
Solving BFLQueries: From BDDs toQuantified SAT
CAZ SAALTINK, University of Twente, the Netherlands

Fault trees are used to analyse the propagation of faults in a system. They

also allow for fault tree analysis, which can be used to analyse the key factors

that impact system failure. Recently, Nicoletti et al. introduced a new logic

called BFL to reason about fault trees. BFL can be used to formally define

properties of fault trees. The paper also provides algorithms for BFL, for

example, to check whether properties written in BFL hold. All algorithms

make use of BDDs, which can use exponential space and time in the number

of basic events of the tree. To combat this problem, this work will aim to

use quantified Boolean formulas (QBF) instead of BDDs. The algorithms

provided by Nicoletti et al. will be replaced with an algorithm that translates

BFL to QBF and then uses a QBF solver. This approach is implemented—also

marking the first-ever BFL implementation—and it is demonstrated in a case

study. Furthermore, qualitative differences from a BDD-based approach are

discussed.

CCS Concepts: • Theory of computation→ Logic and verification.

Additional Key Words and Phrases: fault trees, QSAT, quantified Boolean

formulas, BDD

1 INTRODUCTION
Fault trees are often used in safety-critical systems, such as nuclear

power plants, aviation, and autonomous vehicles [17]. In these sys-

tems, fault tree analysis (FTA) is utilised to analyse the causes of

system failures.

A fault tree (FT) is a model that shows how a system can fail

by investigating the possible causes of system failure [20]. Fault

trees consist of two elements: events, which represent things that

can fail in a system, and gates, which model the relation between

the events. An FT is a rooted directed acyclic graph and the root is

called the top-level event (TLE). From the top-level event, the tree

recursively specifies the causes of events using gates. The two most

common gates are the AND and OR gate, which behave exactly like

the Boolean operators: an AND gate means that the parent event

occurs iff all its child events occur, and an OR gate means that the

parent event occurs iff at least one of the child events occur [17].

Furthermore, an FT can contain two types of events: intermediate

events and basic events. Intermediate events are events that have a

gate with children, i.e., for those events it is specified what causes

those events. Basic events are events that are not further specified

and thus form the leaves of the tree.

FTA can be used to identify critical basic events, for example by

finding minimal cut sets (MCSs) or minimal path sets (MPSs). A

minimal cut set is a minimal set of basic events that cause system

failure, i.e., they cause the TLE to occur. On the other hand, aminimal

path set is a minimal set of basic events that prevent system failure,

i.e., the TLE can not occur when these basic events do not occur.

TScIT 39, July 7, 2023, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Moreover, FTA can be used to analyse dependencies between events,

as well as probabilities of events.

Another aspect of fault tree analysis is reasoning about system

failures and system states. For example, an FT can be used to prove

that some basic event is always a cause of some other event. In [12],

Nicoletti et al. define a logic called Boolean Fault tree Logic (BFL)

to formalise such properties of fault trees. BFL allows writing first-

order logic statements about fault trees. The atoms in this logic are

the events of the fault tree. In addition to operators for negation,

conjunction, disjunction, implication, and equivalence, BFL also

provides operators for MCSs, MPSs, independence of events, and

setting evidence, i.e., only including scenarios where given events

have a set value.

The paper on BFL [12] also provides algorithms to (1) check if a

BFL formula holds for a given FT and status vector (a vector which

indicates whether each basic event failed or not); (2) find all status

vectors that satisfy a BFL formula for a given FT; and (3) generate

counterexamples if a BFL formula does not hold. If a BFL formula

does not hold for some FT and status vector, a counterexample is

provided, which is a slightly modified status vector for which the

BFL formula does hold. It is important that the original status vector

and the counterexample differ as little as possible to make it easy to

detect which basic event(s) cause(s) the different outcome.

All algorithms described in [12] rely on binary decision diagrams

(BDDs)
1
. A BDD is a graphical representation of a Boolean function,

where vertices represent the Boolean variables, and each vertex has

a low and high edge that points to the right subtree based on the

value of the variable. Ultimately, after finishing a path through all

variables in the formula, you reach the 1 or 0 node, which means,

respectively, that the formula was or was not satisfied. While a BDD

has the potential to provide a very compact representation of a

Boolean function, in the worst case BDDs can grow exponentially

in the number of variables.

In [12], BFL formulas are first transformed into BDDs, which

are then used in each of the algorithms. Because constructing the

BDD could take exponential space and time, some problems are

infeasible to solve using BDDs. In some of these cases, SAT solvers

can find solutions where BDDs could not. Research has shown that

BDD- and SAT-based approaches complement each other [1, 2, 10,

11, 21]. This research aims to develop and implement a SAT-based

approach to provide a complement to the developed (though not yet

implemented) BDD-based approach in [12]. This will be achieved

by translating BFL formulas to quantified Boolean formulas (QBF)

and then using a QBF solver instead of the algorithms provided

in [12], eliminating the need to construct a BDD. Biere et al. [3]

have already successfully replaced BDDs with SAT solvers to solve

problems that were infeasible to solve with a BDD-based approach.

The approach is described in detail in Section 4 of this paper, and

it is implemented in Python. The source code of the implementation

can be found at [18]. This is the first implementation of BFL so

1
Strictly speaking, “BDD” is used as a synonym for reduced ordered BDD in this paper.

1

TScIT 39, July 7, 2023, Enschede, The Netherlands Caz Saaltink

this work also provides the opportunity to use BFL in practice. We

present a case study in which we test the implementation and it

simultaneously serves as an example of how the implementation

works. Unfortunately, no BDD-based implementation exists yet,

so the QSAT-based approach cannot be experimentally compared

to the BDD approach. Despite that, differences between the two

approaches are highlighted and discussed in Section 6. The section

also emphasizes aspects that should be taken into account if the two

approaches will be compared in the future.

This paper will be structured as follows: we start by providing

background information about fault trees and BFL in Section 2. In

Section 3, we investigate related work and different QBF solvers. The

implementation is explained in Section 4. Then, we present a case

study in Section 5. In Section 6, we discuss differences from a BDD-

based approach and cover considerations for future comparisons to

a BDD-based approach. Finally, we conclude in Section 7.

2 BACKGROUND

2.1 Fault Trees
A fault tree (FT) is a directed acyclic graph containing events and

gates. The top-level event (TLE) of an FT represents system failure.

FTs have two different types of events: intermediate events and

basic events. Basic events are low-level faults which are not further

refined, i.e., they only exist at the bottom of an FT. In contrast,

intermediate events are refined using gates and child events. Gates

describe which child events cause the parent event to occur. For

example, an AND gate means all child events must occur for the

parent event to occur, whereas an OR gate means only one event

must occur. A third, often used gate is the voting gate (also called:

VOT, VT,𝑘/𝑛, or k-out-of-n gate), whichmeans at least𝑘 child events

must occur (out of 𝑛 total child events) to cause the parent event.

These three gates are the most common, and the only ones currently

supported in BFL. In this paper, the voting gate is extended to use

any comparison ⊲⊳ ∈ {<, ≤,=, ≥, >}. The original 𝑘/𝑛 gate would be

equal to a VOT(≥, 𝑘) gate with this extension. With the extended

voting gate, we can also specify that at most (VOT(≤, 𝑘)) or exactly
(VOT(=, 𝑘)) 𝑘 events must occur in order for the fault to propagate.

Many more gate types exist [17], but they are not supported in this

paper.

Figure 1 shows a small example tree. In this tree, NL is the TLE,

NL and LB are intermediate events, and L1, L2 and PO are basic

events. The intermediate event LB has an AND gate, which means

LB occurs iff L1 and L2 both occur. The TLE has an OR gate, which

means it occurs if LB or PO occurs (or both).

In fault tree analysis, often used concepts are minimal cut sets

(MCSs) and minimal path sets (MPSs). A cut set is a set of basic

events that, if they occur, cause the TLE to occur. If no events can be

removed from a cut set without failing to cause the TLE, it is called

an MCS. For example, if we take the tree in Figure 1, {L1, L2, PO} is
a cut set, though it is not minimal. The MCSs of the tree are {L1, L2}
and {PO}. On the other hand, a path set is a set of basic events that

prevent the TLE, i.e., if the events in the path set do not occur, the

TLE also cannot occur. Similarly, an MPS is a path set where no

events can be removed without losing the property of being a path

No light in room
(NL)

Lamps broken (LB) Power is out
(PO)

Lamp 1
broken (L1)

Lamp 2
broken (L2)

Fig. 1. Small example fault tree with one OR gate and one AND gate.

set. In the tree in Figure 1, the path sets are {L1, L2, PO}, {L1, PO},
and {L2, PO}, where the last two are minimal.

A status vector is a vector of the statuses of basic events. The

vector contains ones and zeroes; a 1 means that the basic event does

occur, and a 0 means that it does not. Most often, a status vector is

represented as a vector, alongside the corresponding basic events

in the same order, for example: 𝑏 = ⟨1, 0, 1⟩ for basic events 𝑎, 𝑏, 𝑐 .
Alternatively, a status vector can be treated as a set, in which case

it contains all basic events that have a status of 1.

Concretely, a fault tree consists of the following components

(adapted from [12]):

• BE is the set of basic events.
• IE is the set of intermediate events.

• E = BE ∪ IE is the set of all events.

• 𝑡 : IE → {OR, AND, VOT(⊲⊳, 𝑘)} is a function that maps an in-

termediate event to the type of its gate.

• 𝑐ℎ : IE → P(E)\∅ is a function that maps an intermediate

event to its children.

Additionally, a fault tree must have one root, the top-level event,

also called 𝑒𝑡𝑜𝑝 .

2.2 Boolean Fault tree Logic
Boolean Fault tree Logic (BFL) is a logic to reason about fault trees.

With BFL, properties of fault trees can be formulated and checked.

BFL can be divided into formulas and queries. Similar to Boolean

formulas, BFL formulas can be combined with Boolean connectives.

The atoms in a BFL formula are the events in the fault tree. BFL

queries are expressions that yield a result. A summary of BFL queries

can be found in the summary at the end of this subsection.

The full
2
grammar of BFL formulas is given below, with

⊲⊳ ∈ {<, ≤,=, ≥, >} and 𝑘 ≤ 𝑛, where 𝑒 can be any event in the fault

2
“Full” because the operators described as “syntactic sugar” [12], i.e., those that can be

derived from others, are also included. In [12], a minimal grammar is given, as well as

the derivations of the non-minimal operators.

2

Solving BFLQueries: From BDDs toQuantified SAT TScIT 39, July 7, 2023, Enschede, The Netherlands

tree.

𝜙 F 𝑒

| ¬𝜙 | 𝜙 ∧ 𝜙 | 𝜙 ∨ 𝜙 | 𝜙 =⇒ 𝜙 | 𝜙 ≡ 𝜙 | 𝜙 . 𝜙
| 𝜙 [𝑒 ↦→ 0] | 𝜙 [𝑒 ↦→ 1]
| MCS(𝜙) | MPS(𝜙)
| Vot
⊲⊳𝑘
(𝜙1, . . . , 𝜙𝑛)

𝜓 F ∃𝜙 | ∀𝜙 | IDP(𝜙, 𝜙) | SUP(𝑒)

BFL consists of two layers, denoted with 𝜙 and𝜓 , respectively. The

first layer (𝜙) is the propositional logic layer. For all formulas in 𝜙

there exists a set (not necessarily non-empty) of status vectors that

satisfy the formula. Other than the usual logical connectives, the

first layer contains operators for setting evidence, minimal cut/path

sets, and voting.

𝜙 [𝑒 ↦→ 0] sets the event 𝑒 in𝜙 to 0 (false), and𝜙 [𝑒 ↦→ 1] to 1 (true).
As an example, (𝑎∨𝑏) [𝑎 ↦→ 1] evaluates to true, and (𝑎∨𝑏) [𝑎 ↦→ 0]
is equivalent to 𝑏.

The MCS and MPS operators express, respectively, the minimal

cut sets and minimal path sets of a given formula. While finding

MCSs and MPSs most often happens for the TLE, the operators are

not that restricted and can be used for any BFL formula in the first

layer.

The Vot operator is similar to the VOT gate in a fault tree. It

expresses certain combinations of inputs depending on 𝑘 and ⊲⊳. For

example, Vot

<3
(𝜙1, . . . , 𝜙𝑁) is true iff at most 2 of the inputs are true,

and Vot

≥4
(𝜙1, . . . , 𝜙𝑁) is true iff at least 4 of the inputs are true.

The terminal symbols in the grammar are the events in the fault

tree. We define the function Vars on any BFL formula to get the set

of Boolean variables representing these events.

The semantics of BFL is given by the satisfaction relation |=,
which expresses whether a status vector 𝑏 = ⟨𝑏1, . . . , 𝑏𝑘 ⟩ and an FT

𝑇 satisfy a formula 𝜙 . We write 𝑏 ,𝑇 |= 𝜙 iff 𝑏 satisfies 𝜙 with tree𝑇 .

For example, if we take the fault tree in Figure 1 as𝑇 , and the status

vector is given in the order L1, L2, PO, we have ⟨1, 1, 0⟩,𝑇 |= NL
and ⟨1, 0, 0⟩,𝑇 ̸ |= NL. In this paper, we will—among other things—

present algorithms to check whether the satisfaction relation holds.

Checking whether a satisfaction relation holds is one of the BFL

queries.

If—for some tree𝑇—a status vector does not satisfy a formula, [12]

provides an algorithm to generate a counterexample. If 𝑏 ,𝑇 ̸ |= 𝜙 ,
a counterexample is a new status vector 𝑐 such that 𝑐,𝑇 |= 𝜙 . Fur-
thermore, the counterexample must only have the minimal neces-

sary changes needed to ensure satisfaction, i.e., there is no 𝑐𝑖 with

𝑐𝑖 ≠ 𝑏𝑖 in 𝑐 that can be replaced with 𝑏𝑖 without invalidating the

satisfaction relation. Concretely, for all 𝑐𝑖 with 𝑐𝑖 ≠ 𝑏𝑖 , we have

⟨𝑐1, . . . , 𝑐𝑖−1, 𝑏𝑖 , 𝑐𝑖+1, . . . , 𝑐𝑛⟩,𝑇 ̸ |= 𝜙 .
BFL offers a means to get the satisfaction set of a formula 𝜙 . The

satisfaction set is the set of all status vectors that satisfy 𝜙 , and it is

represented by J𝜙K.
The second layer (𝜓) adds quantifiers and the IDP and SUP opera-

tors. All formulas in this layer evaluate to either true or false given

a tree 𝑇 . 𝑇 |= ∃𝜙 is true iff there exists a status vector that satisfies

𝜙 with given 𝑇 . 𝑇 |= ∀𝜙 is true iff all status vectors, i.e., all possible

combinations of basic events, satisfy 𝜙 with given 𝑇 .

The IDP operator can be used to check whether two formulas are

independent under a given tree, i.e., the two formulas do not share

any dependent variables.

A formula’s dependent variables are those that can influence the

result of the formula. Most variables are dependent, but a formula

may also contain independent variables. For example, 𝑐 is an in-

dependent variable in (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑏 ∧ 𝑐) because it can never

influence the result of the formula; the formula is only satisfied iff 𝑎

and 𝑏 are true, in which case it does not matter what the value of 𝑐

is.

The SUP operator is used to check whether an event 𝑒 in a tree 𝑇

is superfluous, i.e., its value can not influence the TLE.

In summary, BFL allows us towrite three different kinds of queries.

Firstly, a formula in the second layer (𝜓) can be written and it can

be checked whether it is satisfied by a tree, returning either true or

false. Secondly, the satisfaction relation (|=) can be used to check

whether a given status vector and tree satisfy a formula from the

first layer. Lastly, to find all satisfying status vectors for a formula

𝜙 , the satisfaction set of 𝜙 can be calculated.

3 RELATED WORK
Because the paper on BFL [12] is quite new, no work built on top

of it has been published yet. Therefore, no work related to trans-

lating BFL to QBF exists. However, replacing the use of BDDs with

other solutions happens in other applications as well [3, 7]. These

works all aim to solve the space explosion problem: the problem that

arises because BDDs could take up exponential space in the order

of the number of inputs. Biere et al. and Clarke et al.—similarly to

us—harness the power of SAT solvers by constructing propositional

formulas [3, 7]. Instead of using BDDs for model checking, they con-

struct a propositional formula which is satisfiable iff some property

about the model holds. This is very similar to our use case, except

we will be checking BFL formulas instead of finite-state models.

3.1 QBF Solvers
As we will be using a QBF solver in this project, it is appropriate

to discuss some popular QBF solvers and some of their differences.

QBFLIB contains a large collection of QBF solvers [9]. On top of that,

they also host evaluations of QBF solvers. In their evaluations, there

are conjunctive normal form (CNF) tracks, and non-CNF tracks. All

tracks are in prenex normal form (PNF). They provide two formats:

QDIMACS [14], which only allows CNF and PNF, and QCIR [13],

which allows non-CNF and non-PNF.

QuAbS (Quantified Abstraction Solver) [19] is an interesting and

well-performing (arguably the best) non-CNF solver. It even accepts

non-PNF formulas which is convenient because our translation of

BFL may contain quantifiers between variables. A non-PNF solver

means we do not have to rewrite the resulting formulas to PNF

before solving them. CAQE [15] is perhaps the best CNF solver, cre-

ated partially by the same author as [19]. However, it unfortunately

only accepts formulas written in CNF. As rewriting a formula to

CNF can be a complex task, it is unlikely we will be using a CNF

solver.

3

TScIT 39, July 7, 2023, Enschede, The Netherlands Caz Saaltink

Another interesting solver is Z3 [8]. Z3 is an SMT solver with

support for quantifiers, making it a QBF solver as well. We do not

know how its performance compares to that of [19]. However, what

makes Z3 a very appealing option is the API it provides to easily

write formulas inside different programming languages. With Z3, it

would not be necessary to write in QCIR format (the format used

by [19]), which makes implementation much simpler.

Additionally, Z3 can be used to calculate all satisfying solutions of

a formula, which is not possible to do efficiently for any of the other

mentioned solvers. In Z3, it is possible to add additional constraints

to the solver after it found a solution. This can be used to force the

solver to find another solution if a constraint is added that makes

the current solution invalid. Adding a constraint does not reset all

learned clauses in the solver so the solver can efficiently continue

searching for a new solution. Since this is not possible for QuAbs

and CAQE, it would be very inefficient to let those solvers find all

solutions: it would require searching from scratch for each new

solution.

4 IMPLEMENTATION
At the centre of the implementation lies the translation from BFL

formulas to QBF. After the translation, depending on the BFL query,

the QBF solver is used in different ways to determine an answer to

the query.

4.1 From BFL to QBF
Before we can translate BFL into QBF, we need to be able to translate

a fault tree event to a Boolean formula. Let (Q)BF be the set of all

(quantified) Boolean formulas.

Definition 4.1. (Adapted from [12].) The translation function of

an FT𝑇 is a function ΨT : E→ (Q)BF that takes as input an element

𝑒 ∈ E. With 𝑒′ ∈ ch(𝑒), we can define ΨT :

ΨT (𝑒) =

B(𝑒) if 𝑒 ∈ BE∨
𝑒′∈ch(𝑒)ΨT (𝑒′) if 𝑒 ∈ IE and 𝑡 (𝑒) = OR∧
𝑒′∈ch(𝑒)ΨT (𝑒′) if 𝑒 ∈ IE and 𝑡 (𝑒) = AND

AtMost𝑘−1 (ΨT (ch(𝑒))) if 𝑒 ∈ IE and 𝑡 (𝑒) = VOT(<, 𝑘)
AtMost𝑘 (ΨT (ch(𝑒))) if 𝑒 ∈ IE and 𝑡 (𝑒) = VOT(≤, 𝑘)
AtMost𝑘 (ΨT (ch(𝑒)))
∧AtLeast𝑘 (ΨT (ch(𝑒))) if 𝑒 ∈ IE and 𝑡 (𝑒) = VOT(=, 𝑘)

AtLeast𝑘 (ΨT (ch(𝑒))) if 𝑒 ∈ IE and 𝑡 (𝑒) = VOT(≥, 𝑘)
AtLeast𝑘+1 (ΨT (ch(𝑒))) if 𝑒 ∈ IE and 𝑡 (𝑒) = VOT(>, 𝑘)

Where B(𝑒) is a Boolean formula consisting of only a variable rep-

resenting 𝑒 .

AtMost𝑘 and AtLeast𝑘 are Z3 functions that return true iff at

most 𝑘 inputs and at least 𝑘 inputs are true, respectively.

To aid the translation of BFL into QBF, we will create some defi-

nitions.

Negating atoms. We define 𝑵 : (Q)BF→ (Q)BF, a function that

negates all atoms in a Boolean formula. For example,𝑵 ((𝑎∧𝑏)∨𝑐) =
(¬𝑎 ∧ ¬𝑏) ∨ ¬𝑐 . It is used in the translation of the MPS operator.

Priming. A prime
′
can be applied to a set of events, a status vector,

or a BFL formula. For a set of events 𝐴, we have 𝐴′ = {𝑒′ | 𝑒 ∈ 𝐴}.
For a status vector𝑏 = ⟨𝑏1, . . . , 𝑏𝑘 ⟩, we have𝑏′ = ⟨𝑏′1, . . . , 𝑏

′
𝑘
⟩When

applied to a BFL formula, all atoms will be replaced by a primed

version. For example, if we have 𝜙 = 𝑎 ∨ 𝑏, then 𝜙 ′ = 𝑎′ ∨ 𝑏′.
Primes are used in the translation of the MCS and MPS operators.

If multiple MCS/MPS operators are used in a single BFL formula,

priming will still guarantee uniqueness in the whole formula, e.g.,

if we have 𝜙 = 𝜌 ∧ 𝜏 with 𝜌 = 𝑎 ∨ 𝑏 and 𝜏 = 𝑎 =⇒ 𝑏, then

𝜌′ ∧ 𝜏 ′ = (𝑎′ ∨ 𝑏′) ∧ (𝑎′′ =⇒ 𝑏′′).

Smaller status vector. A status vector 𝐾 is a subset of a status vec-

tor 𝐿 if𝐾 and 𝐿 consist of the same basic events and𝐾 contains fewer

basic events that have a status of 1. Using priming for easier notation,

a subset relation𝐴′ ⊂ 𝐴 between two status vectors can be encoded

as a Boolean formula as follows: 𝐴′ ⊂ 𝐴 = (∧𝑎∈𝐴 𝑎
′ =⇒ 𝑎) ∧

(∨𝑎∈𝐴 𝑎
′ . 𝑎). This can be read as: status vector 𝐴′ is a subset of

𝐴 iff all true (having status 1) basic events in 𝐴′ are also true in 𝐴,

and the status vectors have at least one basic event where the status

is different, which means there is at least one false basic event in 𝐴′

that is true in 𝐴.

Free variables. A Boolean variable is called free if it is not bound
by a quantifier. For example, in ∃𝑎. 𝑎∨𝑏, 𝑏 is a free variable and 𝑎 is
a bound variable. Let B be the set of all Boolean variables. We define

a function FreeVars : (Q)BF→ B that returns all free variables in

a given Boolean formula.

With these definitions, we can translate BFL to QBF with the

recursion scheme below. The implementation uses a recursive ap-

proach. Each function call is stored in a cache to follow dynamic

programming standards. Note that the IDP and SUP operators are

not covered in the recursion scheme. Their implementations are

covered in Section 4.2.

Algorithm 1 Translate BFL to QBF

Input: FT 𝑇 , BFL formula 𝜒

Output: Boolean formula

Method: Translate 𝜒 to QBF using the recursion scheme below.

Recursion scheme:
𝐵(𝑇, 𝑒) : Ψ𝑇 (𝑒)
𝐵(𝑇,¬𝜙) : ¬(𝐵(𝑇, 𝜙))
𝐵(𝑇, 𝜙1 ∧ 𝜙2) : 𝐵(𝑇, 𝜙1) ∧ 𝐵(𝑇, 𝜙2)
𝐵(𝑇, 𝜙1 ∨ 𝜙2) : 𝐵(𝑇, 𝜙1) ∨ 𝐵(𝑇, 𝜙2)
𝐵(𝑇, 𝜙1 =⇒ 𝜙2) : 𝐵(𝑇, 𝜙1) =⇒ 𝐵(𝑇, 𝜙2)
𝐵(𝑇, 𝜙1 ≡ 𝜙2) : 𝐵(𝑇, 𝜙1) ≡ 𝐵(𝑇, 𝜙2)
𝐵(𝑇, 𝜙1 . 𝜙2) : 𝐵(𝑇, 𝜙1) . 𝐵(𝑇, 𝜙2)
𝐵(𝑇, 𝜙 [𝑒𝑖 ↦→ 0]) : ∀𝑒𝑖 .¬𝑒𝑖 =⇒ 𝐵(𝑇, 𝜙)
𝐵(𝑇, 𝜙 [𝑒𝑖 ↦→ 1]) : ∀𝑒𝑖 . 𝑒𝑖 =⇒ 𝐵(𝑇, 𝜙)
𝐵(𝑇,MCS(𝜙)) : 𝐵(𝑇, 𝜙) ∧

(
¬∃BE′. BE′ ⊂ BE ∧ 𝐵(𝑇, 𝜙 ′)

)
𝐵(𝑇,MPS(𝜙)) : 𝑵 (𝐵(𝑇,¬𝜙))

∧
(
¬∃BE′. BE′ ⊂ BE ∧ 𝑵 (𝐵(𝑇,¬𝜙 ′))

)
𝐵(𝑇, ∃𝜙) : ∃FreeVars(𝐵(𝑇, 𝜙)) . 𝐵(𝑇, 𝜙)

4

Solving BFLQueries: From BDDs toQuantified SAT TScIT 39, July 7, 2023, Enschede, The Netherlands

𝐵(𝑇,∀𝜙) : ∀FreeVars(𝐵(𝑇, 𝜙)) . 𝐵(𝑇, 𝜙)
𝐵(𝑇,Vot

<𝑘
(𝜙1, . . . , 𝜙𝑛)) : AtMost𝑘−1 (𝐵(𝑇, 𝜙1), . . . , 𝐵(𝑇, 𝜙𝑛))

𝐵(𝑇,Vot
≤𝑘
(𝜙1, . . . , 𝜙𝑛)) : AtMost𝑘 (𝐵(𝑇, 𝜙1), . . . , 𝐵(𝑇, 𝜙𝑛))

𝐵(𝑇,Vot
=𝑘
(𝜙1, . . . , 𝜙𝑛)) : AtMost𝑘 (𝐵(𝑇, 𝜙1), . . . , 𝐵(𝑇, 𝜙𝑛))

∧ AtLeast𝑘 (𝐵(𝑇, 𝜙1), . . . , 𝐵(𝑇, 𝜙𝑛))
𝐵(𝑇,Vot

≥𝑘
(𝜙1, . . . , 𝜙𝑛)) : AtLeast𝑘 (𝐵(𝑇, 𝜙1), . . . , 𝐵(𝑇, 𝜙𝑛))

𝐵(𝑇,Vot
>𝑘
(𝜙1, . . . , 𝜙𝑛)) : AtLeast𝑘+1 (𝐵(𝑇, 𝜙1), . . . , 𝐵(𝑇, 𝜙𝑛))

4.2 Solving BFLQueries With QSAT
With the knowledge of how to translate BFL to QBF, we can investi-

gate how different queries can be solved.

Quantified queries. The BFL formulas from the second layer that

start with the existential or universal quantifier are the quantified

queries. These queries can be translated to QBF after which they can

be solved with Z3. The result of this query will be ⊤ iff the Boolean

formula is satisfiable.

Algorithm 2 Check whether two BFL formulas 𝜙1 and 𝜙2 are inde-

pendent.

Input: Two BFL formulas 𝜙1, 𝜙2 and FT 𝑇

Output: ⊤ iff the formulas are independent

Method:

function GetDependentVariables(𝜙 , 𝑣𝑠)

res← ∅
for all 𝑣 ∈ 𝑣𝑠 do

if Substitute𝜙 (𝑣,⊤) ≠ Substitute𝜙 (𝑣,⊥) then
res← res ∪ {𝑣}

end if
end for
return 𝑟𝑒𝑠

end function

𝑓1 ← 𝐵(𝑇, 𝜙1)
𝑓2 ← 𝐵(𝑇, 𝜙2)
𝑣1 ← Vars(𝑓1)
𝑣2 ← Vars(𝑓2)
𝑠 ← 𝑣1 ∩ 𝑣2
𝑑𝑣1 ← GetDependentVariables(𝑓1, 𝑠)
𝑑𝑣2 ← GetDependentVariables(𝑓2, 𝑠)
if 𝑑𝑣1 ∩ 𝑑𝑣2 = ∅ then

return ⊤
else

return ⊥
end if

IDP query. To determine whether two BFL formulas are inde-

pendent, we test if the two formulas do not share any dependent

variables (see Algorithm 2). First, the BFL formula must be trans-

lated to QBF. Then, for the variables that are in both formulas, it is

checked whether they are dependent variables. We substitute the

variable with ⊤ and test whether it is equal to a formula where we

substitute the variable with ⊥. If they are unequal, it is concluded

that the variable is a dependent variable in the formula. If the for-

mulas do not share any dependent variables, they are independent.

The Substitute function takes a formula and two values. It

returns a new formula where the first value is substituted for the

second value. For example, Substitute𝑎∧𝑏 (𝑏,⊤) = 𝑎 ∧ ⊤.

SUP query. This query is solved in the same way as the IDP query:

SUP(𝜙) = IDP(𝜙,ΨT (𝑒𝑡𝑜𝑝)).

Satisfaction relation query. To check whether a status vector satis-
fies a formula, the formula is first translated to QBF, after which Z3

is used to check whether the formula is satisfiable with the given

status vector. To do this, the status vector must also be translated to

a Boolean formula. Let us define Γ(𝑏) to translate a status vector

𝑏 to a Boolean formula. A status vector is simply a conjunction of

basic events, e.g., if we have a status vector 𝑠 = ⟨1, 0, 1⟩ for basic
events 𝑎, 𝑏, 𝑐 , then Γ(𝑠) = 𝑎 ∧ ¬𝑏 ∧ 𝑐 . Consequently, Γ(⟨1⟩) = 𝑑 and

Γ(⟨0⟩) = ¬𝑑 if the status vector represents only event 𝑑 . Concretely,

𝑏 ,𝑇 |= 𝜙 iff 𝐵(𝑇, 𝜙) ∧ Γ(𝑏) is satisfiable.

Satisfaction set query. We can use Z3 to find all satisfying sta-

tus vectors for a formula. After using Algorithm 1, we can let Z3

compute all satisfying status vectors using the approach in [4, Sec-

tion 5.1].

4.3 Counterexamples

Algorithm 3 Generate counterexample for non-satisfying status

vector 𝑏 .

Input: Status vector 𝑏 = ⟨𝑏1, . . . , 𝑏𝑛⟩, Boolean formula 𝑓

Output: A counterexample 𝑐 = ⟨𝑐1, . . . , 𝑐𝑛⟩
Method:

if 𝑓 is unsatisfiable then
return

end if

for all 𝑏𝑖 ∈ 𝑏 do
𝑓𝑛𝑒𝑤 ← 𝑓 ∧ Γ(⟨𝑏𝑖 ⟩)
if 𝑓𝑛𝑒𝑤 is satisfiable then

𝑐𝑖 ← 𝑏𝑖
else

𝑐𝑖 ← ¬𝑏𝑖
𝑓𝑛𝑒𝑤 ← 𝑓 ∧ ¬Γ(⟨𝑏𝑖 ⟩)

end if
𝑓 ← 𝑓𝑛𝑒𝑤

end for
return 𝑐

Algorithm 3 is used to generate counterexamples. The

non-satisfying status vector is modified in such a way that only

those basic events that make the status vector non-satisfiable

are changed. If the input formula is not satisfiable there cannot

be a counterexample, thus nothing is returned in that case.

The order in which the for loop is executed can affect the

5

TScIT 39, July 7, 2023, Enschede, The Netherlands Caz Saaltink

IWoS ≥ 2

CP/R SHMoT

CR CT DT AT CVT UT H1

IT H2 CIW CIO CIS IW PP IW

VW

AB IW H1MV

IT

H1

MH1

H4

IS

H1

MH2

H5

H1PPIW

CP

IW H3

Fig. 2. COVID-19 Fault Tree.

counterexample generation; a different order may result in a

different counterexample. In the Python implementation [18],

the order may be different in separate invocations, so a different

counterexample may be returned in a different run.

5 CASE STUDY
In this section, we will go over several BFL queries and examine

their translations and results to showcase and validate the imple-

mentation. The queries were chosen to maximise the demonstration

of the different parts of the implementation. In all queries, we use

the COVID-19 fault tree from Figure 2. The tree is adjusted slightly

from the one in [12]; the AND gate of the TLE is replaced with a

VOT(≥, 2) gate to demonstrate the translation of a voting gate. The

translation of this voting gate can be found in the second case study

example.

The Python implementation of our approach can be found at [18].

All results in the examples in the case study were found using this

implementation. In the examples directory of the repository, you

can find a file named case-study.bfl. This file includes the tree
from Figure 2, along with all the BFL queries used in the case study.

Out of 20 measurements, the fastest running time of

case-study.bfl was 820ms. In this run, 30ms were spent on

parsing the file, and the remaining 790ms were spent on solving

the BFL queries. In this experiment, the results of the BFL queries

were not printed to reduce overhead.

Universal quantification. Let us take a look at the BFL query

∀(IS =⇒ MoT) which checks whether an infected surface is

sufficient for the transmission of COVID. If we use Algorithm 1, we

get the following Boolean formula:

∀IS, IW , PP,H1, IT ,H4,H5,AB,MV ,UT .

IS =⇒ (((IW ∧ PP ∧ H1) ∨ (IT ∧ (H1 ∧ H4))
∨ (IS ∧ (H1 ∧ H5)))

∨ (IW ∧ PP) ∨ (IW ∧ AB)
∨ (IW ∧MV ∧ H1) ∨ UT)

The Boolean formula is unsatisfiable and thus false.

Existential quantification and Vot operator. We can check whether

the TLE can occur with no more than one human error with the

following BFL query: ∃(IWoS ∧ Vot
<2
(H1, . . . ,H5)). QBF:

∃IW ,H3, IT ,H2, PP,H1,H4, IS,H5,AB,MV ,UT ,VW .

AtLeast2 ((IW ∧ H3) ∨ (IT ∧ H2),
(((IW ∧ PP ∧ H1) ∨ (IT ∧ (H1 ∧ H4))

∨ (IS ∧ (H1 ∧ H5)))
∨ (IW ∧ PP) ∨ (IW ∧ AB)
∨ (IW ∧MV ∧ H1) ∨ UT),

VW ∧ H1)
∧ AtMost1 (H1,H2,H3,H4,H5)

The formula is satisfiable which means the TLE could occur with

at most 1 human error. If we input JIWoS ∧ Vot

<2
(H1, . . . ,H5)K

to see in which cases this can occur, we see that there are

292 different status vectors that satisfy the formula. Such

a large number may be overwhelming, so we can instead

ask to receive only the minimal examples by using the

following BFL query: JIWoS ∧ Vot

<2
(H1, . . . ,H5) ∧ MCS(IWoS)K

(simplified: JMCS(IWoS) ∧ Vot

<2
(H1, . . . ,H5)K). The following sets

are returned: {IT ,UT ,H2}, {H3, IW , PP}, {IT , IW ,AB,H2},
{VW , PP, IW ,H1}, {H3, IW ,UT }, {VW , IW ,MV ,H1},
{VW , IW ,AB,H1}, {H3, IW ,AB}, {VW ,UT ,H1}, {IT , IW ,H2, PP}.

Setting evidence and quantification. Let us take a look at the fol-

lowing BFL queries: ∃(CP [IW ↦→ 0]) and ∃(CP [IW ↦→ 0,H3 ↦→ 1]).
The translation of the first query is ∃H3. ∀IW . ¬IW =⇒ IW ∧H3.
Here we can see that IW was correctly excluded from the exis-

tential quantification because it was already universally quantified

by the evidence. Likewise, the translation of the second query is

∀IW ,H4. ¬IW ∧H3 =⇒ IW ∧H3, having no existential quantifier
at all. Obviously, both BFL queries return false.

Satisfaction checking with evidence. Consider the following sat-

isfaction relation query: 𝑏 ,𝑇 |= ¬MoT [UT ↦→ 0] with 𝑏 = {UT }.
In this query, the given status vector conflicts with the evidence.

Setting evidence has priority in this case [12], which means we

expect the result to be true. Let us see how the implementation

6

Solving BFLQueries: From BDDs toQuantified SAT TScIT 39, July 7, 2023, Enschede, The Netherlands

addresses this. The query translates to
3
:

(∀UT . ¬UT =⇒ ¬MoT)
∧ (UT ∧ ¬IT ∧ ¬IW ∧ ¬IS ∧ ¬H3 ∧ ¬AB ∧ ¬H5

∧ ¬H2 ∧ ¬PP ∧ ¬VW ∧ ¬MV ∧ ¬H1 ∧ ¬H4)

As one can see, the event UT from the status vector exists outside

the quantification, which means both can happily coexist and the

formula is satisfiable as expected.

Minimal cut sets of CP/R.. To find the minimal cut sets of CP/R,
we can use the BFL query JMCS(CP/R)K, which will be translated

into:

((IW ∧ H3) ∨ (IT ∧ H2))
∧ (¬∃IW ′,H3′, IT ′,H2′,UT ′, PP′,H1′,

H4′, IS′,H5′,AB′,MV ′,VW ′ .

((IW ′ =⇒ IW) ∧ (H3′ =⇒ H3) ∧ (IT ′ =⇒ IT)
∧ (H2′ =⇒ H2) ∧ (UT ′ =⇒ UT) ∧ (PP′ =⇒ PP)
∧ (H1′ =⇒ H1) ∧ (H4′ =⇒ H4) ∧ (IS′ =⇒ IS)
∧ (H5′ =⇒ H5) ∧ (AB′ =⇒ AB) ∧ (MV ′ =⇒ MV)
∧ (VW ′ =⇒ VW))
∧ ((IW ′ . IW) ∨ (H3′ . H3) ∨ (IT ′ . IT)
∨ (H2′ . H2) ∨ (UT ′ . UT) ∨ (PP′ . PP)
∨ (H1′ . H1) ∨ (H4′ . H4) ∨ (IS′ . IS)
∨ (H5′ . H5) ∨ (AB′ . AB) ∨ (MV ′ . MV)
∨ (VW ′ . VW))
∧ ((IW ′ ∧ H3′) ∨ (IT ′ ∧ H2′)))

This results in the following MCSs: {IT ,H2} and {H3, IW }.
Unlike the quantifiers in the second layer (𝜓), theMCS and MPS

operators do not limit the quantified atoms to just the ones that

are used inside the formula. The reason for that is the fact that the

quantified atoms in theMCS andMPS translations cannot conflict

with already quantified atoms because they are unique to the quan-

tifier for which they were generated. For example, the translation of

∃(SH [VW ↦→ 1]) would have a conflicting quantification of VW :

∃H1,VW . ∀VW . VW =⇒ VW ∧ H1. In this wrongly translated

example, VW is universally and existentially quantified at the same

time. The correct translation is: ∃H1. ∀VW . VW =⇒ VW ∧ H1

Minimal path sets of CP/R.. Similarly to the previous example, we

can get the MPSs with the formula JMPS(CP/R)K, which results in

3
Translation of MoT omitted for brevity.

the following translation
4
:

¬((¬IW ∧ ¬H3) ∨ (¬IT ∧ ¬H2))
∧ (¬∃IW ′,H3′, IT ′,H2′ .

((IW ′ =⇒ IW) ∧ (H3′ =⇒ H3) ∧ (IT ′ =⇒ IT)
∧ (H2′ =⇒ H2))
∧ ((IW ′ . IW) ∨ (H3′ . H3) ∨ (IT ′ . IT)
∨ (H2′ . H2))
∧ ¬((¬IW ′ ∧ ¬H3′) ∨ (¬IT ′ ∧ ¬H2′)))

It gives the following MPSs as result: {IT , IW }, {IT ,H3}, {IW ,H2},
and {H3,H2}.

Different counterexamples. In the example before the previous

one, we saw that the MCSs of CP/R are {IT ,H2} and {H3, IW }. Let
us see what happens if we try to check a slightly wrong status vector

and see what counterexamples it generates. If we take 𝑏 = ⟨1, 1, 1, 0⟩
for IW ,H3, IT ,H2 and run 𝑏 ,𝑇 |= MCS(CP/R), we find that it will

either return {IW ,H3} or {IT ,H2}. The result differs based on the

order of the for loop in Algorithm 3.

Let us consider the two orders: (1) IW ,H3, IT ,H2; and (2)

IT ,H3, IW ,H2. First, consider order (1). When we reach IT , we find
that the formula is unsatisfiable with IT = 1, so we set IT = 0. H2
was already set to 0 so no change is needed there. We end up with

the counterexample {IW ,H3}. Now consider order (2). We have

IT = 1 in 𝑏 , so when we reach H3 in the loop, we find that an MCS

with IT = 1 and H3 = 1 does not exist. Therefore, we set H3 = 0 in

the counterexample and ultimately end up with {IT ,H2} as the
result.

6 DISCUSSION AND FUTURE WORK
Unfortunately, there is no implementation of BFL that uses BDDs yet,

so we cannot make a direct comparison. However, we can discuss

some qualitative differences.

The main drawback of using non-reduced BDDs is the space

explosion problem, which is the problem of the number of vertices

growing exponentially in the number of Boolean variables. While

the introduction of reduced ordered BDDs (hereafter, just BDDs)

by Bryant revolutionised the field of symbolic representation of

Boolean functions, it does not completely solve this problem [6].

In some cases, BDDs can provide a very compact representation of

a Boolean function with many Boolean variables. However, in the

worst case, BDDs still need 2
𝑛 + 1 vertices to represent a function

with 𝑛 variables.

The size of a BDD is very sensitive to the ordering of the vari-

ables [6]. Depending on the ordering, a BDD could have a low (such

as 2𝑛) or very high (such as 2
𝑛
) number of vertices. Finding the most

optimal ordering is an NP-hard problem [5]. In practical use cases

where Boolean formulas have similar structures, there is often a

set of heuristics for choosing a good ordering [16]. However, when

Boolean formulas can have greatly varying structures—such as in

BFL—it is difficult to find good orderings. Because of that, building

a performant BFL implementation with BDDs is not a trivial task.

4
Irrelevant events inside the MPS translation omitted for brevity.

7

TScIT 39, July 7, 2023, Enschede, The Netherlands Caz Saaltink

Many BFL queries are able to use properties that are inherent to

BDDs to return a result in constant time. For example, a quantified

query with a universal quantifier only needs to check whether

the BDD is equal to the terminal 1 node, and for an existential

quantifier, it only needs to check that the BDD is not equal to the

terminal 0 node. Furthermore, independence between two formulas

can easily be checked by testing if the BDDs for those formulas share

any variables (this is not possible for Boolean formulas because a

formula may contain independent variables
5
whereas a BDD may

not). While this sounds great at first glance, a bad variable ordering

might cause the construction of the BDD to take up to exponential

time, diminishing the mentioned benefits.

Performance differences between BDD- and SAT-based

approaches have been researched in the past [1, 2, 10, 11, 21].

The papers show mixed results regarding which is the better

approach, however, all agree that BDD- and SAT-based approaches

complement each other. Different types of problems are better

solved by one approach than the other; a problem that is infeasible

to solve with one approach may be trivial for the other. Goldberg

et al., Jöbstl et al. and Wille et al. [10, 11, 21] show that some

problems in their papers are solved more quickly with a SAT solver,

and others with a BDD-based approach.

As of now, it is unclear what properties contribute to easier

problem-solving for one approach, and how this can be applied

to problems in BFL. It would be interesting to research which prob-

lems in BFL are more easily solved by the SAT-based approach

versus the BDD-based approach.

The two approaches’ performance on quantified queries makes

a fair comparison, as satisfiability testing is the primary function

of a SAT solver. On the other hand, obtaining the satisfaction set

may be a less optimal task for SAT solvers because their designs

often prioritise finding a single satisfying model over finding all

possible models. Moreover, the current implementation of checking

for independence requires solving two formulas for each shared vari-

able, whereas the BDD approach only needs to construct one BDD

for each formula. In this case, the performance of the SAT imple-

mentation is heavily influenced by the number of shared variables

between the two formulas whereas the BDD approach is not.

Next to the type of BFL query, the structure of the fault tree may

also influence the performance of the two approaches in different

ways. Ideally, the performance of the approaches should also be

compared for different tree shapes and sizes.

7 CONCLUSION
This paper presented the first-ever implementation of BFL, mak-

ing it possible to use BFL in practice. The implementation uses a

QBF solver, a complementary approach to a previously designed

BDD-based approach. At the core of the implementation lies the

translation algorithm that translates BFL to QBF. The resulting QBF

formula is then combined with a QBF solver in different ways de-

pending on the BFL query that must be solved. An algorithm to

generate counterexamples is also presented. Different parts of the

implementation were demonstrated in a case study. Finally, we dis-

cussed the differences from a BDD-based approach and examined

5
Recall the explanation of independent variables in Section 2.2.

various aspects that should be taken into account if this implemen-

tation is compared to a BDD-based approach in the future.

ACKNOWLEDGEMENTS
I am deeply grateful for the guidance and encouragement provided

by my supervisors, Stefano Nicoletti and Moritz Hahn, throughout

the course of my thesis. Their support and extensive feedback have

greatly contributed to the quality of my work. Their willingness to

assist whenever needed, and their sincere interest in my progress

throughout the duration of this thesis have provided a significant

source of motivation. Additionally, I would like to thank everyone

else who proofread or gave feedback on this work in any way.

REFERENCES
[1] Parosh Aziz Abdulla, Per Bjesse, and Niklas Eén. 2000. Symbolic Reachability

Analysis Based on SAT-Solvers. en. In Tools and Algorithms for the Construction
and Analysis of Systems (Lecture Notes in Computer Science). Susanne Graf

and Michael Schwartzbach, (Eds.) Springer, Berlin, Heidelberg, 411–425. isbn:

978-3-540-46419-8. doi: 10.1007/3-540-46419-0_28.

[2] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. 1999. Symbolic model

checking using SAT procedures instead of BDDs. en. Proceedings of the 36th
annual ACM/IEEE Design Automation Conference, (June 1999), 317–320. isbn:
9781581131093. doi: 10.1145/309847.309942.

[3] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999.

Symbolic Model Checking without BDDs. en. In Tools and Algorithms for the
Construction and Analysis of Systems (Lecture Notes in Computer Science).

W. Rance Cleaveland, (Ed.) Springer, Berlin, Heidelberg, 193–207. isbn: 978-3-

540-49059-3. doi: 10.1007/3-540-49059-0_14.

[4] Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, and Christoph Winter-

steiger. [n. d.] Programming Z3. (). Retrieved June 20, 2023 from https://theory

.stanford.edu/~nikolaj/programmingz3.html.

[5] B. Bollig and I. Wegener. 1996. Improving the variable ordering of OBDDs is

NP-complete. IEEE Transactions on Computers, 45, 9, (Sept. 1996), 993–1002. doi:
10.1109/12.537122.

[6] Randal Bryant. 1986. Graph-Based Algorithms for Boolean Function Manip-

ulation. IEEE Transactions on Computers, C-35, 8, (Aug. 1986), 677–691. doi:
10.1109/TC.1986.1676819.

[7] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. 2001. Bounded

Model Checking Using Satisfiability Solving. en. Formal Methods in System
Design, 19, 1, (July 1, 2001), 7–34. doi: 10.1023/A:1011276507260.

[8] Leonardo deMoura andNikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. en. In

Tools and Algorithms for the Construction and Analysis of Systems (Lecture Notes
in Computer Science). C. R. Ramakrishnan and Jakob Rehof, (Eds.) Springer,

Berlin, Heidelberg, 337–340. isbn: 978-3-540-78800-3. doi: 10.1007/978-3-540-7

8800-3_24.

[9] E. Giunchiglia, M. Narizzano, L. Pulina, and A. Tacchella. 2005. Quantified

Boolean Formulas satisfiability library (QBFLIB). Retrieved May 3, 2023 from

https://www.qbflib.org.

[10] E.I. Goldberg, M.R. Prasad, and R.K. Brayton. 2001. Using SAT for combinational

equivalence checking. In Proceedings Design, Automation and Test in Europe.
Conference and Exhibition 2001. Proceedings Design, Automation and Test in

Europe. Conference and Exhibition 2001. (Mar. 2001), 114–121. doi: 10.1109

/DATE.2001.915010.

[11] Elisabeth Jöbstl, Martin Weiglhofer, Bernhard K. Aichernig, and Franz Wotawa.

2010. When BDDs Fail: Conformance Testing with Symbolic Execution and SMT

Solving. In Verification and Validation 2010 Third International Conference on Soft-
ware Testing. Verification and Validation 2010 Third International Conference

on Software Testing. (Apr. 2010), 479–488. doi: 10.1109/ICST.2010.48.

[12] Stefano M. Nicoletti, E. Moritz Hahn, and Mariëlle Stoelinga. 2022. BFL: a

Logic to Reason about Fault Trees. In 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 2022 52nd Annual

IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN). (June 2022), 441–452. doi: 10.1109/DSN53405.2022.00051.

[13] 2014. QCIR-G14: A Non-Prenex Non-CNF Format for Quantified Boolean For-

mulas. en. (Apr. 8, 2014). Retrieved Mar. 5, 2023 from https://www.qbflib.org/qc

ir.pdf.

[14] 2005. QDIMACS standard. en. (Dec. 21, 2005). Retrieved May 3, 2023 from

https://www.qbflib.org/qdimacs.html.

[15] Markus N. Rabe and Leander Tentrup. 2015. CAQE: A Certifying QBF Solver. In

2015 Formal Methods in Computer-Aided Design (FMCAD). 2015 Formal Methods

8

https://doi.org/10.1007/3-540-46419-0_28
https://doi.org/10.1145/309847.309942
https://doi.org/10.1007/3-540-49059-0_14
https://theory.stanford.edu/~nikolaj/programmingz3.html
https://theory.stanford.edu/~nikolaj/programmingz3.html
https://doi.org/10.1109/12.537122
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://www.qbflib.org
https://doi.org/10.1109/DATE.2001.915010
https://doi.org/10.1109/DATE.2001.915010
https://doi.org/10.1109/ICST.2010.48
https://doi.org/10.1109/DSN53405.2022.00051
https://www.qbflib.org/qcir.pdf
https://www.qbflib.org/qcir.pdf
https://www.qbflib.org/qdimacs.html

Solving BFLQueries: From BDDs toQuantified SAT TScIT 39, July 7, 2023, Enschede, The Netherlands

in Computer-Aided Design (FMCAD). (Sept. 2015), 136–143. doi: 10.1109/FMC

AD.2015.7542263.

[16] R. Rudell. 1993. Dynamic variable ordering for ordered binary decision dia-

grams. In Proceedings of 1993 International Conference on Computer Aided Design
(ICCAD). Proceedings of 1993 International Conference on Computer Aided

Design (ICCAD). (Nov. 1993), 42–47. doi: 10.1109/ICCAD.1993.580029.

[17] Enno Ruijters and Mariëlle Stoelinga. 2015. Fault tree analysis: A survey of the

state-of-the-art in modeling, analysis and tools. en. Computer Science Review,
15–16, (Feb. 1, 2015), 29–62. doi: 10.1016/j.cosrev.2015.03.001.

[18] [SW] Caz Saaltink, BFL QSAT Implementation version 1.0.1, June 29, 2023. doi:

10.5281/zenodo.8093373, url: https://github.com/CazSaa/BFL-QSAT-impleme

ntation.

[19] Leander Tentrup. 2016. Non-prenex QBF Solving Using Abstraction. en. In

Theory and Applications of Satisfiability Testing – SAT 2016 (Lecture Notes

in Computer Science). Nadia Creignou and Daniel Le Berre, (Eds.) Springer

International Publishing, Cham, 393–401. isbn: 978-3-319-40970-2. doi: 10.1007

/978-3-319-40970-2_24.

[20] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. 1987. Fault Tree

Handbook. (Dec. 17, 1987).

[21] Robert Wille, Daniel Große, Finn Haedicke, and Rolf Drechsler. 2009. SMT-

based stimuli generation in the SystemC Verification library. In 2009 Forum on
Specification & Design Languages (FDL). 2009 Forum on Specification & Design

Languages (FDL). (Sept. 2009), 1–6.

9

https://doi.org/10.1109/FMCAD.2015.7542263
https://doi.org/10.1109/FMCAD.2015.7542263
https://doi.org/10.1109/ICCAD.1993.580029
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.5281/zenodo.8093373
https://github.com/CazSaa/BFL-QSAT-implementation
https://github.com/CazSaa/BFL-QSAT-implementation
https://doi.org/10.1007/978-3-319-40970-2_24
https://doi.org/10.1007/978-3-319-40970-2_24

	Abstract
	1 Introduction
	2 Background
	2.1 Fault Trees
	2.2 Boolean Fault tree Logic

	3 Related Work
	3.1 QBF Solvers

	4 Implementation
	4.1 From BFL to QBF
	4.2 Solving BFL Queries With QSAT
	4.3 Counterexamples

	5 Case Study
	6 Discussion and Future Work
	7 Conclusion

