
1

Improving anycast census at scale
Remi Hendriks

Supervisor: prof.dr.ir. R.M. van Rijswijk - Deij
Supervisor: dr.ir. R. Sommese
Committee: dr. M.H. Everts

University of Twente, Enschede, the Netherlands
Faculty: Electrical Engineering, Mathematics, and Computer Science (EEMCS)

Chair: Design and Analysis of Communication Systems (DACS)
Contact: r.hendriks@student.utwente.nl

Abstract—Anycast, a crucial component of the Internet, en-
ables the sharing of a single IP address among geographically
distributed servers, playing a vital role in providing essential
services such as the Domain Name System (DNS). The wide
adoption of anycast can be attributed to its significant bene-
fits, particularly improved resilience. To better understand the
resilience of these essential Internet services, efforts have been
made to develop measuring tools capable of performing anycast
censuses. One of these, MAnycast2, uses an innovative approach
in which an anycast network is used to perform a census of
other anycast networks. While its results were promising, the
initial version of MAnycast2 had limitations. This work improves
the MAnycast2 measuring system, with the focus on facilitating
more accurate anycast censuses. The main contributions of the
new system include synchronous probing, support for TCP and
UDP probing, improved resource efficiency, and service-specific
DNS probing. Through multiple MAnycast2 measurements that
validate our approach, we demonstrate that these contributions
significantly enhance scalability, coverage, and accuracy in per-
forming anycast censuses.

Index Terms—Anycast, Verfploeter, MAnycast2, Internet, Mea-
surements, DNS, System design

I. INTRODUCTION

Anycast is the usage of a single address for multiple devices,
often geographically distributed. This is widely used by, for
example, content providers who want to satisfy client requests
from multiple locations to ensure low-latency responses and
perform load-balancing by distributing traffic over multiple
anycast sites. The most prominent service that often makes
use of anycast is the Domain Name System (DNS), which
translates a domain name to an IP address when an Internet
user connects to a website.

For evaluating the utility of individual anycast sites within
an anycast architecture, it is important to know the catchments
of these sites. The catchment of a site is the set of Internet
prefixes whose traffic gets routed to that particular site by
the Border Gateway Protocol (BGP), which inherently routes
packets to the ‘nearest‘ – in terms of BGP routing – anycast
site. Mapping these catchments is useful for site capacity
management and learning what would happen to the catchment
distribution in case of site outages or maintenance. Verf-
ploeter allows for finding these catchments [9], by sending out
ICMP/ping echo request probes from an anycast deployment
and registering at which sites the replies end up for the various
addresses.

Due to its importance in enhancing resilience, anycast use
is growing across the Internet. For this reason, the Verfploeter
technique has been repurposed for MAnycast2 [15], where
it was used to find anycast prefixes on the Internet. This
is achieved by probing targets from multiple Vantage Points
(VPs) using an anycast source address. In the case of the
target being also an anycast network, the probes will end up at
multiple anycast sites, and their replies will end up at multiple
VPs (the closest VP for each probed anycast site) as can be
seen in Figure 1.

This technique is very promising, however it has limitations
in its methodology based on the current measuring system. For
example, clients are probing sequentially which meant there is
a substantial time difference between the times that a probed
target will receive the probes from each VP. In this work
we intend on resolving these limitations by creating a new
measuring system.

Furthermore, we have set of new requirements that will
allow for improved MAnycast2 measurements. Firstly, we want
to extend the system with additional TCP and UDP probes to
perform MAnycast2 measurements using these protocols. This
will allow us to evaluate the responsiveness of anycast prefixes
to these protocols, potentially increasing discoverability as we
can now detect hosts that are unresponsive to ICMP/ping but
do respond to UDP/TCP. Additionally, it will enable service-

Fig. 1. MAnycast2 overview from the paper “MAnycast2 – Using Anycast
to Measure Anycast” [15].

2

specific probes that use TCP/UDP to gather more information
about anycast deployments. Secondly, we aim to make the
system easy to deploy regardless of the Virtual Machine (VM)
on which it is hosted, simplifying the deployment process.
Thirdly, we want the system to be resource efficient, enabling
deployment on VMs with limited hardware. This will make
costs more manageable by allowing deployment on ‘cheaper‘
VMs, while also reducing the burdden on these machines
during measurements. By achieving this, the measuring system
becomes more sustainable and scalable. Finally, we intend to
increase the robustness of the system to enable longitudinal
data collection, ensuring that the system can run for extended
periods of time.

Our research goal is to improve and extend the MAnycast2

measuring system, such that it can be used to perform more
accurate anycast censuses that provide a more detailed view
of the anycast landscape on the Internet.

This goal will be solved by answering the following research
questions:

1) What changes are necessary to enhance the measuring
system and address the limitations identified in the
original MAnycast2 measurements?

2) What additional features need to be implemented to
satisfy the additional system requirements?

3) To what degree did the implemented changes contribute
to the improvement the system?

To evaluate whether our new system has fulfilled our
research goal, and to answer our research questions, we will
perform a set of MAnycast2 measurements to validate the
system and quantify the value of the improvements.

II. BACKGROUND

This section provides the essential background required for
understanding the thesis, for a more detailed background see
Appendix A.

A. Anycast

As has been measured in the MAnycast2 paper [15], anycast
addresses make up at most 0.45% of the IPv4 range. Whilst
such a small percentage may give the impression that anycast
is insignificant, Internet users have a 50% chance to make
use of an anycast address during daily Internet activities
[11]. Anycast is used by content providers, content delivery
networks (CDNs), cloud providers, DNS operators, operators
of top- and second-level domains, and more to provide a large
variety of Internet services.

Unlike unicast, which means a host exclusively using a
unique IP address, anycast allows for multiple hosts to share
a single address. Then, clients who contact such an anycast
address get routed by the Border Gateway Protocol (BGP) to
the nearest (in terms of routing) anycast instance. In this work
we will infer whether /24 prefixes are anycast, since that is
the smallest prefix that gets propagated by conventional BGP
routers.

Anycast is desirable as it allows for geographic distribution
of a service such that it provides:

• Reduced latency - Anycast enables geographic distribu-
tion of a service, resulting in reduced latency for clients
by bringing content closer to them.

• Load-balancing - Anycast facilitates load-balancing by
spreading traffic among multiple anycast sites, thereby
distributing the burden and optimizing resource utiliza-
tion.

• Enhanced resilience - Anycast enhances resilience by
distributing traffic to multiple anycast sites based on
traffic origin, mitigating the impact of attacks and dis-
ruptions. By leveraging BGP announcements, anycast can
intelligently route traffic away from targeted sites, effec-
tively deflecting Distributed Denial of Service (DDoS)
attacks. Additionally, anycast architecture does not rely
on a single point of failure, meaning that the availability
of services remains partially intact even if a portion of
the anycast infrastructure is affected by an attack or other
issues.

• Reliability - Anycast ensures reliability by automatically
routing clients to the next-nearest anycast site when an
instance goes offline and its BGP announcements are
withdrawn.

• Localization - Anycast allows manipulation of BGP
announcements to limit visibility to select neighboring
Autonomous Systems, enabling localization of service
delivery.

• Horizontal scaling - Anycast provides a cost-effective
and efficient method for replicating a service on the
Internet, facilitating horizontal scaling.

Additionally, the possibilities and advantages of anycast have
been amplified by anycast systems like PIAS and OASIS
[1, 4], which allow for more fine-grained server selection
mechanisms.

B. Mapping an anycast infrastructure

Since the Internet is quite unpredictable when it comes
to routing, it is difficult for anycast operators to fine tune
their deployments, e.g., for obtaining good load-balancing
for DDoS attack mitigation. Furthermore, Internet routing is
dynamic, which causes catchments of anycast sites (i.e., the set
of clients who get routed to each anycast site) to be variable
[3].

For these reasons, Verfploeter was developed as a state-of-
the-art anycast measuring system for obtaining the catchments
of an anycast deployment [9]. These catchments, combined
with traffic history, can then be used, for example, to predict
future load and determine the operational value of an anycast
instance.

Unlike other anycast measuring techniques which probe an
anycast infrastructure using a set of external vantage points
that are controlled by the researcher, Verfploeter makes use
of the devices on the public Internet by sending out ICMP
requests and analysing the received ICMP responses, as visu-
alized in Figure 2. This allows Verfploeter to utilize millions
of devices, rather than a limited amount of vantage points.
Furthermore, it provides coverage in areas where obtaining
vantage points can be difficult, assuming the distribution

3

Fig. 2. How Verfploeter uses ICMP-responsive hosts on the Internet to map
anycast catchments, compared to traditional techniques using RIPE Atlas from
the paper “Broad and Load-Aware Anycast Mapping with Verfploeter” [9].

of ICMP-responsive hosts to be mostly unbiased. For these
reasons, Verfploeter is able to achieve higher resolution data.

Verfploeter works by sending ICMP Echo Requests to
ICMP-responsive hosts on the Internet using the anycast
source address. These hosts will then send a reply to the
anycast address, which will be routed by BGP to the “nearest”
anycast site. The catchments are then derived by looking at the
source addresses of the replies received at each anycast site.
This probing technique has been used for planning the B-Root
domain name server and for measuring Cloudflare’s anycast
CDN [17]. Since Verfploeter uses the Internet itself to perform
measurements, it is a low-cost solution to measuring anycast,
unlike most other catchment measuring tools that require a
large number of vantage points and generate far more traffic.

C. iGreedy

As mentioned, anycast is often used on the Internet to
provide critical services such as the DNS and is employed by
large content providers like Google and Amazon. This makes
anycast a crucial component of the the Internet, and for good
reason as it improves the resilience of a service. Therefore,
to understand the resilience of the Internet as a whole, it is
important to gather data on the usage of anycast. In this work,
we utilize two methods to externally measure anycast. The
first technique we employ is iGreedy.

iGreedy was introduced in 2015 by Cicalese et al. as an
enumeration and geolocation method for anycast. It is based on
the Great-Circle Distance (GCD) technique, which leverages

Fig. 3. The iterative workflow for the iGreedy method, from the paper “A fist-
ful of pings: Accurate and lightweight anycast enumeration and geolocation”
[7].

the speed of light to determine the maximum geographical
distance travelled by an Internet packet [7].

This method represents one the first works on anycast that
is not limited to the DNS. It is a service-agnostic methodol-
ogy that enables anycast service discovery. Moreover, it can
accurately enumerate and geolocate anycast replicas at city-
level, provided that there are enough VPs, by relying solely
on latency measurements.

Using speed-of-light constraints, they determine the maxi-
mum distance between a vantage point and an anycast replica
based on measured latency. Using this, and the GCD tech-
nique, they then draw circles around multiple VPs. Next, they
enumerate the minimum number of anycast instances required
to ensure that there is at least one anycast instance within each
circle (a single anycast instance can satisfy multiple circles
when they overlap). Geolocation is then accomplished by
examining the cities where anycast instances may be located
and making predictions based on the population of these cities.
This workflow is repeated iteratively to identify the most
probable geolocations and estimate the expected number of
anycast nodes. Figure 3 illustrates their iterative workflow. To
validate their methodology, they compare their results with
ground truths obtained from DNS root servers that disclosed
their deployments. They also validate their approach using
DNS CHAOS queries. The study achieved a recall rate of
50% recall and city-level geolocation accuracy of 78%.

D. MAnycast2

The second technique we utilize is MAnycast2, developed
by Sommese et al. [15]. It makes use of Verfploeter, combined
with a set of geographically distributed anycast nodes provided
by the Tangled anycast testbed [18], to identify anycast pre-
fixes on the Internet.

As mentioned, Verfploeter probes addresses on the Internet
using an anycast probing system. In the case of MAnycast2,
these probes are sent from every individual anycast vantage
point. Under normal circumstances, when a probed address
is unicast, there is a single device behind that address, which
receives a probe from every anycast node. Each of these probes
generates a reply, which is directed to the nearest anycast
instance. This means, that in the case of the probed address
being unicast, all its replies will end up at the nearest VP that
uses this shared anycast address.

However, if the probed target is also anycast, the requests
from the VPs will reach different destination nodes that share

4

the same destination anycast address. Consequently, each of
these destination nodes that receives the ICMP Echo Request
will generate a reply, which will be routed to that node’s
nearest VP. This means that multiple VPs will receive replies
in the case of an anycast target.
Therefore, all responses being received by a single VP im-
plies that the destination address was unicast. Conversely, if
responses are received by mutliple VPs, it indicates that the
destination address is anycast. Figure 1 illustrates this core
principle and showcases both cases.

However, there are corner cases where this principle fails.
• False negatives - An anycast address can be mistaken

as unicast when all anycast replies are routed to a single
VP. This can happen when the anycast system is deployed
regionally and there is only a single VP in that region.

• False positives - A unicast address may be mistaken for
anycast when the unicast replies are received by multiple
VPs. This is no rare occurrence and happens due to
dynamic routing in the Internet. For instance, if a unicast
address is located in the “middle” of two VPs, such that
BGP has a path to both VPs of near-equal length, its
reply may reach both VPs due to load-balancing decisions
made by the routing system over time.

In particular, the situation of unicast addresses ending up
at 2 or 3 VPs (due to equal-cost paths) is relatively common.
Therefore, in the MAnycast2 paper, they classify an address
as anycast when 4 or more VPs receive replies, while they are
classified as unicast when all replies are captured at a single
VP. However, when 2 or 3 VPs receive responses, there is
uncertainty whether it is anycast or unicast. For these reasons,
additional iGreedy measurements are performed on the po-
tential anycast targets. This phenomenon was also observed
in the anycast catchment measurements with Verfploeter by
De Vries et al. [9], where they observed that due to routing
flexibility, clients may utilize different anycast instances at
different times.

The main advantages of MAnycast2, compared to other
anycast measuring methodologies, are that it is much faster
and it does not require a large probing network, making
it a cost-effective tool for monitoring anycast deployments.
Moreover, the set of ping-responsive hosts that it sources on
the Internet is far larger than the number vantage points that
can be offered by any measuring platform. By utilizing fewer
VPs for sending out probes, it mitigates the risk of network
overload and potential strain on the measuring infrastructure.
These properties render MAnycast2 suitable for conducting
repeated measurements, providing longitudinal data on anycast
usage across the Internet.

III. RELATED WORK

In this section we will explore related work concerning IP
anycast censuses. There have been multiple previous studies
that have performed censuses on anycast deployments on the
Internet using various techniques.

2013 - Evaluating anycast in DNS since the DNS is the
most prominent use case for anycast, it has been a significant
focus in anycast measurements. In 2013, Fan et al. conducted

one of the first third-party anycast detection and enumeration
measurements for the DNS [6]. Their work consists of using
CHAOS-class DNS queries in combination with traceroute
and recursive resolvers. They also proposed a new IN-class
for identifying DNS resolvers. Additionally, their research
revealed a malicious party that was hijacking an anycast
address, highlighting another motivation for measuring anycast
deployments. They found that 72% of top-level domains
(TLDs) use anycast.

Their technique to combine traceroute with the retrieval of
CHAOS DNS records, improves the accuracy of enumerating
DNS anycast as it resolves ambiguities. The main limitation
of their work is that it is entirely focused on the DNS, as it
makes use of DNS-specific probes (CHAOS DNS records) and
infrastructure (recursive resolvers as vantage points). Our work
is not dependent on DNS, and can probe for any protocol.

2015 - Characterizing IPv4 anycast adoption and de-
ployment Cicalese et al. performed multiple IPv4 anycast
censuses using latency measurements [8]. The main platform
they use was PlanetLab, which provides a large number
of vantage points. Until their work, most anycast censuses
were limited to the DNS. However, theirs was protocol-
agnostic and represented the first Internet-scale measurement
for anycast. Additionally, they performed service discovery
and found a large range of TCP services offered using anycast.
Among these services, HTTP/HTTPS was the most popular
and frequently used for websites from the top-100k Alexa list.
Alongside service discovery, they also conducted enumeration
and geolocation to determine the number of anycast instances
running behind an anycast deployment and their geographic
locations, as mentioned in Section II-C. By utilizing ground
truth data from CDNs that share their anycast locations, they
found that their method achieved 78% accuracy in geolocating
at city-level and had a recall rate of 50%.

Furthermore, they found that the usage of IP anycast had
changed significantly compared to a few years prior. Which
confirms the importance of periodic measuring of anycast.
Such periodic censuses were also mentioned as future work,
as it would reveal how anycast evolves over time.

However, their methodology had a notable drawback as
they relied on latency measurements, which are not always
accurate. Moreover, the accuracy of their results depended
on the availability of precise geographical data for the VPs,
which may not always be guaranteed. Additionally, their work
required a considerable amount of traffic for their measurement
to be performed, and relied on specific measuring platforms
due to the requirement of a large number of VPs.

2018 - A longitudinal study of IP anycast based on their
iGreedy method, as explained in Section II-C, and 3 years
after their 2015 census, Cicalese et al. performed the first
longitudinal study of IP anycast [11]. Unlike their previous
work, this census was performed on a monthly basis for a year,
from May 2016 to May 2017, using vantage points provided by
the PlanetLab platform. Throughout this period, they observed
dynamic changes in anycast deployments, with some compa-
nies reducing their anycast deployments while others increased
them. However, when analyzing the aggregate, they found that
anycast deployment remained relatively stable. Additionally,

5

they utilized the longitudinal data to evaluate the impact of
changes in anycast deployments on end-to-end latency.

Their study provides insights into changes that occur in
anycast with a monthly granularity, which motivate our work.

2019 - Towards passive analysis of anycast in global
routing: unintended impact of remote peering this approach
by Bian et al. makes use of a machine-learning classification
algorithm, using passively collected BGP data as input features
[13]. They found that their method is 90% accurate in detecting
anycast, and they observed that remote peering is a cause of
anomalous routing behaviour that impacts at least 19.2% of
anycast prefixes.

Their assumptions, on which they based their passive ap-
proach, were:

• Anycast prefixes have more upstream ASes than unicast
prefixes (since anycast is announced from multiple loca-
tions, each with their own upstream ASes)

• The distance between these upstream ASes is larger in
the case of anycast (since anycast is distributed and
announces from distant locations)

However, the second criterion is heavily influenced by remote
peering. As remote peering allows peering to an IXP without
physical presence, thereby upstream ASes can have large
distances whilst belonging to a unicast address.

This work is mostly overshadowed by more accurate active
measurements, and lacks reproducability.

In contrast to the related work, our methodology requires
very few VPs to accurately identify anycast. Furthermore, we
have nearly full control over the VPs and are not limited by
the constraints of measuring platforms like RIPE Atlas or
PlanetLab. With this control, we can send out very specific
probes, including service-specific probes. Furthermore, our
approach generates far less traffic compared to the other
methods, thanks to our reliance on fewer VPs. This makes
our method a more responsible and efficient system to perform
regular anycast censuses.

IV. LIMITATIONS OF MANYCAST2

There are several limitations with MAnycast2. Firstly,
MAnycast2 has limited utility for geolocating and enumerating
anycast deployments because such data requires a large set
of VPs. Secondly, MAnycast2 has a sizeable number of false
positives (unicast replies ending up at multiple VPs caused
by e.g., route flips), and has a number of false negatives (an
anycast infrastructure within a single VPs catchment will have
all replies ending up at a single VP). These false positives and
negatives lower the overall accuracy of the tool.

For these reasons, MAnycast2 is followed up with an
additional iGreedy measurement on the prefixes classified as
potential anycast targets by MAnycast2. This provides great
synergy as MAnycast2 allows for efficient and responsible
measuring of large hitlists, from which it obtains a limited set
of anycast targets, which are then measured using the more
accurate and more intensive iGreedy measurements to filter
out the false positives and obtain geolocation and enumeration
data. The false negatives can be reduced by increasing the

number of VPs of the MAnycast2 infrastructure, and by
locating them in diverse and geographically distant locations.

Finally, there is a limitation that affects both iGreedy and
MAnycast2, and it is caused by inconsistencies in routing
on the Internet. As mentioned, anycast relies on the Border
Gateway Protocol (BGP) for routing, which generally works
as expected and results in clients getting routed to the nearest
anycast instance. However, there are instances where routing
protocols other than BGP are employed, resulting in unex-
pected and undesirable routing. The MAnycast2 paper also
reported such cases, such as the Google Public DNS resolver
using their own private network. Additionally, the paper by
Arnold et al. demonstrates that while BGP is highly efficient
in routing and difficult to outperform, it is sometimes replaced
by other routing algorithms [12]. These replacements are in
place by large content providers on the Internet who have built
their own private global infrastructure. These private networks
are connected to the public Internet using Points of Presence
(PoPs). Between the client and the PoP traditional routing
will be employed (i.e. BGP), however the routing algorithms
employed beyond the PoP is entirely up to the owner of these
private networks. These inconsistencies may cause an anycast
prefix to be seen as unicast by MAnycast2, and may lead to
false enumeration and geolocation data with iGreedy. This
limitation, however, is out of scope for this work since we
have no control over the routing policies employed on the
Internet and have limited visibility into how our probes are
routed.

V. GOALS AND CHALLENGES

In this section, we will list and introduce the goals and
challenges of this work. These goals are related to realizing
the requirements (which we introduced in Section I) for the
improved Verfploeter measurement tool. Furthermore, we will
list the challenges that we expect to encounter when realizing
these goals.

A. Goals

First, we will list the goals required for an improved version
of the MAnycast2 measuring system.

G1 Easy deployment - One of the requirements is that the
system is easy to deploy in any new future environment.
We want the system to be deployable on any anycast
infrastructure, which means it must be able to operate
on a variety of hosts and Virtual Machines (VMs) with
different hardware architectures and operating systems.
For this reason, the system must be easy to deploy,
regardless of the host.

G2 Additional probing methods - The system must be able
to perform UDP/DNS and TCP/SYN-ACK probes in
addition to ICMP/ping probes. These additional probing
methods are of interest for analyzing the discoverability
of anycast when probing with these protocols. It may
also reveal new anycast prefixes that are unresponsive to
ICMP/ping. Additionally, we want to learn more about
e.g., the distribution of unicast v. anycast distributions
for each protocol.

6

G3 Synchronous probing - The original MAnycast2 mea-
suring system performed sequential probing, which was
listed as a limitation. This system must solve this
limitation by allowing clients to perform their probes
in parallel to avoid the effects of routing changes, such
as route flips, that occur over time from affecting the
measurement results. Furthermore, each target must be
probed by all clients one second after each other, similar
to a regular ping measurement, to avoid the probed
targets from receiving a burst of requests. To evaluate
the effects of synchronous versus sequential probing, we
also want to retain the ability to send out probes in
sequence, for which we will implement client-selective
probing (i.e. we can select which clients send out probes
during a measurement).

G4 Authenticity and origin of results - Received replies
must be authenticated to be part of our measurement, to
ensure the accuracy of our results. For ping probing, we
can use the payload of ICMP Echo Requests, which is
echoed in the ICMP Echo Response, as was done in the
original Verfploeter tool. However, for TCP and UDP,
we will need to implement new methods of verifying that
responses belong to our measurement. Furthermore, we
want to encode useful information in our requests that
can be extracted from the replies, such as the VP which
sent the request to which a received reply belongs and
the transmission time of the request.

G5 Future development - It must be easy for future de-
velopers to use, understand, and modify the system.
Other studies may be performed that require this probing
system, and it must be easy to deploy and perform
measurements for developers unfamiliar with the system.
Additionally, they may need to make changes to the
software to incorporate new features, which is why we
want to ensure that the code is easy to understand and
utilizes well-maintained dependencies.

B. Challenges

To achieve the goals discussed, we will have to overcome
these key challenges.

C1 Robustness - The system must be able to perform in a
robust manner, despite being deployed in possibly unsta-
ble environments. One of the motivations for developing
this system is to make it easy to perform scheduled
measurements over long periods of time, for collecting
longitudinal data. This means that all the system com-
ponents must be able to perform daily measurements
over extended periods of time without software failures.
However, there are issues such as network outages and
hardware failures that can disconnect parts of the dis-
tributed system. In such cases, the system must continue
to operate to the best of its ability. Furthermore, we
want to enforce that only a single measurement is active
at a time, as multiple measurements being performed
simultaneously can jeopardize the results and cause
unwanted probing rates. Finally, it must be possible to
cancel measurements in the case of wrong measurements

being started (e.g., due to entering the wrong hitlist as
argument).

C2 Resource scarcity - The system must be able to scale at
a low cost. This means it should be able to run on modest
VMs with limited CPU, RAM, and disk space available.
Therefore, we require the system to use minimal system
resources and have a small storage size.

VI. MEASUREMENT SYSTEM DESIGN

In this section, we will describe the system design of the
probing system, keeping in mind the goals and challenges
discussed in the previous section. For a detailed view, we
provide the GitLab repository [20]. This repository includes
the source code, Rustdoc documentation explaining the code,
a README with example commands, and more (goal G5).

A. Design

1) Rust: The system is implemented in the Rust pro-
gramming language, just like the original Verfploeter system.
The main advantages of Rust are its thread- and memory-
safety, which contribute to improved robustness (challenge
C1). Additionally, Rust compiles to machine code, resulting
in small binary executable sizes, low resource usage (RAM
and CPU), and energy efficient code (challenge C2).

2) gRPC: For communication between the three com-
ponents (CLI, Server, and Client), we use gRPC (Remote
Procedure Calls) developed by Google. gRPC is designed
to facilitate communications between components of a dis-
tributed system. In our system, a gRPC server is run in
the Server component, allowing multiple Client components
and a CLI component to connect. We utilize the gRPC
Tonic cargo dependency to implement the gRPC components,
and protobuf-compiler/protoc to serialize/deserialize the mes-
sages transferred based on our protobuf message definitions.
gRPC, protoc, and Tonic are actively maintained and well-
documented (goal G5).

3) Docker: The system can be deployed by distributing
compiled binaries, but we have also implemented support
for distribution and deployment using Docker. The main
advantages of Docker are that it is system-agnostic (meaning
that it will work regardless of the hardware and OS of the
VM), and it has all configurations set in the Dockerfile (goal
G1). By using the property of Rust that allows for small binary
executable sizes, the Docker image size that is distributed is
less than 100MB in size (challenge C2).

B. Components

Next, we will go over the components of the system
individually. Figure 4 illustrates how the system components
are connected.

1) Server: The Server acts as a centralized controller in
the system. It keeps track of the connected clients and assigns
them unique client IDs while enforcing unique hostnames.
The CLI can request information about connected clients
using the client-list command. When the CLI instructs the
Server to perform a measurement using the start command,

7

Fig. 4. The components of the system and their connections.

the Server announces to all clients that a new measurement
is beginning, providing information about the measurement
itself (e.g., type of measurement, probing rate). Next, the
Server will synchronously distribute the hitlist to the “active”
clients (i.e., the clients that are sending out probes in the
measurement). These tasks will be sent out at the same rate as
the measurement’s probing rate. As the centralized controller,
the Server has full control over the measuring process and
is responsible for enforcing the desired probing rate. The
measurement results are streamed back to the Server in real-
time from the Clients, and these results are then streamed to
the CLI. Finally, at the end of the measurement, the Server
notifies all Clients that the measurement has finished, and
once all Clients have made the server aware that they closed
everything for the measurement, the server informs the CLI
that the measurement is complete.

As the central part in our architecture, the Server must be
as robust as possible, for this we implemented the following
functionalities (challenge C1):

• Only a single measurement may be active at a time to
avoid conflicting results. The Server will refuse any new
measurements whilst a measurement is active.

• If a CLI disconnects during an active measurement, the
Server immediately cancels the measurement by sending
termination messages to the clients.

• In the event of a Client disconnecting; the Server logs the
event, updates its Client list, and continues the measure-
ment with the remaining clients to the best of its ability.

• If the Server itself disconnects, all connected clients
terminate their ongoing task, and the CLI exits.

• Any wrong commands received by the CLI will be
refused (e.g. invalid task type, non-existent clients se-
lected).

• The Server lets the Clients know when the measurement

starts, and when it finishes to ensure that the measurement
is performed in its entirety.

2) Client: As mentioned earlier, the Client receives a
stream of the measurement from the Server. The Client sends
out probes as it receives targets, ensuring that the Client does
not buffer the hitlist, which reduces resource usage (challenge
C2). At the start of the measurement, the client opens sockets
for sending and receiving based on the desired protocol. If
the Client is “inactive” for the current task it will only listen
for incoming packets and not send out probes itself. Outgoing
probes contain encoded information in their fields, which gets
echoed back and can be extracted from replies. All the desired
information is added to the results, which are then streamed
back to the server.

3) CLI: The CLI is initiated by a user with a command,
either client-list or start. This command is sent to the Server,
and the CLI waits for the results. The client-list command
lists all connected Clients, displaying their unique Client
ID and hostname. The start command is used to initiate a
measurement. The user can specify the rate at which packets
should be sent out, the hitlist to perform the scan on, the
protocol type (ICMP, UDP, or TCP), the clients that should
send out the probes, and the source address from which to
send out the probes. The CLI writes the results to a file (and
to command-line if specified). The CLI also offers an option
to shuffle the provided hitlist before sending it to the Server.

When the start measurement command is executed, the CLI
prints information about the measurement, such as the current
time,hitlist size, probing rate, and an estimation of the task
duration based on the probing rate and number of addresses.
The user can cancel the command at any time by terminating
the CLI process, which in turn terminates the measurement at
the Server and Clients. If the requested command cannot be
executed (e.g., due to an active task or no connected clients),
the CLI prints the error message received from the Server and
exits the command.

C. Measurement process

In the previous Verfploeter system, ping probing measure-
ments were possible but had to be executed individually for
each Client. In this work, we have enhanced the system
to forward a probing measurement to all connected clients,
allowing these probes to be executed in parallel. Additionally,
the hitlist is distributed in a round-robin fashion, ensuring that
all clients probe targets in the same order and with a one-
second delay between each client (goal G3).

We have also implemented client-selective probing, which
allows the CLI to specify which clients will send out probes for
the measurement. By default, all clients will send out packets,
but the CLI can choose a subset of clients for the measurement
(goal G3). Regardless of the selection made, all clients will
listen for incoming packets. Another configurable setting is the
probing rate, which determines the number of packets sent out
per second at each client.

Furthermore, we expanded the tool to support multiple
probing protocols (goal G2):

8

a) ICMP/ping: Pinging was already a feature in the
previous MAnycast2 system. Ping probes are sent out with
a payload that is added to the ICMP Echo Request. This
payload is then returned when a probed target responds with
an ICMP Echo Reply. In this payload, we encode the following
information (goal G4):

• The task ID of the current measurement, which verifies
that the received ICMP Echo Reply belongs to this
measurement.

• The transmission time, which allows for calculating the
Round Trip Time (RTT).

• The sender client ID, providing information about the VP
that sent the probe triggering the reply.

• The source and destination address of the probe, enabling
the detection of spoofing.

b) TCP: For our TCP probes, we utilize the TCP flags
SYN and ACK. TCP is a stateful protocol, where the sender
and receiver establish a session and remember the state for
that session. This state is established by sending a TCP SYN
packet, to which the receiver replies with a TCP SYN-ACK.
Since we do not want to open unused states on the targets of
our hitlist, we deviate from the protocol by sending a SYN-
ACK packet instead of a SYN packet. When the target device
receives this packet, it looks for an established state for this
packet, which does not exist, and responds with a RST packet
to terminate the exchange. By recording these RST packets,
we can identify TCP-responsive hosts.

This method of probing with SYN-ACK is an improvement
over the commonly used SYN probing, which opens states on
the target devices, as employed by other TCP scanning tools
(e.g., traceroute).

For these probes we encode the following information (goal
G4):

• The client ID is encoded into the destination port, and
the RST reply will have this value in the source port.

• Transmission time is encoded into the SEQ field of the
TCP header, which is returned in the ACK field of the
RST packet. Since these fields are limited by 32 bits,
we encode the 32 least significant bits of the timestamp
(current time in milliseconds) into this field.

• We verify that the reply is part of our measurement by
examining the TCP flags (we only want the RST flag set)
and checking for valid port numbers.

For both the source and the destination ports, we use high
port numbers that are not commonly used by services to ensure
that it is highly unlikely that the target machine has a running
service on the probed port.

c) UDP/DNS: The last probing methods involves send-
ing out DNS A Record Requests using the UDP protocol. This
is a service-specific probe used to discover DNS servers, as
they respond with a DNS A Record Response. DNS A Records
are typically requested by users to obtain the IP address
associated with a given domain. In our probing, we send a
request for a non-existing domain, to which a conventional
DNS server will send back a reply containing our requested

domain. Since this reply contains the domain of our request we
encode our information into the subdomain of the requested
domain (goal G4), this includes:

• The source and destination address of the request.
• The source and destination port.
• The transmission time.
• The client ID of the sender (which is also encoded in the

first two bytes of the DNS transaction ID to ensure each
DNS request has a unique ID).

The destination port of the UDP header is set to 53 (the default
port used for DNS), and we use a static high-numbered source
port.

Additionally, we listen for ICMP packets during our DNS
scan. Hosts that do not have a DNS service running either
ignore the request or send back an ICMP packet. These ICMP
packets are used to indicate to the sender that, for example, the
requested port (port 53 for DNS) is unreachable. We specifi-
cally look for type 3 (network unreachable) ICMP packets and
record the code, which provides further information about why
the network is unreachable. We also parse the ICMP payload.
Depending on the replying host, the payload may contain our
original DNS Request in its entirety or parts of the request
such as the IPv4 and UDP headers, just the IPv4 header, or an
empty payload. We extract as much information as possible
from the payload. If certain information is unavailable, we
record it as 0, which identifies unknown data.

The domain name for which we request the DNS Record
can be set to any value, including a domain owned by the
researchers, which allows them to capture more information
on their own nameservers, we leave this for future work.

VII. VALIDATION

In this section, we will validate that the system meets our
goals by conducting several case studies that involve numerous
measurements.

A. Measuring environment

We will perform our MAnycast2 measurements using the
TANGLED platform [18], which is owned by the University
of Twente and allows for full control over the nodes as required
for this work. Additionally, we will utilize RIPE Atlas for our
iGreedy verification measurements.

1) TANGLED: TANGLED is an anycast testbed that
researchers can use to run experiments utilizing geographically
distributed vantage points that share an anycast address [18].
It provides a set of tools for customization and configuration
of the anycast network, measurements, and data collection.
Like most other anycast deployments, TANGLED makes use
of BGP to take care of the routing. For this research we will
be using TANGLED to perform MAnycast2 measurements
that determine whether /24 prefixes are unicast or anycast.

2) RIPE Atlas: Atlas has a large set of vantage points
(12k+) with high AS-level diversity. However, since RIPE is
based in Europe, its vantage points are biased towards this
continent. Furthermore, Atlas employs a credit system [19] to
limit the amount of traffic generated by users, reducing the

9

Node Location
au-syd Sydney, Australia
nl-ams Amsterdam, Netherlands
us-sea Seattle, USA
fr-par Paris, France
uk-lnd London, UK
de-fra Frankfurt, Germany
sg-sin Singapore, Singapore

TABLE I
THE LOCATION OF THE VULTR NODES.

0 250 500 750 1000 1250 1500 1750 2000
Probing Rate

0

2

4

6

8

10

12

CP
U

Us
ag

e
(%

)

TCP
UDP
ICMP

Fig. 5. CPU usage in percentages for the three different probing types at
various probing rates.

impact of their measuring platform on the Internet. Despite
these limitations, this platform was used in many other any-
cast studies [7, 10, 11, 13, 14] and offers good flexibility.
Although biased towards Europe, it still provides good global
coverage and geographical diversity. We will use RIPE Atlas to
perform iGreedy measurements that verify anycast candidates
discovered with MAnycast2.

3) Measurement deployment: The system was deployed on
Vultr nodes that are part of the TANGLED testbed. All of
these nodes share an anycast address, and we performed BGP
announcements to ensure that all traffic for our anycast /24
prefix would only reach these nodes. On these nodes we ran
the Client component of our System. The location of these
nodes can be seen in Table VII-A3. The Server and CLI
component were run on a VM owned by the University of
Twente.

B. Resource efficiency

As mentioned, the system was designed with resource
scarcity in mind. Therefore, we perform buffering at the Server
so that Clients receive new target IPs as they send them
out. This means the Clients do not need to buffer the entire
hitlist. Since the Server and CLI can be run at any location,
including locally, we are not concerned with their resource
usage. However, the Clients must be run at the anycast sites
which may have limited hardware.

Figure 5 shows the resource usage for all three protocols
in terms of the percentage of CPU used at various probing
rates. The hardware used for testing was a x86 64 Intel Core
Processor with a 2.4GHz CPU and 987 MiB memory. The

of VPs Distinct /24s Distinct ASNs
1 (unicast) 3,963,783 (99.67%) 67,596

2 (anycast*) 3,241 (0.08%) 666
3 (anycast*) 591 (0.01%) 159
4 (anycast) 820 (0.02%) 141
5 (anycast) 477 (0.01%) 87
6 (anycast) 1,633 (0.04%) 78
7 (anycast) 6,375 (0.16%) 88

Total anycast 13,137 (0.33%) 1,219
TABLE II

CLASSIFICATION AND BREAKDOWN OF /24S BY THE NUMBER OF VPS
THAT RECEIVE RESPONSES.

chart does not include memory usage, as it remains constant
at 1.3% (13 MiB) for all three protocols, regardless of the
probing rate. From the chart, we can observe that UDP/DNS
is the most demanding protocol, likely due to the large size
of DNS packets and need to listen on two sockets (one for
UDP and one for ICMP). The ICMP and TCP probes have
nearly identical packet sizes, however we still see that ICMP
has a slightly higher CPU usage. This could be attributed to
the increased responsiveness of the ICMP protocol, resulting
in more incoming packets to process.

C. MAnycast2 census

The goal of our first case study is to perform a MAnycast2

census, similar to the one conducted in the MAnycast2 paper,
using ICMP/ping. This will validate that the system is capable
of conducting MAnycast2 measurements. We will also run a
follow-up iGreedy measurement to quantify the performance
by examining the True Positive (TP) rate of our measurement.
Additionally, we can compare the results of this ping scan to
that of the MAnycast2 paper to get an indication of how this
new system performs compared to the old one.

As mentioned, the MAnycast2 scan is performed at /24
prefix granularity, and the results are analyzed to identify
unicast and anycast prefixes. For this purpose, we utilized the
ISI hitlist [16], which is based on the most ICMP-responsive
host in each /24 prefix. The hitlist consists of a total of 8.5
million addresses, each belonging to a unique /24 prefix.

The scan was conducted with a probing rate of 1,000 outgo-
ing probes per second for each client, lasting 142 minutes. The
hitlist was shuffled to avoid probing consecutive /24 prefixes
that may be part of a single larger prefix all at once.

In Table II, we present the results of our ICMP scan,
displaying the distribution of /24 prefixes and Autonomous
System Numbers (ASNs) based on the number of VPs that
received responses. out of the 8.5 million probed targets, 4
million responded, resulting in a responsiveness rate of 47%.
The majority of the responsive prefixes were identified as
unicast (99.67%). Among the 0.33% anycast prefixes, most
of them had their replies reaching 7 VPs, followed by the
next largest group with 2 VPs.

In the original MAnycast2 paper, they identified prefixes
replying to a single VP as unicast, while prefixes replying to
two or more VPs are identified as anycast However, the paper
acknowledges the presence of uncertainty when replies were
received from two or three VPs, as they observed low TP rates
in such cases. The TP rates were determined by conducting

10

of VPs MAnycast2 iGreedy confirmed Diff. (resp.)
2 3,241 1,726 46.74%
3 591 554 6.26%
4 820 811 1.10%
5 477 475 0.42%
6 1,633 1,629 0.24%
7 6,375 6,367 0.13%

Total 13,137 11,562 11.99%
TABLE III

THE NUMBER OF POTENTIAL ANYCAST TARGETS DISCOVERED BY
MANYCAST2 , LISTED BY NUMBER OF VPS, ARE SHOWN ALONG WITH

THE COUNT OF THOSE THAT WERE CONFIRMED TO BE ANYCAST BY
IGREEDY. ADDITIONALLY, PERCENTAGE DIFFERENCE BETWEEN THE TWO

IS PROVIDED.

follow-up iGreedy measurements, which offer greater accuracy
in evaluating anycast.

1) iGreedy confirmation: To assess the TP rate of our
scans, we conducted a follow-up iGreedy measurement, and
the results are present in Table III. Similar to the results found
using the previous MAnycast2 measuring system, we observed
the lowest TP rates at two and three VPs, with TP rates
of of 53% and 94%, respectively. However, these TP rates
are considerably higher than those reported in the MAnycast2

paper, where TP rates of 10% were observed for two VPs and
87% for three VPs. Overall, our results achieved an 88% TP
rate, compared to the 38% TP rate obtained with the previous
measuring system. This indicates a significant improvement in
accuracy using the new system.

2) Synchronous probing: In the previous section, we exam-
ined the results of our MAnycast census, which was performed
using synchronous probing. These results demonstrated a sig-
nificant increase in the number of correctly classified anycast
prefixes compared to the findings of the original MAnycast2

paper. However, direct comparisons between these censuses
are challenging due to several factors, such as a three-year gap
between measurements, the ISI hitlist had different and fewer
targets, and variations in the number and geographic distribu-
tion of VPs. To further explored the effects of synchronous
probing, we will delve into this topic in this section.

Prior to this work, MAnycast2 scans were conducted in
sequence, where each VP would probe the hitlist one after
the other. In the case of the MAnycast2 paper, there were
13 minute-intervals intervals between probes targeted at the
same destination. This interval was considered a limitation
because Internet routing is dynamic over time (e.g., route flips
as discussed in Section A-B3). Consequently, between these 13
minute intervals, the routing might have changed, increasing
the likelihood that replies from a unicast target would traverse
different paths for the various probes and ultimately reach
multiple VPs. Our hypothesis is as follows: By performing
a MAnycast2 census in parallel instead of in series, we will
observe a decrease in false positives (i.e., unicast prefixes
being falsely classified as anycast), thereby increasing the
overall accuracy of the census.

To test our hypothesis, we leveraged the client-selective
probing feature (as explained in Section VI-C) to conduct a
MAnycast census with asynchronous probing. This involved
probing the hitlist seven times, where a different client was
sending out probes each time.

of VPs Parallel Series
1 99.67% 99.00%
2 0.08% 0.73%
3 0.01% 0.03%
4 0.02% 0.02%
5 0.01% 0.01%
6 0.04% 0.04%
7 0.16% 0.16%

Total anycast 0.33% 1.00%
TABLE IV

THE PERCENTAGE OF ADDRESSES THAT ENDED UP AT X NUMBER OF VPS
FOR THE ICMP MEASUREMENT IN PARALLEL AND IN SERIES.

The results of the census when probing in parallel and when
probing in series are presented in Table IV. Firstly, we observe
that by probing in series we have 99.00% of the targets reply
to a single VP, compared to 99.67% targets whose replies
end up at a single VP for the scan in parallel(i.e. targets
inferred as unicast). This may seem like a small difference, but
considering that the number of prefixed who use anycast are
at most 0.45%, based on the previous MAnycast2 work [15],
this is a significant difference. We also see that by performing
the measurement in series we get a significant increase in
potential anycast prefixes (1.00%), compared to probing in
parallel (0.33%). When we look at the breakdown based on
the number of VPs receiving replies, we find that there are
more prefixes whose replies end up at two or three VPs when
probing in series, however for four or higher VPs we see
identical percentages. This coincides with the findings of the
MAnycast2 paper where they only noticed a significant false
positive rate for two or three VPs.

To confirmed that the increase in potential anycast prefixes
when probing in series, are due to an increase in false
positives, we performed a follow-up iGreedy measurement for
these prefixes. These results were inaccurate, due to wrong
geographical data for one of the Atlas vantage points, which
caused many unicast addresses to be falsely enumerated as
having two instances. For this reason, we compared the results
of the scans in parallel and in series, by looking at the number
of anycast prefixes with more than two instances, according
to iGreedy. This shows that, when probing in parallel the
accuracy is 78% whereas probing in series yields an accuracy
of 19%. This confirms that the additional anycast prefixes
found when probing in series, are in fact unicast prefixes
falsely classified as anycast.

These results show that our hypothesis was correct, by
probing in parallel we increase the accuracy of the measuring
system, we even see an amplified effect compared to the results
found in the original MAnycast2 paper, this amplification is
likely due to the intervals between measurements being 142
minutes instead of only 13 minutes.

D. Slow measuring

By implementing synchronous probing, where the hitlist is
distributed in a round-robin fashion and each VP’s probe for
the same target is sent out one second after the other, we enable
significant reduction in the the probing rate without increasing
the intervals between probes. Although it may seem counter-
intuitive to perform our MAnycast2 census at a slow probing

11

Number of VPs 1,000 packets/second 100 packets/second Difference
1 3,963,783 3,861,467 -2.58%
2 3,241 3,028 -6.57%
3 591 588 -0.51%
4 820 820 0.00%
5 477 522 9.43%
6 1,633 1,616 -1.04%
7 6,375 6,374 -0.02%

Total anycast 13,137 12,948 -1.44%
TABLE V

THE NUMBER OF ADDRESSES THAT ENDED UP AT X NUMBER OF VPS FOR
THE FAST RATE AND SLOW RATE ICMP MEASUREMENTS, ALONG WITH

THE DIFFERENCE OF THE TWO.

rate, considering our goal of facilitating efficient anycast
censuses that can be performed regularly, it helps us achieve
this objective. This approach aligns with the responsibility-
oriented design of MAnycast2; ensuring that it does impose
significant strain on the Internet or the measuring platform
on which it operates. Slowing down the scans significantly
means that the generated traffic is spread thinly over time,
which is a commonly adopted tactic for conducting Internet
measurements ethically. Moreover, a reduced probing rate
leads to decreased CPU usage (as observed in Section 5) and
lower Internet speed requirements for the Client VMs. With
our synchronous probing technique, we believe it is feasible
to perform scans at slower rates without compromising the
overall performance.

Table V presents the results of our previous “regular” mea-
surement with a probing rate of 1,000 and a slow measurement
with a probing rate of 100 packets per second. These scans
took 2.3 and 23 hours, respectively. In the slow measurement,
we observed a slight decrease in responsiveness, this is due
to this scan being performed a month later and the hitlist
being more outdated. Additionally, it is possible that the
responsiveness of the hitlist is not consistent throughout the
day, meaning that the fast scan could have been conducted
during a more favorable time compared to the slow scan, which
was spread out over an entire day.

The results of both scans is highly consistent, with the
outliers being 6.57% fewer anycast prefixes at two VPs and
9.43% more anycast prefixes at five VPs. For the iGreedy-
confirmed anycast prefixes from the fast ICMP scan, we
found that 99.78% were also identified in the slow scan. This
demonstrates that reducing the probing rate of our MAnycast2

measuring system has negligible effects on the performance.

E. UDP & TCP probing

To validate the new probing protocols in our system, we
performed MAnycast2 with TCP SYN/ACK and UDP/DNS.
These results give us insights into the individual and combined
coverage for these protocols.

1) ISI scan: Using the previously mentioned ISI hitlist, we
performed additional TCP and UDP scans, these results will be
combined with those of the ICMP scan, such that comparisons
can be made.

In Table VI, we can observe a detailed breakdown of the
number of virtual private servers (VPs) that received responses
for all probed /24s. The table is segmented based on the

2.2%

82.5%

1.6%
8.8%

4.8%

1 - Host unreachable
3 - Port unreachable
10 - Host administratively prohibited
13 - Communication administratively
prohibited
DNS replies

Fig. 6. The type of UDP responses received from unique source addresses
(excluding rare codes received that combined make up 0.3% of the source
addresses).

protocol used for the scan. The UDP scan is further categorized
into three groups: UDP (all), UDP (ICMP), and UDP (DNS).

• UDP (all): This category includes prefixes that responded
with either ICMP or DNS replies.

• UDP (ICMP): This category consists of prefixes that
only sent ICMP responses and did not provide any DNS
responses.

• UDP (DNS): This category includes prefixes that exclu-
sively sent DNS responses without any ICMP replies.

It is important to note that there are a few rare prefixes for
which we received both DNS and ICMP replies. As a result,
the count for UDP (all) is not simply the sum of UDP (ICMP)
and UDP (DNS). In the subsequent sections, we will delve into
a more detailed analysis of the obtained results.

a) Responsiveness: In Table VI, we observe that
ICMP/ping has the highest responsiveness with receiving
replies from 47% of the probed targets, followed by TCP with
17% responsiveness, and then UDP which received replies
from 12% of the hitlist.

A breakdown of the UDP/DNS replies can be seen in
Figure 6. It shows that only 4.8% of the received responses
to our UDP probes were DNS replies. The majority of the
responses to the UDP probes were ICMP type 3 (destination
unreachable) packets, with the most common ICMP code
being port unreachable. These packets indicate that the probed
target is listening on UDP but does not have port 53 open (the
commonly used UDP port for DNS that we targeted).

More details about the responsiveness can be seen in Fig-
ure 7, which shows the intersections of these protocols. This
figure uses an UpSet plot [22], which we will re-use multiple
times, these plots are structured as follows:

At the bottom left, we see the total responses for UDP,
TCP, and ICMP, along with the percentage of the hitlist
that it received. Moving to bottom center/right, we find all
the different intersection options for these three protocols,
including the unresponsive category. On the bar chart above,

12

of VPs ICMP TCP UDP (all) UDP (DNS) UDP (ICMP)
1 (unicast) 3,963,783 (99.67%) 1,471,334 (99.46%) 972,318 (99.45%) 52,218 (96.54%) 920,159 (99.62%)

2 (anycast*) 3,241 (0.08%) 2,874 (0.19%) 979 (0.10%) 498 (0.92%) 487 (0.05%)
3 (anycast*) 591 (0.01%) 228 (0.02%) 448 (0.05%) 365 (0.67%) 93 (0.01%)
4 (anycast) 820 (0.02%) 81 (0.01%) 434 (0.04%) 345 (0.64%) 95 (0.01%)
5 (anycast) 477 (0.01%) 90 (0.01%) 291 (0.03%) 243 (0.45%) 34 (0.00%)
6 (anycast) 1,633 (0.04%) 226 (0.02%) 240 (0.02%) 189 (0.35%) 50 (0.01%)
7 (anycast) 6,375 (0.16%) 4,488 (0.30%) 3,008 (0.31%) 234 (0.43%) 2,772 (0.30%)

Total anycast 13,137 (0.33%) 7,987 (0.54%) 5,400 (0.55%) 1,874 (3.46%) 3,531 (0.38%)
TABLE VI

CLASSIFICATION OF /24S BY THE NUMBER OF VPS THAT RECEIVE A RESPONSE FOR THE DIFFERENT PROTOCOLS.

ICMP
TCP
UDP

0.02.5
1e6

3,976,920 (46.7%)
1,479,321 (17.4%)

977,718 (11.5%)
0

1000000

2000000

3000000

4000000

In
te

rs
ec

tio
n

siz
e

4,426,683
(51.9%)

2,253,875
(26.4%)

56,510
(0.7%)

40,931
(0.5%)

809,571
(9.5%)323,547

(3.8%) 23,313
(0.3%)

589,927
(6.9%)

Fig. 7. /24 responsiveness intersections and counts for the three protocols.

ICMP
TCP
UDP

0.02.5
1e6

3,963,783 (97.1%)
1,471,334 (36.0%)

972,318 (23.8%)

0

500000

1000000

1500000

2000000

In
te

rs
ec

tio
n

siz
e

2,251,252
(55.1%)

56,088
(1.4%)

41,275
(1.0%)

804,594
(19.7%)

320,391
(7.8%) 23,106

(0.6%)

587,546
(14.4%)

Fig. 8. /24 unicast classification intersections and counts for the three
protocols.

we see the count and percentage of the hitlist for each
intersection. 51.9% of the hitlist was unresponsive during the
measurements, while 26.4% responded only to ICMP/ping.
Very few responded solely to TCP (0.7%) or UDP (0.5%).
9.5% responded to both TCP and ICMP, 3.8% responded to
both UDP and ICMP, 0.3% responded to both UDP and TCP,
and finally, 6.9% responded to all protocols.

Interestingly, we observe that the bars that do not include
ICMP only add up to 1.5%, indicating that ICMP/ping alone
revealed the majority of the probed targets.

b) Unicast: Figure 8 shows that ICMP/ping identified
97.1% of the unicast addresses, with the majority (55.1%) of
unicast addresses responding to ICMP only. By performing
additional TCP and UDP scans, we discovered an additional
2.9% of unicast addresses, meaning they bring little value
to discovering unicast prefixes. However, the intersections

ICMP
TCP
UDP

010000
13,137 (83.0%)

7,987 (50.5%)
5,400 (34.1%)

0

1000

2000

3000

4000

In
te

rs
ec

tio
n

siz
e

4,338
(27.4%)

2,185
(13.8%)

295
(1.9%)

3,899
(24.6%)

3,202
(20.2%)

205
(1.3%)

1,698
(10.7%)

Fig. 9. /24 anycast classification intersections and counts for the three
protocols.

of these two protocols with ICMP are significant, indicating
their value in providing more insights into the probed unicast
targets. Specifically, one can run service-specific probes that
make use of TCP and UDP to determine the type of services
provided by these unicast prefixes.

c) Anycast: Figure 9 shows the overlap in discovered
anycast prefixes between ICMP, TCP and UDP. It is important
to note that these are potential anycast targets and may include
false positives. Similar to the unicast graph, we observe
that ICMP revealed the majority of anycast prefixes (83%).
However, we did discover an additional 14% with TCP, which
is not insignificant. In total, 51% of the anycast prefixes were
responsive to TCP. This high responsiveness for TCP among
anycast prefixes is surprising since TCP is conventionally
considered unsuitable for anycast due to its stateful property.
We suspect that many of these anycast prefixes implement
TCP state sharing, which allows sharing of TCP sessions
information between anycast sites, ensuring continuity for
client TCP sessions when they switch to a different anycast
site. Future work is to investigate the adoption of TCP state
sharing.

Regarding UDP, the responsiveness among potential anycast
targets is 34%, of which 2% were discoverable only with UDP.
Among the anycast prefixes that were discoverable with UDP,
1,874 were found using DNS responses, this means that of the
total 15,822 potential anycast /24 prefixes 11.84% respond to
DNS queries, reaffirming our prior research on the common
deployment of DNS with anycast. It remains unclear how
many of the TCP and UDP anycast prefixes are true positives,
as iGreedy is performed using ICMP. We leave modifying
iGreedy to also work with TCP and UDP to future work.

13

ICMP TCP UDP
of VPs MAnycast2 iGreedy TP MAnycast2 iGreedy TP MAnycast2 iGreedy TP

2 3,241 1,726 53.26% 2,874 971 33.79% 979 557 56.89%
3 591 554 93.74% 228 88 38.60% 448 408 91.07%
4 820 811 98.90% 81 57 70.37% 434 407 93.78%
5 477 475 99.58% 90 90 100% 291 287 98.63%
6 1,633 1,629 99.76% 226 226 100.00% 240 240 100.00%
7 6,375 6,367 99.87% 4,488 4,479 99.80% 3,008 3,005 99.90%

Total anycast 13,137 11.562 88.01% 7.987 5.911 74.01% 5,400 4,904 90.81%
TABLE VII

THE NUMBER OF ANYCAST PREFIXES FOUND USING MANYCAST2 , WITH THE NUMBER CONFIRMED BY IGREEDY, AND THE TRUE POSITIVE (TP) RATE
ASSUMING THAT IGREEDY IS THE GROUND TRUTH, FOR ALL THREE PROTOCOLS.

ICMP
TCP
UDP

0500000
482,238 (75.5%)

152,443 (23.9%)
547,825 (85.8%)

0
50000

100000
150000
200000
250000
300000

In
te

rs
ec

tio
n

siz
e

67,941
(10.6%)

17,303
(2.7%) 599

(0.1%)

83,582
(13.1%)

5,186
(0.8%)

317,585
(49.7%)

4,494
(0.7%)

142,164
(22.3%)

Fig. 10. Responsiveness distribution for the SLD hitlist across all three
protocols.

For the anycast targets that were found, we ran iGreedy to
validate the results. These results and TP rates can be seen in
Table VII. It should be noted that iGreedy is performed with
ICMP/ping packets, and some of the anycast targets that were
revealed with TCP and/or UDP/DNS may not respond to ping.
Therefore, the TP rates for these protocols are likely higher.
Particularly, the TP rate for TCP is very low, which may
attributed to anycast sites being responsive to TCP exclusively.
Assume that the TP rate of our MAnycast2 scan is consistent
(which does seem to be the case based on repeated measure-
ments) and given that that both our MAnycast2 ICMP/ping and
iGreedy measurement are reliant on ping, we can assume that
the accuracy rate for ICMP (88%) also holds for TCP. This
would mean that the missing 14% of the TCP anycast targets
are in fact anycast prefixes that do not respond to ICMP.

2) Nameserver scan: Due to the very low responsiveness
of UDP, and the even lower responsiveness of DNS (most
UDP replies were ICMP port unreachable), we performed
an additional anycast census. This scan involved probing a
hitlist that contains Second-Level Domain (SLD) nameservers,
obtained from OpenINTEL’s SLD authoritative nameserver list
from February 17, 2023 [21]. The hitlist consisted of 638,839
targets.

In contrast to the MAnycast2 scan on the ISI hitlist, where
the majority of responses to our DNS probes were ICMP port
unreachable replies, we found that the vast majority of targets
responded with DNS (98.5% of the UDP replies were DNS
replies). Therefore, in this section, we will not distinguish
between ICMP and DNS responses for this census.

Figure 10 shows the distribution of responsiveness for the

ICMP
TCP
UDP

010000
17,110 (77.7%)

12,095 (54.9%)
15,608 (70.9%)

0

2000

4000

6000

8000

In
te

rs
ec

tio
n

siz
e

334
(1.5%)

4,319
(19.6%)

513
(2.3%)

1,755
(8.0%)

9,074
(41.2%)

74
(0.3%)

5,947
(27.0%)

Fig. 11. Distribution of Anycast classification among the SLD hitlist across
all three protocols.

nameservers scan across all three protocols. We observed a
very high response rate, with only 10.6% being unrespon-
sive. UDP exhibited the highest responsiveness at 85.8%,
followed by ICMP at 75.5%. Similar to the previous scan,
TCP showed a low responsiveness (23.9%), and TCP alone
revealed very few additional targets (0.1%). Surprisingly, a
significant portion (13.1%) of the nameservers only responded
to UDP requests and did not respond to ICMP or TCP. This
suggests that the ability to perform DNS probes holds value
in discovering nameservers.

Figure 11 presents the distribution of potential anycast
targets from the nameserver scan across all three protocols.
Similar to the ISI scan, we found that ICMP is the most re-
sponsive (78%). Additionally, TCP alone revealed a substantial
number of prefixes (20%) with has good responsiveness (55%).
For UDP, we observed high responsiveness (71%), but only
2% were discoverable with UDP only.

We also conducted an ICMP iGreedy scan on these targets,
as we did for the ISI scan, and obtained TP rates of 99.55%
for ICMP, 86.71% for TCP, and 96.30% for UDP. Overall
the TP rates were higher, which can be attributed to to the
hitlist containing fewer unicast addresses that have a chance
of ending up at multiple VPs.

When investigating the 20% that were classified as anycast
by TCP alone, we found that for the majority of those prefixes
the other protocols identified it as unicast. The ICMP iGreedy
scan also revealed those prefixes as anycast, confirming that
they are in fact anycast. We suspect that these anycast prefixes
contain sites that only service users within a certain address
space (region-specific). However, this is speculative, and fur-

14

ther research is needed to butter understand this anomaly. Ad-
ditionally, it is unclear why this region-specific responsiveness
would not apply to TCP.

F. Limitations

The scans were conducted with 7 VPs, which is fewer than
the 10 VPs used in the MAnycast2 paper. The reduced number
of VPs may lead to an increased false negative rate (i.e. anycast
prefixes being falsely classified as unicast), as there is a higher
chance of multiple anycast sites falling within the catchment
of a single VP. Additionally, the geographical distribution of
the sites is sub-optimal, especially us-sea and sg-sin had very
high catchments due to a lack of VPs in Asia and the American
continents.

Another limitation lies with the ISI hitlist used, which was
approximately 3.5 to 4 months old at the time of our mea-
surements. This time gap caused the overall responsiveness
to be lower. Additionally, the hitlist was based on ICMP-
responsiveness, further reducing the responsiveness of the
UDP and TCP protocols.

VIII. DISCUSSION

In this section, we will discuss various observations that we
made during our measurements.

A. Variable port scanning

During our UDP/DNS and TCP measurements, we observed
a significant increase in the number of addresses classified
as anycast compared to the ICMP/ping measurements. In
particular, a large proportion of the targets had their replies end
up at two VPs. For TCP, we saw 3.74% of the targets reply to
more than one VP, and for DNS we found 6.92% (excluding
ICMP replies to our UDP probes as ICMP does not utilize port
numbers). In contrast, the ping showed only 0.33% ending up
at more than one VP. Since most of the addresses that were
ending up at multiple targets for the DNS/TCP scans, were
only ending up at a single target in our ping scan, we suspected
that the port numbers were affecting routing behaviour.

To investigate this further, we conduction additional TCP
and UDP scans using static ports in our probes. The results of
these scans were notably different and aligned more closely
with the results of the ping scan. With static ports, we found
that 0.54% of TCP replies and 3.45% of DNS replies reached
more than one VP. This finding supports our hypothesis that
variable port numbers affect routing decisions, which leads to
falsely classifying unicast addresses as anycast.

We also ran our measurements using only static source
ports, which yielded identical results to the previous static
port scan. From these measurements we conclude that only
the source port in our probes (which are the destination port
in the replies) lead to false negatives. This behaviour means
our design choice to encode the client ID in the destination
port number, for our TCP probes, will likely not affect the
accuracy of the measurement.

Tables VIII and IX present the percentage of probed targets
on the ISI hitlist who have their replies ending up at various

Number of VPs Static Variable
1 99.46% 96.26%
2 0.19% 3.09%
3 0.02% 0.27%
4 0.01% 0.07%
5 0.01% 0.01%
6 0.02% 0.02%
7 0.30% 0.30%

TABLE VIII
TCP - PERCENTAGE OF TCP REPLIES FROM UNIQUE SOURCE ADDRESSES

THAT END UP AT X NUMBER OF VPS FOR THE STATIC AND VARIABLE
SOURCE PORT SCAN.

Number of VPs Static Variable
1 96.55% 93.08%
2 0.90% 4.08%
3 0.68% 0.97%
4 0.59% 0.60%
5 0.49% 0.48%
6 0.33% 0.35%
7 0.45% 0.45%

TABLE IX
DNS - PERCENTAGE OF DNS REPLIES FROM UNIQUE SOURCE ADDRESSES

THAT END UP AT X NUMBER OF VPS FOR THE STATIC AND VARIABLE
SOURCE PORT SCAN.

numbers of VPs. Notably, at two VPs there is a very large
difference between the static and variable port scan. However,
as the number of VPs increases the effect becomes less
noticeable, and for 4 or more VPs, both scans yield nearly
identical results.

The reason why the destination port in the replies affects
routing decisions is likely due to load balancers employing
equal-cost multi-path routing based on the destination port
to determine the outgoing link. This means that when the
destination ports are variable, replies are more likely to be sent
out over different links at these load balancers. Conversely,
with static destination ports it is more likely that replies will
take the same path. Having these non-static paths is generally
not problematic when there is a clear nearest VP, but for hosts
that are located somewhere in the “middle” of multiple VPs,
the chances of their replies ending up at multiple VPs are
amplified.

Based on these observations, we conclude that the source
port for outgoing UDP/TCP probes must be static when
probing for anycast discovery. However, for measuring anycast
catchments, it can be useful to have variable destination
ports as it increases the likeliness of observing all possible
catchments for addresses whose packets can end up at multiple
anycast sites.

B. ICMP replies for UDP

As mentioned, we actively listen for ICMP packets during
our UDP/DNS probes. These ICMP replies have provided us
with a number of insights.

1) Increased discoverability of unicast - We discovered
a significant number of unicast addresses that did not
respond to ICMP/ping or TCP but replied with ICMP
port unreachable to our UDP requests.

2) Middle boxes - In multiple scanned /24 prefixes that
belong to a shared larger prefix, such as a /23, we
observed that all requests targeted towards the larger

15

Host ICMP TCP UDP (ICMP) UDP (DNS)
au-syd 1.64% 1.33% 1.32% 3.04%
de-fra 15.17% 14.25% 15.64% 19.55%
fr-par 4.19% 4.21% 4.14% 5.89%
nl-ams 8.17% 7.21% 8.09% 11.04%
sg-sin 21.44% 26.11% 30.37% 20.46%
uk-lnd 12.44% 14.14% 13.59% 14.81%
us-sea 36.95% 32.76% 26.85% 25.21%

TABLE X
THE CATCHMENT DISTRIBUTIONS FOR THE VARIOUS PROTOCOLS.

prefix triggered replies from a single source address.
This indicates middle boxes, such as a firewall, at the
border of these prefixes, blocking our UDP requests and
responding with ICMP.

3) Network unreachable - Our VPs received internal
replies from Vultr, using addresses reserved for private
networks. These replies indicated that there was no
known route to our destination address.

4) Rate-limited replies - Whilst we typically received
approximately seven replies for each probed target (as
expected since we send seven packets to each target,
one from each VP), we observed that ICMP network
unreachable replies yielded only around four replies per
probed target. When we conducted the scan where all
targets are probed at the same time (rather than with
one-second intervals), we obtained around 1.6 replies
per probed target. This suggests that the targets or
middleboxes likely implement rate-limiting, responding
only once to UDP probes targeting the same address/port
within a certain time period.

5) ICMP codes - As shown in Figure 6, we found that
the most network unreachable responses were for “Port
unreachable”, indicating that the device is listening for
UDP packets but not on our requested port. The second
most prevalent code we encountered is “Communication
administratively prohibited”.

C. Catchments variable for the different protocols

The catchment distributions for the various protocols used
in our measurements are shown in Table X. we compare the
catchments of each VP for ICMP, TCP, ICMP responds to
UDP/DNS probes, and DNS.

When examining the catchments distributions, we observe
that the DNS catchment is an outlier where the catchments are
more evenly distributed across the VPs. In contrast, ICMP,
TCP, and UDP (ICMP) show similar catchment patterns,
except for sg-sin and us-sea. The reasons for the discrepancy at
these VPs are not entirely clear, but we suspect it may be due
to a large number of targets in China that do not respond to
ICMP/ping but do respond to TCP (likely due to the presence
of the Chinese Great Firewall). These observations highlight
the usefulness of these new probing methods for discovering
hosts in these countries where ping-responsiveness is generally
low.

IX. CONCLUSION

In conclusion, our research aimed to enhance and extend
the MAnycast2 measuring system to enable more accurate

anycast censuses, providing a comprehensive understanding
of the anycast landscape on the Internet. Through our efforts,
we successfully developed a robust, resource-efficient, and
easy-to-deploy measuring system with several notable features,
including synchronous probing, client-selective probing, and
additional probing methods such as TCP, UDP, and DNS.

One of our key contributions was the implementation of
synchronous probing, which significantly improved the ac-
curacy of the system compared to the previous MAnycast2

version. By conducting comparative studies, we confirmed
that synchronous probing yielded an impressive true pos-
itive (TP) rate of 88%. This rate represents a substantial
improvement over the 38% TP rate achieved by the previous
system. Furthermore, the changes made to the system to enable
synchronous probing allowed us to perform the census using
a much lower probing rate, effectively distributing traffic over
time without compromising performance, thereby significantly
reducing the strain on the measuring infrastructure.

Additionally, we performed an anycast census using TCP
and UDP/DNS probing methods on the ISI hitlist. The results
indicated that TCP probing identified an additional 2.2k po-
tential anycast prefixes (14% of the total), while DNS probing
revealed that 12% of the anycast prefixes were responsive to
DNS requests. These findings underscored the value of these
supplementary probing methods in identifying new anycast
prefixes and conducting service discovery on anycast infras-
tructures.

In summary, our efficient and scalable MAnycast2 mea-
suring system can be readily deployed on low-cost virtual
machines. It allows for responsible MAnycast2 measurements
with increased accuracy, making it suitable for performing fre-
quent anycast censuses to obtain a longitudinal view of anycast
usage on the Internet. Moreover, the system’s extensibility
allows for the easy addition of new features, such as more
service-specific probes, for future work.

REFERENCES

[1] Hitesh Ballani and Paul Francis. “Towards a global
IP anycast service”. In: ACM SIGCOMM Computer
Communication Review 35.4 (2005), pp. 301–312.

[2] M. Caesar and J. Rexford. “BGP routing policies in ISP
networks”. In: IEEE Network 19.6 (2005), pp. 5–11.
DOI: 10.1109/MNET.2005.1541715.

[3] J Abley and K Lindqvist. RFC 4786: Operation of
anycast services. 2006.

[4] Michael J Freedman, Karthik Lakshminarayanan, and
David Mazieres. “OASIS: Anycast for Any Service.”
In: NSDI. Vol. 6. 2006, pp. 10–10.

[5] Yakov Rekhter, Tony Li, and Susan Hares. A border
gateway protocol 4 (BGP-4). Tech. rep. 2006.

[6] Xun Fan, John Heidemann, and Ramesh Govindan.
“Evaluating anycast in the domain name system”.
In: 2013 Proceedings IEEE INFOCOM. IEEE. 2013,
pp. 1681–1689.

[7] Danilo Cicalese et al. “A fistful of pings: Accurate and
lightweight anycast enumeration and geolocation”. In:
2015 IEEE Conference on Computer Communications
(INFOCOM). IEEE. 2015, pp. 2776–2784.

16

[8] Danilo Cicalese et al. “Characterizing IPv4 anycast
adoption and deployment”. In: Proceedings of the 11th
ACM Conference on Emerging Networking Experiments
and Technologies. 2015, pp. 1–13.

[9] Wouter B De Vries et al. “Broad and load-aware anycast
mapping with verfploeter”. In: Proceedings of the 2017
Internet Measurement Conference. 2017, pp. 477–488.

[10] Lan Wei and John Heidemann. “Does anycast hang up
on you?” In: 2017 Network Traffic Measurement and
Analysis Conference (TMA). IEEE. 2017, pp. 1–9.

[11] Danilo Cicalese and Dario Rossi. “A Longitudinal
Study of IP Anycast”. In: SIGCOMM Comput. Com-
mun. Rev. 48.1 (Apr. 2018), pp. 10–18. ISSN: 0146-
4833. DOI: 10 . 1145 / 3211852 . 3211855. URL: https :
//doi.org/10.1145/3211852.3211855.

[12] Todd Arnold et al. “Beating BGP is Harder than we
Thought”. In: Proceedings of the 18th ACM Workshop
on Hot Topics in Networks. 2019, pp. 9–16.

[13] Rui Bian et al. “Towards passive analysis of anycast in
global routing: Unintended impact of remote peering”.
In: ACM SIGCOMM Computer Communication Review
49.3 (2019), pp. 18–25.

[14] Stephen McQuistin, Sree Priyanka Uppu, and Marcel
Flores. “Taming anycast in the wild internet”. In: Pro-
ceedings of the Internet Measurement Conference. 2019,
pp. 165–178.

[15] Raffaele Sommese et al. “Manycast2: Using anycast to
measure anycast”. In: Proceedings of the ACM Internet
Measurement Conference. 2020, pp. 456–463.

[16] USC/ISI. USC/ISI ANT datasets. 2020. URL: https://ant.
isi.edu/datasets/ip hitlists/ (visited on 01/20/2023).

[17] Wouter B. de Vries, Salmān Aljammāz, and Roland van
Rijswijk-Deij. “Global-Scale Anycast Network Man-
agement with Verfploeter”. In: NOMS 2020 - 2020
IEEE/IFIP Network Operations and Management Sym-
posium. 2020, pp. 1–9. DOI: 10 . 1109 / NOMS47738 .
2020.9110449.

[18] Leandro M Bertholdo et al. “Tangled: A cooperative
anycast testbed”. In: 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM).
IEEE. 2021, pp. 766–771.

[19] RIPE Atlas. RIPE Atlas docs - Credits. 2022. URL:
https://atlas.ripe.net/docs/getting- started/credits.html
(visited on 01/20/2023).

[20] Remi Hendriks. GitLab repository. 2023. URL: https://
gitlab.utwente.nl/s1978047/manycast-extended (visited
on 06/12/2023).

[21] University of Twente. OpenINTEL. 2023. URL: https:
//www.openintel.nl/ (visited on 06/10/2023).

[22] Wikipedia.org. UpSet plot wikipedia page. 2023. URL:
https : / /en.wikipedia .org/wiki /UpSet Plot (visited on
06/10/2023).

APPENDIX A
EXTENDED BACKGROUND

A. Anycast
As has been measured in the MAnycast2 paper [15], anycast

addresses make up at most 0.45% of the IPv4 range. Whilst

such a small percentage may give the impression that anycast
is insignificant, Internet users have a 50% chance to make
use of an anycast address during daily Internet activities
[11]. Anycast is used by content providers, content delivery
networks (CDNs), cloud providers, DNS operators, operators
of top- and second-level domains, and more to provide a large
variety of Internet services.

Unlike unicast, which means a host exclusively using a
unique IP address, anycast allows for multiple hosts to share
a single address. Then, clients who contact such an anycast
address get routed by the Border Gateway Protocol (BGP) to
the nearest (in terms of routing) anycast instance. In this work
we will infer whether /24 prefixes are anycast, since that is
the smallest prefix that gets propagated by conventional BGP
routers.

Anycast is desirable as it allows for geographic distribution
of a service such that it provides:

• Reduced latency - Anycast enables geographic distribu-
tion of a service, resulting in reduced latency for clients
by bringing content closer to them.

• Load-balancing - Anycast facilitates load-balancing by
spreading traffic among multiple anycast sites, thereby
distributing the burden and optimizing resource utiliza-
tion.

• Enhanced resilience - Anycast enhances resilience by
distributing traffic to multiple anycast sites based on
traffic origin, mitigating the impact of attacks and dis-
ruptions. By leveraging BGP announcements, anycast can
intelligently route traffic away from targeted sites, effec-
tively deflecting Distributed Denial of Service (DDoS)
attacks. Additionally, anycast architecture does not rely
on a single point of failure, meaning that the availability
of services remains partially intact even if a portion of
the anycast infrastructure is affected by an attack or other
issues.

• Reliability - Anycast ensures reliability by automatically
routing clients to the next-nearest anycast site when an
instance goes offline and its BGP announcements are
withdrawn.

• Localization - Anycast allows manipulation of BGP
announcements to limit visibility to select neighboring
Autonomous Systems, enabling localization of service
delivery.

• Horizontal scaling - Anycast provides a cost-effective
and efficient method for replicating a service on the
Internet, facilitating horizontal scaling.

Additionally, the possibilities and advantages of anycast have
been amplified by anycast systems like PIAS and OASIS
[1, 4], which allow for more fine-grained server selection
mechanisms.

B. BGP

Anycast relies on the Border Gateway Protocol to perform
its routing. Though there are rare exceptions to this rule,
e.g. large privatized content providers using their private
networks to route traffic. BGP was first proposed in 1989
as an improvement to the Exterior Gateway Protocol, since

17

then there have been multiple versions and currently BGP-4
is widely used [5]. This routing mechanism operates on
AS-level, an Autonomous System (AS) is a group of IP
prefixes that are ran by one or more network operators that
share a routing policy. These ASes are interconnected with
a set of neighbouring ASes with their own connections,
thereby creating a network of ASes. These ASes propagate
announcements through this network by sharing their list
of known AS links, along with a mapping of AS number
to IP prefixes that are located in a specific AS. These
announcements are done with BGP, and by listening to these
announcements routers learn the topology of the network,
which it keeps track of in a routing table. As mentioned, the
shortest IP prefix that conventional BGP routers will accept
for their routing tables, are those with size /24.

1) Path selection: When a client exchanges messages with
an anycast address, its packets are routed through the Internet
and BGP determines which anycast site will be selected for
this client. BGP does this based on which anycast site is
“closest” to the client (closest in terms of AS hops). But,
there are exceptions to this rule. For instance, it might select
a farther away path in terms of AS hops (which may mean
getting connected to a different anycast site) based on certain
policies.
These policies can be configured locally at each router. Whilst
this makes BGP path selection very complex and unpre-
dictable, there are commonly used path selection algorithms
[2].

Firstly, there are certain business relationships that ISPs may
have with each other (which determine the cost of exchanging
packets):

• Customer-provider - One ISP pays another to forward
its traffic.

• Peer-peer - Two ISPs have an agreement in place that
allows them connect directly (often without payment).

• Backup - Two ISPs have a link between them that is only
used when primary links are unavailable.

For these reasons, routers may select a longer path to avoid
customer-provider links which are more expensive. Aside from
economical reasons, a router may also select a path for load-
balancing reasons, service quality reasons, security reasons,
etc.

To facilitate these policies certain attributes can be added
to BGP announcements. An example of this is the LocalPref
value, which allows ISPs to give rankings to links.

2) Unpredictability: BGP routing does not always behave
as expected, it often looks solely at the number of AS hops, but
since AS hops can have greatly varying delays it is not always
the case that the route with the least number of AS hops is
the fastest [12]. Furthermore, the varying goals of ISPs and
the freedom with regards to path selection policies make it
difficult to predict how packets will be routed.

According to the operation of anycast services RFC [3],
which describes the best practices for operating an anycast
service, it is advised that anycast operators make use of
the NO EXPORT, NOPEER, and other policies in BGP

announcements when they want an anycast node to be only
visible in a limited set of ASes, i.e. the propagation scope.
This also has an effect on anycast routing that may be difficult
to measure, as it would require a vantage point inside of
these propagation scopes to discover anycast instances that
are hidden in this fashion.

3) BGP and anycast: The paper by Wei et al. investigated
the stability of BGP when it comes to anycast routing [10],
and whilst they found that anycast is mostly stable there are
cases where route flipping occurs (i.e. a client’s connection to
an anycast address switching between different anycast sites).
One of the causes for this phenomenon is that BGP routing
can suddenly change due to maintenance, link failures, or load
balancing reasons and these changes cause the catchments of
anycast sites to be altered.

C. Mapping an anycast infrastructure
Since the Internet is quite unpredictable when it comes

to routing, it is difficult for anycast operators to fine tune
their deployments, e.g., for obtaining good load-balancing
for DDoS attack mitigation. Furthermore, Internet routing is
dynamic, which causes catchments of anycast sites (i.e., the set
of clients who get routed to each anycast site) to be variable
[3].

For these reasons, Verfploeter was developed as a state-of-
the-art anycast measuring system for obtaining the catchments
of an anycast deployment [9]. These catchments, combined
with traffic history, can then be used, for example, to predict
future load and determine the operational value of an anycast
instance.

Unlike other anycast measuring techniques which probe an
anycast infrastructure using a set of external vantage points
that are controlled by the researcher, Verfploeter makes use
of the devices on the public Internet by sending out ICMP
requests and analysing the received ICMP responses, as visu-
alized in Figure 2. This allows Verfploeter to utilize millions
of devices, rather than a limited amount of vantage points.
Furthermore, it provides coverage in areas where obtaining
vantage points can be difficult, assuming the distribution
of ICMP-responsive hosts to be mostly unbiased. For these
reasons, Verfploeter is able to achieve higher resolution data.

Verfploeter works by sending ICMP Echo Requests to
ICMP-responsive hosts on the Internet using the anycast
source address. These hosts will then send a reply to the
anycast address, which will be routed by BGP to the “nearest”
anycast site. The catchments are then derived by looking at the
source addresses of the replies received at each anycast site.
This probing technique has been used for planning the B-Root
domain name server and for measuring Cloudflare’s anycast
CDN [17]. Since Verfploeter uses the Internet itself to perform
measurements, it is a low-cost solution to measuring anycast,
unlike most other catchment measuring tools that require a
large number of vantage points and generate far more traffic.

D. iGreedy
As mentioned, anycast is often used on the Internet to

provide critical services such as the DNS and is employed by

18

large content providers like Google and Amazon. This makes
anycast a crucial component of the the Internet, and for good
reason as it improves the resilience of a service. Therefore,
to understand the resilience of the Internet as a whole, it is
important to gather data on the usage of anycast. In this work,
we utilize two methods to externally measure anycast. The
first technique we employ is iGreedy.

iGreedy was introduced in 2015 by Cicalese et al. as an
enumeration and geolocation method for anycast. It is based on
the Great-Circle Distance (GCD) technique, which leverages
the speed of light to determine the maximum geographical
distance travelled by an Internet packet [7].

This method represents one the first works on anycast that
is not limited to the DNS. It is a service-agnostic methodol-
ogy that enables anycast service discovery. Moreover, it can
accurately enumerate and geolocate anycast replicas at city-
level, provided that there are enough VPs, by relying solely
on latency measurements.

Using speed-of-light constraints, they determine the maxi-
mum distance between a vantage point and an anycast replica
based on measured latency. Using this, and the GCD tech-
nique, they then draw circles around multiple VPs. Next, they
enumerate the minimum number of anycast instances required
to ensure that there is at least one anycast instance within each
circle (a single anycast instance can satisfy multiple circles
when they overlap). Geolocation is then accomplished by
examining the cities where anycast instances may be located
and making predictions based on the population of these cities.
This workflow is repeated iteratively to identify the most
probable geolocations and estimate the expected number of
anycast nodes. Figure 3 illustrates their iterative workflow. To
validate their methodology, they compare their results with
ground truths obtained from DNS root servers that disclosed
their deployments. They also validate their approach using
DNS CHAOS queries. The study achieved a recall rate of
50% recall and city-level geolocation accuracy of 78%.

E. MAnycast2

The second technique we utilize is MAnycast2, developed
by Sommese et al. [15]. It makes use of Verfploeter, combined
with a set of geographically distributed anycast nodes provided
by the Tangled anycast testbed [18], to identify anycast pre-
fixes on the Internet.

As mentioned, Verfploeter probes addresses on the Internet
using an anycast probing system. In the case of MAnycast2,
these probes are sent from every individual anycast vantage
point. Under normal circumstances, when a probed address
is unicast, there is a single device behind that address, which
receives a probe from every anycast node. Each of these probes
generates a reply, which is directed to the nearest anycast
instance. This means, that in the case of the probed address
being unicast, all its replies will end up at the nearest VP that
uses this shared anycast address.

However, if the probed target is also anycast, the requests
from the VPs will reach different destination nodes that share
the same destination anycast address. Consequently, each of

these destination nodes that receives the ICMP Echo Request
will generate a reply, which will be routed to that node’s
nearest VP. This means that multiple VPs will receive replies
in the case of an anycast target.
Therefore, all responses being received by a single VP im-
plies that the destination address was unicast. Conversely, if
responses are received by mutliple VPs, it indicates that the
destination address is anycast. Figure 1 illustrates this core
principle and showcases both cases.

However, there are corner cases where this principle fails.
• False negatives - An anycast address can be mistaken

as unicast when all anycast replies are routed to a single
VP. This can happen when the anycast system is deployed
regionally and there is only a single VP in that region.

• False positives - A unicast address may be mistaken for
anycast when the unicast replies are received by multiple
VPs. This is no rare occurrence and happens due to
dynamic routing in the Internet. For instance, if a unicast
address is located in the “middle” of two VPs, such that
BGP has a path to both VPs of near-equal length, its
reply may reach both VPs due to load-balancing decisions
made by the routing system over time.

In particular, the situation of unicast addresses ending up
at 2 or 3 VPs (due to equal-cost paths) is relatively common.
Therefore, in the MAnycast2 paper, they classify an address
as anycast when 4 or more VPs receive replies, while they are
classified as unicast when all replies are captured at a single
VP. However, when 2 or 3 VPs receive responses, there is
uncertainty whether it is anycast or unicast. For these reasons,
additional iGreedy measurements are performed on the po-
tential anycast targets. This phenomenon was also observed
in the anycast catchment measurements with Verfploeter by
De Vries et al. [9], where they observed that due to routing
flexibility, clients may utilize different anycast instances at
different times.

The main advantages of MAnycast2, compared to other
anycast measuring methodologies, are that it is much faster
and it does not require a large probing network, making
it a cost-effective tool for monitoring anycast deployments.
Moreover, the set of ping-responsive hosts that it sources on
the Internet is far larger than the number vantage points that
can be offered by any measuring platform. By utilizing fewer
VPs for sending out probes, it mitigates the risk of network
overload and potential strain on the measuring infrastructure.
These properties render MAnycast2 suitable for conducting
repeated measurements, providing longitudinal data on anycast
usage across the Internet.

F. UDP & TCP

With anycast there is no guarantee that when a client
exchanges packets with an anycast address that all exchanges
is with the same anycast instance. For this reason, anycast is
mostly used for stateless services such as DNS.

As mentioned, we will be expanding MAnycast2 with
additional probing tools, these will be UDP and TCP probes
(till now it has only been performing ICMP probes). UDP
is a stateless protocol and can be probed just like ICMP,

19

which is also stateless. However, TCP is stateful which may
seem counter-intuitive to anycast. Yet it does get used in
combination with anycast, to give an example, there has been
efforts made for providing DNS-over-TLS and DNS-over-
HTTPS (both require TCP) for security reasons.

APPENDIX B
SPOOFING

In the results of our DNS probing (using the ISI hitlist)
we see 11k responses from Google’s public DNS (address:
8.8.8.8), this is due to probed targets forwarding our packet
to Google’s DNS server. When this happens there are two
cases; either they spoof our address as source in the forwarded
request such that Google replies to us immediately, or they
forward it using their own source address and then forward the
reply to us. The first case we detect as we see the destination
address of our probe not matching up with the source address
of the reply, however the second case is undetectable for
our system as of now. However, it can be detected if DNS
A Record Requests are sent using a domain owned by the
researchers, we leave this for future work.

We see this same behaviour for Cloudflare (1.1.1.1) ap-
proximately 2k, Google (8.8.4.4) approximately 800, Cisco’s
OpenDNS (208.67.222.222) approximately 500. In total we
found 24k spoofed replies from 1.1k unique source addresses
for DNS.

For the UDP probed targets that responded with ICMP, we
found 1.3 million spoofed replies from 164k unique source
addresses. This is largely due to middle boxes blocking our
DNS probes and replying with e.g. destination port unreach-
able using their own source address. We also capture a large
number of replies from very few source addresses that indicate
they have no path to our desired target address, most of these
are privately reserved addresses which indicate they are from
within the Vultr sites from which we probe. For both cases
of UDP responses we see that a significant part are spoofed
packets when comparing to the other measurements.

For our ping probes we saw 23k spoofed replies from 2.7k
unique source addresses, and for TCP we are unaware of
spoofed packets as we cannot see the destination address of
the probe in the captured replies. Though we did capture 2.7k
replies from 389 unique source addresses that were not on our
hitlist. Therefore, we know there was at least 2.7k spoofed
replies in our TCP measurement.

Spoofing is often used in Internet attacks (e.g. DDoS
attacks), and for this reason many Autonomous Systems (AS)
detect and block outgoing spoofed traffic (since they know the
possible source addresses within their AS). Future work is to
share our data with AS operators.

