
1

Microservices In IoT-based Remote Patient Monitoring Systems:
Redesign of a Monolith

AKMAL ALIKHUJAEV, University of Twente, The Netherlands

Since over half of the world population in remote areas does not have access
to medical practitioners, Remote Patient Monitoring (RPM) systems have
proved to be a viable alternative. However, because these systems are
powered by many IoT devices, they require efficient software architectures.
Therefore, an increasing number of applications of microservices
architectures in the RPM systems with different models have been proposed.
On the other hand, there is still an open question on how to decompose and
apply microservice principles in IoT-based systems, while retaining benefits
of microservices, like maintainability. Therefore, the goals of this study are
to investigate how microservices should be applied in the RPM systems and
whether they improve software maintainability. To achieve that we rebuilt
the existing SBIoT-MPH system for monitoring hypertension using
microservice principles and decomposition patterns. Moreover, to validate
the findings we evaluate the end artefact and discuss improved
maintainability and the sensor data ingestion throughput. With this study,
we aim to provide both researchers and practitioners with a general and
comprehensive solution to build microservice-based RPM systems.

Additional Key Words and Phrases: IoT, Microservices, MSA, architecture,
design, implementation, Remote Patient Monitoring.

1 INTRODUCTION

According to the ILO1, about half of the world’s population that
lives in remote areas, does not have access to healthcare. The
reasons for that are many-fold with the major one being the lack of
healthcare workers in those areas [16].

Therefore, e-Health passed the innovation stage to become a
necessity. That includes Remote Patient Monitoring systems (RPM),
which are designed to overcome the challenges of monitoring
patients even in the most remote areas, providing equal opportunity
to healthcare even for those who cannot commute to medical
practitioners [15]. Moreover, RPM systems are frequently
developed using Internet-of-Things (IoT) devices, which may
contain several sensors on board that can monitor a patient’s vital
signs, such as blood pressure, heart rate, activity levels and others
to help identify and prevent diseases [15]. Furthermore, patients’
data is often collected and forwarded to the cloud, where it can be
securely stored, queried, and analysed by medical professionals,
who are presented with all the data at hand in a software
application. The main benefit of storing data locally and then
forwarding it to the cloud is that users have complete control over
the data that is sampled, increasing the patient’s autonomy and

1 International Labour Organisation is an UN’s agency
specialized in social injustices.

confidence [10]. Moreover, IoT systems have the advantage of
being (near-) real-time, which can help identify health problems at
an early stage, making the treatment more effective [15]. Lastly,
early monitoring can help reveal potentially overlooked conditions
and give a more holistic view of the patient’s health [15].

However, current IoT-based systems, especially in the e-Health
domain, generate large volumes of data and require relatively
complex processing patterns. As mentioned in [10], the current IoT
systems have become increasingly complex and hard to maintain.
Furthermore, they require improved scalability and high
availability in the context of mission-critical applications like
healthcare. Therefore, both software industry practitioners and
researchers have proposed the use of microservices-based
architectures to overcome those challenges [10].

Consequently, based on the previous research done in this field,
there is a need to evaluate the applicability of MSA-based
architectures in the context of RPM systems, their decomposition
patterns and whether microservices solve the maintainability
challenges of the current monolithic IoT systems.

The goal of this study is twofold. Firstly, it involves an
investigation into how microservices can be applied to IoT-based
RPM systems. Secondly, it involves the redesign of an existing
monolithic RPM system for monitoring hypertension proposed in
[7] to a microservice-based system, with both implementation and
validation of the end artefact.

The study follows the Design Science methodology, which is
used to challenge the researcher’s creativity and problem-solving
as well as the application of IT solutions to a new domain, where a
research gap exists. Therefore, with this research, we aim to provide
a general solution to both software developers and researchers
when applying microservice architecture for RPM systems.

The paper is divided into the following sections. Section 2
presents the research questions. Section 3 explains the
methodology used in this research. Section 4 introduces the
relevant background concepts that we use in this study. Section 5
presents the design and implementation. Section 6 demonstrates
and explains the results of a final comparison. Section 7 presents
related work with similar goals that links new findings with past
research, and Section 8 provides final remarks and future directions.

2 RESEARCH QUESTIONS
Since the current study involves both a theoretical exploration of
the microservice architectures in IoT-based systems as well as their
practical application by rearchitecting the system proposed in [7],
the following research questions have been defined:

TScIT 39, July 7, 2023, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

2

TScIT 39, July 7, 2022, Enschede, The Netherlands Akmal Alikhujaev

RQ1: How can microservice architecture be applied in an IoT-based
RPM system?
RQ2: Does the microservice architecture improve maintainability
of the newly implemented system when compared with the
monolithic one?

The RQ1 is an exploratory question that can be answered by
assessing the relevant literature, whereas RQ2 is a predictive
question and it can be answered only upon completion of
architectural design and implementation of the system in [7].

3 METHODOLOGY
To answer RQ1 we found and studied the relevant literature on
microservices, IoT systems and how they can be combined in an
architecture. To accomplish that we have used the Google Scholar
platform to search for articles based on keywords like “IoT”,
“architecture”, “microservices” and “remote patient monitoring”.
The major drawback of this approach is that there is a lot of
literature available and because of the limited time, only a relevant
subset of articles to the problem domain was considered.

On the other hand, RQ2 involves a practical exploration and for
that purpose, we applied the Design Science methodology in our
research.

Fig. 1. Design Science Methodology process

Design science is a paradigm that challenges researchers to apply
problem-solving and aims at devising creative solutions to a well-
defined problem by practically implementing the artefact [5]. The
whole process is shown in Figure 1 and consists of problem
identification and problem motivation, following a design and
development phase, and concluding with an evaluation. Evaluation
in Design Science can be either through mathematical or empirical
methods [5]. Moreover, each stage of the Design Science
methodology (see Figure 1) is part of a feedback loop, which makes
the whole process iterative. The goal of the methodology is to
provide a practical contribution to the research space by providing
a creative solution to a problem. Therefore, in the context of this
paper, we explore the problems of the monolithic architecture
proposed in [7], offer a design following MSA principles, implement
a prototype and validate it. Moreover, we follow the Design and
Engineering Cycle method [14] that suggests design validation
techniques. We conduct the validation of the design in a laboratory
setting by creating a simulated environment to demonstrate how
the implemented artefact solves a particular use case, which in our
case is an improvement of maintainability. To accomplish this, we
propose a new functionality and evaluate the number of changes
that are required in the monolithic and MSA-based systems.

4 BACKGROUND
In this section, we introduce relevant concepts presented in both
academic and grey literature that we used during the design and
implementation.

4.1 IoT Systems
IoT systems are often complex, and it is common to reason about
them as a 3-tiered architecture that includes the Edge, Fog and

Cloud computing layers. Firstly, Edge computing is the technique
of processing the data on the physical devices deployed next to the
source, enabling real-time data processing and fast feedback.
Secondly, Fog computing acts as a layer in-between edge and cloud,
relieving the cloud of the load, and supporting more complex
processing than the edge computing layer. Lastly, with the
emergence of cloud service providers like AWS, Azure and GCP,
the IoT architectures began to leverage them and utilise the cloud
for aggregating, storing and analysing massive amounts of data [3].
These three layers combined are key elements to develop scalable,
real-time, and resilient IoT architectures.

4.2 Microservice Architecture
In [8], Sam Newman introduces the concept of microservices. In a
nutshell, microservices are independently deployable software
artefacts that are loosely coupled and are modelled around a
particular aspect of the business domain. Consequently, to ensure
a degree of isolation, microservices are deployed on different hosts
and more frequently leverage virtualisation tools like, e.g., Docker.
Microservice architecture has emerged as a specialisation of Service
Oriented Architecture (SOA) to address its challenges and
introduce novel solutions. While both revolve around the concept
of loosely coupled services that encapsulate business functions,
they largely diverge in governance patterns. For example, in
traditional SOA, services are more commonly orchestrated by an
Enterprise Service Bus (ESB) that centralises governance functions
like routing, authentication and integration of services. Whereas,
MSA promotes the decentralisation of the architecture, which
allows the services to evolve in isolation [11]. Furthermore,
traditional SOA favours the orchestration of business transactions,
whereas MSA encourages choreography [11]. However, that does
not mean that traditional SOA is inferior to MSA, since those are
the two approaches that have valid use cases.

4.3 Microservices and IoT
The motivation behind the industry migration to MSA is outlined
in [1], which claims that microservice architecture was created to
address problems of maintainability and scalability in monolithic
architectures. The same article also mentions the similarities
between the requirements for the IoT and microservices-based
systems. Furthermore, as IoT systems are composed of a large
number of devices that generate large volumes of data, a simple
monolithic system simply cannot handle the required load [1].

Moreover, the significance of microservice architectures in IoT-
based RPM systems has been researched previously. The authors in
[10] claim that efficient architectures that employ IoT and
microservices are invaluable components of the modern e-Health
domain. They also propose a reference architecture built around
MSA principles for remotely monitoring patients, which provides
real-time analysis on the patient’s smartphone and then forwards
that data to the cloud. In [4], a similar architecture is proposed for
frailty status assessment. Both [4,10] pre-process the data at the fog
layer (a smartphone) and then forward the summarised data to the
microservice-based system (cloud), and justify that choice by
claiming that it enables real-time processing and fast feedback.

Microservices In IoT-based Remote Patient Monitoring Systems: Redesign of a Monolith TScIT 39, July 7, 2023, Enschede, The Netherlands

3

4.4 Domain Driven Design
However, one of the mentioned research challenges in [10] is that
the proposed MSA-based IoT architectures are lacking
standardisation, are hardly replicable and vendor-specific.
Moreover, most of the papers present the final reference
architectures without presenting decomposition patterns.
Therefore, more generally as stated in [1] a common approach to
microservice decomposition is to apply Domain Driven Design
(DDD). DDD was first introduced by Eric Evans in [2] as a pattern
to manage software complexity. It revolves around modelling the
software in line with the business domain. Furthermore, DDD
makes a distinction between two components: the problem space
and the solution space. The problem space describes the business
capabilities, words, requirements and use cases. Furthermore, the
problem space entails the domain, which is a set of patterns aimed
at solving business needs, and the sub-domains which encapsulate
business functions into manageable pieces. Consequently, when
translating this into a software architecture, DDD requires
engineers and domain experts to create domain models and
separate them into bounded contexts. In some sense, bounded
contexts act as a boundary within which the domain model has a
meaning and decreases the software complexity by separating the
concerns. Evans suggests one way of identifying the bounded
contexts by looking at where the same domain model has a different
meaning [2]. This modular thinking of the system is what makes
DDD extremely useful and popular for microservice identification.

4.5 Containers
Isolation is one of the core principles of microservices, presented in
[8]. This means that there is a need to ensure the microservice
application running on a physical host (server) does not interfere
with other processes and vice versa. Traditionally, that has been
achieved by using virtual machines (VM), which provide a
completely isolated operating system, virtualised hardware,
networking, kernel, and hypervisor. However, VMs underutilise
the hardware and are rather heavy [8]. Container orchestration
software, like Docker, on the other hand, is a technology designed
specifically for cloud-native applications that provides complete
isolation of software components and does not require to reserve
hardware resources, making containers elastic. It leverages the
Linux Containers feature, which renders hypervisor software
obsolete. Moreover, containers are advantageous because their
provisioning and start-up time is much faster compared to
traditional VMs [17].

4.6 Message Broker
In our work, we decided to use a message broker for inter-service
communication as opposed to the synchronous HTTP request-
response pattern. In particular, we selected the popular, open-
source Apache Kafka 2 distributed event-streaming software
developed at LinkedIn. The reason for its widespread use is that
Kafka provides a strong consistency model for message delivery
and guarantees message ordering within a partition. Furthermore,
it provides replication, which increases fault tolerance and reduces
the chance of data being lost. Apache Kafka provides built-in
partitioning of data that distributes it around the cluster and allows

2 Apache Kafka https://kafka.apache.org

parallel processing by multiple partition leaders. Consequently, just
3 Kafka brokers deployed on 3 servers using commodity hardware
provide a throughput of 2 million messages per second [18], which
makes it an excellent tool for handling the data traffic normally
present in an IoT-based system.

5 DESIGN AND IMPLEMENTATION
In this section, we first introduce the monolithic SBIoT-MPH RPM
system for monitoring hypertension implemented in [7] and
address the challenges that one of the developers of this system
outlined in a collaborative session. Thereafter, we decompose the
system by applying Domain Driven Design. Following the
decomposition, we introduce the technologies used in the project
and briefly explain the developed microservices.

5.1 SBIoT-MPH: System, Domain and Challenges
In [7], the authors report on the implementation of the IoT-based
RPM system for monitoring hypertension called SBIoT-MPH.
Hypertension is a cardiovascular disease with a yearly mortality
rate of 9.8 million people [7]. It requires continuous monitoring of
patients’ vitals by health professionals, which justifies the use case
for an IoT-based RPM system.

SBIoT-MPH has a modular architecture and is split into 3 layers,
namely, the Sensor, Fog and Cloud layers. The Sensor Layer
consists of sensors embedded into a wristwatch-like device and is
worn by a patient. The first sensor is the MKB0805 module for blood
pressure and pulse measurements. The second sensor is the
MPU6050 module for measuring acceleration on 3 axes (X, Y, Z),
which is required for the MKB0805 readings. Lastly, the third sensor
is the DS18B20 module used to capture the patient’s body
temperature. The three sensors constitute a Wireless Body Sensor
Network (WBSN), whose data is captured and processed by the
TTGO T7 V1.3 MINI 32 module, which is a common hardware
component in the current IoT system. Consequently, collected and
processed data is forwarded to the patient’s mobile device via
Bluetooth Low Energy (BLE) protocol employing the ESP32
microcontroller [7].

The Fog layer consists of an Android application developed in
Java and runs on the patient’s mobile device. The application
provides authentication, sensor management, data visualisation,
collection and analysis. Moreover, the collected sensor data is
stored both locally in an encrypted database and forwarded to the
cloud through a background process. The application provides an
easy-to-use interface that displays alerts, and messages from health
professionals and provides an overview of the collected sensor data.

The Cloud Layer consists of an API server and a client-side Web
application. The API server acts as a central governing authority
that collects the data, authenticates administrators, patients and
medical practitioners. Furthermore, it provides patient and health
professional management to the administrator to invite new users
to the system. Moreover, it exposes an interface for patient-to-
health-professional assignment, sensor data analysis, message
exchange and alert monitoring. The API server is developed in
JavaScript and Node.js, which exposes a GraphQL communication
endpoint.

4

TScIT 39, July 7, 2022, Enschede, The Netherlands Akmal Alikhujaev

Although SBIoT-MPH works well, its developers have faced
several challenges after deploying the software artefact. During a
collaborative session, we identified two main problems: (1) as the
number of requirements grows, so does the complexity of the
system. It was mentioned that the architecture requires a new
approach to manage complexity; (2) we identified that the sensor
data read/write speeds (throughput) were quite low and did not
deliver a comfortable user experience (UX). Therefore, we decided
to redesign the system using a microservice architecture to increase
maintainability and improve sensor data throughput.

5.2 Microservice Decomposition

Fig. 2. Business sub-domains and contexts

We applied the Domain Driven Design decomposition
methodology proposed by Eric Evans in [2], to create domain
models and identify the bounded contexts.

The domain models have been identified in a two-step process.
Firstly, the domain was introduced by the expert in a collaborative
session. Secondly, we analysed the source code of the existing
application, drew diagrams and dependency graphs. The latter
helped us identify constraints and define an understanding of
different use cases.

Figure 2 shows the domain diagram, which contains the domain
concepts (green boxes) and bounded contexts (yellow surrounding
boxes). The core domain concepts that have been identified are
patient, physician, user and patient’s sensor data, whereas the core
bounded contexts are patient, physician and identity.

The patient context encapsulates the patient’s information,
medical records and sensor data. The physician context abstracts
physician information, disease monitoring and patient-to-health-
professional assignment. The patient concept appears again in this
context, however, the understanding of the patient model in the
physician context differs from the one in the patient context. For
instance, when discussing the patient in the physician context we
often do not require any contact or private information that should
be visible to the patient only. Therefore, the patient model has only
a subset of information that is relevant to the physician. Lastly, the
identity context is where general user management takes place.
Consequently, it is not a core sub-domain, but rather a supporting

one because without it there is no way to manage user
authentication and roles.

In MSA, each bounded context is a good candidate for a
microservice because it is an isolated set of capabilities that
interacts with other contexts through a well-defined set of
constraints and models [8]. We have identified the bounded
contexts by looking at where the meaning of a user changes
throughout the system. In the original implementation of SBIoT-
MPH, a user can be either an administrator, patient or physician.
This distinction makes a clear separation of the context and the
meaning of the user throughout the system.

Another advantage of splitting the domain into bounded contexts
during development is cohesion. As a general rule in microservices,
code that changes together must stay together [8]. For instance,
when working with a patient’s sensor data, it is often required to
correlate that information and perhaps perform some modifications
in the context of a patient because it is the only place where we
have a complete view of the patient’s data. Therefore, if new
requirements surface, the changes to the sensor data processing will
not span multiple bounded contexts, thereby reducing the chance
of violating the independent deployability principle [8].

5.3 System Implementation
The system was developed using Java version 17 along with Spring
Boot 3 and Spring Cloud frameworks. Spring Framework is a
mature library for building server-side applications, with extensive
tooling and an active developer community. Furthermore, Spring
Cloud is a sub-project of the Spring ecosystem that provides the
tools to build cloud-native applications. Spring Cloud provides out-
of-box implementations for security, API gateway, service
discovery, caching, message broker integration and others, which
makes it a great tool for building microservice-based applications.

Fig. 3. SBIoT-MPH Microservices Architecture

The proposed architecture (see Figure 3) features 3 layers,
namely, the Sensor, Fog and Cloud layers. The sensor and the fog
layers remain the same as in [7], where the blood pressure, pulse
and body temperature are sampled and forwarded via BLE protocol
to the fog layer for pre-processing and real-time analysis. The main
difference begins in-between the fog and cloud layers, where
previously the mobile device forwarded the data to the API server
using GraphQL protocol, in the new architecture, however, the

Microservices In IoT-based Remote Patient Monitoring Systems: Redesign of a Monolith TScIT 39, July 7, 2023, Enschede, The Netherlands

5

device uses Representation State Transfer (REST) API and transfers
the data via HTTP in JSON format to the Sensor Data Ingestion
(SDI) Proxy. All calls to the services are routed by the load balancer,
which can select the least congested service instance through
service discovery. Another advantage of having a load balancer is
that internal topology can change, with new instances being added
or removed, making them available to the clients instantly without
waiting for the DNS changes to propagate [8].

Moreover, the architecture follows the Database-Per-Service
pattern introduced in [8], which means that every service has its set
of database instances that no other service can access. This solution
mitigates potential consistency issues and increases the degree of
information hiding, forcing other services to use well-defined API
contracts.

As stated in Section 4.6, the system utilises asynchronous
communication patterns between microservices through a message
broker, making the services loosely coupled and more resilient to
cascading failures in case of an unhealthy microservice instance
[13]. Moreover, the developed microservices are unaware of each
other’s existence and only publish the events that interested parties
(other services) can consume and react to, thereby, making this an
Event-Driven-Architecture (EDA). Events in this case are
statements about an action that has happened. This kind of
collaboration pattern models the real-world more closely since
everything that happens around us is a series of events that we react
to. To enable this communication pattern, we deployed a Kafka
cluster consisting of 3 brokers in the KRAFT mode, which utilises
the RAFT consensus algorithm that performs leader elections in the
cluster without centralised cluster management software.

As shown in Figure 3, each microservice and infrastructure-
related software runs in a Docker container to support the
requirement of isolation outlined in [1,8]. Another advantage of
using containerisation for microservices is the replicable
environment since containers abstract the underlying operating
system (OS). That ensures that if an image is built for a desired
computer architecture, it can be deployed to any cloud instance
without fear that the application does not work.

The overall system consists of patient, physician, identity and
notification services as well as an SDI proxy, where each one of
them has its database, maintains a connection to the central Kafka
cluster and runs in an isolated Docker container.

5.4 Identity Service
Authentication and authorisation are crosscutting concerns that
must be tackled with care not only to achieve compliance but also
to ensure data confidentiality, integrity and availability (CIA).
Authentication is rather a trivial task when implemented using 3rd
party tools in a monolithic application since all the logic and
interactions reside in one application. However, in MSA if each
microservice authenticates its users, this would lead not only to
code duplication but also to poor UX because the user will have to
present the credentials to each service [8]. Therefore, both [8,9]
stress the importance of the Single-Sign-On (SSO) in a
microservices architecture. SSO features a seamless authentication
experience where the user presents the credentials only once and
can interact with a variety of services afterwards. The core
component of SSO is an identity provider, which can be either

managed like Okta, Auth0 or AWS Cognito [8], or can be self-
hosted.

Since our MSA-based SBIoT-MPH system is event-driven, we
decided to build our own identity service using Spring Boot, Spring
Security and Spring Authorization Server frameworks. In
particular, Spring Authorization Server provides a robust
implementation of OAuth 2.0 and OpenID Connect (OIDC) 1.0
standards, which are commonly used to achieve SSO. OIDC 1.0
protocol is used for authentication, whereas OAuth 2.0 is used for
authorisation.

Furthermore, to address the challenge of propagating the user’s
authentication state, we have selected JSON Web Tokens (JWT),
which are issued by the service upon successful authentication.
Issued JWTs are cryptographically signed using RSA private key
and SHA512 hashing algorithm. JWTs were selected because they
provide a lightweight approach to transmitting an authentication
state that makes it unnecessary to call the identity service to
validate whether the user is authenticated and/or authorised [8].

Moreover, the identity service was extended to support signing
key rotation and utilises PKCS12 key store type to store private RSA
2048-bit signing keys. In contrast, public keys are collected into a
JSON Web Key Set (JWKS) and are exposed via RESTful API so that
other microservices can load the keys at start-up and validate each
incoming request, without the need to call the identity service.

The identity service also provides user management capabilities,
such as patient and physician registration, and as shown in Figure
3, it stores the user data in a PostgreSQL database. Each update to
user information generates events that are forwarded by the Kafka
message broker so that other services that duplicate user
information can react to those events and update the local user
view.

Lastly, physician and patient registration can be achieved by
emitting the respective events from the physician and patient
microservices, to which the identity service reacts by creating the
user record, generating the activation token and sending the User
Created event, which is consumed by the notification service to
generate a welcome email.

5.5 Patient Service
The patient context (see Figure 2) is represented by a microservice
that encapsulates patient-related functions. This microservice was
developed using Spring Boot and has its own time-series Timescale
database instance to store both patient information and health
sensor readings. Time-series database is a preferred data store for
the IoT sensor data because it provides high write throughput and
low read latencies [9,12,13]. We have selected the Timescale
database because it extends an ordinary PostgreSQL instance with
time-series capabilities, where the data is partitioned based on its
timestamp.

Furthermore, it eliminates the need to learn an additional query
language since the data can be queried using ordinary SQL syntax.
Timescale database also allows for both Online Transaction
Processing (OLTP) and Online Analytics Processing (OLAP)
workloads, which eliminates the need to have two separate
databases for patient data and sensor readings.

Moreover, the service exposes a RESTful API for administrators
to create, update and delete patients, leading to the emission of
respective domain events. For example, when the patient is created,

6

TScIT 39, July 7, 2022, Enschede, The Netherlands Akmal Alikhujaev

the service emits Patient Created event, to which the identity
service reacts and provisions the user account. On the other hand,
when the deletion of a patient is requested, all the services remove
the associated patient data and invalidate the sessions. Lastly, it
provides the interface for patients and medical professionals to
query the sensor readings for a given time range, sensor type and
patient.

5.6 Sensor Data Ingestion (SDI) Proxy
Another microservice we built following the findings in [9,13] is
called Sensor Data Ingestion (SDI) Proxy. It has two primary roles:
(1) analogous to Technology Integration Adapter in [9] the service
abstracts the modalities of IoT sensors and provides an interface for
sensor integration. However, in the context of the SBIoT-MPH
system, the only integration that was implemented is a RESTful API
that accepts sensor readings from a mobile device, but it has
limitless capabilities to be extended and make it work with various
IoT sensors and communication protocols without changing other
system components [9]; (2) the service acts as Inbound Pipeline in
[9] and as a Sensor Gateway in [13], which works as a buffer
between the fog layer and the patient data service. Its advantages
of it are twofold: (1) as shown in [13], it increases the throughput
and reduces the write latency; (2) it allows the development of
loosely coupled event-based systems [9].

The SDI Proxy works as follows, when the fog layer pre-
processes the sensor data, it sends it to the SDI Proxy service.
Thereafter, SDI Proxy performs an integrity check of the data and
publishes it as an event to the Kafka cluster. The sensor readings
are then consumed by the patient service and are inserted into a
time-series database. That means that in case of high load spikes
the number of instances of SDI Proxy can be increased, whereas the
patient service can remain unchanged and process the data at its
own pace without affecting the load and write times.

In contrast with other services, this microservice was built
around Reactive Programming Paradigm, which favours non-
blocking IO operations. Traditionally, web servers were
implemented using a thread-per-request pattern and that approach
worked well if the operations did not require frequent IO
interactions. However, in the case of the SDI proxy, all interactions
except for data integrity checks are IO related, such as
serialising/de-serialising HTTP requests and pushing the data to the
Kafka broker. Consequently, that means that most of the write
requests will have to be blocked waiting for the operating system
to complete the data transfer, which precludes those threads from
servicing the requests of other users. Therefore, Reactive Paradigm
is a suitable implementation for the SDI proxy, and it is expected to
increase the overall throughput under high load. Moreover, the web
capabilities are implemented using Spring Webflux, which bases
itself on Project Reactor that is built according to the Reactive
Streams specification for non-blocking operations.

5.7 Physician Service
Physician management was one of the original functionalities of
the SBIoT system. Therefore, we implemented the physician service
that resides in the physician domain context (see Figure 2). This
microservice is built as the other core services using Spring Boot

3 k6 load testing tool https://k6.io

and has its own PostgreSQL instance (see Figure 3). It provides a
RESTful API for administrators to create, update and delete
physicians, and analogous to patient service, it emits events that
are consumed by the identity service for user account provisioning.
Furthermore, it exposes the endpoints to query all physicians in the
system as well as physicians by patient and all patients for a given
physician. Additionally, the server exposes an API to assign a
medical professional to a patient, which creates a many-to-many
connection. Lastly, as in the original SBIoT system, the service
provides functionality to send a message from a physician to an
assigned patient. The physician can also select the message priority
and upon validation of patient assignment, the message event is
emitted to the notification service, which can be then queried by
the patient.

5.8 Notification Service
The notification service falls under the supporting domain and as
shown in Figure 3 is connected to the external mail server outside
the private network through SMTP protocol. Similarly, to other
services, it is built using the Spring Boot framework and utilises the
PostgreSQL database to store user emails and physician messages.
This microservice consumes the notification events from Kafka
brokers such as User Activation Required and Message events, to
which it reacts and sends the notifications. Furthermore, it follows
the de-normalised data approach and stores partial records of the
users with their respective emails. Lastly, the microservice provides
a RESTful API to query all messages by physicians and patients.

6 RESULTS
In the last stage of the Engineering Cycle methodology, it is
expected to evaluate the end software artefact. For that purpose, we
have deployed both the monolith and the microservices-based
SBIoT-MPH system on a physical machine with a 10-core CPU and
32GB of RAM. Along with that, we provisioned another 10-core
CPU machine with 16GB of RAM for the k63 load testing tool that
helped us simulate concurrent users and generate large volumes of
synthetic sensor data. Furthermore, in the microservices-based
implementation, each service was deployed as a single instance to
provide a better comparison with the existing system.

Fig. 4. Throughput comparison graph

Figure 4 shows the throughput graph with the number of
concurrent users on the x-axis and the number of requests per

0

500
1000

1500
2000

2500

3000

2500 5000 10000 15000 20000

re
qu

es
ts

/s
ec

Concurrent users

Throughput

Monolith Microservices

Microservices In IoT-based Remote Patient Monitoring Systems: Redesign of a Monolith TScIT 39, July 7, 2023, Enschede, The Netherlands

7

second on the y-axis. The data was sampled by running both
microservices and monolithic systems in isolation with their own
infrastructure to ensure that other processes do not cause the
congestion of computing resources. The throughput data suggests
that the microservices-based implementation has a 28% increase in
sensor data ingestion throughput via the SDI Proxy service. These
results can possibly be attributed to the introduction of the SDI
proxy service that publishes ingested sensor data to the Kafka
cluster, thereby, buffering the data. These findings closely align
with the results obtained with a system that has a similar event-
based architecture in [13].

Moreover, Figure 4 shows that the microservices-based
implementation, in particular SDI proxy, can withstand the load of
20000 concurrent users with an average response time of 4.53s and
a throughput of 1420 requests/sec. On the other hand, the
monolith’s results for the same load parameters were excluded
because the error rate was as high as 73% and, therefore, the system
was assumed to be unavailable. One of the reasons for the
monolithic SBIoT-MPH system failing under the load was the
database writes, where many user requests were idle for a long time
waiting for the database writes to complete. In contrast, the
microservices-based implementation utilised both a message broker
to buffer the requests as well as a time-series database to ingest
sensor data, which are probably the reason for the results above.

7 RELATED WORK
Architectures for MSA-based IoT RPM systems have already been
studied by many researchers.

In [12], the authors propose a general architecture for a multi-
purpose MSA-based RPM IoT system. The system includes 5
microservices that leverage a variety of communication protocols
like HTTP, MQTT and Web sockets. It has a general service built
using the Django framework that handles user authentication and
authorisation, enables chat capabilities with medical practitioners
and provides patient data over HTTP protocol, whereas other
services include MQTT broker, patient data, reporting and time-
series data ingestion services. Moreover, the authors show the
importance of using a time-series database for IoT sensor data
because it provides greater scalability and data partitioning.

In contrast, [9] proposes a layered architecture that enables the
development of a near-real-time, multi-tenant RPM system for
monitoring chronic metabolic disorders. One of the main
advantages of the system is that it uses an abstraction layer called
Technology Integration Adapters (TIA), which allow the
integration of heterogeneous IoT devices without changes that span
the whole system. The developed artefact leverages a microservice
architecture and is designed to be deployed in the cloud.
Furthermore, to address scalability and maintainability, the authors
created an Inbound Pipeline microservice that receives the IoT
sensor data and publishes it to a message broker. The advantages of
this solution are twofold. Firstly, it creates a buffer space and lets
other microservices process the data at their own pace, thereby
avoiding load spikes. Secondly, as stated in [9], it makes services
loosely coupled, which improves maintainability and opens the
possibility to add new services without changing other
microservices, therefore, satisfying the set of requirements for
MSA-based systems introduced in [1] and [8]. Other microservices
presented include a user service that manages authentication, a

patient service that stores patient’s data and a patient monitoring
service, which enables medical professionals to access and monitor
the subject. Moreover, as in [12], the authors address the
importance of the use of time-series data stores for sensor data to
reduce latency and increase throughput [9]. However, this solution
differs from our system largely because we further decomposed the
system components and made the data ingestion layer follow the
Single Responsibility pattern, omitting the introduction of business
logic at the ingestion layer.

Similarly, [6] proposes domain-specific Internet of Health Things
(IoHT) architecture for non-invasive remote monitoring of the
elderly called RO-SmartAgeing. The system is cloud native and
utilises a microservices architecture to achieve a high degree of
customisation, flexibility, scalability and extensibility [6]. The
authors employ a Raspberry PI 4 micro-computer to simulate IoHT
devices generating pulse, body temperature, blood oxygen level,
and blood pressure data as well as mimicking environmental,
motion and wearable sensors. Analogous to [10] and [4], the data is
summarised and pre-processed at the fog layer, enabling real-time
decision-making and data buffering [6]. Furthermore, the system is
composed of different microservices, such as advanced analytics,
behavioural monitoring, triggers and alerts, and patient data
services. However, it is unfortunate that the work in [6] does not
provide any results and implementation. Nevertheless, it provides
a sound theoretical framework and argumentation.

In contrast, [13] reports on one of the most detailed, well-
architected and modern MSA-based IoT RPM systems for sleep
monitoring. The authors introduce in detail the concept of event-
driven architectures (EDA) and show how loosely coupled an IoT
system can be. All the participating microservices are unaware of
the existence of other services and only consume/publish events.
Events in this case are statements about the world depicting an
action or notifying about data changes. Similarly to [9], a sensor
gateway (analogous to Inbound Pipeline) is introduced that buffers
the sensor data and publishes it to the message broker in the form
of events. Thereafter, the authors implement the Data Persistence
service that consumes the events and stores the data in a time-series
database to achieve high throughput and low read latencies.
Moreover, the same sensor events are captured by the sleep
monitoring and sleep classification services that rate the quality of
sleep based on the ECG readings. To validate the architecture, the
authors simulated large streams of data at the fog layer to the cloud.
The study also features empirical analysis of metrics comparing
monolithic and MSA-based systems, which includes response time,
throughput, and RAM usage. The microservices-based system
excelled in all 3 benchmarks, showing that the throughput was
increased by 92%, response time decreased by 75% and lower RAM
usage that was adjusted per physical node.

8 FINAL REMARKS
This study explores the ways microservices can be applied in IoT-
based RPM systems and whether it improves long-term
maintainability to battle software complexity. We introduce
relevant technologies that enable microservice communication
such as Kafka as well as Docker to ensure the microservices run in
isolation. Furthermore, we introduce and explain the concept of
Domain Driven Design and its benefits when identifying
microservice boundaries.

8

TScIT 39, July 7, 2022, Enschede, The Netherlands Akmal Alikhujaev

Moreover, to evaluate our findings and contribute to the research
landscape we conclude the study with a comprehensive system
design and implementation. Following that we introduce the
findings about the improved throughput of the event-based
microservice architecture by 28% and compare it with an existing
implementation. Going further, given the final reference
architecture and the relevant literature studied, it is now possible
to answer RQ1 and RQ2.

RQ1 addressed the ways of how microservices can be applied in
the IoT-based RPM systems, which was demonstrated in studies
[1,4,6,9,12,13] and the concepts learned were practically applied in
the implementation of the SBIoT-MPH system in [7] using a
microservices-based approach.

To conclude whether the microservices-based approach
improves maintainability, we proposed a change in both systems
and evaluated the changes required and the instances that must be
redeployed. The proposed new requirement is the transfer of the
alert processing business logic from the fog layer to the cloud,
following the same thresholds for readings as in [7]. In the
monolithic system, we must update the database schema to store
the alerts and introduce the code to process the sensor readings and
classify them. The changes span all 3 layers of the application,
namely, the API, service and persistence layers. That means we
must update the existing database schema and redeploy the whole
application. However, in the microservice-based implementation
alerts do not fall under any of the existing business contexts and
can be implemented as a separate service. Furthermore, the sensor
readings with all the required patient details are already available
in the Kafka topics. Therefore, after the development of a new
service, it is a matter of adding one more consumer to the Kafka
cluster that can start to classify the sensor readings immediately.
No other component has to be redeployed or changed and the new
functionality can be released independently, thereby, satisfying the
requirements in [8]. That demonstrates that event-based
microservice systems, through decoupling consumers and
producers, can indeed improve maintainability and reduce
complexity. These findings are closely aligned with the results
introduced in [9,13].

Due to the limited timeframe of the research project, certain
aspects were not explored. Therefore, we encourage researchers to
look for possible extensions of the proposed microservice-based
architecture. One possible extension could be the addition of IoT
sensors to extend patient monitoring capabilities. Consequently,
another direction that could be pursued is the complete deployment
and evaluation of the system on the public cloud provider like AWS,
GCP or Azure and possibly improvements to make the architecture
completely cloud native. Furthermore, we advise researchers to try
different message broker implementations and protocols to identify
the best event streaming software platform for the IoT-based RPM
systems.

9 REFERENCES
[1] Björn Butzin, Frank Golatowski, and Dirk Timmermann. 2016. Microservices

approach for the internet of things. In 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation (ETFA), 1–6.
DOI:https://doi.org/10.1109/ETFA.2016.7733707

[2] Eric Evans. 2003. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley.

[3] Farshad Firouzi, Bahar Farahani, and Alexander Marinšek. 2022. The convergence
and interplay of edge, fog, and cloud in the AI-driven Internet of Things (IoT). Inf.
Syst. 107, (July 2022), 101840. DOI:https://doi.org/10.1016/j.is.2021.101840

[4] Francisco M. Garcia-Moreno, Maria Bermudez-Edo, José Luis Garrido, Estefanía
Rodríguez-García, José Manuel Pérez-Mármol, and María José Rodríguez-Fórtiz.
2020. A Microservices e-Health System for Ecological Frailty Assessment Using
Wearables. Sensors 20, 12 (January 2020), 3427.
DOI:https://doi.org/10.3390/s20123427

[5] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004. Design
Science in Information Systems Research. MIS Q. 28, 1 (2004), 75–105.
DOI:https://doi.org/10.2307/25148625

[6] Marilena Ianculescu, Adriana Alexandru, Gabriel Neagu, and Florin Pop. 2019.
Microservice-Based Approach to Enforce an IoHT Oriented Architecture. In 2019
E-Health and Bioengineering Conference (EHB), 1–4.
DOI:https://doi.org/10.1109/EHB47216.2019.8970059

[7] Pedro Lopes de Souza, Wanderley Lopes de Souza, Luis Ferreira Pires, João Luiz
Rebelo Moreira, Ronitti Juner da Silva Rodrigue, and Ricardo Rodrigues Ciferri.
2023. Ontology-Driven IoT System for Monitoring Hypertension. ICEIS 169, 2
(2023).

[8] Sam Newman. 2015. Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media, Inc.

[9] Edoardo Patti, Maria Donatelli, Enrico Macii, and Andrea Acquaviva. 2018. IoT
Software Infrastructure for Remote Monitoring of Patients with Chronic
Metabolic Disorders. In 2018 IEEE 6th International Conference on Future Internet
of Things and Cloud (FiCloud), 311–317.
DOI:https://doi.org/10.1109/FiCloud.2018.00052

[10] Euripides G. M. Petrakis, Stelios Sotiriadis, Theodoros Soultanopoulos, Pelagia
Tsiachri Renta, Rajkumar Buyya, and Nik Bessis. 2018. Internet of Things as a
Service (iTaaS): Challenges and solutions for management of sensor data on the
cloud and the fog. Internet Things 3–4, (October 2018), 156–174.
DOI:https://doi.org/10.1016/j.iot.2018.09.009

[11] Dharmendra Shadija, Mo Rezai, and Richard Hill. 2017. Towards an understanding
of microservices. In 2017 23rd International Conference on Automation and
Computing (ICAC), 1–6. DOI:https://doi.org/10.23919/IConAC.2017.8082018

[12] B. A. Sujatha Kumari, K. S. Shreyas, M. S. Skanda, Manoj Kumar, and C. D.
Prajwal. 2022. IOT-Based Remote Patient Monitoring System Using Microservices
Architecture. In Soft Computing for Security Applications (Advances in Intelligent
Systems and Computing), Springer, Singapore, 365–381.
DOI:https://doi.org/10.1007/978-981-16-5301-8_28

[13] Nico Surantha, Oei K. Utomo, Earlicha M. Lionel, Isabella D. Gozali, and Sani M.
Isa. 2022. Intelligent Sleep Monitoring System Based on Microservices and Event-
Driven Architecture. IEEE Access 10, (2022), 42069–42080.
DOI:https://doi.org/10.1109/ACCESS.2022.3167637

[14] Roel J. Wieringa. 2014. The Design Cycle. In Design Science Methodology for
Information Systems and Software Engineering, Roel J. Wieringa (ed.). Springer,
Berlin, Heidelberg, 27–34. DOI:https://doi.org/10.1007/978-3-662-43839-8_3

[15] Hoe Tung Yew, Ming Fung Ng, Soh Zhi Ping, Seng Kheau Chung, Ali Chekima,
and Jamal A. Dargham. 2020. IoT Based Real-Time Remote Patient Monitoring
System. In 2020 16th IEEE International Colloquium on Signal Processing & Its
Applications (CSPA), 176–179.
DOI:https://doi.org/10.1109/CSPA48992.2020.9068699

[16] 2015. More than half of the global rural population excluded from health care.
Retrieved May 4, 2023 from http://www.ilo.org/global/about-the-
ilo/newsroom/news/WCMS_362525/lang--en/index.htm

[17] 2023. Docker overview. Docker Documentation. Retrieved May 18, 2023 from
https://docs.docker.com/get-started/overview/

[18] Benchmarking Apache Kafka: 2 Million Writes Per Second (On Three Cheap
Machines). Retrieved May 18, 2023 from
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-
writes-second-three-cheap-machines

