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Soil moisture plays an essential role in the overall health of newly planted
vegetation. Hence, it is crucial to develop precise soil moisture forecasting
techniques that facilitate precision irrigation, effectively mitigating the risk
of vegetation succumbing to drought. Recent research compared the per-
formance of different machine learning techniques and found it to be an
effective forecasting approach. This research was about extending this exist-
ing research on machine learning approaches by assessing the performance
of a Long Short-Term Memory Recurrent Neural Network using multivari-
ate time-series data of soil moisture sensors which were subject to manual
irrigation complemented with meteorological data from weather stations
within the Netherlands. The performance was evaluated using MAE, MSE,
RMSE and MAPE and showed compelling results, with an average MAPE of
3.41% for a 1-day horizon, 5.85% for a 3-day horizon, and 10.09% for a 7-day
horizon.

Additional Key Words and Phrases: Soil moisture, prediction, forecasting,
machine learning, LSTM, multivariate, timeseries, RNN.

1 INTRODUCTION
Drastic changes are needed in order to reduce green house gasses to
limit global warming to 1.5 degrees Celsius [4]. As a result many gov-
ernmental policy makers aim, besides many other measurements,
to increase canopy coverage (i.e. proportion of ground surface cov-
ered by vegetation material) of municipalities to 25-30%. Increasing
canopy coverage as a means to limit greenhouse gases is sought to
be important because at the one hand trees absorb CO2 through
photosynthesis and at the other hand provide shade cooling down
cities between 10 and 15 degrees Celsius [5, 12].
To meet the goal of higher canopy coverage, municipalities are

increasingly planting new trees. In the Netherlands 1.6. million new
trees have been planted in 2020 alone, twice as much as in previous
years [13]. Importantly, newly planted trees require extensive health
maintenance within the first three years to survive. 90% of these
newly planted trees that do not survive within these three years
suffered form too dry or wet soil moisture [10].

To help monitoring the soil moisture, company ConnectedGreen
B.V. offers wireless moisture sensors from which the data can be
viewed within their web portal. Currently over 3000 of their sensors
are being used in the Netherlands and help green managers to
make data-driven decisions about whether a tree requires additional
watering.

However, the data only gives insight on historical and current
soil moisture values which makes it hard to make the right, most
sustainable and efficient decisions on when to water the trees.
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To improve the decision making process of green managers on
the irrigation scheduling of trees, accurate soil moisture forecasting
is desired such that likely future developments of soil moisture
influenced by meteorological factors [6] can be taken into account.

First soil moisture forecasting attempts were made using physical
models of weather forecast models that based their predictions on
calculations of the simulations. These calculations however did not
yield high accuracy when validated with real observations. Possibly
because of the lack of real-time and historical data of soil moisture.
Later and more recent research, after the rise of IoT [11], approached
the problem as a time-series problem and applied statistical methods
as well as machine learning methods. The statistical methods did
not perform well because of the non-linear characteristics of soil
moisture and the machine learning approaches either used datasets
of rural areas that were not subject to any manual watering or did
not use multivariate data such as meteorological factors.
This research aims to fill the gap of training and evaluating the

performance of a Long Short-Term Memory (i.e. LSTM) Recurrent
Neural Network on forecasting soil moisture using multivariate
data that includes meteorological variables and a sensor dataset that
was subject to manual watering. The performance will be evaluated
by calculating the Mean Absolute Error (i.e. MAE) and the perfor-
mance is expected to be higher than previous attempts given the
multivariate approach and quality of the dataset.

2 PROBLEM STATEMENT
Currently, green managers are already basing their decisions on
watering vegetation based on the data of their soil moisture sensors.
However, this data only gives an impression of the historical and
current soil moisture without incorporating the future. Without
having a forecast of the soil moisture values, vegetation are getting
inaccurate irrigation (e.g. too much, late or little additional water-
ing) besides inefficient watering rounds that are being driven as a
result. Therefore, to solve this problem, accurate forecasting of soil
moisture sensor data is needed in order to enable in-time adequate
anticipation of moisture change. Recent research has shown promis-
ing forecasting results by utilizing a Long Short-Term Memory (i.e.
LSTM) artifical neural network, however the dataset used included
only data of sensors placed in rural areas that were not subject
to manual watering. Furthermore, the LSTM model was trained
solely using uni-variate data and did not incorporate any (historical)
meteorological data on which soil moisture is highly dependent [8].

2.1 Objectives and Goals
Given the problem statement and limitations of recent research
presented above, this paper has the following objective:

• Develop predictive LSTM model to forecast soil moisture
sensor data using multivariate time-series data.

The main objective of this paper entails the following goals:
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(1) Identify what features are most informative to include with
training the LSTM model

(2) Assess the accuracy of the LSTM model in forecasting soil
moisture data at different depths and forecasting time-steps

(3) Determinemost optimal hyper-parameters of the LSTMmodel
to maximize the accuracy of soil moisture forecasting

(4) Investigate the effect of different forecasting horizons and
sensor depths on the accuracy of the model

(5) Draw conclusions and limitations on the effectiveness of uti-
lizing LSTM models for soil moisture forecasting

2.2 ResearchQuestion
The problem statement and the objective of this research leads to
the following research question:

• How accurate can we forecast future soil moisture sensor data
with multivariate time series data utilizing a LSTM model?

The following sub-questions will guide us in answering the main
research question:

(1) What features are most informative to include as input for
training the LSTM model?

(2) What is the effect of the forecasting horizon and depth of
sensor on the accuracy of the LSTM model

(3) How does the choice of hyper-parameters affect the accuracy
of the LSTM model at different depths and forecasting time-
steps?

3 RELATED WORK
This section summarizes related work done on forecasting or pre-
dicting soil moisture from the early past to the present.
In the early past, soil moisture prediction was approached by

empirical models and simplistic models. Statistical analysis such
as regression techniques were used to find relationships between
soil moisture and meteorological variables. This research showed
us the influence of meteorological factors such as precipitation on
soil moisture [14].
With the advancements of remote sensing technologies in the

1980s, researchers began to predict soil moisture using satellite-
based microwave radiation sensors that measured radiation emitted
by the earth’s surface which was found to be influenced by soil
moisture [7]. However, this prediction was limited to soil surface
only.

With the rise of Internet of Things (i.e. IoT), abundance of granular
historical soil moisture data was available. This opened doors for
new research utilizing machine learning techniques using this data
[11].
Acharya et al. compared different machine learning models for

predicting soil moisture and concluded that machine learning mod-
els can perform well in predicting soil moisture. In his comparison,
Recurrent Neural Networks were not taken into account and the
dataset that was used contained soil moisture values in 16-day in-
tervals and was not subject to manual irrigation [1]

More recently, Singh utilized a Long Short-Term Memory Recur-
rent Neural Network (i.e. LSTM-RNN) to predict soil moisture. This
time-series based approach showed how to overcome the explod-
ing/vanishing gradients problem using LSTM and had promising

results. However, the dataset used was highly specific to one region
in India and the model did not include any meteorological data
making it univariate [8].

Khalil utilized artificial neural networks and used meteorological
data as well, however the evaluation metrics showed significant
deviation between test and train suggesting overfitting of the data.
Furthermore, the input only went back in history for one time step
causing the loss of potential temporal dependencies [3].

4 METHODOLOGY AND APPROACH
To answer the research question we approached the problem as
a supervised time-series machine learning problem. We comple-
mented the soil moisture data with meteorological data making our
approach multivariate. We trained and evaluated the LSTMmodel at
different depths (15, 30, 60 and 90cm) and forecasting horizons (1, 3
and 7 days) using predefined evaluation metrics. The more detailed
approach is elaborated below.

4.1 Datasets
For training the LSTM model, two datasets have been used:

(1) Historical sensor data of ConnectedGreen B.V. (i.e. sensor
dataset).

(2) Historical weather-station data of KNMI (i.e. weather dataset)

The sensor dataset included historical hourly soil moisture read-
ings of more than 3000 sensors placed around the Netherlands from
2017 to 2023. Next to the soil moisture value per timestamp, the
dataset also included general information such as soil type, sensor
depth, location and vegetation type.

The weather dataset included historical daily meteorological read-
ings of 51 different weather stations in the Netherlands from 1951
until present. The meteorological variables included 39 variables
such as precipitation amount, mean temperature and relative atmo-
spheric humidity.

4.2 Data pre-processing
In order to use the datasets as input for training the LSTM model,
several pre-processing steps have been taken.
Since the weather dataset has daily values whereas the sensor

dataset has hourly values we needed to sample down the sensor
dataset to daily intervals in order to make them compatible. This
was achieved by taking the last hourly value of each day.

Then we merged the two datasets by combining all variables of
both datasets that correspond to the same timestamp. To make sure
the weather data is most accurate for the sensor in question, we
calculated which of the 51 weather stations had the least distance
to the given sensor using the haversine formula. Once merged, the
data needed to be cleaned. Missing values were replaced with the
mean value of the previous and next step and erroneous data has
been replaced with zero.

To select the most important features, pearson correlation coeffi-
cients has been calculated between all meteorological variables and
the soil moisture variable. Variables without any significant corre-
lation will then be omitted from the data to yield higher accuracy
and decrease computation time making it more sustainable.
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Furthermore, to train the LSTM model, all variables needed to
be numerical. Therefore we encoded all non-numerical values such
as timestamps and wind-direction using dedicated techniques to
convert them to numerical values.
Finally, Min-Max scaling is applied to normalize all numerical

values between zero and one in order to ensure the same magnitude
for all input features. Data has been split between train and test
with a ratio of 80:20 and various window sizes will be used to see
how it affects the accuracy.

4.3 Machine Learning Architecture
Since the data that we are using is sequential and multivariate,
we wanted to train a recurrent neural network model (ie. RNN).
However, classic vanilla RNN’s suffer from vanishing/exploding
gradients when dealing with bigger window sizes making it less
suitable for large sequential data. That is why we utilized a LSTM
model since it solves this problem by introducing gatingmechanisms
and memory cells.
We used the architecture of a classic LSTM model consisting

of three gates (Input gate, Forget gate & Output gate). The input
and output layer had a 3-dimensional shape of (samples, timesteps,
features) and (1, forecastingHorizon, features) respectively. The hy-
perparameters such as hidden layers, batch size, window size will
has been evaluated and optimized using grid search.

4.4 Experiments
4.4.1 Feature importance. The first experiment was about iden-
tifying the most significant features for training our model. To
determine the importance and consequently which features can be
dropped we employed two complementary techniques to determine
their importance.
First, we computed the Pearson correlation coefficient to deter-

mine the correlations between the timeseries data from the weather
station and the moisture sensor timeseries data.
Next, based on the correlations, we selected the top 5 features

having the highest negative or positive relationship, used it for
training a single dummy machine learning model and applied our
second feature selection technique: Integrated gradients. Integrated
gradients, a technique introduced by Sundarajan et al., assesses the
contribution of each feature to the predicted outcome by reversing
the loss process through integration [9]. By using this technique, we
gained deeper insights into feature importance and their impact on
accuracy, thus aiding in addressing SQ. Also this experiment was a
prerequisite for the next experiment as the result of this experiment
decides what final features will be fitted into the machine learning
model.

4.4.2 Experiment 2: Hyperparameter optimization. In the second
experiment, the goal was to help addressing research questions SQ2
and SQ3 by implementing and executing a custom gridsearch tech-
nique and computing and comparing our proposed metrics for each
search. Our analysis focused on sensor depth-based scenarios, sys-
tematically exploring 108 scenarios per sensor depth (15cm, 30cm,
60cm, 90cm) to evaluate the impact of varying hyperparameters
and conditions. In total this resulted in 423 evaluated scenarios. The
table below illustrates the parameters considered for gridsearch

along with the corresponding range of potential values. Notably, we
quickly discovered that the evaluation metrics of models with two
layers performed significantly better compared to those with one
or three layers. Therefore, we limited the gridsearch to two layers,
reducing the number of combinations by at least 50%. Following the
recommendations of Ibrahim Kandel, we limited our investigations
on smaller batch sizes and hidden sizes, as they are known to im-
prove training speed and accuracy [2]. Additionally, we gradually
increased the window size in increments of 5, up to a maximum of
30 days (equivalent to one month). Each search was constrained
to a maximum of 600 training epochs; nevertheless, the model’s
training would terminate if the evaluation metrics of the current
epoch exceeded those of the previous epoch, thereby preventing
the model against overfitting.

Table 1. (Hyper)parameters and Values

Parameter Possible Values
forecasting days [1, 3, 7]
number of layers [2]
window size [5, 10, ..., 30]
hidden size [50, 75, 100]
batch size [16, 32]

4.5 Evaluation Metrics
In order to answer our main research question on how accurate
the final model is, we evaluated the performance based on several
conventional forecasting evaluation metrics for all depths and fore-
casting horizons. The following metrics were calculated to evaluate
the performance of the model:
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5 RESULTS

5.1 Experiment 1
Table 2 displays a filtered subset of variables, showcasing their Pear-
son correlation coefficients limited to those having at minimum a
weak positive or negative correlation. Out of 27 considered vari-
ables, 14 matched this criterion. It can be observed that the daily
humidity (UG) has the highest positive correlation with moisture at
0.2665 while the sunshine duration (SQ) has the highest negative
correlation at -0.184.
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Table 2. Feature correlation

Variable Correlation
Moisture

Daily Temperature (TG) 0.0903
Min Temperature (TN) 0.14878
Min Temperature 10cm (T10N) 0.2043
Sunshine duration (SQ) -0.184
Sunshine percentage (SP) -0.1367
Global radiation (Q) -0.1289
Daily Precipitation (RH) 0.1946
Max. Hourly precipitation (RHX) 0.0905
Min. Visibility (VVN) -0.115
Mean cloud cover (NG) 0.1848
Daily humidity (UG) 0.2665
Max humidity (UX) 0.1426
Min humidity (UN) 0.1678
Potential evatransporation (EV24) -0.1341

The top 5 variables that have the highest negative or positive
correlation were the minimum temperature at 10cm (T10N), dura-
tion of sunshine (SQ), daily precipitation (RH), mean cloud coverage
(NG) and the daily humidity (UG). When using these variables as
features within our trained dummy model the feature attributions
calculated by the integrated gradients can be seen in Table 3.

Table 3. Feature Attributions (IG)

Feature Attribution (IG)
Daily Humidity (UG) 0.029203194
Daily Precipitation (RH) 0.019523483
Min Temperature 10cm (T10N) -0.016551758
Sunshine Duration (SP) -0.027794981
Mean Cloud Coverage (NG) -0.021663292
Moisture (M) 0.619978998

5.2 Experiment 2
Tables 4 and 5 present the evaluation metrics obtained for each
sensor depth and forecasting horizon. In Table 4, only the hyper-
parameters that yielded the most accurate metrics, achieved through
gridsearch, are displayed, while Table 5 shows the hyper-parameters
that performed worst.

Table 4 reveals that the forecasting of soil moisture exhibited the
highest performance for a sensor depth of 90cm, whereas the lowest
performance was observed for a sensor depth of 60cm. Irrespective
of the sensor depth, soil moisture forecasting achieved an average
MAPE of 3.41% for a 1-day horizon, 5.85% for a 3-day horizon, and
10.09% for a 7-day horizon.

Interestingly, When looking at the hyper-parameters that yielded
the best results the batch size (batch_size) did not seem to have a
consistent impact on the forecasting performance across different
combinations. However, besides the forecasting horizon, The evalu-
ation metrics are most significantly influenced by the window size

(window_size) and hidden size (hidden_size). Upon comparing the
most optimal window size and hidden size with the least optimal
ones, as shown in Table 5, a substantial decrease in performance is
evident. In fact, when comparing the best- and worst-case window
and hidden sizes of a 7-day forecasting horizon with a sensor depth
of 90cm, a substantial difference of 531.87% becomes evident.
The optimal window size (window_size) for achieving the best

evaluationmetrics varied between 5 and 20 for smaller sensor depths
of 15cm and 30cm. On the other hand, for bigger sensor depths of
60cm and 90cm, larger window sizes (window_size) ranging be-
tween 20 and 30 were found to be necessary. Notably, the forecast-
ing horizon (forecasting_days) did not seem to have a noteworthy
correlation with the most optimal window size (window_size).
The hidden size (hidden_size) achieved the best evaluation met-

rics between 75 and 100 while a hidden size (hidden_size) of 50
contributed to the least optimal evaluation metrics several times.
In Figure 1 and Figure 2 we can see a comparison of a plotted

visualization of a 1-day forecast scenario for a near-surface sensor
at 15cm sensor depth and a 90cm deep placed sensor. It is evident
that the 90cm sensor seen in Figure 2 yields a better performance
than the near-surface 15cm sensor seen at Figure 1

Fig. 1. Predicted vs. Actual soil moisture 1-day forecast for 15cm sensor
depth with MAE of 3.96%.

Fig. 2. Predicted vs. Actual soil moisture 1-day forecast for 90cm sensor
depth with MAE of 0.66%.
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Table 4. Table that shows the gridsearch results of the evaluation metrics under different hyperparameters filtered to the best performance

forecasting_days depth window_size hidden_size batch_size MAE MSE RMSE MAPE
1 15 5 75 16 1.605845809 6.259361267 2.501871586 3.985815048
1 30 20 75 32 1.245525002 5.976701736 2.444729328 3.618539572
1 60 30 75 32 0.249674723 0.240912452 0.490828335 5.371599197
1 90 25 50 16 0.226022452 0.198213428 0.445211679 0.662917137
3 15 10 100 16 2.733232975 18.77821159 4.33338356 7.598301888
3 30 5 100 16 1.986030221 14.99341583 3.872133255 6.055431366
3 60 30 100 16 0.428185552 0.735471725 0.857596457 8.172030449
3 90 20 75 16 0.538294196 1.08403337 1.041169286 1.563376904
7 15 15 75 32 4.404176235 34.46481323 5.870674133 12.94023705
7 30 5 100 32 3.352068186 33.10631561 5.753808975 10.31196976
7 60 30 50 16 0.754276216 1.715686679 1.309842229 14.63491631
7 90 30 75 16 0.856117189 1.946182609 1.395056486 2.486559868

Table 5. Table that shows the gridsearch results of the evaluation metrics under different hyperparameters filtered to the worst performance

forecasting_days depth window_size hidden_size batch_size MAE MSE RMSE MAPE
1 15 30 50 32 2.338097095 9.288647652 3.0477283 7.254351139
1 30 25 75 16 1.688043118 8.732964516 2.955158949 5.40770483
1 60 20 75 32 0.522857547 0.42932412 0.655228317 15.21760082
1 90 10 50 32 0.70194608 2.663289547 1.631958842 2.434599638
3 15 30 75 32 4.13811636 40.56227875 6.368852139 16.48276901
3 30 25 50 16 3.372938633 26.21930504 5.120479107 11.10694885
3 60 20 75 16 0.576828241 0.825701356 0.908681095 23.62647438
3 90 10 50 32 2.483380556 34.86305237 5.904494286 8.060541153
7 15 30 50 16 10.38335323 288.1854553 16.97602654 41.59179688
7 30 30 50 16 6.523112297 78.6312561 8.867426872 25.85913849
7 60 20 50 16 1.126405478 3.846907616 1.96135354 43.90224838
7 90 10 50 32 4.398735046 76.59194183 8.751682281 13.2251997

6 DISCUSSION
To answer our first subquestion (SQ1) about what features are most
informative to include as input for training the LSTM model we can
say the following things:
The overall Pearson correlation coefficient between the meteo-

rological variables from the weather station and the soil moisture
dataset is relatively low, measuring less than 0.2. However, it is
important to note that the relationship between these variables may
not be easily determinable based on correlation alone. This could be
because the influence of meteorological variables on soil moisture
might have a delay or be dependent upon the duration of specific
conditions.

Features such as temperature, precipitation, and humidity, which
are known to have a relationshipwith soil moisture based on domain-
specific and contextual knowledge, do exhibit a low but noticeable
correlation. This finding further strengthens our argument regard-
ing the potential delay or duration-dependent relationship between
these variables.
Integrated gradients technique revealed that a correlation be-

tween a feature and moisture does not guarantee an improvement
in LSTM accuracy when using that variable. Comparing the top 5
correlated features from Table 2 with the feature attribution in Table

3, we observe that only two of these features significantly contribute
to the model’s outcome. However, the contribution of these features
is relatively small, almost negligible, as the model heavily relies
on historical soil moisture, which outweighs the influence of daily
humidity by a factor of 21.
On one hand, this phenomenon can be attributed to the initial

weak correlation between soil moisture and the top 5 meteorological
variables. On the other hand, the inclusion of redundant features
may introduce noise and unnecessary complexity by duplicating in-
formation already captured by the soil moisture variable, potentially
adversely impacting the model’s performance.

The evaluation metrics and accuracy of our model primarily rely
on historical soil moisture, with the inclusion of features known to
be correlated with it showing minimal improvement in performance.
This raises the question of whether multivariate soil moisture fore-
casting provides substantial benefits compared to univariate soil
moisture forecasting. To gain further insights, future experiments
should be conducted by solely considering soil moisture as the fea-
ture, allowing for a direct comparison of evaluation metrics.
By analyzing the results based on the forecasting horizon and

sensor depth at Table 4 we can get a better understanding of the ef-
fects of these variables on the model’s performance that can answer
our second sub research question (SQ2):
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In table 4, a significant exponential decline in the model’s per-
formance can be seen as the forecasting horizon was increased. On
average, when extending the forecasting horizon from one day to
seven days, a considerable decrease of 3.4 times in MAPE was ob-
served independently from the depth of the sensor. This decline
can be attributed to the fact that as the forecasting horizon grows
larger, a larger portion of the window size consists of predicted
values that already deviate from the actual values due to inherent
biases. Based on our conducted experiments, we assume that fur-
ther increasing the forecasting horizon would result in a further
exponential decrease in performance. This is because, at a certain
point, the forecasting would rely solely on previous predictions that
could already be inaccurate. In other words, the forecasting horizon
has a high negative correlation with the models performance.

When evaluating the performance of sensors based on their depth,
a notable trend can be seen: the deepest sensor, located at 90cm,
consistently outperforms sensors placed at shallower depths which
can also be seen when comparing Figure 1 with Figure 2. This
disparity can be attributed to several key observations. Firstly, soil
moisture at greater depths show higher consistency and lower levels
of noise due to reduced exposure to evaporation and less influence of
both manual and natural irrigation when compared to sensors more
close to the surface. Additionally, natural factors such as root water
uptake and capillary action contribute to the enhanced consistency
observed in sensors placed at greater depths as it moves the water
to the surface.
The increased consistency of the soil moisture data of deeper

sensors holds significant implications for the effectiveness of LSTM
models. LSTM models achieve better performances on consistent
patterns and relationships within the data that are needed to make
accurate forecasts. As the soil moisture becomes more consistent
at greater depths, the LSTM model is better equipped to generalize
and make reliable predictions.
Therefore, a positive correlation can be established between the

depth of the sensor and the performance of the LSTM model. As the
sensor depth increases, the consistency of soil moisture improves,
facilitating easier forecasting and ultimately enhancing the model’s
overall performance as can be seen in the evaluation metrics in
Table 4.

When comparing Table 4 and Table 5 it is evident that choosing
the hyper-parameters has a large impact on the evaluation metrics.
Choosing the right versus choosing the worst hyper-paramaters
resulted in a significant difference of up to 531.87% . Mainly the
choice of hidden size and window size leads to this difference.

Notably, our analysis, which contributes to the third sub research
question (SQ3) indicates that the deeper sensors (60cm and 90cm)
had superior performance with larger window sizes, while the shal-
lower sensors required smaller window sizes. Our argument regard-
ing increased consistency in moisture for deeper sensors explains
why bigger window sizes are required as this consistency implies
less changes. That is why bigger window sizes are needed to capture
patterns that emerge in the long-term.

On the other hand, shallower placed sensors, which are inherently
more prone to noise which can be seen in Figure 1, often tend to
perform better with smaller window sizes. This might be because
the smaller window size reduced the amount of noise and the model

can adapt to a more localized and recent subset of the data which is
more prone to local variations such as precipitation and humidity.
Analyzing the performance of Table 4 in relation to the hidden

size, it becomes apparent that deeper sensors achieve the best per-
formance with lower hidden sizes, whereas shallower sensors need
higher hidden sizes to achieve their best performance. In general,
when the data contains intricate patterns and complexity, a higher
hidden size is needed. This gives the LSTM model the capacity to
store the intricate and complex relationships between input and
output variables. Applying this to our sensor forecasting context, we
can confirm that due to the higher noise levels and complex nature
of soil moisture development near the surface, a higher hidden size
is needed for achieving the most optimal performance compared to
deeper placed sensors.

While our LSTM model can achieve high performance for deeper
sensors due to the data being less noisy and more consistent, alter-
native approaches specifically targeting the performance of near-
surface sensors could be explored.
In addition, our model is based on a conventional vanilla LSTM

architecture, which can impact its performance. To further enhance
the accuracy and effectiveness of soil moisture forecasting, it would
be valuable to conduct experiments using diverse LSTM architec-
tures and compare their performance against the classic vanilla
architecture. These experiments could achieve intriguing insights
and potential significant improvements in the field of soil moisture
prediction.

7 CONCLUSION
Accurately forecasting soil moisture is a crucial challenge to address,
as it can greatly assist green managers and landscape professionals
in optimizing their irrigation processes and ensuring the best health
of their green.
Our model represents a significant advancement in addressing

this challenge by achieving remarkable accuracy in forecasting soil
moisture across various sensor depths for up to seven days. By
utilizing a LSTM model that combines historical soil moisture data
and metereological information we made a substantial progression
in this field.
Our model achieves compelling results, with an average MAPE

of 3.41% for a 1-day horizon, 5.85% for a 3-day horizon, and 10.09%
for a 7-day horizon. In other words, this means that, on average,
our predictions deviate from the actual soil moisture values by only
3.41%, 5.85% or 10.09% respectively, depending on the forecasting
horizon.
To achieve higher accuracy in soil moisture forecasting, further

research should prioritize the prediction of near-surface sensors,
considering that these sensors notably contributed to the decrease
in our overall performance.

Finally, our research has contributed to the field of machine learn-
ing soil moisture forecasting by uniquely utilizing and evaluating a
LSTM model with multivariate timeseries data to accurately fore-
cast soil moisture. While previous research was limited to one-size
depths and rural areas, this research has evaluted performance ac-
cross different depths, forecasting horizons and more diverse soil
moisture sensors subject to manual irrigation.
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