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AbstractÐRecent developments in Internet of Things (IoT)
solutions raise questions about the security of such systems.
The diverse nature of IoT networks makes them prone to
attacks in which the adversary possesses physical access to
one or multiple devices in the network. In such scenarios, an
attacker can potentially reverse engineer, replicate and/or IP
hijack a device with the intent to circumvent existing network
security. A Physically Unclonable Function (PUF) is a hardware-
based security method which utilizes the microscopic physical
disorder unique to a device to prevent said attacks. In device
authentication applications, the PUF acts as an irreplicable
fingerprint, unique to each device instance even for identical
device models. In this paper, a Ring Oscillator based PUF has
been designed and its performance evaluated on 4 Xilinx Kria
KV260 FPGA boards. The physical disorder underlying the RO
structure which manifests in the form of frequency fluctuation
in the different regions on an FPGA is explored and linked to
the variance of delays in today’s CMOS technology. Physical
correlation in the design and other systemic biases are evaluated
and the performance of the PUF is quantified in terms of the
relevant security metrics. At last, relationships between design
parameters and the overall performance of the PUF are explored.

I. INTRODUCTION

As compact Internet of Things (IoT) solutions take over

existing and emerging functionalities, the reliance on hardware

security of embedded devices to protect sensitive or personal

data increases. IoT devices that connect to private networks

may serve as an entry point for an adversary aiming to circum-

vent existing security [1]. Especially embedded devices, which

require low area, low power, and low computation complexity

solutions are susceptible. Typically, the most sophisticated

security solutions fall outside the limiting margins of embed-

ded devices [2]. Therefore, low overhead hardware security

solutions are needed. This paper aims to take a closer look

at an established hardware security method, the Physically

Unclonable Function (PUF), which utilizes physical disorder

uniquely inherent to each instance of a device. Today, PUFs

are used i.a. for authentication of resource constraint devices,

where the physical disorder is used as a digital fingerprint

which, when stored by a server, can be used to authenticate

unique devices via a two-way transaction [1]. An example of

such scheme is outlined in Fig. 1.

Previous to the deployment of a device, the characteristics

of the instantiated PUF are measured and stored on the server.

These characteristics, also known as Challenge-Response-Pairs

(CRPs), constitute a mapping of outputs (responses) to inputs

Fig. 1: Client-Server authentication scheme

(challenges). Ideally, this mapping is unique and unpredictable

to a particular device even if the PUF’s physical structure is

revealed [1]. To achieve such behaviour PUFs use some sort of

physical variation, most commonly in the fabrication process,

as their source of entropy. In Fig. 1, first, the client inquires

an authentication request. The server answers with a challenge

which serves as an input to the client-sided PUF. The PUF

generates an output which uniquely identifies the device and

sends it back to the server as a response to the challenge. The

server verifies whether the response to the challenge aligns

with a known CRP entry. In this way, the server is able to

identify unique device instances of the same device model.

The underlying aim of this paper is to emulate a Ring-

Oscillator Physically Unclonable Function (RO PUF) on a set

of Field-Programmable Gate Arrays (FPGAs) to investigate its

hardware security benefits in embedded systems and evaluate

its performance in terms of security metrics, implementation

efficiency, as well as scalability potential.

The paper is organized in the following way. The RO PUF

architecture and the physical disorder underlying the structure

is discussed in Sec. II. A model of the frequency variance

of the RO structure situated on FPGA device is covered in

Sec. II-B. Security metrics used to compare different PUF

implementations have been defined and interpreted in Sec.

II-C. A global overview of the designed structure and the

experimental setup was given in Sec. III. An in-depth review

of the methods used to realize the design is discussed in the

Appendix. The behaviour and performance of the design have

been evaluated in Sec. IV and discussed in Sec. V.

II. RELATED WORK

Most commonly, PUFs utilize the otherwise unintended

variations within silicon-chip-manufacturing processes to map



out device unique CRPs. The inter-device variations in today’s

CMOS circuitry emerge from small irregularities or inconsis-

tencies in devices’ geometry and material properties which are

observed at the nanoscale [1]. A study [3] on the fluctuation of

threshold voltage in 50 nm technology MOSFETs, shows clear

relationships between a transistor’s channel length, channel

width, oxidation thickness and doping concentration on the

resulting threshold voltage (Vth). The variance of Vth follows

a Gaussian distribution around its effective design value. The

fluctuation in the threshold voltage increases with higher

doping concentrations and lower effective channel dimensions.

Especially in smaller MOSFET technologies the variance in

doping concentration can have significant effects. As technol-

ogy scales down further, the variability in CMOS devices is

expected to grow as can be concluded from results in [3] and

data reported by the International Technology Roadmap for

Semiconductors (ITRS) [1]. By carefully designing around

these variations, structures which highlight them can be de-

signed. Such structures can then be applied as cryptographic

primitives for secret key generation or device authentication

[2].

A. Ring Oscillator PUF

The RO PUF, as described in [1] and [2], and as depicted

in Fig. 2, utilizes the inter-device variance in gate delay to

obtain distinct CRPs.

Fig. 2: Ring Oscillator Physical Unclonable Function archi-

tecture

This architecture uses N instances of an identical RO

structure, which is nothing more than a chain of an odd number

of inverters with the output being fed back to the input of the

first inverter. The oscillation frequency, f = 1
2kt , is inversely

proportional to the number of gates (k) and their respective

delay (t). Consequently, the resulting oscillation frequency is

susceptible to variation in gate delay, and hence, each instance

of the RO structure will have a slightly different oscillation

frequency. A CRP scheme is obtained by connecting the

outputs of the instances to 2 multiplexers. The challenge

selects two different RO instances whose output frequencies

are fed into separate counters. After a fixed evaluation time,

a comparator selects the greater counter. Depending on the

outcome of the comparison, a binary 0 or 1 is given as

the response to the challenge. The above described scheme

generates
N(N−1)

2 different oscillator pairs which is also the

number of different response bits that can be yielded from this

RO PUF architecture.

PUFs are classified into weak and strong PUFs based

on their CRP scalability. The classic RO PUF architecture

falls into the former category due to its moderate
N(N−1)

2
CRP scaling. An expansion of the CRP space, or an internal

encryption scheme which prevents a response in plaintext form

from being exposed, may therefore be necessary in an au-

thentication application setting where authorization procedures

occur frequently.

B. Physical variability

RO PUFs utilize the variance in timing as their source of

entropy. On an FPGA, each inverter stage is implemented

as a single input single output logic function on a dedicated

Look Up Table (LUT) element found in Configurable Logic

Blocks (CLBs) throughout the FPGA. The delay of a RO

structure instantiated on such a device is composed of the

total gate delay through the LUT chain as well as the path

propagation delay between the stages. The architecture of

a typical SRAM-based LUT found on FPGAs is shown in

Fig. 3A. The multiplexer (MUX) directly connected to the

SRAM elements is realized through a tree network of 2-

input MUXes. The delay in MUXes realized with CMOS

technology is dependent on their load impedance; switching

transistors capacitances; and operating transconductance, as

described in a first-order analytical approximation of the said

behaviour [4]. Moreover, the junction temperature of the

switching transistors significantly affects the delays of the

gate [5]. Since junction temperature depends on environmental

conditions such as ambient temperature, the reliability of the

PUF, that is the ability to produce consistent responses for

the same challenge, is a function of such external conditions.

Additionally, parasitic effects such as crosstalk between tracks

through line capacitance can increase delay variations in the

PUF. Crosstalk specifically can lead to the speed-up or slow-

down of the RO depending on neighbouring activity. Notably,

when the delay of the RO structure is dominated by the path

length, the extent of parasitic pulses induced by crosstalk can

significantly increase [6].

A model of the variance in the RO structure was addressed

in [7]. The total loop delay consists of propagation delay

through the gate (dgate) and the routing delay (dpath). Further-

more, 3 distinct components can be recognized in the signal

propagation delay:

dgate = τavg + τsys + τrnd (1)

Average delay (τavg) represents the effective value of the

process parameter; systematic delay (τsys), represents systemic

non-uniformity during the fabrication, an example of such

non-uniformity is the inter-wafer film thickness variation [1],

which is approximately constant across a die; lastly, random

delay (τrnd), appears from the irregular doping concentra-

tions and channel dimensions in transistors. Systematic delay

components are unsolicited, as they potentially degrade the
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unpredictability of the PUF. In FPGA devices, additional

intra-device systematic delay can cause biased regions in the

Programmable Logic (PL) fabric. Such regions lead to areas

in which the instantiated ring oscillators systematically show

a higher or lower frequency, as compared to oscillators in

different regions. This causes unwanted inter-device spatial

correlation which aids an adversary in the characterization of

the PUF through the analysis of the CRP space of multiple

devices.

C. Performance metrics for PUF architectures

Two application areas in which RO PUFs see extensive

used are device authentication, and key-generation [1] [2].

The former necessarily requires the PUF to have a large

CRP space when deployed as a stand-alone solution in

untrusted environments, as otherwise the scheme would be

extremely susceptible to replay attacks, in which an adversary

monitors and stores the CRP transactions. A repetition of

the CRP succumbs to replaying an earlier stored response.

In key-generation strict requirements are set on the response

reliability of the PUF as precise bit-consistent key generation

is needed. As illustrated, the application of the PUF greatly

influences the primary design criteria. To evaluate the

performance across different PUF implementations, the

following metrics are defined in literature.

1) Uniqueness

Uniqueness [1] is the measure of the inter-device difference

between the responses of a set of devices given an identical

challenge. This metric quantifies the predictability of the

PUF instantiated at a device given the knowledge about the

behaviour of the PUF on a set of different devices. Uniqueness

is calculated by summing the fractional Hamming distances

(HD) between all possible response pairings and normalizing

for the number of devices:

Uniq.inter =
2

k(k − 1)

k−1∑

i=1

k∑

j=i+1

HD(RiRj)

n
(2)

where k is the number of devices, n is the length of the

response, Ri and Rj being the response of device i and j

respectively.

A similar metric can be expressed for the uniqueness

across PUF instances within a single device. The intra-device

uniqueness quantifies the difference in response between PUFs

situated in different regions of the same device and is ex-

pressed as:

Uniq.intra =
2

m(m− 1)

m−1∑

i=1

m∑

j=i+1

HD(RiRj)

n
(3)

where m is the number of regions, n is the length of the

response, Ri and Rj being the response of PUF instantiated

in region i and j respectively.

2) Reliability

Reliability [1] measures the consistency of intra-device

responses given an identical challenge. This metric quantifies

the stability of the PUF at different operating conditions.

Reliability = 1−
1

q

q∑

i=1

HD(Ri, R
′

i)

n
(4)

where q is the number of samples of the response to an

identical challenge, Ri and R
′

i being the responses of device

i at different operating conditions.

3) Unstable bits

Similar to reliability, the amount of Unstable bits

expresses the consistency of the intra-device responses.

However, instead of looking at the mean of the difference

between these responses, the number of unstable bits gives a

worst case analysis of the reliability of the PUF. Each unique

bit position which flipped once or more during a set of q

response samples to an identical challenge is marked as an

unstable bit. The number of unstable bits is then calculated as

a fraction of the total amount of bits generated by the PUF.

This is an useful metric in the case when the PUF’s response

is paired with an Error Correction Code (ECC). Allowing to

estimate the needed redundancy of the paired ECC.

4) Uniformity

Uniformity [1], is the proportion ratio between 0’s and 1’s

in the response of the PUF. It is a common measure for the

unpredictability of the structure.

Uniformity =
1

n

n∑

i=1

ri (5)

where n is the length of the response and ri is the ith bit

of the response.

5) Bit-aliasing

Bit-aliasing [8] expresses the bias in the response of ring

oscillators pairings across a set of devices. It is calculated

by averaging the inter-device response of the same frequency

pairing.

Bit-aliasing =
1

k

k∑

i=1

rp,i (6)

where k is the number of devices and rp,i is the response

of pairing p of device i.

6) Min-entropy

In information theory, entropy quantifies the amount of

information i.e. unpredictability in a random variable. In the

case of a RO PUF, the mean probability of a frequency pairing

producing the response 0 or 1 is a measure of the entropy of

the system, as it indirectly relates the true random variable

Ð the gate delay, to the outcome of the comparison, through

the frequency difference of the pairing. The probability of the
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frequency pairing producing a binary 1 is calculated by taking

the average response of pairing p for all devices in the sample

set. This is precisely the bit-aliasing metric as described here

before. The probability of pairing p producing a binary 0 is

simply the probability complementing p1, i.e. p0 = 1−p1. As

a worst case analysis for the unpredictability of the PUF, the

bigger probability is taken to calculate the minimal entropy of

the system [8].

Hmin(X) = E[−log2(max(p0, p1)] (7)

where p0 and p1 are the probabilities of the frequency

pairing producing a binary 0 and 1 respectively.

One of the advantage of PUFs over other standard security

methods, as mentioned in [2], is their robustness against

invasive attacks. Direct measurements of the gate delays or

fault injections methods such as voltage glitching, in which the

device is driven at the edge, beyond the voltage specification,

or clock glitching where setup and hold time requirements are

violated, may temporarily or permanently modify the physical

characteristics of the device, making function characterization

attempts through these means less feasible. This in turn means

that reliability may be adversely affected in varying operation

conditions.

III. DESIGN

A. RO PUF implementation

The described RO PUF architecture has been implemented

in 4 different regions on 4 Xilinx Kria KV260 boards fea-

turing a Zynq UltraScale+ FPGA device. The details of the

complete design and the description of the HDL source files

are discussed in Appendix A. The design has been made

generic, with the ability to easily choose the number of inverter

stages, the amount of ring oscillators and the evaluation time

of the RO PUF. This simplifies the usage of the RO PUF IP

(Intellectual Property) for evaluation purposes but also in an

application setting where the parameters can easily be tuned

to the need of the application. Different from the typical RO

PUF architecture, is the addition of a demultiplexer on the

enable lines to the RO instances. Based on the challenge, the

demultiplexer selects and propagates the enable signal only to

the to-be-compared RO pair. This reduces the power usage of

the PUF as only the relevant oscillators are enabled during the

response acquisition process. This is especially important, as

the frequencies of the instantiated oscillators are typically 2 to

10 times higher than the respective PL clock depending on the

number of inverter stages. Moreover, the targeted enabling of

the relevant RO pair reduces the added noise from surrounding

logic which may otherwise adversely affect the reliability of

the PUF [9].

B. Logic and memory slice types

To extract the sought after entropy from the RO PUF it

is necessary to correctly manage the placement and routing

of the ring oscillators in the design. It is important that all

oscillators are instantiated using exactly the same resources

to not introduce imbalances in the structure. After all, it

is essential that the variance in the oscillation frequency of

the ROs is predominately caused by the physical differences

of macroscopically identical resources. For details on the

placement and routing of the design see Appendix D. On an

FPGA, LUTs are used to realize logic functions. The FPGA

situated on the Kria KV260 board features a Zynq UltraScale+

architecture documented in [10]. The PL architecture includes

two base types of slices. The logic (SLICEL) type contains 8

standard 6-input LUTs (6-LUTs), whose high-level structure is

shown in Fig. 3A. Generally, a LUT only implements one logic

function, however it is possible to implement two functions

in the same LUT if the number of inputs of that function

is lower or equal to 3. The inverters which compose a RO

instance are simple functions with a single input and output.

Therefore, 1 6-LUT can implement 2 such inverters. The

other commonly found slice in the Ultrascale+ architecture

is the memory (SLICEM) type, shown in Fig. 3B. The only

difference between the two types is that SLICEM LUTs can

be configured as a 64-RAM cells. As stressed before, resource

homogeneity throughout the RO instances is of the essence.

The UltraScale+ features a columnar resource pattern wherein

columns of both types of slices are intertwined to facilitate

optimal density and routing [11]. As signal propagation delays

through different LUT types are not publicly disclosed by

Xilinx, separate sets of RO PUFs will be instantiated at regions

with mixed and unmixed types of slices. Then, an analysis of

the resulting frequency distribution will be carried through to

identify potential systemic biases between the two types of

slices.

Fig. 3: The internals of a SRAM-based logic LUT (left) and

memory LUT (right)

C. Experimental setup

For the purpose of evaluating the proposed RO PUF archi-

tecture, the design has been implemented in 4 different regions

on 4 Xilinx Kria KV260 devices, further individually referred

to as kria0/1/2/3. The Kria KV260 features Xilinx’s Zynq

Ultrascale+ MPSoC 16nm silicon architecture. The discussed

RO PUF architecture has been implemented in VHDL and

made compatible and configurable as a custom IP to be used in
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the Block Design tool of the Vivado Design Suite. The PYNQ

framework was used to configure the boards. PYNQ creates a

remotely accessible Jupyter Notebook server on the board. The

uploading of a bitstream file; communication between PS-PL;

and data acquisition is done through the python environment

on the Jupyter server. The design around the RO PUFs has

been designed following PYNQ’s composable overlay guide-

lines [12]. Composable overlays allow for dynamic changes

in the connections of IP blocks within the design at runtime.

This allows access to the different PUF regions on the device

using the same resources by reconfiguring the connections

dynamically. More detail about how the PYNQ framework was

integrated, and how the overlays have been made composable

can be found in Appendix B.

The design, experimental setup, gathered data and

data processing functions are publicly available on:

https://github.com/ErrorDx/RO PUF.

IV. RESULTS

A. Oscillation frequency analysis

The frequency distribution of a single RO PUF instance

(kria3) in the BOTTOM LEFT region is shown in Fig. 4.

The frequency occurrence closely matches the accompanying

normal distribution fit. The behaviour of the ROs exhibits a

singular centre frequency at approximately 536 MHz with a

standard deviation of 3.73 MHz. Since all RO entities were

instanced using identical resources and routing but were placed

at different physical locations in the region, the result strongly

suggests that the variance in the oscillation frequency of

the ring oscillators is the outcome of a normally distributed

random process.

Fig. 4: Frequency distribution of an instantiated RO PUF

To compare inter-device variability in the behaviour of the

designed RO PUF, the frequency distributions of the same

region across the different devices are presented side-by-side

in Fig. 5.

From Fig. 5 it can be concluded that almost all slices

show significant variance in frequency across the devices.

This further supports the claim that the variance in oscillation

Fig. 5: Inter-device frequency distribution of the RO PUF (5-

stage) instantiated in the TOP LEFT region

frequency is caused by physical disorder in the silicon fabric

of the devices rather than due to macroscopic inconsistencies

in routing or resource utilization. Having said that, a single

mutuality can be identified at slice (X = 15, Y = 207) where all

devices show an inconsistency as compared to the behaviour

of the surrounding slices. On further inspection of the RO

instanced at this particular slice, no differences were found

in the implementation or routing of the RO. The suspected

cause of this anomaly is either, a physical bias towards larger

component delays in that particular slice across all devices, or

an implementation inconsistency further down in the design.

To disprove the former, the RO PUF has been regenerated

using a 7-stage inverter configuration in the same region of

the FPGA. The result is shown in Fig. 6.

Fig. 6: Inter-device frequency distribution of the RO PUF (7-

stage) instantiated in the TOP LEFT region

After regenerating the design with slightly different pa-
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rameters, the bias region disappeared. This means that the

anomaly was unlikely to be a cause of physical delay bias in

that particular slices. Moreover, new inter-device correlations

appeared in the top row as seen in Fig. 6. These were found

to be the result of inconsistent routing in the feedback path of

the top most ROs.

Unlike other devices, the kria1 device shows a clear gradient

in the frequency distribution, seen both in Fig. 5 and Fig. 6.

A grid plot of the frequency distribution in the 4 regions on

the kria1 device is shown in Fig. 7.

Fig. 7: Intra-device frequency distribution of the RO PUF

instantiated in the different regions of the kria1 device

The frequency gradient persists in the intra-device behaviour

of the RO PUFs on the kria1 device. At first, the gradient

was thought to be a cause of routing inconsistencies in the

path between the RO array and the counting logic. ROs

instantiated closer to the region where the MUX logic resided

showed a bias towards a higher oscillation frequency. Which

would suggest that the initial propagation delay of the RO

outputs in these regions would be lower as compared to ROs

instantiated in regions further away from the MUXes Ð the

output of these ROs would arrive sooner at the counting logic,

causing a systemic error in the final value of the counters.

Such behaviour was observed earlier in [9]. As a counter-

measure, significant delay was added to the start-up time of the

counters. This gives enough time for the output of the ROs to

arrive at the counters well before they are initiated, eliminating

any start-up imbalances in the said path. Further experiments

however disproved this hypothesis, as no significant change in

behaviour was found and the gradient persisted only on the

kria1 device. Given the fact that this gradient pattern was not

observed on other sample devices, it is likely that the kria1

device is physically biased in the tested regions.

B. Mixing slice types

The RO PUF bases its entropy from the microscopic

differences in its resource homogeneous structures. Mixing

slice types disturbs the structural homogeneity, potentially

introducing biases in the form of physical correlation in the

design. To examine the extent of the introduced biases, a

RO PUF instance has been implemented in the TOP LEFT

region of the device on a mixed set of slices. The frequency

distribution of this design is shown in Fig. 8.

Fig. 8: Frequency distribution of the ring oscillators inside a

region with both SLICEL and SLICEM resources

The logic type slices (SLICEL) are situated in the set:

X = {0, 3, 6}, the memory type slices (SLICEM) occupy

the remaining columns. ROs implemented in the two types

of slices show a distinctly different statistical behaviour. Two

different shallowly overlapping centre frequencies can be iden-

tified. On average, ROs situated in SLICEM columns operate

at a higher oscillation frequency. This is a highly unwanted

characteristic Ð in the case that the physical structure of a

RO PUF entity is revealed, the input challenge can be directly

linked to the used ROs in the response comparison. The

response of a PUF will be correlated to the location of the

used ROs, and therefore predictable.

The difference in the frequency distribution between the

two types of slices is unanticipated. This characteristic is not

evident from their high-level structural differences discussed

in Sec. III-B. Moreover, ROs in both slice types utilized an

identical routing structure, so pathing inconsistencies between

the RO loops are unlikely. Therefore, either the LUTs im-

plemented in the two slice types have different propagation

delays due to differences in their lower-level structure, or

the propagation delay in the immediate routing resources is

6



different for the two types of slices. Nonetheless, for the

final design the RO PUFs were situated in a homogeneous

SLICEL region to prevent the described physical placement

correlations.

C. CRP space partitioning

In a practical application setting, the CRP space, being

the set of the responses of all possible unique RO pairings,

is partitioned into tangible chunks. Effective partitioning of

the CRP space is a topic on its own, here only two simple

partitioning approaches are presented. A naÈıve partitioning

scheme groups adjacent CRPs to form CRP partitions. For

n ROs there are N = n(n−1)
2 unique pairings. To obtain P

total partitions, the adjacent partitioning scheme groups the

CRPs space in chunks of length k = N
P

, grouping the bits in

P sets: {rp·k, rp·k+1, ...rp·k+(k−1)}, where rp·k is the response

of the (p ·k)th RO pairing (mind the multiplication operation)

with p being the index of the partition starting from p = 0
and ending at p = P − 1. An alternative partitioning scheme

groups the response bits in P sets by taking every kth element

and rotating the set by p elements: {rp, rp+k...rp+(P−1)∗k}
followed by the respective rotation. The above partitioning

schemes have been applied on the CRP space of a 256-RO

9-inverter stage PUF to obtain 128 255-bit partitions. The

uniformity distribution of the partitions is shown in Fig. 9.

(a) Adjacent partitioning

(b) kth-element partitioning

Fig. 9: Uniformity distribution of CRP partitions for different

partitioning schemes

The above figures illustrate how a CRP partitioning scheme

greatly affects the performance characteristics of the individ-

ual CRP partitions, and therefore the overall PUF. In this

particular case, the sub-optimal performance of the adjacent

partitioning scheme is due to how the CRP space was obtained

in the first place. The response bits in the CRP space are

obtained by systematically iterating through all possible RO

pairings: (f0, f1), (f0, f2)...(f0, fN−1) and then continuing

with (f1, f2), (f1, f3)...(f1, fN−1) etc. By selecting adjacent

response bits, it is possible that only one of the two selected

oscillators varies throughout the partition. One can see that

if e.g. f0 is the RO with the highest frequency, the starting

chunk of the CRP space will be completely uniform.

D. Performance evaluation

The evaluation metrics discussed in Sec. II-C have been

measured for the RO PUF structure shown in Fig. 11. The

RO PUF has been instantiated with an 512-element array

of 5-inverter-stage ring oscillators. The comparator of each

PUF operates with an evaluation time of 10µs. The results

of the evaluation are reported in Table I, a bold face figure

represents the best performing region for that particular metric.

The metrics were obtained for 4 different Xilinx Kria KV260

FPGA boards and averaged over the entire CRP space to

obtain the mean value for a particular region where applicable.

Reliability metrics have been obtained through repeated sam-

pling of the entire CRP space. The measurements were taken

consecutively, aiming to characterize the different regions at

similar operating conditions. Due to setup limitations however,

identical operating temperature and supply voltage could not

be guaranteed during the characterization process.

The proposed RO PUF design shows balanced uniformity

close to the ideal value of 0.5 across all regions. The inter-

device uniqueness of the PUF is highest for the TOP RIGHT

region. The value of the overall inter-device uniqueness is

low as compared to RO PUF designs found in literature.

A below average uniqueness is predominately an indication

of inconsistencies in the symmetry of the design. These

inconsistencies are most likely an outcome of slack in the

routing constraints. The intra-device uniqueness on the other

hand is close to the ideal value of 0.5 for most regions.

All regions are able to generate consistent results with an

overall reliability of 0.98 and greater. The deviation from the

ideal value (1.00) is explained by the uncontrolled operating

conditions during the characterization of the PUF. Given the

structures’ susceptibility to environmental fluctuations, slight

changes in operating conditions may tip the result of a

comparison between nearly matched ROs. A similar argument

can be made for the fraction of unstable bits which varies

between 3.5% to 6.4% of the total CRP space.

A keen reader will notice that the 1frac uniformity metric

equates the mean of bit-aliasing. After all, uniformity per

region is calculated by averaging the mean value of the entire

CRP space over all devices. On the other hand, the expected

value of bit-aliasing per region is calculated by averaging the

mean response of a RO pairing across all devices over all RO

7



TABLE I: Performance evaluation of a 5-inverter-stage 512-RO PUF

REGION: TOP LEFT TOP RIGHT BOTTOM RIGHT BOTTOM LEFT IDEAL

Uniformity Ð Ð Ð Ð

0frac 0.5031 0.5033 0.5032 0.5030 0.50

1frac 0.4969 0.4967 0.4968 0.4970 0.50

Uniqueness Ð Ð Ð Ð

µinter 0.4074 0.4364 0.4307 0.3474 0.50

σinter 0.0108 0.0064 0.0289 0.0361 0.00

µintra 0.4858 0.4721 0.4891 0.4837 0.50

σintra 0.0600 0.0429 0.0331 0.0195 0.00

Reliability Ð Ð Ð Ð

µintra 0.9873 0.9888 0.9812 0.9891 1.00

σintra 0.0032 0.0008 0.0054 0.0028 0.00

Unstable bits Ð Ð Ð Ð

CRP spacefrac 4.16% 3.48% 6.34% 3.52% 0.00%

σfrac 1.04% 0.24% 1.80% 0.93% 0.00%

Bit-aliasing Ð Ð Ð Ð

µinter 0.4969 0.4967 0.4968 0.4970 0.50

σinter 0.3118 0.2939 0.2975 0.3460 0.00

Min-entropy Ð Ð Ð Ð

µinter 0.4617 0.5188 0.5005 0.3738 1.00

σinter 0.3745 0.3889 0.3801 0.3567 0.00

pairings. Both operations result in the same final value. In the

first case however, the standard deviation can be seen as the

variability of the average value of the entire CRP space. This

metric was omitted in Table I as no significant deviation from

the expected value was found (σuniformity < 1 ·10−4). In the

case of bit-aliasing, the standard deviation can be interpreted

as the variability in the average response of a pairing, a much

more interesting metric which indicates how the inter-device

bias is distributed. Unfortunately, with a small device sample

space, bit-aliasing shows a large spread from its mean value.

A better estimate for the inter-device bias necessitates the use

of a larger device sample space. A similar argument can be

made for the large spread in the statistics of min-entropy.

The relatively low value of min-entropy is in line with results

found in [8], which show that for a small device sample space,

estimates for the min-entropy of the system will deviate from

their true value. The estimated min-entropy for this sample

space overlaps with results found in [8] for a similar RO PUF

design.

E. Evaluation time

The effect of different evaluation time on the performance

of the system is shown in Fig. 10. As evaluation time increases

the reliability and uniformity of the PUF increases, while

consequently the fraction of unstable bits decreases. Both

uniqueness and min-entropy of the system remain approx-

imately the same across different evaluation times. These

results are explained by the fact that the number of counted

edges of a RO is proportional to the evaluation time. This

means that for a longer evaluation time, the counters can

resolve more ties between ROs with similar frequency. In other

words, the resolution of the measured frequency of the ROs

becomes higher, allowing to distinguish between smaller and

Fig. 10: Relationship between Evaluation Time and Reliability

(left) and Unstable Bit ratio (right) for the 4 regions

smaller differences in the frequency of the oscillators. This in

turn increases the response consistency of the PUF.

V. DISCUSSION

As shown in Sec. IV-C, the grouping of oscillator pairings

greatly impacts the uniformity and uniqueness of a CRP par-

tition. The adjacent partitioning scheme lacked the avalanche

effect where a small change in input results in a big change

in output. Moreover, as remarked by [2], the ordering of the

bits is not independent. After all, if f0 > f1 and f1 > f2
then evidently f0 > f2. It is therefore possible to predict the

response to a new challenge given the right combination of

previous responses of other oscillator pairings. Assuming that

the variance in the oscillation frequency is predominantly an
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outcome of the inherent physical disorder, the N oscillation

frequencies can be ordered in N ! different ways. To avoid

first order dependencies, solely pair-wise comparisons can be

employed. The correlation of the ordering of the oscillators

reduces the maximum entropy of this scheme to log2(N !)
truly independent bits. This is one of the reasons why the

entire CRP space is rarely used in an application setting. In

literature several methods have been proposed which aim at

obtaining an unique, non-uniform and reliable set of CRPs.

[13] introduces a pairing scheme which groups ROs based on

their frequency difference to reduce the number of unstable

pairs. [14] proposes a RO PUF which splits the RO array

into two separate groups allowing for inter-group comparisons

only. This solves all first order dependencies but reduces the

CRP space significantly. The above illustrates a common trade-

off in RO PUF systems Ð the performance characteristics are

improved if the CRP space is reduced to only the best behaved

oscillator pairings. Moreover, the location of the ideal pairings

will differ from device to device. Algorithms, as the ones

proposed in [15] and [7], can be applied in the pre-distribution

of the devices to find the most stable RO pairings often unique

to a device. By sacrificing a portion of the CRP space, both

the intra-device and inter-device variation of the design can

be improved.

As can be concluded from the results discussed in Sec. IV-A

and Sec. IV-D, a point of improvement of the proposed RO

PUF is the routing of the combinational RO loops. The below

average inter-device uniqueness of the structure is suspected to

be the cause of inconsistent routing which introduced an inter-

device bias in a scarce amount of ROs most predominately in

the BOTTOM LEFT region. The ROs reside in a dedicated

region with contained routing. The routing itself however,

is not constraint further, leaving room for said imbalances.

Having said that, most ROs exhibit behaviour in par with

that of a normally distributed random process. To improve

the design, loop routing of individual ROs could be constraint

through the use of a Hard Macro, similar to how the individual

inverter gates were placed at hard coded regions. Alternatively,

the small number of misbehaved ROs could be isolated from

the final CRP partitions.

Due to the limited timescale of the project, reliability exper-

iments were only performed at similar but uncontrolled operat-

ing conditions. More interesting, however, is how the designed

structure behaves in a controlled environment, allowing for a

detailed characterization of the PUF’s behaviour at changing

conditions. In [16], the authors show how the intra-device

response of silicon-based PUFs varies more with change in

supply voltage than in temperature. The effects of device aging

on the reliability of RO PUFs were extensively studied in

[17]. Future works could explore how other variables like the

maintenance of the device (e.g. reapplication of thermal paste

or adjustment of the heat sink) affect the performance and

especially the response consistency of a PUF instantiated on a

device. Furthermore, similarity analysis could be performed on

devices with similar manufacturing dates to explore potential

correlations [18].

At last, to achieve a higher confidence in the obtained

results, more sample devices can be used to improve the

statistical accuracy of the results. This further enables the

use of more advanced statistical assessment tools dedicated

for cryptographic applications like the NIST [19] Statistical

Test Suite for Random and Pseudorandom Number Generators

commonly used throughout literature.

A. Other RO PUF architectures

As can be concluded from the results presented in Table I,

the RO PUF instantiated in the TOP RIGHT regions shows

both best inter-device behaviour as well as response stability.

Moreover, the other metrics are not far from their ideal value.

To compare the obtained results with RO PUF designs found

in literature, a performance overview is given in Table II.

TABLE II: An overview of the performance of other RO PUF

architectures

PUF type Reliability Uniqueness # Response bits Resource utilization

RO PUF (this work) 98.91%1 43.64% 130,816 512 5-stage ROs

RO PUF2 [20] 99.52% 46.15% 128 1024 5-stage ROs

RO PUF3 [21] 98.87% 49.13% 2
k M(2kM−2)

8
M k-stage config. ROs

RO PUF4 [21] 96.65% 46.82%
M(M−1)

2
M 7-stage ROs

RO PUF5 [22] 98.87% 50.01% 2
k M(2kM−2)

8
M k-stage config. ROs

2

1 Evaluated at proximate operating conditions due to the limitations of the
setup
2 Paired with a 1-out-of-8 masking scheme [20]
3 Group-based configurable structure [21]
4 Classic structure
5 Low hardware-overhead configurable structure [22]

On an FPGA, an instantiated RO utilizes 1 LUT per gate

stage. This means that a 512 5-stage RO array will use

3072 LUTs, accounting for the AND gate which enables the

oscillation. Some FPGA architectures allow for a single LUT

to implement two small logic functions, increasing the area

density of the design. The RO PUF addressed in [20] uses

a conservative number of response bits due to its reliability

enhancement scheme. The 1-out-of-k masking scheme chooses

the most stable RO pairing out of a sequence of k pairings.

This scheme stabilizes the intra-device behaviour of the PUF

at a significant cost of the total CRP space. Ke-li Li et al.

[21] present a group-based configurable RO PUF structure

which intertwines MUXes in-between the inverter stages to

expand the CRP space of the classical RO PUF. Addition-

ally, the authors employed a lightweight SPONGENT hash

algorithm and an EEC on the output response to increase

the reliability and uniqueness of the PUF. The reliability

is reported over variations in supply voltage only. At first

glance, the introduction of MUXes between inverter stages

significantly adds to the area footprint of the RO structure.

However, if the PUF is situated in an isolated FPGA region,

where the crosstalk influence of other logic is minimized,

otherwise unused dedicated MUX resources can be used for

the implementation. Moreover, the facilitation of exponential

CRP scalability, justifies the added area footprint for larger

PUFs. A structure which significantly reduces the hardware-

overhead of the configurable RO PUF was presented in [22].
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The authors situate 2 MUXes and 2 inverters into a single LUT

element, by exploiting the dual path nature of the configurable

topology.

VI. CONCLUSION

In this paper, a Ring Oscillator based Physically Unclonable

Function has been designed and its performance evaluated on

4 Xilinx Kria KV260 boards. The physical disorder underlying

the RO structure was linked to fluctuations in delays in today’s

CMOS technology. The assumption that the variance in the

frequency of the instantiated ROs is predominately caused by

variance in gate-delay of LUT components has been justified

in Sec. IV-A through the analysis of the frequency behaviour

of the structure. Moreover, based on the obtained results,

a physical bias has been identified on one of the tested

FPGAs. Additionally, it was shown that mixing different Slice

resources can have adverse effects on the physical correlations

within the PUF structure. The designed RO PUF showed good

intra-device performance at identical operating conditions, and

excellent uniformity across its CRP space. The uniqueness of

the designed structure was negatively affected by biases caused

by asymmetric routing. The said bias could be eliminated by

employing a routing macro, likely increasing the inter-device

characteristics of the design. At last, the dependency of the

performance of the PUF on the evaluation time showed that

longer evaluation times improve intra-device performance.
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Appendix

A Ring Oscillator PUF HDL design structure

A high-level schematic of the proposed RO PUF structure is presented in Fig. 11

Fig. 11: RO PUF IP structure

The above design has been implemented as a custom IP to-be-used in the block design work flow

of Vivado. The source and simulation files are provided in the GitHub repository of the project under

design files/RO PUF IP.

The design of a ring oscillator with a generic number of inverter stages is implemented in

src/generic RO.vhd. The RO has been implemented using a self-referencing logic vector. To successfully

simulate a RO structure, virtual delays need to be added between the inverter stages, mocking the actual

gate-delay seen in underlying analog behaviour:

inv_chain(i) <= not inv_chain(i+1) after (stage_delay+i) * 1 ns;

These virtual delays were naturally removed for the actual on-board implementation of the design.

During simulation however, it is important that each gate is assigned a different delay value, as otherwise

the simulator cannot resolve the combinatorial loop and the behaviour of the RO becomes undefined.

The controller implemented in src/output comparator.vhd coordinates the PUF structure. When a new

challenge is received, the input handling logic passes over the challenge to the PUF IP and signals the

controller to engage. The received challenge is propagated to the select inputs of the (DE)MUX logic

which setups a path for the to-be-compared RO pair. At the same time, the controller signals an enable

signal which is routed through the DEMUX to the correct RO pairing. Next, the controller waits for a

fixed amount of time before resetting the counters. This is done to remove any proximity bias caused by

the fact that some ROs are closer to the counting logic than others. After this interval, the controller resets

the counters and waits an evaluation time of seconds. When the evaluation time is reached, the controller

propagates the value of both counters to the output handling logic and disables the RO pair.
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B PYNQ framework implementation and data acquisition

The PYNQ framework is a recently developed alternative to the conventional Xilinx’s SDK (XSDK)

C/C++ environment for creating embedded applications on FPGAs running ARM’s microprocessors.

PYNQ is an open-sourced project backed by AMD which aims to streamline the communication interface

between the FPGA board and the outside world. Unlike XSDK, PYNQ provides a python environment

suited for rapid prototyping and development. In this project, the PYNQ framework was used to: configure

the Kria KV260 board with the generated .bit and .hwh files from Vivado; switch between PUFs

instantiated in different regions of the device at run-time; send challenges to the RO PUF IP and receive

the responses generated by the RO PUF IP.

To install PYNQ on a Kria KV260 board running an Ubuntu 22.04 LTS SDImage, PYNQ’s official

repository for the Xilinx’s Kria boards needs to be cloned into an empty directory on the board. The

installation process starts by running the bash file provided in the repository. The exact commands are:

cd <usr/local/* or /opt>

git clone https://github.com/Xilinx/Kria-PYNQ.git

cd Kria-PYNQ/

sudo bash install.sh -b KV260

The installation may take up to 30 minutes. After the installation completes, a Jupyter Notebook Server

is opened at the IP address of the device on port 9090. JupyterLab is accessible at <ip address>:9090/lab

with a default password: xilinx.

The design around the RO PUF IP has been designed following PYNQ’s composable overlay guidelines

[12]. Composable overlays allow for dynamic changes in the connections of IP blocks within the design

at runtime. This allows to access the different PUF regions on the device using the same resources by

reconfiguring the connections dynamically. The fundamental block of a composable overlay is a Switch

which enables dynamic routing between IPs connected to the module. The routing of the RO PUF IPs to

the Switch block is shown in Fig. 12.

The communication with the custom RO PUF IP happens indirectly through a Direct Memory Access

(DMA) block. A DMA handles memory access operations reducing the involvement of the CPU during

these mundane tasks. Shown in Appendix E is the block design of the overall system. The DMA connects

to the custom IP via two interfaces to enable both the transmission and receival of data. In PYNQ, besides

the files containing the implemented design, a JSON file needs to be declared specifying the in- and output

ports of the DMA in the custom IP block.

With the above steps taken care of, a generated .bit file can now be loaded onto a Jupyter Notebook

Kernel and uploaded to the FPGA. From there, the composable overlay can be interacted with through

the python environment.

The Kernel used to acquire response data from the RO PUF can be found under gather data.ipynb on

the provided GitHub repository. The Kernel first initializes the parameters of the to-be-tested .bit file, that

is the number of PUF regions, the size of the RO array and the evaluation time of the PUF with which

the .bit file was generated. Afterwards, pointers to the DMA’s receiving/sending channels are fetched and

in-/output buffers are allocated. 3 types of tests were ran consecutively for each iteration of the design. The

first test measures the frequency of each RO. The second test goes over all possible unique RO pairings to

obtain the entire CRP space of the PUF. The last test measures the reliability of the PUF and the number

of unstable bits by obtaining the CRP space several times and measuring its consistency. The results of

the tests are saved into .csv files which allows for easy export and post-analysis. The post-analysis of the
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Fig. 12: 4 RO PUF IPs in a composable overlay configuration

data was done in Matlab. The relevant scripts can be found in /data/ on the provided GitHub repository.
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C AXI4-Stream protocol integration

PYNQ’s composable overlay structure necessitates the use of a AXI4-Stream (AXIS) Switch which

is one of the pillars for its runtime hardware composability [12]. An AXIS Switch module provides

connectivity between AXIS capable IPs. At runtime, the AXIS Switch can be reconfigured to facilitate

dynamic routing between connected IPs. To integrate a custom IP as a composable overlay, the custom

IP ought to be AXIS capable.

The AXIS implements a one-way streaming transaction protocol between a AXIS-master and AXIS-

slave module. In AXIS, data transfer is only possible from the master to the slave module. In its simplest

form, the AXIS protocol consists of 3 mandatory signals: the TDATA signal is a n-bit one-directional

data channel; the TREADY signal is a congestion control signal, it is held high by the AXIS-slave when

it is ready to receive a data packet; the TVALID signal validates the data on the transaction channel, it

is set high when the data published by the AXIS-master is valid. A valid data transaction occurs only

when both the TREADY and TVALID signals are high during the active edge of the clock. Besides these

mandatory signals, modules connected to a DMA require to implement an optional TLAST signal. The

TLAST signal is set high by the AXIS-master when the last word of a packet has been transferred. This

is necessary as otherwise the DMA would have no notion of the amount of words comprising a packet.

A typical transfer between 2 AXIS modules is depicted in Fig. 13. Several other optional signals exists

which expand the functionality of the AXIS protocol further, these signals are however outside of the

scope of this work. Additional information about the AXIS protocol can be found in [23].

Fig. 13: AXI4-Stream Handshake [23]

In operation, the designed RO PUF module receives a challenge from the PS through a DMA

and, after the challenge has been evaluated, sends out a response back to the DMA. To achieve

this functionality, both sides of the AXIS protocol have to be implemented in the RO PUF IP.

The implementations can be found under design files/RO PUF IP/src/AXIS input handler.vhd and de-

sign files/RO PUF IP/src/AXIS output handler.vhd on the provided GitHub repository. The resulting

RTL layout of the upper-layer of the RO PUF IP is shown in Fig. 14.
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Fig. 14: RTL layout of the upper-layer of the designed RO PUF IP

D Ring Oscillator Array Ð Synthesis and placement constraints

Before the synthesis of the design, extra care needs to be taken to make sure that the HDL design is not

optimized away. During the synthesis step, Vivado will optimize the HDL design to minimize delay and/or

area usage. From a logical point of view, an odd chain of k inverters is nothing more than just 1 inverter

in that path. Vivado will notice the redundancy and ’improve’ the design by removing the redundant

inverters. To prevent this from happening, an attribute needs be assigned to the signal implementing the

inverter chain. In VHDL, this is done by assigning a dont touch attribute to the said signal:

signal inv_chain : std_logic_vector(number_inv_stages-1 downto 0)

attribute dont_touch of inv_chain : signal is "true";

Vivado will now turn a blind eye on the signal and retain it in the netlist of the synthesized design.

This principle can be extended to entire entities preventing Vivado from optimizing the marked modules.

Another problem arises when the inverter chains are recognized as combinational logic loops by the

tool. This leads to error reports during bitstream generation preventing a successful compilation of the

.bit and .hwh files needed to configure the FPGA. In the general case, combinational loops are to be

avoided as they result in race conditions which lead to unstable behaviour. Since FPGAs are intended

for the implementation of synchronous logic, Vivado will prohibit the use of combinatorial loops in the

default case. An exception can be signified by the designer to allow for combinational loops in a part of

the design. One way to achieve this is similar to how it was done in the previously discussed case. By

assigning the following attribute to the relevant logic, Vivado will accept the created combinational loops

in that part of the design.

attribute ALLOW_COMBINATORIAL_LOOPS of inv_chain : signal is "true";

The Vivado Design Suite facilities control over the physical placement of the synthesized netlist. To

ensure resource homogeneity between the different RO instances, manual placement needs to be employed.

To assign regions exclusive to a particular set of logic the following script can be added to the constraint

file of the system:
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(1) create_pblock <pblock_name>

(2) add_cells_to_pblock \

[get_pblocks <pblock_name>] [get_cells -quiet [list <your_logic>]]

(3) resize_pblock \

[get_pblocks <pblock_name>] -add {SLICE_X0Y180:SLICE_X22Y239}

(4) set_property EXCLUDE_PLACEMENT 1 [get_pblocks <pblock_name>]

(5) set_property CONTAIN_ROUTING 1 [get_pblocks <pblock_name>]

The first 3 commands create the region in which the assigned logic will reside. The second to last

command constraints the region to be exclusively used by the assigned logic. The last command contains

the routing of the assigned logic within the specified region, and disallows other logic to utilize any routing

resources in the region. The above script only reserves a region in the PL. The individual placement of the

inverter stages within the region will still be random, and therefore often asymmetric. To further constrain

the placement of the individual inverters, each inverter in a RO instance needs to be tied to the same

slice, unique to that particular RO. Doing this manually is infeasible for large RO arrays. Moreover, if

the design is regenerated with a different number of inverters the placement will need to be redone. To

overcome this challenge, a tcl script has been written which loops overall all ROs in the netlist and places

the individual inverters accordingly. The said script can be found in the provided GitHub repository under

manual placement.tcl, as it is too verbose to be included here. The end results are presented in Fig. 15.

A). Constrained PBlock region

B). Gate placement within a single slice

C). Routing of a ring oscillator

Fig. 15: Resulting RO array placement and routing

Following the above procedure, 4 identical copies of the design have been laid out on 4 different regions

of each Kria KV260 device. The resulting placement is shown in Fig. 16, where each region is highlighted

in a different color for clarity. The surrounding (DE)MUX logic is highlighted in pink.
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Fig. 16: Implementation view of the 4 allocated regions
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