

to specific development boards or (online) code platforms. This segmentation could hold back

users in their learning process, since they only explore one specific facet of TinyML, instead of

learning about the concept as a whole.

5 https://store.arduino.cc/products/arduino-tiny-machine-learning-kit (accessed Apr. 14, 2023)
6https://files.seeedstudio.com/wiki/Wio-Terminal-TinyML/No-
code_Programming_to_Get_Started_with_TinyML.pdf (accessed Apr. 14, 2023)
7 https://www.arducam.com/product/arducam-pico4ml-tinyml-dev-kit-rp2040- board-w-qvga-camera-
lcd-screen-onboard-audio-b0330/ (accessed Apr. 14, 2023)

20

Product Research

In the process of designing the product two more highly relevant background topics appeared

that need to be discussed: programming languages and online platforms. These more compact

research topics were used as reference during the Realisation in Chapter 5.

Development Board Programming Languages

As discovered in the comparison of TinyML development boards, the Arduino IDE [42] and

the Edge Impulse SDK [43] are often used to program development boards. Because there are

many programming languages available for microcontrollers, it is worthwhile to investigate

the differences between them. The aim of this comparison is to have a clear overview of the

available programming languages on popular development boards.

C / C++

The C and C++ programming languages are the most well-supported on microcontrollers.

Before the advent of popular SDKs, all microcontroller code had to be written in these

languages, since it is easily converted into machine code (the actual processor instructions

used by microcontrollers). Like the Arduino language, C and C++ code needs to be compiled

and then uploaded as a binary file to the development board. The programming languages are

used in many platforms such as STM32 and Espressif microcontroller ecosystems.

Arduino8

The Arduino programming language might be the most used embedded programming

language in hobby and semi-professional applications. The language, based on C++, is used

across many different development boards and relishes widespread support and integration of

sensor libraries. Code written in Arduino needs to be compiled and then uploaded as a binary

file to the development board. The programming language is also integrated into many SDKs

such as the Edge Impulse SDK [47] and is used on many platforms, including the Arduino

microcontroller ecosystem.

MicroPython9

The MicroPython programming language is relatively young (2014) and is based on the

popular Python 3 language. MicroPython code is interpreted, so it does not need to be

compiled before uploading to the development board. This also enables users to see actual

code they uploaded to a board at a later date, since the plain-text program is saved to the

microcontroller. MicroPython is integrated into some SDKs such as the Edge Impulse SDK

[47] and the OpenMV SDK [48]. It is also used on many platforms such as the Espressif and

Raspberry Pi Pico microcontrollers.

8 https://www.arduino.cc/reference/en/
9 https://micropython.org/

21

CircuitPython10

CircuitPython is a branch of the MicroPython, made by Adafruit Ltd. Subsequently, the

language shares many similarities with MicroPython. The company wanted to make

programming modern development boards even easier, and implemented easy code editing as

well as a plethora of sensor libraries that were previously not available in MicroPython. The

programming language supports many platforms such as modern Arduino, Espressif and

STM32 microcontrollers.

FreeRTOS11

The last programming language is FreeRTOS, which is a C-based, speciality language focussed

on real-time applications. Because of this, FreeRTOS lends itself well to the requirements of

(Tiny) machine learning. The language is compiled, so it uploads the compile program as a

binary file to the microcontroller. The programming language is integrated into Espressifs

development environment and can be used on many platforms such as Espressif and STM32

microcontrollers.

Online Platforms

There are many different online platforms available for the publishing of (educational)

materials. Some of the popular platforms are discussed below, comparing their ease-of use,

unique features, accessibility and price.

Google Classroom12

Google Classroom offers a simple and user-friendly interface, making it easy for teachers and

students to navigate and engage in virtual classrooms. It integrates well with other Google

tools and the service is free for educational institutions, which makes it an accessible option

for educators and students. The software platform offers a complete learning environment and

student management system.

Skillshare, Coursera and Udemy13

Many for-profit online learning platforms like Skillshare, Coursera and Udemy offer paid video

courses taught by industry as well as college and university professors from around the world.

The platforms boast extensive opportunities for studying assorted topics. Services are mostly

paid, with some one-time buy options as well as subscription models. Teachers do not pay to

set up a course on these platforms.

10 https://circuitpython.org/
11 https://www.freertos.org/
12 https://edu.google.com/workspace-for-education/classroom/
13 https://www.skillshare.com/en/, https://www.coursera.org/, https://www.udemy.com/

22

Personal Website

This option gives the most freedom in terms of possibilities and features, but since it would be

required to program and research the website from scratch, this approach might suffer from a

high starting cost in terms of development time. Apart from hosting costs, the teacher is

completely free to choose any payment model they prefer.

GitHub Pages14

GitHub Pages is an accessible platform for hosting static websites and web projects. It has

seamless integration with Git, so developers can effortlessly apply version control to their

projects and collaborate with others. GitHub Pages supports various frameworks and

technologies, such as the site builder Jekyll. While some functionality might need to be

developed, the extensive community support makes GitHub Pages a popular choice among

developers. The Pages environment gives a free domain and storage where projects can be

presented.

EdX15

EdX is an online learning platform which provides a wide range of courses from prestigious

universities and institutions. It has interactive learning features, including discussion fora and

quizzes, which enhance student engagement and knowledge retention. The service is free, but

the platform can be upgraded to include more advanced features such as class management

and administration.

14 https://pages.github.com/
15 https://www.edx.org/

23

3 Method

TinyML can be quite a complex topic, nevertheless it has many interesting and useful

applications. It was also found that tangible learning methods such as kit-based learning can

be a powerful tool for instruction. From the state-of-the-art research in Chapter 2, it is obvious

that the current options for studying TinyML are lacking. To address this shortcoming in the

field and try to find a solution, a new kit-based learning system was designed (see Product),

subsequently tested by students and then analysed (Evaluation) to find out, if this modern

approach facilitates a better and deeper learning about and understanding of TinyML.

Product

The design process of the product was led by the Waterfall design framework [49], a

sequential methodology that is split into several key phases.

● Requirements: all necessary requirements are collected, including information on the

background of the research, functional- and non-functional requirements, learning

goals, scope, cost and timelines. The requirements and learning goals are defined in

the MVP development process in Chapter 4.

● Design: solutions for the requirements proposed in the first phase are designed. These

include hardware design, content outlines, user flows and the overall design of the

product.

● Implementation: the (technical) implementation of the research takes place. This

includes the software development, content writing, requirement implementation and

product finalisation. The design and implementation phases are described in Chapter

5.

● Verification: the developed product is verified by user experience testing. Additionally,

all requirements are evaluated. If major unexpected errors are found, it may be

necessary to revise the design stage of the product, to comply with the requirements

set in the first phase. This is generally very expensive and laborious to resolve. The

verification process is discussed in Chapter 6.

● Finalisation: the product is ready and the research can be finalised. In accordance with

the GP-track, this includes writing the GP thesis and preparing the GP defence.

Additionally, the requirements are evaluated and the Research Questions posed are

answered in the conclusion, in Chapter 8.

The Waterfall design framework was chosen because of its proven effectiveness in time

planning [50]. Additionally, due to the structured nature of the framework, progress can be

easily analysed and requirements are known upfront, reducing the variability in the

implementation phase. This structure can be seen in Figure 1.

24

Figure 1: The waterfall method illustrated. Source: adapted from

https://business.adobe.com/blog/basics/waterfall

Evaluation

To evaluate the effectiveness of the product, qualitative research was conducted. This method

was chosen over quantitative research because of limited resources to construct the product.

The research was conducted with participants from the target group, students in higher

education, who used the product to learn TinyML concepts and applications. The test

participants were given a product to take home and try out and interviews were conducted

after using it. These interviews were semi-structured to evaluate participants’ (learning)

experience. Participants were asked about their baseline experience in programming and

educational experiences. In the interview, participants were questioned on their experience

with the product, the way of instruction, the supporting materials, any positive or negative

occurrences as well as their level of knowledge on TinyML. After concluding the interviews,

they were evaluated and key participant observations were identified. The results were

analysed to identify the impression of the product, accomplished learning outcomes and

overall valuation of the product.

The final evaluation of the product was conducted by using the Honeycomb UX framework

[51], a seven-faceted model that helps assess products (see Figure 2 for a visual representation).

While the framework was originally developed for analysing websites, it is now used for a

wider range of assessments as well as product evaluation. Through its approach, the

Honeycomb model ensures that products are not only valued on their usability, but also on

other critical needs. By evaluating different approaches, it is easy to improve the product in

small sections. The framework facets are:

● Useful: A product should be useful, where possible creating innovative solutions to

requirements.

● Desirable: a product should be desirable, either for its value or looks.

● Accessible: products and designs should respect everyone, even if they want to use

them with a disability.

● Credible: users of the product should be able to trust the information they receive.

25

● Findable: the product should be easy to navigate, and information is accessible and

logically structured.

● Usable: designs should remain usable, meaning that they should not sacrifice usability

for beauty for example.

● Valuable: the product should deliver value to its user, through gained knowledge, or by

de-mystifying concepts.

Figure 2: The honeycomb UX framework illustrated. Source: https://semanticstudios.com/wp-

content/uploads/2004/06/honeycomb.jpg

26

4 MVP Development

The analysis of relevant literature and state of the art in Chapter 2 identified an important

research gap. Although there seems to be an increasing interest in TinyML and multiple

companies have released machine learning ready development boards, the instruction on

implementing TinyML is lacking. While most companies include some examples to point new

users of their development boards in the right direction to getting machine learning inference

to run on the boards, underlying knowledge is missing. This could be solved through the

design of a hands-on course in Tiny Machine Learning, which demystifies some of the

common black-box principles of machine learning in general, while also teaching students to

implement TinyML successfully for a wide variety of real-world problems.

This chapter explores the development of a Minimum Viable Product (MVP) and its key

components, including a stakeholder analysis, the definition of learning goals and

requirements, and the introduction of the MVP itself. In line with the Waterfall methodology

in Chapter 3, it is important to lay the foundation before moving forward with the subsequent

stages of the development process. The sections in this chapter provide guidance and

structure to the design process later in the research.

Stakeholder Identification

To develop a targeted and mindful product to the proposed problem, it is important to

identify the different stakeholders that affect the design process and product usage. In Table 2

below, the different stakeholders are identified and described.

Stakeholder Description of stakeholder Expectations of product

Students Primary users of the product.

Effectiveness of product will have an

immediate impact on students’

knowledge of the topic.

Easy to understand,

interesting, fun and

engaging.

Industry Needs engineers / students who have

relevant skills in the field. Effectiveness

of product has an impact on the

availability of well-trained staff.

Informative, good

preparation for the real

world.

Teachers Can implement the product to teach

relevant skills. Effectiveness of the

product has an impact on the quality of

teaching.

Easy to implement into

existing curricula,

informative, high quality.

27

Society This is an indirect stakeholder. Since

products might be used in the real world

(through industry or otherwise), users of

the product will possibly affect this

stakeholder.

Safe, ethical, unbiased.

Table 2: Stakeholders, their description and the expectation of the proposed product.

Learning Goals

By defining learning goals, it becomes clearer for both the designer and the users what an

educational kit on (Tiny)ML might achieve. Learning goals can be used to guide the

structuring of learning materials and can give a good overview of concepts to be covered. The

learning goals are formulated as follows.

After the completion of the educational kit on (Tiny)ML, the user:

1. Understands the basic functionality of a neuron in a neural network.

2. Understands the basic network structure of a neural network, including the

interconnectivity of neurons.

3. Understands the training algorithm used to tune a simple neural network.

4. Understands the inner workings of a neural network.

5. Can model the mathematics needed for calculating the prediction and training of a

neural network.

6. Can implement a neural network in a programming language.

7. Can deploy a simple neural network to an edge device.

8. Can develop and deploy a neural network based on sensor input(s) independently.

Requirements

After the identification of stakeholders and learning goals, it is possible to determine design or

product requirements. These can be split into two different categories: functional- and non-

functional requirements. Functional requirements should describe what the product should

do in a measurable way, while non-functional requirements define in what way the product

should solve the problem [52].

Functional requirements

1. The content on TinyML that is included in the product is up to date.

2. The content on TinyML that is included in the product is accurate.

3. The content of the learning material covers the described Learning Goals.

4. Users of the product can design TinyML applications on their own after learning

techniques using the product.

5. The product uses a mainstream programming language such as Python, Java or C++.

6. The product provides all necessary components to test and build various TinyML

applications.

7. The instructions in the product are distributed in either a digital repository or in print.

28

8. The hardware included in the product follows all electrical safety guidelines.

9. The software used in the product is in line with the industry standards for software in

TinyML.

10. The product links presented concepts to real life applications of TinyML.

11. The algorithms used in the product should not rely fully on platforms such as Edge

Impulse [43].

12. The product should be affordable for the intended target audience. The current target

price is below the average development board price as found in the Background

Research - Chapter 2, €60.

Non-functional requirements

13. The product is suitable for students with an application level [3] knowledge of

programming.

14. The product is fun and engaging to use.

15. The information presented in the contents of the product is divided into manageable

sections.

16. Applications that are made by using (components of) the product are safe and ethical.

17. Machine learning is explained in a way which demystifies the common black-box

principles.

18. The product supports multiple learning styles.

19. The presentation of the product is attractive and aesthetic.

MoSCoW Analysis

To prioritise the preliminary requirements drafted in the previous section and aid the

selection of a concept, the requirements are ordered according to the MoSCoW methodology

[53]. This method orders requirements according to four categories:

● Must have: the fundamental requirements, without them the product will not be

successful and might not be safe to use.

● Should have: the product would benefit from implementation of these requirements,

however it will work without them and be safe to use.

● Could have: these requirements would be nice to implement, however their impact

on the final product is minimal.

● Won’t have: while these requirements might be valid, due to the current objective of

development or design, they will not be implemented in the product.

Must have Should have Could have Won’t have

1, 2, 3, 4, 7, 12, 13, 16, 18 5, 8, 9, 11, 14, 15 6, 10, 17, 19 -

Table 3: MoSCoW division of product requirements.

29

The division of the requirements, which can be seen in Table 3, was established as follows:

● Requirements 1 and 2 were categorised as Must have, because the field of TinyML is

complex and quickly evolving, making outdated or inaccurate information detrimental

to the product goals.

● Requirement 3 was categorised as Must have, because the Learning Goals are

specifically designed to ensure comprehensive understanding and proficiency in key

concepts.

● Requirement 4 was categorised as Must have, because empowering users to

independently design TinyML applications is crucial for fostering creativity,

innovation, and autonomy within the technology field.

● Requirement 5 was categorised as Should have, because the product and its

subsequent users would benefit from having a mainstream programming language.

However it would be possible to teach or learn another programming language to

successfully use the product.

● Requirement 6 was categorised as Could have, because while providing all necessary

components to test and build various TinyML applications is desirable, it may be

subject to resource or time constraints during the implementation.

● Requirements 7 and 18 were categorised as Must have, because clear and accessible

instructions are essential for users to effectively use the product and overcome

potential obstacles or challenges. By providing instructions in either a digital

repository or in print, the product ensures that users have multiple options to access

the necessary guidance, catering to different preferences and situations.

● Requirement 8 was categorised as Should have, since ensuring the safety and

preventing hazards is of foremost importance. Due to the nature of low-power

electronics however, the importance is recognised and encouraged but not strictly

necessary at this stage of the product.

● Requirements 9 and 11 were categorised as Should have, since the adherence to

industry standards and algorithms (through platforms like Edge Impulse) is desirable,

however it is important to remain flexible and compatible with a wide range of

systems.

● Requirement 10 was categorised as Could have, because establishing connections

between the presented concepts and real-life applications of TinyML is advantageous

for enhancing practical understanding and fostering tangible use cases. However,

while it is acknowledged, it may not be an essential aspect for the immediate

functionality or success of the product.

● Requirement 12 was categorised as Must have, since the affordability of the product

would determine the interest of the target group. As such, the price-point could

determine the overall success of the product.

● Requirement 13 was categorised as Must have, since the intended target audience are

specifically students with some programming experience.

● Requirement 14 was categorised as Should have, since a fun and engaging product

could lead to more interest in and subsequently more success for the product.

● Requirement 15 was categorised as Should have, because structure can enhance the

overall accessibility, comprehension and ease of learning for users, however it is not

considered a crucial part of the product.

30

● Requirement 16 was categorised as Must have, because ensuring that the product is

safe and ethical has the utmost importance for user well-being, legal compliance, and

underscores the fundamental responsibility of machine learning developers.

● Requirement 17 was categorised as Could have, since the demystification of the

common ‘black-box’ of machine learning might help some users conceptually,

however, it does not impact the product much.

● Requirement 19 was categorised as Could have, because the product does not represent

a final, marketable product and therefore does not have to rely upon aesthetics to sell.

Minimum Viable Product

After determining the stakeholders, learning goals and requirements, it is possible to define a

Minimum Viable Product (MVP) according to the must-have requirements. The MVP is an

implementation of the product which covers all necessary parameters to validate the

effectiveness of the product [54]. In the MVP description, the requirements are be noted by

their number, for example requirement 1 would be noted as (#1).

The MVP in this research is an educational kit on TinyML. The kit contains a microcontroller

development board as well as a (digital) publication with educational material on TinyML. The

microcontroller is custom design, since the price of conventional development boards capable

of handling TinyML tasks is high for the intended target group (#12). Additionally, the

construction of educational materials is easier if the designer has an intrinsic knowledge of the

hardware.

The educational material was structured accordingly:

● Introduction to the field of TinyML; including current applications (#1)

● Machine learning basics; inputs and outputs, perceptrons (#17)

● Machine learning basics 2; networks, prediction (#17)

● Machine learning intermediate; training, network structures (#17)

● Machine learning advanced; classification types, optimization (#17)

● TinyML libraries; Tensorflow Lite Micro

● TinyML platforms: Edge Impulse

● Applications; real life example applications (#1).

These contents could be included as chapters in a book or digital publication (#7). All chapters

should be accompanied by examples and projects that users can explore themselves (#4). The

users should be able to program examples using the knowledge gained from the material and

their prior programming experience (#3). To ensure the quality of materials, all content

should be based on leading and current literature and software (#1, 2). The material should

additionally contain insets on responsible and respectful Machine Learning development, as

well as ethical guidelines (#15). A rendition of the proposed TinyML educational kit can be

seen in Figure 3.

31

Figure 3: Rendition of the proposed TinyML educational kit.

32

5 Realisation

To properly evaluate the effects of tangible learning systems, combined with the requirements

from Chapter 4, it was decided to design an educational kit, called TinySpark. The kit includes

a development board and online platform for instructions, as described in previous chapters.

As could be seen in the background research, there are already numerous development boards

marketed as TinyML capable, as well as platforms that teach TinyML. However as discussed in

Chapter 4, there are some valid points of improvement in terms of price, sensor integration,

level of required pre-knowledge and non-proprietary of platforms.

Development Board

Price and sensor integration could be influenced during the design of the development board.

Through careful component selection, the component price can be kept low, and the sensors

that are integrated into the development board determine its capabilities.

After careful recall of the discovered requirements in the comparison of TinyML ready

development boards, the main microcontroller chip was chosen. The requirements call for a

chip that has a fast clock frequency as well as ample storage capacity. Additionally, it is

beneficial to have many interfacing options such as Inter-Integrated Circuit (I2C), USB, Serial

Peripheral Interface (SPI), Analog as well as Digital interfaces. Due to the ongoing chip

shortage [55], it was also important to choose a chip that is widely available.

The decision was made to select a ESP32-S3 chip from Espressif [56]. The chip features two

fast processing cores, high-speed storage options and broad selection of peripheral interfaces.

In addition to this, the chip features a multitude of expansion options for future development,

including Wi-Fi and Bluetooth capabilities, and AI acceleration using the manufacturers’ own

software platform. Moreover, Espressifs chips are regarded as versatile and very cost-effective.

The features of the ESP32-S3 are recognised in the researchers’ own positive experience with

this chip architecture.

For the selection of sensors, the criteria were similar; common interfacing options such as

I2C, as well as availability at a reasonable price. Because of the plethora of sensor options

available, sample projects that should be executable using the development board were

collected in the list below. Then, the selection was made to include as many sample projects as

possible with available and cost–effective sensors.

The following sample projects were considered:

● Logic gates using physical inputs and outputs

● Vibration and Fall detection using motion detection

● Gesture detection using motion detection

● Wake word detection using sound decoding

● Weather prediction using environmental factor analysis

● Game intelligence for snake using logic

● Morse-code decoding using timing analysis

● Plant health monitoring using environmental factor analysis

● Room occupancy detection using environmental and ambient factor analysis

● Driving behaviour analysis using motion detection

33

● Smart lighting control using ambient factor analysis

● Food quality analysis using environmental factor analysis

The following sensors were selected to be included on the development board:

● LSM6DS3TR-C inertial motion sensor

● ICS-43434 microphone

● APDS-9930 light and distance sensor

● BME-280 environmental sensor

● AH-49E hall effect sensor (magnetic)

● H638T-TR2 infrared receiver

Additionally, some additional inputs and outputs were added, such as two user-programmable

input buttons, one output LED and five addressable RGB LEDs. The connectivity to the

development board was managed by the ESP32-S3s internal USB peripheral, and it was

attached using an USB-C connector due to its widespread adoption. There were two more

external connectors added, one for connecting Stemma QT and Qwiic sensors16, and one for

connecting generic sensors using standard digital and analog peripherals. Lastly, some passive

components such as voltage regulators, capacitors and resistors were chosen. A full

breakdown of components including the final product cost can be found in Appendix I. The

final electronics schematics can be found below in Figure 4 and as a larger image in Appendix

II.

Figure 4: Development board electronics schematic.

16 Stemma QT and Qwiic are connection standards developed by Adafruit Ltd. and Sparkfun respectively.
They interface I2C connections through a proprietary connector, which is also implemented on the
development board.

34

After selection of components, a printed circuit board (PCB) was designed. For this,

considerations on the size and layout were explored in the PCB design software. Amongst

others, it was considered how the development kit would be used during learning. Because all

sensors and connectors are on-board of the PCB, the form factor was chosen to be a square,

with all inputs and outputs positioned around the edges, and the microcontroller chip at the

top (see Figure 5). All components are placed on the topside of the PCB, mostly in rows, to

make assembly easier. The circuit board was complemented with explanatory text, as well as

symbols depicting each sensors’ main capability (e.g. a magnet symbol for the hall effect

sensor).

Figure 5: Development board, PCB layout.

After finalising the design of the circuit boards, they were put into production and the

required components were ordered. Later, the PCBs were assembled by hand (due to the low

volume), at home and in the SIL-EE lab at the University of Twente [57]. The circuit boards

were pasted with soldering paste, after which all components were placed using tweezers.

Lastly, the soldering paste was molten using a reflow oven. Some complications occurred with

the soldering of the USB-C connectors, which have several small-pitched pins. After manual

rework using a soldering station, all development boards were technically functional. Lastly, a

3D-printed base was made for each development board, to electrically isolate the underside of

the circuit board, as well as to give the development board some bulk and stop it from moving

around. See Figures 6 and 7 below for an impression of the finished development board.

35

Figure 6: The finished development board, including the 3D printed base.

Figure 7: Detail of the finished development board.

36

The last element to be finished for the development board was the software. As discussed in

Chapter 4 - MPV, it was important for the user to not require proprietary software to program

the development board. After evaluation of the different available programming languages

introduced in Chapter 2, CircuitPython was chosen for its ease of use and open ecosystem. The

language offers good support for the on-board sensors on the designed development board

and makes programming very easy for the end user through the USB functionality.

Additionally, the Python language is used as a basis for CircuitPython, meaning that anyone

with some experience with regular Python can quickly gain an understanding of the

programming language.

To use the CircuitPython language, it was necessary to build firmware for the

development board. The programming language requires the definition of all inputs and

outputs available on the board, as well as setting the correct chip version and build settings

such as processor frequency. It was also possible to include pre-made software libraries into

the firmware. This enables easier development, since no external inclusions are needed to

write software when the libraries are already internally stored. The custom firmware enables

users to easily interface with all components on the development board and makes explaining

of its functions clear. After the configuration was done, the firmware had to be built inside of a

Linux virtual computer. The Adafruit build guide [58] was of major help. However, the Linux

system as well as the code needed to be altered to make sure the firmware was compiled

correctly. The firmware then needed to be installed on the development boards. This required

some additional steps to properly configure the microcontrollers storage and registers. After

this however, users could easily upload their own code to the development board, through the

built-in USB-C connection.

For all but one sensor, software libraries were already pre-programmed. However, for the

APDS9930 distance and light sensor, no CircuitPython-specific library was available. Due to

this, a software library was developed for this sensor [59], including all functions and settings

from the sensor. The library was written with the help of existing libraries from Adafruit as

well as the datasheet for the respective sensor.

To evaluate all functionality, as well as provide reference code for the online platform,

example code for every sensor, input and output was written. All five produced development

boards were successfully tested and ready for evaluation by the test participants.

Online Platform

After a brief evaluation of all options for the delivery of learning materials and instructions,

such as paper-based, a book or online, an online platform was chosen. Having material online

means that additions and edits can be easily implemented where needed, code can be tested

directly online and concepts can be explained using interactive visualisations. In addition to

this, material is also conveniently accessible and can be adapted to different languages or

teaching methods easily.

There is a plethora of available online platforms for hosting information or learning

material. A selection of platforms was analysed in the Background Research in Chapter 2, after

which the final platform was chosen. This was GitHub Pages [60] in combination with the

static website template system MkDocs, and the graphic layer Material. The combination was

picked for its simple setup, modern look and feel, as well as range of possibilities for

37

integration with code plugins, mathematical notation systems and interactive elements. The

integration with Github was furthermore especially useful, since all standard version control

systems could now be used for easy synchronisation and error tracing.

Initially, the platform was set up as a placeholder, including a page which contained all

sorts of useful pre-made structures, code-blocks, images and notations. This page was

extensively used throughout the development of the online platform as a quick reference to

the various options of the chosen platform.

Then, the chapter structure of the learning material was selected, based on research on

TinyML conducted in Chapter 2 and the requirements from Chapter 4. This structure can be

seen in Table 4 below. Please note however that it was changed over the course of writing the

educational material due to time constraints, this change is discussed in Chapter 7.

Chapter 1 - Introduction to neurons

Chapter 2 - Introduction to networks

Chapter 3 - Introduction to training

Chapter 4 - Larger models and input shaping

Chapter 5 - Optimization, compression and more projects

Table 4: Initial chapter structure of the online material.

To explain the underlying mathematics of various topics, a plugin was used to properly display

mathematical formulas on the online platform. The MathJax library enables the use of LaTeX

mathematical notation to render formatted formulas in every browser. Additionally,

interactive elements were coded using the P5.js programming language. The P5.js framework

allows easy graphical program making, using standard website elements such as sliders and

frames.

While composing the learning material, it became apparent that it would be beneficial to

include code right into the online platform. This would make for easy lookup of functions and

enables users to quickly copy or change code. To facilitate this, all Python code used in the

learning material is on Google Colaboratory, an online coding platform that can run Python

programs directly in the browser. All CircuitPython code is hosted alongside the educational

material on Github, since it cannot be run directly in the browser. The code is displayed inside

of code blocks in the online platform, this is shown in Figure 8.

38

Figure 8: Python code from Google Colaboratory displayed on the online platform.

For each of the chapters of the online platform, an engaging example as well as a mini project

was composed to keep the material interesting and engaging. This also ensures that the user

can utilise the development board for their own applications, because they would gain

familiarity with it during the learning process.

Due to time constraints, the chapter structure of the learning material was truncated at

chapter 3. Although the following chapters would have contained interesting and relevant

information, it was decided in consultation with the thesis supervisors to limit the amount of

writing. This decision made it possible to focus more on the three main chapters. The content

from chapters 4 and 5 was not lost however, as it was partially added to the recommended

readings at the end of the online material. Additionally, possible further project ideas were

also added, to stimulate users to implement some more applications on their own.

A precursory section of the online platform focuses on explaining the development board

itself. Although it is assumed that users of the online platform have some prior experience

with programming and development boards / embedded programming such as Arduino, the

development board has some interesting and complex sensors and functions which need to be

explained. The section was called ‘Get started’ hinting to the user that this would be the first

point of contact with the material and development board. The section does not only include

pointers and relevant information on the sensors of the development board, but also on

programming and the workings of the online platform.

Lastly, the media on the online platform, including graphics and pictures, were unified in

their styling according to a common colour scheme, to match the modern look and feel of the

platform. Where possible, interactive elements such as neural network simulations were

added to clarify concepts of the learning material. After the last chapter, a section was added

that contained links to further learning material, machine learning frameworks and more

mini-project ideas.

The online platform is currently available at

https://web.archive.org/web/20230624094219/https://j-siderius.github.io/TinySpark/

(Archived June 2023). Some impressions of the TinySpark platform can be found in Figures 9,

10 and 11.

https://web.archive.org/web/20230624094219/https:/j-siderius.github.io/TinySpark/

39

Figure 9: Landing page of the online platform.

Figure 10: Excerpt from the first chapter of the online platform.

40

Figure 11: Example project and code on the online platform.

Educational Kit - TinySpark

Subsequently, the educational kit TinySpark was assembled. It comprises the development

board, a USB-C cable and a quick-start guide (see Figure 12 below). The quick start guide gives

an overview of the development board, including the sensors and connectors. Furthermore it

links to the online learning platform that was presented in the previous section. The kit was

packaged in a cardboard box and packing paper, to keep the packaging small and easy to

open.

Figure 12: The educational kit TinySpark and its contents.

41

Testing

To evaluate the product, it was decided to perform qualitative user experience testing using a

small pool of test participants. The testing procedure was designed to get a realistic

impression of participants’ interaction with the development board as well as the online

learning platform.

Any user testing requires approval from the University of Twente Ethics Committee. To

get a positive approval, all facets of ethics related to the user testing, such as personal data,

recording methods, testing activities, burdens and risks, needed to be evaluated.

Subsequently, a testing plan was drawn up and user information brochures as well as consent

forms were created (see Appendices III and IV).

Because of the limited number of educational kits as well as available testing time, the

number of participants evaluating the product would be restricted. In qualitative research

participant selection is purposeful. In this product testing, only participants with some

experience in programming were chosen to obtain valuable insight into possible

improvements of the kit and (tangible) learning methods. However, the participants were not

selected on their knowledge of (Tiny) Machine Learning.

Participants in the user experience testing received an educational kit and were asked to

perform tasks involving the learning materials and development board. All needed

information could be found on the online platform.

After the actual testing phase, the participants were invited to a semi-structured interview to

analyse their experiences with the TinySpark kit. The interview questions can be found in

Appendix V. First, an overview of the background knowledge of the participants on relevant

topics was established. Then, the participants responded to questions about the development

board, the online platform and the educational kit. Lastly, the participants were asked about

the overall user experience, including improvements to the material or development board.

The interview questions were structured to maximise insight into the research questions

posed in this research. Questions on the educational material incorporated in the online

platform try to establish if the participants were able to comprehend and learn about complex

topics as (Tiny)Machine learning. The participants were asked if the development board

which applies hands-on learning had added value. Moreover, information was gathered on the

effectiveness of adding tangibility and project-based learning. Furthermore, the questions

about user experience gave insight into the level of engagement of the participants, and

information on (dis-)advantages of the educational kit in comparison to literature or other

online courses about TinyML.

42

6 Evaluation

In this chapter, the effectiveness and usability of the educational kit TinySpark that was

developed during this research was thoroughly examined and assessed. The primary objective

was to verify if the product covers the requirements and learning goals introduced in Chapter

4 - MVP Development. Additionally, the product will be assessed according to the Honeycomb

UX evaluation framework laid out in Chapter 3 - Method. This chapter provides an in-depth

analysis of the user testing outcome and presents the key findings derived from their

experiences.

User testing

The interview after the user experience testing was split into multiple sections, as can be seen

in Appendix V.

The initial impressions of the educational kit TinySpark as well as the response to the

online learning platform were very positive. Several participants mentioned that the

development board and packaging looked very professional and well-designed. Participants

enjoyed the easy navigation around the online platform, as well as the clear descriptions.

Overall, the initial impression was that the educational kit would be “a very useful and

complete proof of concept to further develop” (Participant 2).

The learning material was evaluated next. The chapter explaining the concept of neurons

was regarded as simple or basic, but effective. One participant said that “the material was very

comprehensible, better than some [university] courses” (Participant 3). The second chapter,

explaining the basics of networks and structures, was perceived as more difficult. Some

participants did not understand the example presented here, however, the mathematics and

theory were explained well. The interactive visualisation was insightful to play with, yet

“impossible to solve [by hand], although I guess that is the point of machine learning”

(Participant 3). The third and final chapter was perceived as fun and interesting, because of its

more elaborate theory and examples. The material was “intuitive” and gave participants the

opportunity to “experiment with programming my own network” (Participants 1 and 2).

Next, the participants were asked if they thought the content of the learning material was

complete or should be complemented, several suggestions were made. One participant found

the example in the second chapter of the material to be “somewhat confusing” (Participant 1).

Another participant thought that adding “another chapter, with a more challenging project”

(Participant 2) could make the experience even more attractive.

Additionally, participants were asked about advantages and disadvantages of the online

learning platform. All participants mentioned that the interactive, online experience added to

their “motivation to learn and progress through the material.” Nevertheless, one suggestion

was to change the code platform from Google Colaboratory to an embedded system, because

“switching to an external code platform is cumbersome and breaks continuity” (Participant 1).

As defined in one of the requirements, participants were also asked about the impact of

the black-box that surrounds machine learning and the apparent ‘lifting’ of that box in the

learning material. Most participants found the chosen approach to “explain the complexities

of a neural network better [than closed approaches]” (Participant 2) and one even said that the

43

online material opened the way to a “faster transition into more complex systems for machine

learning” (Participant 3).

The development board that accompanied and aided the learning materials was also

assessed. Most participants found the board an asset to the experience, with the added benefit

that “all sensors are on-board and ready to use” (Participant 2). One participant, however,

mentioned that the development board was “not integrated and used sufficiently, with only

few projects” (Participant 1), although at the same time, the participant mentioned that it was

“fun to use”. When asked for their experience with the development board, all participants

commended the ease of installation using CircuitPython, one stating “I wish all products were

this easy to connect, just plug it in and it works” (Participant 3). On another note, two

participants did experience a sensor inconsistency or failure when using the distance sensor

and environmental sensor, respectively.

Last, the overall user experience was evaluated. Most participants found the experience to

be “motivating” and “great” (Participant 1), with an emphasis on the “strength [of combining]

theory and practice” (Participant 3). The online platform was “clean and modern” (Participant

2), which supported learning and made the experience “much better than [traditional]

lectures” (Participant 3). The self-paced character of the material is also attributed to its

engaging nature. Finally, most participants said that additional learning material on more

complex topics as well as more mini-projects would “extend and enhance” the product.

Honeycomb UX framework

The user experience test was not only qualitatively analysed, but also with the help of the

Honeycomb UX [51] framework that was introduced in Chapter 3 - Method. All seven aspects

of the framework are discussed through the synthesis of interview answers from participants.

Additionally, the analysis of the research gaps that were identified in Chapter 2 - Background

is considered.

The product should be useful.

According to several user test participants, the educational kit offers relevant and practical

knowledge regarding machine learning and TinyML. Additionally, the content was found to be

engaging and aligned well with the defined learning goals. The modern approach to learning

using an online platform which included interactivity added to this.

The product should be desirable.

The educational kit adds value to the learning experience concerning machine learning and

TinyML. It included interactive visualisations on the online platform and the product presents

theoretical concepts in accessible quantities according to participants. Furthermore, several

participants mentioned that the educational kit was very appealing, both aesthetically and

content wise. The kit motivated all participants to want to learn more.

44

The product should be accessible.

The educational kit presents the learning material in multiple ways, enabling various learning

styles, which the participants appreciated. The physical accessibility of the online platform

however leaves some room for adaptation. The pages are, for example, not particularly

suitable for colour blind people.

The product should be credible.

The kit provides accurate and up-to-date information on machine learning and TinyML.

Participants also recognised that there was a multitude of externally linked information

included, which gave them the opportunity to explore topics further and find relevant

additional information.

The product should be findable.

The development board included in the educational kit is accompanied by an extensive online

guide. Most participants found this to be very helpful, however, some pointed out that not all

sensors and peripherals of the development board were detailed enough. The navigation

options as well as the search functionality available on the online platform were appreciated

by all participants. Lastly, the chapter structure of the learning materials was found to be

logical and well structured.

The product should be usable.

As mentioned in the UX trait above, all participants appreciated the ease of navigation of the

online platform. Additionally, all participants were pleased with the connectivity and

programming interface of the development board. The information about the development

board available on the online platform however, was not always easily found by all

participants.

The product should be valuable.

All participants recognised the added value of practical applications that the development

board offered. Additionally, most participants responded positively to the interactive elements

present on the online platform. One participant commented that, with some minor additional

material, the product could be used as an educational tool.

The analysis of the Honeycomb UX framework indicates a positive overall user experience.

The kit was found to be useful, offering relevant and practical knowledge while aligning well

with the defined learning goals. Its desirability was evident, as participants expressed

enthusiasm and eagerness to learn more, appreciating the appealing aesthetics and consistent

presentation. Overall, the evaluation highlights the strengths and areas for improvement,

providing valuable insights for further enhancing the user experience of the educational kit for

learning TinyML. The discussion of areas of improvement can be found in Chapter 7-

Discussion and Recommendations.

45

Learning Goals

The learning goals were evaluated by synthesising interview answers from the user testing

participants. During the interviews, specific questions regarding the three main topics of

learning were asked, and additional observations are derived from the interview answers. The

observations are noted in the Notes section of the evaluation Table 5.

Learning goal Notes Achieved

1. The user understands the basic

functionality of a neuron in a neural

network.

All participants mentioned that the

functionality of a neuron was

properly explained and that the

accompanying mathematics were

understandable.

Yes

2. The user understands the basic

network structure of a neural network,

including the interconnectivity of

neurons.

Several participants mentioned that

the principles of the network

structure were explained well and

that the accompanying mathematics

were understandable.

Yes

3. The user understands the training

algorithm used to tune a simple neural

network.

Several participants mentioned that

the training algorithm was made

very clear by inclusion of the mini-

projects, and that the accompanying

mathematics were understandable.

Yes

4. The user understands the inner

workings of a neural network.

All participants mentioned that their

understanding of neural networks

increased, and that they could

explain the structures within neural

networks.

Yes

5. The user can model the mathematics

needed for calculating the prediction

and training of a neural network.

All participants mentioned that their

understanding of neural networks

increased, and that they could

explain the mathematics needed for

predictions within neural networks.

Yes

6. The user can implement a neural

network in a programming language.

All participants implemented

multiple (small) neural networks

using the provided code examples in

the Python programming language.

Yes

46

7. The user can deploy a simple neural

network to an edge device.

All participants deployed multiple

(small) neural networks to the

educational kit development board.

Yes

8. The user can develop and deploy a

neural network based on sensor

input(s) independently.

Untested. No

Table 5: Learning goals evaluation using the user testing interviews.

The evaluation of the learning goals demonstrates that all but one of the learning goals were

adequately met in the educational material. Participants expressed a clear comprehension of

the main theoretical concepts and were able to implement neural networks using the Python

programming language. In addition, they successfully deployed neural networks to the

educational kit development board, highlighting practical application on an edge device.

While the independent development and deployment of a neural network based on sensor

input remains untested due to time constraints, the evaluation highlights the educational kit's

effectiveness in delivering comprehensive knowledge and practical skills in the field of

TinyML.

Requirements

The evaluation of the functional requirements was performed after the product was fully

finished and actively being tested by the user experience test participants. The testing of

functional requirements was performed by either observing or measuring the product, or by

evaluating the material on the online platform. The testing method is described in the Notes

section of the evaluation Table 6. The requirements are ordered according to the MoSCoW

method as stated in MVP Development in Chapter 4.

Requirement Notes Achieved

MoSCoW: Must have

1. The content on TinyML that is included

in the product is up-to-date.

Compared to recent literature the

material is up-to-date.

Yes

2. The content on TinyML that is included

in the product is accurate.

Compared to popular literature,

the material is accurate.

Yes

3. The content of the learning material

covers the described learning goals.

See the learning goal evaluation

above for more details.

Yes

4. Users of the product can design TinyML

applications on their own after learning

techniques using the product.

The development board includes

more on-board sensors and

expansion options.

Yes

47

7. The instructions in the product are

distributed in either a digital repository or

in print.

The materials are available

online.

Yes

12. The product should be affordable for

the intended target audience. The target

price is below the average development

board price as found in the Background

Research - Chapter 2, €60.

The total (material) cost of the

educational kit is €21.15. (See

Appendix I)

Yes

MoSCoW: Should have

5. The product uses a mainstream

programming language such as Python,

Java or C++.

The product is programmed in

Python and CircuitPython.

Yes

8. The hardware included in the product

follows all electrical safety guidelines.

All hardware components were

integrated using their provided

and relevant design

considerations. However, the

development board was not

subjected to an official electrical

safety inspection.

Partially

9. The software used in the product is in

line with the industry standards for

software in TinyML.

The educational kit uses Python,

which is one of the main

languages in machine learning.

Partially

11. The algorithms used in the product

should not rely fully on platforms such as

Edge Impulse.

The algorithms used in the

educational kit are completely

coded from scratch, using only

built-in Python libraries.

Yes

MoSCoW: Could have

6. The product provides all necessary

components to test and build various

TinyML applications.

The development board contains

many on-board sensors and has

expansion options.

Yes

10. The product links presented concepts to

real life applications of TinyML.

All mini-projects included in the

learning material represent a real-

life application of TinyML.

Yes

Table 6: Functional requirement evaluation according to the MoSCoW method.

48

The analysis of functional requirements shows that most of the requirements for the product

have been achieved. While some requirements were partially met, the evaluation highlights

the educational kit's strong alignment with functional needs, positioning it as a valuable

resource for learning TinyML.

The non-functional requirements were evaluated through the synthesis of interview

answers from user experience test participants. The observations are described in the Notes

section of the evaluation Table 7. The requirements are again ordered according to the

MoSCoW method as stated in MVP Development in Chapter 4.

Requirement Notes Achieved

MoSCoW: Must have

13. The product is suitable for students

with an application level knowledge of

programming.

Several participants mentioned

that the required programming

knowledge was very minimal and

accessible.

Yes

16. Applications that are made by using

(components of) the product are safe and

ethical.

Participants mentioned the

inherent safety of the

development board, with its

built-in error handling. Ethics of

the product were not discussed by

the participants.

Partially

18. The product supports multiple learning

styles.

Several participants mentioned

that they liked the variety in

explanation and experiments, for

example the complex

mathematics were supported by

interactive visualisations.

Yes

MoSCoW: Should have

14. The product is fun and engaging to use. All participants mentioned it was

fun to use the educational kit,

and that they were engaged in the

content.

Yes

15. The information presented in the

contents of the product is divided into

manageable parts.

Several participants mentioned

that the division into chapters

and sections helped oversee the

different aspects of the learning

material.

Yes

49

MoSCoW: Could have

17. Machine learning is explained in a way

which demystifies the common black-box

principles.

All participants mentioned that it

is best to learn Machine Learning

without a black-box, which this

material supports.

Yes

19. The presentation of the product is

attractive and aesthetic.

All participants mentioned the

clean and professional look of

both the development board and

online platform.

Yes

Table 7: Non-functional requirement evaluation according to the MoSCoW method.

From the evaluation of the non-functional requirements, it becomes clear that most of the

drafted requirements were partially or fully implemented into the product. While some

requirements were partially achieved, overall, the evaluation demonstrates the educational

kit's effectiveness in addressing non-functional aspects and delivering an engaging and

comprehensive learning experience.

50

7 Discussion and Recommendations

During the background research, design of the product, as well as the user testing, some

problems were identified. Many of these were resolved during the design process and user

experience testing. Nevertheless, it is important to recognize the boundaries and limitations of

this research.

Background Research

Tangible educational methods were one of the explored topics of the literature review. It is

important to note that the background research identified many different tangible methods,

however, not all could be included in the background research due to the scope of work. The

selection was based on the most relevant published work, meaning that less universally

adopted, but valid and meaningful methods were disregarded.

Another facet of the background research was TinyML development boards. Due to the

vastness of the electronics industry, it was only possible to index boards featured on popular

marketplaces such as Adafruit and Digikey. However, this could mean that development

boards built by less well-known companies and only sold in specialty stores might have been

excluded from the overview. It is also important to note that development boards only tell a

story of convenience, as there are many hundreds (or even thousands) of additional

microcontroller chips available on the market. These chips might be purpose built for

applications including machine learning, but due to their specific target audience or device,

they are not broadly and conveniently available on development boards.

Lastly, in the evaluation of educational material available for TinyML, the exploration was

limited to easily accessible and free teaching materials. Although general principles and

techniques are covered, it is possible that there is more material available about this topic that

might be enclosed in paid courses or even university and college courses. These were not

included because of cost and time constraints.

Product - Educational Kit TinySpark

As discussed before, most of the design decisions regarding component selection for the

development board were made based on availability and partly guided by the preference of the

researcher. There were two points of attention for the selection of on-board sensors. The

chosen microphone type (Inter Integrated Sound, I2S) was later found to not be compatible

with the chosen programming language, CircuitPython. While there is active development on

the integration of this type of microphone, there was no working integration at the moment of

firmware compilation. Secondly, the chosen light and distance sensor had an inadequate

performance during the measurement of distance. The sensor is originally designed for use in

hand detection, in devices such as soap dispensers. Due to this, the distance sensing abilities

are not as accurate as expected.

Next, the chosen online platform has some compromises. While the modern look and feel

of the website certainly contribute to legibility and understanding, it can also decrease

accessibility for people with disabilities. The main colour scheme as well as some diagrams are

less suitable for people with colour blindness or reduced vision.

51

The coding platform itself, Google Colaboratory, reduces accessibility as a Google account

is needed to evaluate code. In addition to this, the user also needs to leave the online platform

to go to the Colaboratory code page to evaluate and change code.

Due to time constraints, two chapters in the learning material were excluded in the final

product. The respective chapters would have covered larger models and input shaping and

Optimization and compression, respectively. The first topic would have enabled users of the

educational material to expand their gained theoretical knowledge into more extensive and

capable prediction models. The second topic could give users the tools to employ more

extensive machine learning models on their development board, through optimisation.

Although these are both interesting and relevant subjects that need to be explored in future

research, the core knowledge on (Tiny) machine learning was still adequately covered in the

first three chapters.

The last observation concerns the use of teaching methods incorporated in the online

learning platform. There was a lot of background research conducted on the most effective

teaching methods in Chapter 2. During the writing of the learning material, the most

important pointers of the findings were certainly included. However, all material could have

been checked against the most important findings again, to ensure compliance with these

guidelines.

Testing

The UX testing measured and assessed user satisfaction, user interaction and ease of use of the

TinySpark development board as well as the online learning platform. The testing was

conducted with a small number of participants. While this limits the number of responses

gained from the user test, as one would get from quantitative testing, the qualitative approach

meant that the results were expansive and insightful. Furthermore, due to the free and

unsupervised exploration of the product that was given to the test participants, they were able

to gather detailed observations on all aspects of the product. While the real-world settings

where the product was evaluated were variable and somewhat uncontrolled, the observations

were more natural and comprehensive. The semi-structured interviews allowed for more

flexibility in participants’ answers and comments.

Future recommendations

There are four elements that are interesting to consider for further research and testing. They

concern extended background research, product alterations, learning material and testing

development.

In the background research, tangible learning was one of the main pillars. One potential

oversight was the inclusion of mainly popular teaching methods. In future research, it would

be interesting to include different educational approaches, such as cooperative learning.

Another valuable source of information that could not be included in this background

research due to time constraints is the well-regarded book Mindstorms by Seymour Papert

[61]. The author worked extensively on researching “learning theories” and has received praise

for the inclusion of novel technologies into his teaching models.

52

The development board could also be altered. One of the chosen sensors, the microphone,

could not be used fully due to software incompatibility. In addition, the included distance

sensor was perceived as somewhat hard to work with. With more elaborate component

selection and testing, a new revision of the development board could be produced. This could

improve the overall quality of the experience users have with the educational kit.

As already mentioned in this chapter, some sections of the online learning material were

excluded. Although the proposed topics were not of highest importance to gain a basic

understanding of (Tiny) machine learning, they would have added valuable information. The

whole learning experience might become more rounded, since important concepts for the

expansion of machine learning models are discussed here. Additionally, the information

contained in these chapters could enable users to explore more interesting applications using

the development board.

Finally, the user experience testing of the current educational kit TinySpark could be

extended. Even if the number of participants of the current user experience test is relatively

small, valuable insights into their experiences and behaviour and the usability of the product

have been gained. If the user experience testing would be expanded and the number of

participants increased, quantitative data could be analysed to further support the findings and

in-depth insight of this user experience test. Additionally, it would be recommendable to

choose participants from different backgrounds for testing. For example, it would be good to

include people without extensive programming knowledge. By doing this, the evaluation

would be conducted on many different levels of understanding and pre-existing knowledge,

which could further expose possible unaccounted facets of the learning material and

development board.

53

8 Conclusion

TinyML is an interesting and fast-growing field of AI. The technology offers many useful

opportunities for numerous industry sectors as well as consumer products. As shown in the

State-of-the-Art research, there exist very little learning materials covering TinyML. In a

society that is adopting AI to an increasingly impactful extent, it should be obvious that the

engineers of the future must have enough knowledge on the topic, to make better decisions.

Research into educational methods has shown that adding tangible aspects to learning

materials enriches the obtained knowledge and increases engagement. Project based learning

was also identified as being effective in gaining deep understanding of subject matter and

developing problem-solving skills. By incorporating tangible and project-based learning in

educational methods, the learning process empowers students to master complex topics like

TinyML (Sub Research Question 1).

To test the hypothesis that tangible learning would benefit students, an educational kit

was developed and produced. The TinySpark kit and accompanying online platform provide

easy opportunities for learning and interaction with real world contexts. The educational kit

offers great interactivity and user experience testing shows that the kit is a valuable addition

to the learning material.

The analysis of educational kits aimed at teaching complex topics to university students

revealed that the TinySpark kit not only met all the necessary requirements, but also proved to

be highly engaging, professional, user-friendly, comprehensible, and provided an excellent

foundation for learning TinyML. The positive outcomes from the user experience test validate

the suitability of these educational kits for effectively transferring knowledge and facilitating

comprehension of complex topics. With their engaging and accessible nature, these kits hold

significant potential for enhancing the teaching and learning experience in the field of TinyML

(Sub Research Question 2).

The overall conclusion is that this research demonstrates that educational kits and

project-based learning are highly effective in teaching students TinyML (Research Question).

The exploration of these approaches revealed multiple ways in which they can contribute to

the learning process, including enhancing engagement, promoting hands-on experience,

fostering problem-solving skills, and facilitating a deeper understanding of TinyML concepts.

The effectiveness of educational kits for teaching TinyML holds significant relevance

within the field of AI. Society is increasingly adopting AI technologies, prompting a heated

debate about AI as many people fear the role it may play in our future. Therefore it will be of

utmost importance to understand this new technology well. By showing the potential of

educational kits and project-based learning, this research offers valuable insights and practical

solutions for educators as well as the industry, enabling them to enhance the learning

experience and equip students with the necessary competencies in the rapidly evolving field of

TinyML.

It is evident that TinyML and related technologies are not going to slow down or

disappear. Thus, as educators, researchers, and policymakers, it is crucial to incorporate

innovative approaches in educational materials regarding these technologies. By doing so, it is

possible to empower the current and future generations of learners to drive innovation even

further and make a positive contribution to our future.

54

References

[1] ‘Machine learning education’, TensorFlow. https://www.tensorflow.org/resources/learn-ml

(accessed Mar. 17, 2023).

[2] ‘The developer-first edge ML platform’, Edge Impulse.

https://www.edgeimpulse.com/product (accessed Mar. 17, 2023).

[3] P. Armstrong, ‘Bloom’s Taxonomy’, Vanderbilt University, 2010.

https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/ (accessed Mar. 17, 2023).

[4] K. Peppler, The SAGE Encyclopedia of Out-of-School Learning, 2 vols. Thousand Oaks,,

California, 2017. doi: 10.4135/9781483385198.

[5] M. S. Horn, R. J. Crouser, and M. U. Bers, ‘Tangible interaction and learning: the case for a

hybrid approach’, Pers. Ubiquitous Comput., vol. 16, no. 4, pp. 379–389, Apr. 2012, doi:

10.1007/s00779-011-0404-2.

[6] S. Price, Y. Rogers, M. Scaife, D. Stanton, and H. Neale, ‘Using “tangibles” to promote novel

forms of playful learning’, Interact. Comput., vol. 15, no. 2, pp. 169–185, Apr. 2003, doi:

10.1016/S0953-5438(03)00006-7.

[7] S. Matthews, S. Viller, and M. A. Boden, ‘“... and we are the creators!” Technologies as

Creative Material’, in Proceedings of the Fourteenth International Conference on Tangible,

Embedded, and Embodied Interaction, in TEI ’20. New York, NY, USA: Association for

Computing Machinery, Feb. 2020, pp. 511–518. doi: 10.1145/3374920.3374980.

[8] M. Resnick and B. Silverman, ‘Some reflections on designing construction kits for kids’, in

Proceedings of the 2005 conference on Interaction design and children, Boulder Colorado: ACM,

Jun. 2005, pp. 117–122. doi: 10.1145/1109540.1109556.

[9] T. Bekker, S. Bakker, I. Douma, J. Van Der Poel, and K. Scheltenaar, ‘Teaching children

digital literacy through design-based learning with digital toolkits in schools’, Int. J. Child-

Comput. Interact., vol. 5, pp. 29–38, Sep. 2015, doi: 10.1016/j.ijcci.2015.12.001.

[10] G. Jones, L. Robertson, G. E. Gardner, S. Dotger, and M. R. Blanchard, ‘Differential Use

of Elementary Science Kits’, Int. J. Sci. Educ., vol. 34, no. 15, pp. 2371–2391, Oct. 2012, doi:

10.1080/09500693.2011.602755.

[11] D. Stanton et al., ‘Classroom collaboration in the design of tangible interfaces for

storytelling’, in Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, Seattle Washington USA: ACM, Mar. 2001, pp. 482–489. doi: 10.1145/365024.365322.

[12] P. Marshall, ‘Do tangible interfaces enhance learning?’, in Proceedings of the 1st

international conference on Tangible and embedded interaction, Baton Rouge Louisiana: ACM,

Feb. 2007, pp. 163–170. doi: 10.1145/1226969.1227004.

[13] O. Zuckerman, S. Arida, and M. Resnick, ‘Extending tangible interfaces for education:

digital montessori-inspired manipulatives’, in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, Portland Oregon USA: ACM, Apr. 2005, pp. 859–868. doi:

10.1145/1054972.1055093.

[14] S. Somyürek, ‘An effective educational tool: construction kits for fun and meaningful

learning’, Int. J. Technol. Des. Educ., vol. 25, no. 1, pp. 25–41, Feb. 2015, doi: 10.1007/s10798-014-

9272-1.

[15] M. S. Horn, E. T. Solovey, R. J. Crouser, and R. J. K. Jacob, ‘Comparing the use of tangible

and graphical programming languages for informal science education’, in Proceedings of the

55

SIGCHI Conference on Human Factors in Computing Systems, Boston MA USA: ACM, Apr.

2009, pp. 975–984. doi: 10.1145/1518701.1518851.

[16] M. S. Horn, ‘Tangible Interaction and Cultural Forms: Supporting Learning in Informal

Environments’, J. Learn. Sci., vol. 27, no. 4, pp. 632–665, Oct. 2018, doi:

10.1080/10508406.2018.1468259.

[17] J. P. Oliver and F. Haim, ‘Lab at Home: Hardware Kits for a Digital Design Lab’, IEEE

Trans. Educ., vol. 52, no. 1, pp. 46–51, Feb. 2009, doi: 10.1109/TE.2008.917191.

[18] D. Dickerson, M. Clark, K. Dawkins, and C. Horne, ‘Using science kits to construct

content understandings in elementary schools’, J. Elem. Sci. Educ., vol. 18, no. 1, pp. 43–56, Oct.

2006, doi: 10.1007/BF03170653.

[19] W. S. McCulloch and W. Pitts, ‘A logical calculus of the ideas immanent in nervous

activity’, Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133, Dec. 1943, doi: 10.1007/BF02478259.

[20] A. M. Turing, ‘Computing Machinery and Intelligence’, Mind, vol. LIX, no. 236, pp. 433–

460, Oct. 1950, doi: 10.1093/mind/LIX.236.433.

[21] F. Rosenblatt, The Perceptron, a Perceiving and Recognizing Automaton Project Para. in

Report: Cornell Aeronautical Laboratory. Cornell Aeronautical Laboratory, 1957. [Online].

Available: https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf

[22] A. L. Samuel, ‘Some Studies in Machine Learning Using the Game of Checkers’, IBM J.

Res. Dev., vol. 3, no. 3, pp. 210–229, Jul. 1959, doi: 10.1147/rd.33.0210.

[23] T. Cover and P. Hart, ‘Nearest neighbour pattern classification’, IEEE Trans. Inf. Theory,

vol. 13, no. 1, pp. 21–27, Jan. 1967, doi: 10.1109/TIT.1967.1053964.

[24] H. P. Moravec, ‘Obstacle avoidance and navigation in the real world by a seeing robot

rover’, 1980. Accessed: Apr. 14, 2023. [Online]. Available:

https://www.ri.cmu.edu/pub_files/pub4/moravec_hans_1980_1/moravec_hans_1980_1.pdf

[25] T. Sejnowski and C. R. Rosenberg, ‘NETtalk: a parallel network that learns to read aloud’,

1988. Accessed: Apr. 14, 2023. [Online]. Available:

https://www.semanticscholar.org/paper/NETtalk%3A-a-parallel-network-that-learns-to-read-

Sejnowski-Rosenberg/406033f22b6a671b94bcbdfaf63070b7ce6f3e48

[26] B. Weber, ‘Swift and Slashing, Computer Topples Kasparov’, The New York Times, May

12, 1997. Accessed: Apr. 14, 2023. [Online]. Available:

https://www.nytimes.com/1997/05/12/nyregion/swift-and-slashing-computer-topples-

kasparov.html

[27] M. Hale, ‘Actors and Their Roles for $300, HAL? HAL!’, The New York Times, Feb. 08,

2011. Accessed: Apr. 10, 2023. [Online]. Available:

https://www.nytimes.com/2011/02/09/arts/television/09nova.html

[28] ‘AlphaGo: Mastering the ancient game of Go with Machine Learning’, Jan. 27, 2016.

https://ai.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html (accessed Apr.

10, 2023).

[29] ‘TensorFlow Core’, TensorFlow. https://www.tensorflow.org/overview (accessed Apr. 14,

2023).

[30] ‘PyTorch’. https://www.pytorch.org (accessed Apr. 14, 2023).

[31] ‘On-Device Machine Learning’, Google Developers.

https://developers.google.com/learn/topics/on-device-ml (accessed Apr. 14, 2023).

56

[32] S. Han, H. Mao, and W. J. Dally, ‘Deep Compression: Compressing Deep Neural

Networks with Pruning, Trained Quantization and Huffman Coding’, arXiv, Feb. 2016. doi:

10.48550/arXiv.1510.00149.

[33] ‘Global Microcontroller Market Size, Share & Trends Analysis Report 2021-2028 -

ResearchAndMarkets.com’, Oct. 13, 2021.

https://www.businesswire.com/news/home/20211013005793/en/Global-Microcontroller-

Market-Size-Share-Trends-Analysis-Report-2021-2028---ResearchAndMarkets.com (accessed

Apr. 14, 2023).

[34] ‘Amazon Echo Dot 5’, Amazon. https://www.amazon.com/dp/B09B8V1LZ3/ (accessed

Apr. 14, 2023).

[35] ‘Fitness Trackers | Shop Fitbit’. https://www.fitbit.com/global/nl/products/trackers

(accessed Apr. 14, 2023).

[36] J. Bier, ‘What’s Driving AI and Vision to the Edge’, EE Times Asia, Sep. 08, 2020.

https://www.eetasia.com/whats-driving-ai-and-vision-to-the-edge/ (accessed Apr. 14, 2023).

[37] A. Kumar, ‘Resource-efficient Machine Learning in 2 KB RAM for the Internet of Things’,

2017, [Online]. Available: https://www.microsoft.com/en-

us/research/uploads/prod/2017/06/kumar17.pdf

[38] D. A. Huffman, ‘A Method for the Construction of Minimum-Redundancy Codes’, Proc.

IRE, vol. 40, no. 9, pp. 1098–1101, Sep. 1952, doi: 10.1109/JRPROC.1952.273898.

[39] ‘TensorFlow Lite for Microcontrollers - Experiments with Google’.

https://experiments.withgoogle.com/collection/tfliteformicrocontrollers (accessed Apr. 11,

2023).

[40] ‘STM32 Microcontrollers (MCUs) - STMicroelectronics’.

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-

mcus.html (accessed Apr. 14, 2023).

[41] ‘X-CUBE-AI - AI expansion pack for STM32CubeMX - STMicroelectronics’.

https://www.st.com/en/embedded-software/x-cube-ai.html (accessed Apr. 14, 2023).

[42] ‘Arduino IDE software’, Arduino. https://www.arduino.cc/en/software (accessed Apr. 14,

2023).

[43] ‘Edge Impulse DSP and Inferencing SDK’. Edge Impulse, Apr. 12, 2023. Accessed: Apr. 14,

2023. [Online]. Available: https://github.com/edgeimpulse/inferencing-sdk-cpp

[44] E. Odunlade, ‘Top 10 Popular Microcontrollers Among Makers’, Electronics-Lab.com,

Jun. 19, 2020. https://www.electronics-lab.com/top-10-popular-microcontrollers-among-

makers/ (accessed Apr. 14, 2023).

[45] ‘Applications of TinyML | edX’. https://www.edx.org/course/applications-of-tinyml

(accessed Apr. 14, 2023).

[46] S. Mistry and D. Pajak, ‘Get Started With Machine Learning on Arduino | Arduino

Documentation | Arduino Documentation’, Arduino. https://docs.arduino.cc/tutorials/nano-

33-ble-sense/get-started-with-machine-learning (accessed Apr. 14, 2023).

[47] ‘Edge Impulse libraries’. https://docs.edgeimpulse.com/docs/deployment/running-your-

impulse-locally (accessed Jun. 23, 2023).

[48] ‘OpenMV MicroPython language reference’.

https://docs.openmv.io/reference/index.html (accessed Jun. 23, 2023).

[49] Adobe Communications Team, ‘Waterfall Methodology: Project Management’, Adobe,

Mar. 18, 2022. https://business.adobe.com/blog/basics/waterfall (accessed Apr. 16, 2023).

57

[50] Monday.com Team, ‘Waterfall Methodology’, Monday.com, Jan. 01, 2023.

https://monday.com/blog/project-management/waterfall-methodology/ (accessed Apr. 17,

2023).

[51] P. Morville, ‘User Experience Design - Honeycomb UX framework’, Semantic Studios,

Jun. 21, 2004. https://semanticstudios.com/user_experience_design/ (accessed Apr. 16, 2023).

[52] ‘A Guide to Functional Requirements’, Nuclino.

https://www.nuclino.com/articles/functional-requirements (accessed Apr. 17, 2023).

[53] DSDM Project Framework. DSDM Consortium, 2014. Accessed: Apr. 17, 2023. [Online].

Available: https://www.agilebusiness.org/dsdm-project-framework.html

[54] E. Ries, ‘Minimum Viable Product: a guide’, Startup Lessons Learned, Aug. 03, 2009.

https://www.startuplessonslearned.com/2009/08/minimum-viable-product-guide.html

(accessed Apr. 17, 2023).

[55] S. Deshpande, ‘Supply chain issues and autos: When will the chip shortage end?’, Apr.

18, 2023. https://www.jpmorgan.com/insights/current-events/supply-chain/supply-chain-

chip-shortage (accessed Jun. 24, 2023).

[56] ‘ESP32-S3 Wi-Fi & Bluetooth 5 (LE) MCU | Espressif Systems’.

https://www.espressif.com/en/products/socs/esp32-s3 (accessed Jun. 23, 2023).

[57] ‘SIL-EE lab information’, University of Twente. https://sil-ee.wiki.utwente.nl/ (accessed

Jun. 24, 2023).

[58] D. Halbert, ‘Building CircuitPython | Adafruit Learning System’, Adafruit, Jun. 02, 2023.

https://learn.adafruit.com/building-circuitpython/introduction (accessed Jun. 24, 2023).

[59] J. Siderius, ‘CircuitPython APDS9930 software library’. Jun. 07, 2023. Accessed: Jun. 24,

2023. [Online]. Available: https://github.com/j-siderius/CircuitPython_APDS9930

[60] ‘GitHub Pages’, GitHub Pages. https://pages.github.com/ (accessed Jun. 24, 2023).

[61] S. Papert, Mindstorms: children, computers, and powerful ideas, 2nd ed. New York: Basic

Books, 1993.

58

Appendices

Appendix I - Development board schematic

59

Appendix II - Information brochure

60

61

Appendix III - Consent form

62

63

Appendix IV - Interview questions

64

65

Appendix V - Educational Kit cost breakdown

Unit Price

Circuit board (unit price/qty 10) € 2.84

ESP32-S3-WROOM-1 N16R8 (unit price/qty 5) € 4.71

LSM6DS3TR-C (unit price/qty 10) € 1.34

ICS-43434 (unit price/qty 5) € 1.98

APDS-9930 (unit price/qty 10) € 0.87

BME-280 (unit price/qty 10) € 3.07

AH-49E (unit price/qty 50) € 0.10

H638T-TR2 (unit price/qty 10) € 0.83

Neopixels (WS2812B) (unit price/qty 100) € 0.19

Voltage regulators (unit price/qty 50) € 0.17

USB-C connector (unit price/qty 10) € 0.21

Stemma QT / Qwiic connector (unit price/qty 20) € 0.15

Expansion header (unit price/qty 10) € 0.19

LEDs (unit price/qty 100) € 0.10

Buttons (unit price/qty 50) € 0.13

Passive components (Resistors and Capacitors) (unit price/qty 1000) € 0.34

3D printed case € 0.25

Mounting hardware (unit price/qty 100) € 0.07

Soldering consumables € 0.50

USB-C cable € 1.99

Packaging and Printing (unit price/qty 10) € 1.12

Total/Educational Kit € 21.15

All components were purchased in the quantities as described. Shipping, handling and VAT

are included in the price. Assembly costs such as machine time, wear and tear, labour time are

not included in the price. All prices are accurate as of June 2023.

	Glossary
	1 Introduction
	2 Background
	Educational Methods
	Successful learning and teaching methods
	Effects of tangible learning
	Comparing teaching methods

	(Tiny) Machine Learning
	State of the Art
	TinyML Development Boards
	Tiny Machine Learning Educational Kits

	Product Research
	Development Board Programming Languages
	Online Platforms

	3 Method
	Product
	Evaluation

	4 MVP Development
	Stakeholder Identification
	Learning Goals
	Requirements
	Functional requirements
	Non-functional requirements

	MoSCoW Analysis
	Minimum Viable Product

	5 Realisation
	Development Board
	Online Platform
	Educational Kit - TinySpark
	Testing

	6 Evaluation
	User testing
	Honeycomb UX framework
	Learning Goals
	Requirements

	7 Discussion and Recommendations
	Background Research
	Product - Educational Kit TinySpark
	Testing
	Future recommendations

	8 Conclusion
	References
	Appendices
	Appendix I - Development board schematic
	Appendix II - Information brochure
	Appendix III - Consent form
	Appendix IV - Interview questions
	Appendix V - Educational Kit cost breakdown

