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Microservices In IoT-based Remote Patient Monitoring Systems: 
Redesign of a Monolith 

AKMAL ALIKHUJAEV, University of Twente, The Netherlands 

Since over half of the world population in remote areas does not have access 
to medical practitioners, Remote Patient Monitoring (RPM) systems have 
proved to be a viable alternative. However, because these systems are 
powered by many IoT devices, they require efficient software architectures. 
Therefore, an increasing number of applications of microservices 
architectures in the RPM systems with different models have been proposed. 
On the other hand, there is still an open question on how to decompose and 
apply microservice principles in IoT-based systems, while retaining benefits 
of microservices, like maintainability. Therefore, the goals of this study are 
to investigate how microservices should be applied in the RPM systems and 
whether they improve software maintainability. To achieve that we rebuilt 
the existing SBIoT-MPH system for monitoring hypertension using 
microservice principles and decomposition patterns. Moreover, to validate 
the findings we evaluate the end artefact and discuss improved 
maintainability and the sensor data ingestion throughput. With this study, 
we aim to provide both researchers and practitioners with a general and 
comprehensive solution to build microservice-based RPM systems. 

Additional Key Words and Phrases: IoT, Microservices, MSA, architecture, 
design, implementation, Remote Patient Monitoring. 

1 INTRODUCTION 

According to the ILO1, about half of the world’s population that 
lives in remote areas, does not have access to healthcare. The 
reasons for that are many-fold with the major one being the lack of 
healthcare workers in those areas [16].  

Therefore, e-Health passed the innovation stage to become a 
necessity. That includes Remote Patient Monitoring systems (RPM), 
which are designed to overcome the challenges of monitoring 
patients even in the most remote areas, providing equal opportunity 
to healthcare even for those who cannot commute to medical 
practitioners [15]. Moreover, RPM systems are frequently 
developed using Internet-of-Things (IoT) devices, which may 
contain several sensors on board that can monitor a patient’s vital 
signs, such as blood pressure, heart rate, activity levels and others 
to help identify and prevent diseases [15]. Furthermore, patients’ 
data is often collected and forwarded to the cloud, where it can be 
securely stored, queried, and analysed by medical professionals, 
who are presented with all the data at hand in a software 
application. The main benefit of storing data locally and then 
forwarding it to the cloud is that users have complete control over 
the data that is sampled, increasing the patient’s autonomy and 

 
1  International Labour Organisation is an UN’s agency 
specialized in social injustices. 

confidence [10].  Moreover, IoT systems have the advantage of 
being (near-) real-time, which can help identify health problems at 
an early stage, making the treatment more effective [15]. Lastly, 
early monitoring can help reveal potentially overlooked conditions 
and give a more holistic view of the patient’s health [15]. 

However, current IoT-based systems, especially in the e-Health 
domain, generate large volumes of data and require relatively 
complex processing patterns. As mentioned in [10], the current IoT 
systems have become increasingly complex and hard to maintain. 
Furthermore, they require improved scalability and high 
availability in the context of mission-critical applications like 
healthcare. Therefore, both software industry practitioners and 
researchers have proposed the use of microservices-based 
architectures to overcome those challenges [10]. 

Consequently, based on the previous research done in this field, 
there is a need to evaluate the applicability of MSA-based 
architectures in the context of RPM systems, their decomposition 
patterns and whether microservices solve the maintainability 
challenges of the current monolithic IoT systems. 

The goal of this study is twofold. Firstly, it involves an 
investigation into how microservices can be applied to IoT-based 
RPM systems. Secondly, it involves the redesign of an existing 
monolithic RPM system for monitoring hypertension proposed in 
[7] to a microservice-based system, with both implementation and 
validation of the end artefact.  

The study follows the Design Science methodology, which is 
used to challenge the researcher’s creativity and problem-solving 
as well as the application of IT solutions to a new domain, where a 
research gap exists. Therefore, with this research, we aim to provide 
a general solution to both software developers and researchers 
when applying microservice architecture for RPM systems. 

The paper is divided into the following sections. Section 2 
presents the research questions. Section 3 explains the 
methodology used in this research. Section 4 introduces the 
relevant background concepts that we use in this study. Section 5 
presents the design and implementation. Section 6 demonstrates 
and explains the results of a final comparison. Section 7 presents 
related work with similar goals that links new findings with past 
research, and Section 8 provides final remarks and future directions. 
 
2 RESEARCH QUESTIONS 
Since the current study involves both a theoretical exploration of 
the microservice architectures in IoT-based systems as well as their 
practical application by rearchitecting the system proposed in [7], 
the following research questions have been defined: 
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RQ1: How can microservice architecture be applied in an IoT-based 
RPM system? 
RQ2: Does the microservice architecture improve maintainability 
of the newly implemented system when compared with the 
monolithic one? 

The RQ1 is an exploratory question that can be answered by 
assessing the relevant literature, whereas RQ2 is a predictive 
question and it can be answered only upon completion of 
architectural design and implementation of the system in [7]. 
 
3 METHODOLOGY 
To answer RQ1 we found and studied the relevant literature on 
microservices, IoT systems and how they can be combined in an 
architecture. To accomplish that we have used the Google Scholar 
platform to search for articles based on keywords like “IoT”, 
“architecture”, “microservices” and “remote patient monitoring”. 
The major drawback of this approach is that there is a lot of 
literature available and because of the limited time, only a relevant 
subset of articles to the problem domain was considered.  

On the other hand, RQ2 involves a practical exploration and for 
that purpose, we applied the Design Science methodology in our 
research.  
 

 
Fig. 1. Design Science Methodology process 

Design science is a paradigm that challenges researchers to apply 
problem-solving and aims at devising creative solutions to a well-
defined problem by practically implementing the artefact [5]. The 
whole process is shown in Figure 1 and consists of problem 
identification and problem motivation, following a design and 
development phase, and concluding with an evaluation. Evaluation 
in Design Science can be either through mathematical or empirical 
methods [5]. Moreover, each stage of the Design Science 
methodology (see Figure 1) is part of a feedback loop, which makes 
the whole process iterative. The goal of the methodology is to 
provide a practical contribution to the research space by providing 
a creative solution to a problem. Therefore, in the context of this 
paper, we explore the problems of the monolithic architecture 
proposed in [7], offer a design following MSA principles, implement 
a prototype and validate it. Moreover, we follow the Design and 
Engineering Cycle method [14] that suggests design validation 
techniques. We conduct the validation of the design in a laboratory 
setting by creating a simulated environment to demonstrate how 
the implemented artefact solves a particular use case, which in our 
case is an improvement of maintainability. To accomplish this, we 
propose a new functionality and evaluate the number of changes 
that are required in the monolithic and MSA-based systems. 
 
4 BACKGROUND 
In this section, we introduce relevant concepts presented in both 
academic and grey literature that we used during the design and 
implementation. 
 
4.1 IoT Systems 
IoT systems are often complex, and it is common to reason about 
them as a 3-tiered architecture that includes the Edge, Fog and 

Cloud computing layers. Firstly, Edge computing is the technique 
of processing the data on the physical devices deployed next to the 
source, enabling real-time data processing and fast feedback. 
Secondly, Fog computing acts as a layer in-between edge and cloud, 
relieving the cloud of the load, and supporting more complex 
processing than the edge computing layer. Lastly, with the 
emergence of cloud service providers like AWS, Azure and GCP, 
the IoT architectures began to leverage them and utilise the cloud 
for aggregating, storing and analysing massive amounts of data [3]. 
These three layers combined are key elements to develop scalable, 
real-time, and resilient IoT architectures. 
 
4.2 Microservice Architecture 
In [8], Sam Newman introduces the concept of microservices. In a 
nutshell, microservices are independently deployable software 
artefacts that are loosely coupled and are modelled around a 
particular aspect of the business domain. Consequently, to ensure 
a degree of isolation, microservices are deployed on different hosts 
and more frequently leverage virtualisation tools like, e.g., Docker. 
Microservice architecture has emerged as a specialisation of Service 
Oriented Architecture (SOA) to address its challenges and 
introduce novel solutions. While both revolve around the concept 
of loosely coupled services that encapsulate business functions, 
they largely diverge in governance patterns. For example, in 
traditional SOA, services are more commonly orchestrated by an 
Enterprise Service Bus (ESB) that centralises governance functions 
like routing, authentication and integration of services. Whereas, 
MSA promotes the decentralisation of the architecture, which 
allows the services to evolve in isolation [11]. Furthermore, 
traditional SOA favours the orchestration of business transactions, 
whereas MSA encourages choreography [11]. However, that does 
not mean that traditional SOA is inferior to MSA, since those are 
the two approaches that have valid use cases. 
 
4.3 Microservices and IoT 
The motivation behind the industry migration to MSA is outlined 
in [1], which claims that microservice architecture was created to 
address problems of maintainability and scalability in monolithic 
architectures. The same article also mentions the similarities 
between the requirements for the IoT and microservices-based 
systems. Furthermore, as IoT systems are composed of a large 
number of devices that generate large volumes of data, a simple 
monolithic system simply cannot handle the required load [1]. 

Moreover, the significance of microservice architectures in IoT-
based RPM systems has been researched previously. The authors in 
[10] claim that efficient architectures that employ IoT and 
microservices are invaluable components of the modern e-Health 
domain. They also propose a reference architecture built around 
MSA principles for remotely monitoring patients, which provides 
real-time analysis on the patient’s smartphone and then forwards 
that data to the cloud. In [4], a similar architecture is proposed for 
frailty status assessment. Both [4,10] pre-process the data at the fog 
layer (a smartphone) and then forward the summarised data to the 
microservice-based system (cloud), and justify that choice by 
claiming that it enables real-time processing and fast feedback. 
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4.4 Domain Driven Design 
However, one of the mentioned research challenges in [10] is that 
the proposed MSA-based IoT architectures are lacking 
standardisation, are hardly replicable and vendor-specific. 
Moreover, most of the papers present the final reference 
architectures without presenting decomposition patterns. 
Therefore, more generally as stated in [1] a common approach to 
microservice decomposition is to apply Domain Driven Design 
(DDD). DDD was first introduced by Eric Evans in [2] as a pattern 
to manage software complexity. It revolves around modelling the 
software in line with the business domain. Furthermore, DDD 
makes a distinction between two components: the problem space 
and the solution space. The problem space describes the business 
capabilities, words, requirements and use cases. Furthermore, the 
problem space entails the domain, which is a set of patterns aimed 
at solving business needs, and the sub-domains which encapsulate 
business functions into manageable pieces. Consequently, when 
translating this into a software architecture, DDD requires 
engineers and domain experts to create domain models and 
separate them into bounded contexts. In some sense, bounded 
contexts act as a boundary within which the domain model has a 
meaning and decreases the software complexity by separating the 
concerns. Evans suggests one way of identifying the bounded 
contexts by looking at where the same domain model has a different 
meaning [2]. This modular thinking of the system is what makes 
DDD extremely useful and popular for microservice identification. 
 
4.5 Containers 
Isolation is one of the core principles of microservices, presented in 
[8]. This means that there is a need to ensure the microservice 
application running on a physical host (server) does not interfere 
with other processes and vice versa. Traditionally, that has been 
achieved by using virtual machines (VM), which provide a 
completely isolated operating system, virtualised hardware, 
networking, kernel, and hypervisor. However, VMs underutilise 
the hardware and are rather heavy [8]. Container orchestration 
software, like Docker, on the other hand, is a technology designed 
specifically for cloud-native applications that provides complete 
isolation of software components and does not require to reserve 
hardware resources, making containers elastic. It leverages the 
Linux Containers feature, which renders hypervisor software 
obsolete. Moreover,  containers are advantageous because their 
provisioning and start-up time is much faster compared to 
traditional VMs [17]. 
 
4.6 Message Broker 
In our work, we decided to use a message broker for inter-service 
communication as opposed to the synchronous HTTP request-
response pattern. In particular, we selected the popular, open-
source Apache Kafka 2  distributed event-streaming software 
developed at LinkedIn. The reason for its widespread use is that 
Kafka provides a strong consistency model for message delivery 
and guarantees message ordering within a partition. Furthermore, 
it provides replication, which increases fault tolerance and reduces 
the chance of data being lost. Apache Kafka provides built-in 
partitioning of data that distributes it around the cluster and allows 

 
2 Apache Kafka https://kafka.apache.org  

parallel processing by multiple partition leaders. Consequently, just 
3 Kafka brokers deployed on 3 servers using commodity hardware 
provide a throughput of 2 million messages per second [18], which 
makes it an excellent tool for handling the data traffic normally 
present in an IoT-based system. 
 
5 DESIGN AND IMPLEMENTATION 
In this section, we first introduce the monolithic SBIoT-MPH RPM 
system for monitoring hypertension implemented in [7] and 
address the challenges that one of the developers of this system 
outlined in a collaborative session. Thereafter, we decompose the 
system by applying Domain Driven Design. Following the 
decomposition, we introduce the technologies used in the project 
and briefly explain the developed microservices. 
 
5.1 SBIoT-MPH: System, Domain and Challenges 
In [7], the authors report on the implementation of the IoT-based 
RPM system for monitoring hypertension called SBIoT-MPH. 
Hypertension is a cardiovascular disease with a yearly mortality 
rate of 9.8 million people [7]. It requires continuous monitoring of 
patients’ vitals by health professionals, which justifies the use case 
for an IoT-based RPM system. 

SBIoT-MPH has a modular architecture and is split into 3 layers, 
namely, the Sensor, Fog and Cloud layers. The Sensor Layer 
consists of sensors embedded into a wristwatch-like device and is 
worn by a patient. The first sensor is the MKB0805 module for blood 
pressure and pulse measurements. The second sensor is the 
MPU6050 module for measuring acceleration on 3 axes (X, Y, Z), 
which is required for the MKB0805 readings. Lastly, the third sensor 
is the DS18B20 module used to capture the patient’s body 
temperature. The three sensors constitute a Wireless Body Sensor 
Network (WBSN), whose data is captured and processed by the 
TTGO T7 V1.3 MINI 32 module, which is a common hardware 
component in the current IoT system. Consequently, collected and 
processed data is forwarded to the patient’s mobile device via 
Bluetooth Low Energy (BLE) protocol employing the ESP32 
microcontroller [7].   

The Fog layer consists of an Android application developed in 
Java and runs on the patient’s mobile device. The application 
provides authentication, sensor management, data visualisation, 
collection and analysis. Moreover, the collected sensor data is 
stored both locally in an encrypted database and forwarded to the 
cloud through a background process. The application provides an 
easy-to-use interface that displays alerts, and messages from health 
professionals and provides an overview of the collected sensor data. 

The Cloud Layer consists of an API server and a client-side Web 
application. The API server acts as a central governing authority 
that collects the data, authenticates administrators, patients and 
medical practitioners. Furthermore, it provides patient and health 
professional management to the administrator to invite new users 
to the system. Moreover, it exposes an interface for patient-to-
health-professional assignment, sensor data analysis, message 
exchange and alert monitoring. The API server is developed in 
JavaScript and Node.js, which exposes a GraphQL communication 
endpoint. 
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Although SBIoT-MPH works well, its developers have faced 
several challenges after deploying the software artefact. During a 
collaborative session, we identified two main problems: (1) as the 
number of requirements grows, so does the complexity of the 
system. It was mentioned that the architecture requires a new 
approach to manage complexity; (2) we identified that the sensor 
data read/write speeds (throughput) were quite low and did not 
deliver a comfortable user experience (UX). Therefore, we decided 
to redesign the system using a microservice architecture to increase 
maintainability and improve sensor data throughput. 
 
5.2 Microservice Decomposition 

 
Fig. 2. Business sub-domains and contexts 

We applied the Domain Driven Design decomposition 
methodology proposed by Eric Evans in [2], to create domain 
models and identify the bounded contexts.  

The domain models have been identified in a two-step process. 
Firstly, the domain was introduced by the expert in a collaborative 
session. Secondly, we analysed the source code of the existing 
application, drew diagrams and dependency graphs. The latter 
helped us identify constraints and define an understanding of 
different use cases.  

Figure 2 shows the domain diagram, which contains the domain 
concepts (green boxes) and bounded contexts (yellow surrounding 
boxes). The core domain concepts that have been identified are 
patient, physician, user and patient’s sensor data, whereas the core 
bounded contexts are patient, physician and identity.  

The patient context encapsulates the patient’s information, 
medical records and sensor data. The physician context abstracts 
physician information, disease monitoring and patient-to-health-
professional assignment. The patient concept appears again in this 
context, however, the understanding of the patient model in the 
physician context differs from the one in the patient context. For 
instance, when discussing the patient in the physician context we 
often do not require any contact or private information that should 
be visible to the patient only. Therefore, the patient model has only 
a subset of information that is relevant to the physician. Lastly, the 
identity context is where general user management takes place. 
Consequently, it is not a core sub-domain, but rather a supporting 

one because without it there is no way to manage user 
authentication and roles. 

In MSA, each bounded context is a good candidate for a 
microservice because it is an isolated set of capabilities that 
interacts with other contexts through a well-defined set of 
constraints and models [8]. We have identified the bounded 
contexts by looking at where the meaning of a user changes 
throughout the system. In the original implementation of SBIoT-
MPH, a user can be either an administrator, patient or physician. 
This distinction makes a clear separation of the context and the 
meaning of the user throughout the system. 

Another advantage of splitting the domain into bounded contexts 
during development is cohesion. As a general rule in microservices, 
code that changes together must stay together [8]. For instance, 
when working with a patient’s sensor data, it is often required to 
correlate that information and perhaps perform some modifications 
in the context of a patient because it is the only place where we 
have a complete view of the patient’s data. Therefore, if new 
requirements surface, the changes to the sensor data processing will 
not span multiple bounded contexts, thereby reducing the chance 
of violating the independent deployability principle [8]. 
 
5.3 System Implementation 
The system was developed using Java version 17 along with Spring 
Boot 3 and Spring Cloud frameworks. Spring Framework is a 
mature library for building server-side applications, with extensive 
tooling and an active developer community. Furthermore, Spring 
Cloud is a sub-project of the Spring ecosystem that provides the 
tools to build cloud-native applications. Spring Cloud provides out-
of-box implementations for security, API gateway, service 
discovery, caching, message broker integration and others, which 
makes it a great tool for building microservice-based applications.  

 
Fig. 3. SBIoT-MPH Microservices Architecture 

The proposed architecture (see Figure 3) features 3 layers, 
namely, the Sensor, Fog and Cloud layers. The sensor and the fog 
layers remain the same as in [7], where the blood pressure, pulse 
and body temperature are sampled and forwarded via BLE protocol 
to the fog layer for pre-processing and real-time analysis. The main 
difference begins in-between the fog and cloud layers, where 
previously the mobile device forwarded the data to the API server 
using GraphQL protocol, in the new architecture, however, the 
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device uses Representation State Transfer (REST) API and transfers 
the data via HTTP in JSON format to the Sensor Data Ingestion 
(SDI) Proxy. All calls to the services are routed by the load balancer, 
which can select the least congested service instance through 
service discovery. Another advantage of having a load balancer is 
that internal topology can change, with new instances being added 
or removed, making them available to the clients instantly without 
waiting for the DNS changes to propagate [8]. 

Moreover, the architecture follows the Database-Per-Service 
pattern introduced in [8], which means that every service has its set 
of database instances that no other service can access. This solution 
mitigates potential consistency issues and increases the degree of 
information hiding, forcing other services to use well-defined API 
contracts. 

As stated in Section 4.6, the system utilises asynchronous 
communication patterns between microservices through a message 
broker, making the services loosely coupled and more resilient to 
cascading failures in case of an unhealthy microservice instance 
[13]. Moreover, the developed microservices are unaware of each 
other’s existence and only publish the events that interested parties 
(other services) can consume and react to, thereby, making this an 
Event-Driven-Architecture (EDA). Events in this case are 
statements about an action that has happened. This kind of 
collaboration pattern models the real-world more closely since 
everything that happens around us is a series of events that we react 
to. To enable this communication pattern, we deployed a Kafka 
cluster consisting of 3 brokers in the KRAFT mode, which utilises 
the RAFT consensus algorithm that performs leader elections in the 
cluster without centralised cluster management software. 

As shown in Figure 3, each microservice and infrastructure-
related software runs in a Docker container to support the 
requirement of isolation outlined in [1,8]. Another advantage of 
using containerisation for microservices is the replicable 
environment since containers abstract the underlying operating 
system (OS). That ensures that if an image is built for a desired 
computer architecture, it can be deployed to any cloud instance 
without fear that the application does not work. 

The overall system consists of patient, physician, identity and 
notification services as well as an SDI proxy, where each one of 
them has its database, maintains a connection to the central Kafka 
cluster and runs in an isolated Docker container. 
 
5.4 Identity Service  
Authentication and authorisation are crosscutting concerns that 
must be tackled with care not only to achieve compliance but also 
to ensure data confidentiality, integrity and availability (CIA). 
Authentication is rather a trivial task when implemented using 3rd 
party tools in a monolithic application since all the logic and 
interactions reside in one application. However, in MSA if each 
microservice authenticates its users, this would lead not only to 
code duplication but also to poor UX because the user will have to 
present the credentials to each service [8]. Therefore, both [8,9] 
stress the importance of the Single-Sign-On (SSO) in a 
microservices architecture. SSO features a seamless authentication 
experience where the user presents the credentials only once and 
can interact with a variety of services afterwards. The core 
component of SSO is an identity provider, which can be either 

managed like Okta, Auth0 or AWS Cognito [8], or can be self-
hosted.  

Since our MSA-based SBIoT-MPH system is event-driven, we 
decided to build our own identity service using Spring Boot, Spring 
Security and Spring Authorization Server frameworks. In 
particular, Spring Authorization Server provides a robust 
implementation of OAuth 2.0 and OpenID Connect (OIDC) 1.0 
standards, which are commonly used to achieve SSO. OIDC 1.0 
protocol is used for authentication, whereas OAuth 2.0 is used for 
authorisation.  

Furthermore, to address the challenge of propagating the user’s 
authentication state, we have selected JSON Web Tokens (JWT), 
which are issued by the service upon successful authentication. 
Issued JWTs are cryptographically signed using RSA private key 
and SHA512 hashing algorithm. JWTs were selected because they 
provide a lightweight approach to transmitting an authentication 
state that makes it unnecessary to call the identity service to 
validate whether the user is authenticated and/or authorised [8].  

Moreover, the identity service was extended to support signing 
key rotation and utilises PKCS12 key store type to store private RSA 
2048-bit signing keys. In contrast, public keys are collected into a 
JSON Web Key Set (JWKS) and are exposed via RESTful API so that 
other microservices can load the keys at start-up and validate each 
incoming request, without the need to call the identity service. 

The identity service also provides user management capabilities, 
such as patient and physician registration, and as shown in Figure 
3, it stores the user data in a PostgreSQL database. Each update to 
user information generates events that are forwarded by the Kafka 
message broker so that other services that duplicate user 
information can react to those events and update the local user 
view.  

Lastly, physician and patient registration can be achieved by 
emitting the respective events from the physician and patient 
microservices, to which the identity service reacts by creating the 
user record, generating the activation token and sending the User 
Created event, which is consumed by the notification service to 
generate a welcome email. 
 
5.5 Patient Service 
The patient context (see Figure 2) is represented by a microservice 
that encapsulates patient-related functions. This microservice was 
developed using Spring Boot and has its own time-series Timescale 
database instance to store both patient information and health 
sensor readings. Time-series database is a preferred data store for 
the IoT sensor data because it provides high write throughput and 
low read latencies [9,12,13]. We have selected the Timescale 
database because it extends an ordinary PostgreSQL instance with 
time-series capabilities, where the data is partitioned based on its 
timestamp.  

Furthermore, it eliminates the need to learn an additional query 
language since the data can be queried using ordinary SQL syntax. 
Timescale database also allows for both Online Transaction 
Processing (OLTP) and Online Analytics Processing (OLAP) 
workloads, which eliminates the need to have two separate 
databases for patient data and sensor readings. 

Moreover, the service exposes a RESTful API for administrators 
to create, update and delete patients, leading to the emission of 
respective domain events. For example, when the patient is created, 
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the service emits Patient Created event, to which the identity 
service reacts and provisions the user account. On the other hand, 
when the deletion of a patient is requested, all the services remove 
the associated patient data and invalidate the sessions. Lastly, it 
provides the interface for patients and medical professionals to 
query the sensor readings for a given time range, sensor type and 
patient.  
 
5.6 Sensor Data Ingestion (SDI) Proxy 
Another microservice we built following the findings in [9,13] is 
called Sensor Data Ingestion (SDI) Proxy. It has two primary roles: 
(1) analogous to Technology Integration Adapter in [9] the service 
abstracts the modalities of IoT sensors and provides an interface for 
sensor integration. However, in the context of the SBIoT-MPH 
system, the only integration that was implemented is a RESTful API 
that accepts sensor readings from a mobile device, but it has 
limitless capabilities to be extended and make it work with various 
IoT sensors and communication protocols without changing other 
system components [9]; (2) the service acts as Inbound Pipeline in 
[9] and as a Sensor Gateway in [13], which works as a buffer 
between the fog layer and the patient data service. Its advantages 
of it are twofold: (1) as shown in [13], it increases the throughput 
and reduces the write latency; (2) it allows the development of 
loosely coupled event-based systems [9]. 

The SDI Proxy works as follows, when the fog layer pre-
processes the sensor data, it sends it to the SDI Proxy service. 
Thereafter, SDI Proxy performs an integrity check of the data and 
publishes it as an event to the Kafka cluster. The sensor readings 
are then consumed by the patient service and are inserted into a 
time-series database. That means that in case of high load spikes 
the number of instances of SDI Proxy can be increased, whereas the 
patient service can remain unchanged and process the data at its 
own pace without affecting the load and write times. 

In contrast with other services, this microservice was built 
around Reactive Programming Paradigm, which favours non-
blocking IO operations. Traditionally, web servers were 
implemented using a thread-per-request pattern and that approach 
worked well if the operations did not require frequent IO 
interactions. However, in the case of the SDI proxy, all interactions 
except for data integrity checks are IO related, such as 
serialising/de-serialising HTTP requests and pushing the data to the 
Kafka broker. Consequently, that means that most of the write 
requests will have to be blocked waiting for the operating system 
to complete the data transfer, which precludes those threads from 
servicing the requests of other users. Therefore, Reactive Paradigm 
is a suitable implementation for the SDI proxy, and it is expected to 
increase the overall throughput under high load. Moreover, the web 
capabilities are implemented using Spring Webflux, which bases 
itself on Project Reactor that is built according to the Reactive 
Streams specification for non-blocking operations. 
 
5.7 Physician Service  
Physician management was one of the original functionalities of 
the SBIoT system. Therefore, we implemented the physician service 
that resides in the physician domain context (see Figure 2). This 
microservice is built as the other core services using Spring Boot 

 
3 k6 load testing tool https://k6.io  

and has its own PostgreSQL instance (see Figure 3). It provides a 
RESTful API for administrators to create, update and delete 
physicians, and analogous to patient service, it emits events that 
are consumed by the identity service for user account provisioning. 
Furthermore, it exposes the endpoints to query all physicians in the 
system as well as physicians by patient and all patients for a given 
physician. Additionally, the server exposes an API to assign a 
medical professional to a patient, which creates a many-to-many 
connection. Lastly, as in the original SBIoT system, the service 
provides functionality to send a message from a physician to an 
assigned patient. The physician can also select the message priority 
and upon validation of patient assignment, the message event is 
emitted to the notification service, which can be then queried by 
the patient. 
 
5.8 Notification Service 
The notification service falls under the supporting domain and as 
shown in Figure 3 is connected to the external mail server outside 
the private network through SMTP protocol. Similarly, to other 
services, it is built using the Spring Boot framework and utilises the 
PostgreSQL database to store user emails and physician messages. 
This microservice consumes the notification events from Kafka 
brokers such as User Activation Required and Message events, to 
which it reacts and sends the notifications. Furthermore, it follows 
the de-normalised data approach and stores partial records of the 
users with their respective emails. Lastly, the microservice provides 
a RESTful API to query all messages by physicians and patients. 
 
6 RESULTS 
In the last stage of the Engineering Cycle methodology, it is 
expected to evaluate the end software artefact. For that purpose, we 
have deployed both the monolith and the microservices-based 
SBIoT-MPH system on a physical machine with a 10-core CPU and 
32GB of RAM. Along with that, we provisioned another 10-core 
CPU machine with 16GB of RAM for the k63 load testing tool that 
helped us simulate concurrent users and generate large volumes of 
synthetic sensor data. Furthermore, in the microservices-based 
implementation, each service was deployed as a single instance to 
provide a better comparison with the existing system. 
 

 
Fig. 4. Throughput comparison graph 

Figure 4 shows the throughput graph with the number of 
concurrent users on the x-axis and the number of requests per 
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second on the y-axis. The data was sampled by running both 
microservices and monolithic systems in isolation with their own 
infrastructure to ensure that other processes do not cause the 
congestion of computing resources. The throughput data suggests 
that the microservices-based implementation has a 28% increase in 
sensor data ingestion throughput via the SDI Proxy service. These 
results can possibly be attributed to the introduction of the SDI 
proxy service that publishes ingested sensor data to the Kafka 
cluster, thereby, buffering the data. These findings closely align 
with the results obtained with a system that has a similar event-
based architecture in [13]. 

Moreover, Figure 4 shows that the microservices-based 
implementation, in particular SDI proxy, can withstand the load of 
20000 concurrent users with an average response time of 4.53s and 
a throughput of 1420 requests/sec. On the other hand, the 
monolith’s results for the same load parameters were excluded 
because the error rate was as high as 73% and, therefore, the system 
was assumed to be unavailable.  One of the reasons for the 
monolithic SBIoT-MPH system failing under the load was the 
database writes, where many user requests were idle for a long time 
waiting for the database writes to complete. In contrast, the 
microservices-based implementation utilised both a message broker 
to buffer the requests as well as a time-series database to ingest 
sensor data, which are probably the reason for the results above. 
 
7 RELATED WORK 
Architectures for MSA-based IoT RPM systems have already been 
studied by many researchers. 

In [12], the authors propose a general architecture for a multi-
purpose MSA-based RPM IoT system. The system includes 5 
microservices that leverage a variety of communication protocols 
like HTTP, MQTT and Web sockets. It has a general service built 
using the Django framework that handles user authentication and 
authorisation, enables chat capabilities with medical practitioners 
and provides patient data over HTTP protocol, whereas other 
services include MQTT broker, patient data, reporting and time-
series data ingestion services. Moreover, the authors show the 
importance of using a time-series database for IoT sensor data 
because it provides greater scalability and data partitioning. 

In contrast, [9] proposes a layered architecture that enables the 
development of a near-real-time, multi-tenant RPM system for 
monitoring chronic metabolic disorders. One of the main 
advantages of the system is that it uses an abstraction layer called 
Technology Integration Adapters (TIA), which allow the 
integration of heterogeneous IoT devices without changes that span 
the whole system. The developed artefact leverages a microservice 
architecture and is designed to be deployed in the cloud. 
Furthermore, to address scalability and maintainability, the authors 
created an Inbound Pipeline microservice that receives the IoT 
sensor data and publishes it to a message broker. The advantages of 
this solution are twofold. Firstly, it creates a buffer space and lets 
other microservices process the data at their own pace, thereby 
avoiding load spikes. Secondly, as stated in [9], it makes services 
loosely coupled, which improves maintainability and opens the 
possibility to add new services without changing other 
microservices, therefore, satisfying the set of requirements for 
MSA-based systems introduced in [1] and [8]. Other microservices 
presented include a user service that manages authentication, a 

patient service that stores patient’s data and a patient monitoring 
service, which enables medical professionals to access and monitor 
the subject. Moreover, as in [12], the authors address the 
importance of the use of time-series data stores for sensor data to 
reduce latency and increase throughput [9]. However, this solution 
differs from our system largely because we further decomposed the 
system components and made the data ingestion layer follow the 
Single Responsibility pattern, omitting the introduction of business 
logic at the ingestion layer. 

Similarly, [6] proposes domain-specific Internet of Health Things 
(IoHT) architecture for non-invasive remote monitoring of the 
elderly called RO-SmartAgeing. The system is cloud native and 
utilises a microservices architecture to achieve a high degree of 
customisation, flexibility, scalability and extensibility [6]. The 
authors employ a Raspberry PI 4 micro-computer to simulate IoHT 
devices generating pulse, body temperature, blood oxygen level, 
and blood pressure data as well as mimicking environmental, 
motion and wearable sensors. Analogous to [10] and [4], the data is 
summarised and pre-processed at the fog layer, enabling real-time 
decision-making and data buffering [6]. Furthermore, the system is 
composed of different microservices, such as advanced analytics, 
behavioural monitoring, triggers and alerts, and patient data 
services. However, it is unfortunate that the work in [6] does not 
provide any results and implementation. Nevertheless, it provides 
a sound theoretical framework and argumentation.   

In contrast, [13] reports on one of the most detailed, well-
architected and modern MSA-based IoT RPM systems for sleep 
monitoring. The authors introduce in detail the concept of event-
driven architectures (EDA) and show how loosely coupled an IoT 
system can be. All the participating microservices are unaware of 
the existence of other services and only consume/publish events. 
Events in this case are statements about the world depicting an 
action or notifying about data changes. Similarly to [9], a sensor 
gateway (analogous to Inbound Pipeline) is introduced that buffers 
the sensor data and publishes it to the message broker in the form 
of events. Thereafter, the authors implement the Data Persistence 
service that consumes the events and stores the data in a time-series 
database to achieve high throughput and low read latencies. 
Moreover, the same sensor events are captured by the sleep 
monitoring and sleep classification services that rate the quality of 
sleep based on the ECG readings. To validate the architecture, the 
authors simulated large streams of data at the fog layer to the cloud. 
The study also features empirical analysis of metrics comparing 
monolithic and MSA-based systems, which includes response time, 
throughput, and RAM usage. The microservices-based system 
excelled in all 3 benchmarks, showing that the throughput was 
increased by 92%, response time decreased by 75% and lower RAM 
usage that was adjusted per physical node. 
 
8 FINAL REMARKS 
This study explores the ways microservices can be applied in IoT-
based RPM systems and whether it improves long-term 
maintainability to battle software complexity. We introduce 
relevant technologies that enable microservice communication 
such as Kafka as well as Docker to ensure the microservices run in 
isolation. Furthermore, we introduce and explain the concept of 
Domain Driven Design and its benefits when identifying 
microservice boundaries. 
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Moreover, to evaluate our findings and contribute to the research 
landscape we conclude the study with a comprehensive system 
design and implementation. Following that we introduce the 
findings about the improved throughput of the event-based 
microservice architecture by 28% and compare it with an existing 
implementation. Going further, given the final reference 
architecture and the relevant literature studied, it is now possible 
to answer RQ1 and RQ2.  

RQ1 addressed the ways of how microservices can be applied in 
the IoT-based RPM systems, which was demonstrated in studies 
[1,4,6,9,12,13] and the concepts learned were practically applied in 
the implementation of the SBIoT-MPH system in [7] using a 
microservices-based approach.  

To conclude whether the microservices-based approach 
improves maintainability, we proposed a change in both systems 
and evaluated the changes required and the instances that must be 
redeployed. The proposed new requirement is the transfer of the 
alert processing business logic from the fog layer to the cloud, 
following the same thresholds for readings as in [7]. In the 
monolithic system, we must update the database schema to store 
the alerts and introduce the code to process the sensor readings and 
classify them. The changes span all 3 layers of the application, 
namely, the API, service and persistence layers. That means we 
must update the existing database schema and redeploy the whole 
application. However, in the microservice-based implementation 
alerts do not fall under any of the existing business contexts and 
can be implemented as a separate service. Furthermore, the sensor 
readings with all the required patient details are already available 
in the Kafka topics. Therefore, after the development of a new 
service, it is a matter of adding one more consumer to the Kafka 
cluster that can start to classify the sensor readings immediately. 
No other component has to be redeployed or changed and the new 
functionality can be released independently, thereby, satisfying the 
requirements in [8]. That demonstrates that event-based 
microservice systems, through decoupling consumers and 
producers, can indeed improve maintainability and reduce 
complexity. These findings are closely aligned with the results 
introduced in [9,13]. 

Due to the limited timeframe of the research project, certain 
aspects were not explored. Therefore, we encourage researchers to 
look for possible extensions of the proposed microservice-based 
architecture. One possible extension could be the addition of IoT 
sensors to extend patient monitoring capabilities. Consequently, 
another direction that could be pursued is the complete deployment 
and evaluation of the system on the public cloud provider like AWS, 
GCP or Azure and possibly improvements to make the architecture 
completely cloud native. Furthermore, we advise researchers to try 
different message broker implementations and protocols to identify 
the best event streaming software platform for the IoT-based RPM 
systems. 
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