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ABSTRACT
Data augmentation is an important tool to improve the robustness of a model
against adversarial attacks. This study is to evaluate the performance of the
model trained with Fourier basis noise in terms of robustness against differ-
ent adversarial attacks. The evaluation will mainly focus on the robustness
of the model’s accuracy. The results show that Fourier-basis augmentation
has improved performance in robustness against FGSM, and PGD attacks
compared to the baseline model. Furthermore, compare the performance
of the Fourier-basis noise trained model with other defense mechanisms
in terms of accuracy in robustness, demonstrating the positive effects of
Fourier-basis augmentation to some extent.

Additional Key Words and Phrases: Data augmentation, Fourier-Basis noise,
Robustness, Adversarial Attack

1 INTRODUCTION
Deep learning is a powerful and promising branch of machine learn-
ing that uses complex and flexible artificial neural networks to learn
from data and perform various tasks, such as image recognition
[29], natural language processing [3], speech synthesis [12], etc.
However, it is found that machine learning models that perform
well on real data are very vulnerable in the face of adversarial at-
tacks [26]. An adversarial attack is the generation of adversarial
examples by adding slight perturbations to an image that are im-
perceptible to the human visual system, fooling the deep neural
network, and changing the classification of the image. Common ad-
versarial attacks include FGSM [8], PGD [16], C&W [2] etc., which
can be dangerous for high-stake applications such as autonomous
vehicles [11], spam filters [21], face recognition [6], etc. For instance,
if adversarial examples are applied to street signs and cones, the
perception system of an autonomous vehicle may encounter difficul-
ties and make errors in recognizing the obstacles. Consequently, the
vehicle might mistakenly ignore the stop sign, leading to a collision
with the cone. Therefore, there is a need to improve the robustness
of machine learning models. Data augmentation techniques, like
adversarial training [8] and various image transformations (e.g.,
flipping, cropping, adding random noise) including stylized image
transformation [7], can be applied to the training data to enhance
model robustness.
Traditional image augmentations mainly operate in the spatial

domain, such as rotation, crop, flip, etc., which require manual de-
signing and fixing the transformation for each dataset by experts. It
can be inefficient when dealing with huge datasets. Therefore, some
new augmentation methods, such as AutoAugment [4], and MixAug
[10]. is proposed. Among that, Soklaski et al. [24] introduced Fourier-
based augmentation by adding Fourier-basis noise to the AugMix
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image augment framework. This approach can improve model ro-
bustness by allowing for targeted distribution changes through cus-
tomization of the AugMix framework. Zeng [31] demonstrated that
using additive Fourier base noise can improve the robustness of con-
volutional networks against common computer vision corruptions.
However, it is not known whether this method also performs well in
improving the robustness of the model against adversarial attacks.
This paper aims to investigate the problem by conducting experi-
ments on the CIFAR-10 dataset to evaluate accuracy. Additionally,
we will compare the performance of Fourier-basis augmentation
with other defense methods.

Goal: Evaluate whether Fourier-basis data augmentation helps
improve the robustness of models under adversarial attacks.

• RQ1: What is the impact of Fourier-basis noise on the robust-
ness of a model against different adversarial attacks?
– RQ1.1: How does themodel trainedwith Fourier base noise
perform in terms of robustness with respect to accuracy?

– RQ1.2:Which Fourier-basis augmentation policy improves
the adversarial robustness most?

• RQ2: How do other defense mechanisms perform compared
to Fourier-basis Data Augmentation in terms of adversarial
robustness?

To answer RQ1.1, we compare the three Fourier-basis trained mod-
els with the baseline model and evaluate the accuracy in the face
of adversarial attacks, which provides evidence to RQ1.2. Based
on the answer of RQ1.2, we conduct the experiments by applying
different defense methods to answer RQ2.

2 RELATED WORK

2.1 Adversarial Attacks
Fast Gradient Sign Method (FGSM) [8] is designed to quickly find
the direction of the anti-perturbation in a given input sample, in-
creasing the likelihood of model misclassification. Iterative-FGSM
(IFGSM) [13] expands on FGSM by introducing two iterative meth-
ods, namely the Basic-iterative method, and the Iterative least-likely
class method. The authors conducted the experiment by printing
multiple pairs of clean and adversarial examples to verify whether
the cell phone camera can successfully detect the QR code in the cor-
ner. Based on IFGSM, Dong et al. [5] proposed a method called intro-
duced momentum iterative gradient-based methods (MI-FGSM) that
can improve the success rate of the generated adversarial samples
MI-FGSM. The method accumulates the gradient of the loss function
at each iteration to stabilize the optimization and avoid undesir-
able local maxima. They evaluated 𝐿∞ norm bound for non-target
attacks, the effect of the number of iterations on the success rate.
Unlike FGSM, which only performs one iteration with a large step,
Projected Gradient Descent (PGD) [16] performs multiple iterations,
each time the step is small. The study of C&W [2] demonstrated
that the adversarial perturbations can be generated by solving a
norm-restricted constrained optimization problem:

𝑚𝑖𝑛∥𝜌 ∥𝑝 + 𝑐 · 𝑓 (𝑥 + 𝜌), 𝑠 .𝑡 .𝑥 + 𝜌 ∈ [0, 1]𝑚
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Carlini and Wagner also show that C&W is sufficient to pass the
defensive distillation [20] methods.

2.2 Adversarial Training
Goodfellow et al. [8] proposed adversarial training as a defense
method, which is adding the generated adversarial examples to
the train set as data augmentation. They proposed FGSM attack to
speed the generation of adversarial examples for training. However,
Seeyed-Mohensen [18] found that FGSM adversarial training does
not always enhance the adversarial robustness of the model. Madry
et al. [16] proposed PGD attack to conduct adversarial training.
The method is to find a model 𝜃 such that it can correctly classify
adversarial examples with perturbation 𝛿 within a certain range 𝑆 .

𝑚𝑖𝑛𝜃E(𝑥,𝑦)∼D

[
𝑚𝑎𝑥
∥𝛿≤𝜖 ∥

𝐿(𝑓𝜃 (𝑋 + 𝛿), 𝑦)
]
,

where (𝑥,𝑦) denotes the original data and the corresponding labels,
D denotes the distribution of the data, 𝐿 denotes the loss function.
FreeAT [23] modified on PGD, which uses the gradient obtained
each time to update both the perturbation and the parameters.

2.3 Data Augmentation
Unlike traditional data automation techniques that require manual
design, AutoAugment(AA) [4], can automatically search for opti-
mized data augmentation policies, which performed well in image
classification. AA consists of algorithm and search space, where
Reinforcement Learning is employed as a search algorithm. In the
search space, each policy consists of 5 sub-policies, for each of
them two image operations are applied sequentially. The opera-
tion depends on the probability of applying the operation and the
magnitude of the operation. The operations are ShearX/Y, Trans-
lateX/Y, Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize,
Contrast, Color, Brightness, Sharpness, Cutout, and Sample Pairing.
The search algorithm is composed of the recurrent neural network
as a controller and the Proximal Policy Optimization algorithm [22]
as a training algorithm. The RNN controller is used to sample an
augmented policy which will be used to train the model. And then
the validation accuracy can be used to update the controller as a
reward. However, AA requires a huge amount of time, which is
not efficient. To deal with this problem, Lim et al [14]. proposed
Fast AutoAugment(FAA), which applies Bayesian Optimization [1]
to explore the policy. Instead of repeated training child models,
FAA uses a single model to find the improved augmentation strate-
gies between the one distribution of augmented split and another
distribution of unaugmented split.

2.4 Fourier-based Augmentation
Yin et al. [30] proposed a method that can generate a perturbed
image with Fourier-basis noise.

𝑋𝑖, 𝑗 = 𝑋 + 𝑟𝑣𝐹 (𝑈𝑖, 𝑗 )
Where 𝑋 is the original image, 𝐹 (𝑈𝑖, 𝑗 ) has at most two non-zero
elements located at (𝑖, 𝑗) with symmetric coordinates with respect
to the image center, 𝑟 is a random number from {-1,1}, 𝑣 > 0 denotes
the norm of perturbations.

2.5 Relationship Between Frequency and Adversarial
Robustness

Some studies analyze adversarial examples from the signal-processing
perspective of frequencies. Tsuzuku and Sato [27] found that con-
volution networks are sensitive to the direction of Fourie basis
functions. Based on their work, Yin et al. [30] examined the model
sensitivity to additive noise, and pointed out that the adversarial
perturbations of a naturally trained model are more high frequency,
whereas for the adversarial training the adversarial perturbations
towards the lower frequencies. Guo et al. [9] demonstrated that
attacks on images in a black-box environment can be achieved by
especially perturbing the low-frequency part of the input signal.
Lorenz et al. [15] showed that frequency features can be used to
detect adversarial attacks. Wang et al. [28] conjectured that high-
frequency components may be associated with adversarial attacks.
Maiya et al.[17] claimed that adversarial examples cannot be simply
classified as either high-frequency or low-frequency phenomena.

3 METHODS

3.1 Fourier-basis Noise Augmentation Policies
Based on the method mentioned in Section 2.3, Zeng [31] designed
a method to search for augmentation policies. The noise is divided
into 22 groups based on the radius of central noise, which leads to
22 different transformation options. The search space is composed
of options, the possibility of adding each noise frequency and added
noise magnitudes. The search space is increased by dividing noise
by frequency and phase, where the phase indicates the difference
between the phase representation signal and the standard phase
reference. By dividing the phases of the same frequency into quad-
rants every 90° or 45°, the number of candidates can be raised to 85
or 165 accordingly. To get the optimal augmentation policy, FAA is
employed.

To evaluate the effectiveness of Fourier-noise augmentation, we
employed the methods described above to search the Fourier-basis
augmentation policy. The FB1, FB2, and FB3 are selected by the
search strategy, and the applied search spaces contained 22, 85, and
165 transformation candidates, respectively. Table 1 presents the
results of searched augmentation Policy FB1.

Operation1 Operation2

1 FB_5(0.4,4.24) FB_15(0.71,1.64)
2 FB_9(0.02,2.2) FB_22(0.86,3)
3 FB_4(0.77,2.48) FB_8(0.55,3.45)
4 FB_15(0.2,1.31) FB_21(0.64,2.94)
5 FB_13(0.39,4.56) FB_3(0.96,3.59)
6 FB_2(0.53,4.39) FB_15(0.7,3.58)
7 FB_22(0.47,4.63) FB_14(0.18,2.21)
8 FB_2(0.66,3.68) FB_9(0.1,4.26)

Table 1. Selected augmentation Policy FB1. FB_5(0.4,4.24) denotes the addi-
tion of a 4.24-magnitude Fourier-basis noise in group 5 with a probability of
0.4. [31]
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4 EXPERIMENT
This section introduces two experiments, which are aimed at inves-
tigating the effectiveness of Fourier-Basis noise on improving the
adversarial robustness of a model. The first experiment focused on
the effect of Fourier-basis noise augmentation on adversarial attacks.
The second experiment compares the performance of Fourier-basis
noise augmentation with other adversarial training methods in the
face of adversarial attacks.

4.1 Experiment 1: Evaluating Fourier-basis Noise
Augmentation

The experiment compares the performance of four models against
FGSM, PGD 𝐿∞, and PGD 𝐿2 on the CIFAR-10 Dataset. Because this
study is based on Zeng’s [31] previous work, we employed the same
architecture for training. The baseline model is Wide Resnet-28-10
without augmentation. The other three models applied searched
augmentation policies introduced in Section 3.1, named FB1, FB2,
and FB3.

4.1.1 Augmentation Setup. The transformation for all models com-
prises padding, random horizontal flipping, and random cropping
before adding Fourier-basis noise chosen according to the policies.

4.1.2 Training. The training procedure is implemented in PyTorch.
The Wide Resnet-28-10 architecture is used. The optimizer uses
Adam, has a learning rate of 0.0001, a weight decay of 1e-4, and
employs cross-entropy loss as the loss function. Every experiment
contains 100 training epochs, in case the validation loss does not
improve after 30 epochs, the training process will stop early. The
training and validation sets of the CIFAR-10 data are split 90:10
between the training and validation data. Nividia A16 is used during
the training process.

4.1.3 Generate Adversarial Perturbations. The adversarial robust
toolbox library [19] is used to generate attacks. Due to the time
limitation, the adversarial attacks FGSM, PGD 𝐿∞, and PGD 𝐿2 are
involved in this experiment.

For FGSM, 10 sets of perturbations are generated based on epsilon
values from 1/255 to 10/255 sequentially. For PGD 𝐿∞, the step size
is set to 2/255, the maximum iteration is 10, and the random initial
number is 0, the epsilon also increases from 1/255 to 10/255. For
PGD 𝐿2, we fix the value of epsilon to 128/255, set the step size to
0.05, and the maximum iteration to 100.

4.1.4 Testing. During the test, we add generated perturbations to
the test sets and then evaluate the accuracy of the prediction.

4.2 Experiment 2: Comparing with other works
This experiment compares the Fourier-basis noise augmentation
with other adversarial training methods, such as FGSM adversarial
training, and PGD adversarial training.

4.2.1 Training. The training processes are slightly different from
Section 4.1.2. After getting input and target from the batch and
setting them to the device, we add FGSM perturbation with epsilon
8/255 for FGSM adversarial training. And we set epsilon to 8/255,
iteration to 7, and 𝛼 to 0.00784 for the PGD method.

4.2.2 Testing. The processes of generating adversarial attacks and
testing are identical to Experiment 1.

5 RESULT

(a)

(b)

Fig. 1. The accuracy of four models against (a) FGSM and (b) PGD 𝐿∞ (b)
attack with different epsilon

Table 2 shows the four models’ tested accuracy for clean images,
FGSM, and PGD 𝐿∞ attacks with various epsilon values. FB1, FB2,
and FB3 all improve the accuracy against FGSM and PGD 𝐿∞ at-
tacks compared to the baseline model. Among them, the highest
clean accuracy occurs in FB1, while FB2 performs best in the face
of all adversarial attacks. To visualize the results, we represent the
results as a line plot in Fig.1.
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(a) Test accuracy on clean images and FGSM adversarial examples of 4 models.

model acc FGSM
(clean) 1/255 2/255 3/255 4/255 5/255 6/255 7/255 8/255 9/255 10/255

Baseline 87.52 83.11 72.51 61.5 51.44 42.94 36.21 30.63 26.3 22.89 20.38
FB1 92.68 89.43 82.12 72.89 64.23 56.81 50.21 44.38 39.56 35.61 32.91
FB2 92.36 90.14 85.09 78.57 70.91 63.77 57.31 51.57 46.15 41.87 38.13
FB3 92.48 90.0 83.28 75.62 67.67 60.23 53.9 47.5 42.45 38.25 34.89

(b) Test accuracy on clean images and PGD 𝐿∞ and PGD 𝐿2 adversarial examples of 4 models.

model PGD 𝐿∞ PGD 𝐿2
1/255 2/255 3/255 4/255 5/255 6/255 7/255 8/255 9/255 10/255 128/255

Baseline 82.76 69.66 54.51 40.2 29.47 21.21 16.22 13.2 11.24 10.02 44.36
FB1 89.35 80.6 68.26 55.31 42.9 32.62 24.81 19.27 15.24 12.57 59.77
FB2 90.09 84.25 75.4 64.91 53.81 43.35 34.8 27.78 22.56 18.58 68.69
FB3 89.93 82.02 72.02 60.57 48.98 38.32 29.88 23.25 18.51 15.07 64.44

Table 2. Accuracy of each model tested on the CIFAR-10 dataset for clean images and the added adversarial perturbations, where FGSM with epsilon =
[1/255,...10/255], PGD 𝐿∞ with epsilon = [1/255,...10/255], step size = 2/255, iteration = 10, and PGD 𝐿2 with epsilon = 128/255, step size = 0.05, iteration = 100.
The highest accuracy is highlighted, which will be used in experiment 2.

FGSM: From Fig.1(a), the accuracy of the four models decreases
noticeably as the perturbation increases. And the falling trend is
similar. Initially, FB1, FB2, and FB3 performed close to each other,
but as the epsilon increased, FB2 the accuracy of FB2 was about
7% higher than FB1 after epsilon = 5/255. And the accuracy of FB2
improved by about 20% compared to the baseline model.

PGD 𝐿∞: For the PGD 𝐿∞ attacks, the result demonstrates a similar
trend to FGSM attacks in Fig.1(b). Especially, when epsilon equals
5/255, the difference between FB2 and the baseline model reaches
a maximum of +24.71% when epsilon is 4/255. After that, as the
perturbation increases, the accuracy of models tends to converge.

PGD 𝐿2: From Table 1, FB2 has a highest accuracy 68.69%, which
improves 24.33% compares to baseline model. And FB3 performs
slightly inferior.

Overview: The trend of baseline and FB models are consistent
in Fig.1. The models trained with Fourier basis noise improve the
robustness against FGSM, PGD 𝐿∞, and PGD 𝐿2 attacks, where FB2
has the best performance.

5.1 Experiment 2
From experiment 1, we can see that FB2 performed better than
FB1 and FB3 in the face of FGSM, PGD 𝐿∞, and PGD 𝐿2 attacks.
Therefore, in this section, we only compared FB2 with other works.

FGSM: Fig.2 shows the accuracy of the four models in the face of dif-
ferent levels of FGSM attacks. When the perturbation is very slight,
the FB2 model performed better than the FGSM adversarial trained
model (𝑀𝐹𝐺𝑆𝑀 ) and PGD adversarial trained model (𝑀𝑃𝐺𝐷 ). How-
ever, when the epsilon grows to greater than 3/255, FB2 does not
perform as well as𝑀𝐹𝐺𝑆𝑀 , but it outperforms𝑀𝑃𝐺𝐷 . After epsilon
becomes larger than 7/255, the accuracy of FB2 is lower than𝑀𝑃𝐺𝐷 .

PGD 𝐿∞: Regarding the PGD 𝐿∞ attacks, Fig.3 presents the result.
The overall trend is similar to the FGSM attack. FB2 reached a high
accuracy when the epsilon is small. As the perturbation increases
FB2 is worse than𝑀𝐹𝐺𝑆𝑀 and𝑀𝑃𝐺𝐷 at epsilon greater than 3/255
and 5/255, respectively.

PGD 𝐿2 Compared with𝑀𝐹𝐺𝑆𝑀 and𝑀𝑃𝐺𝐷 , FB2 performed better
than 𝑀𝑃𝐺𝐷 but not well as 𝑀𝐹𝐺𝑆𝑀 . However, the difference be-
tween the accuracy of FB2 and𝑀𝐹𝐺𝑆𝑀 is not remarkable.

Overview:Unlike𝑀𝐹𝐺𝑆𝑀 and𝑀𝑃𝐺𝐷 , the accuracy decreases slowly
in the face of increasing perturbations, while the accuracy of FB2
decreases dramatically. Therefore, FB2 outperforms𝑀𝐹𝐺𝑆𝑀 only
when the perturbations are slight enough and gradually inferior to
𝑀𝑃𝐺𝐷 as the perturbation increases.

model acc PGD 𝐿2(clean)
Baseline 87.52 44.36
FB2 92.36 68.69

𝑀𝐹𝐺𝑆𝑀 79.7 73.88
𝑀𝑃𝐺𝐷 63.13 57.65

Table 3. Accuracy of four models in the face of clean images and PGD 𝐿2
(step size = 0.05, epsilon = 128/255, iteration = 100) attacks.
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Fig. 2. The accuracy of four models against FGSM attack with different
epsilon

Fig. 3. The accuracy of four models against PGD 𝐿∞ attack with different
epsilon

6 DISCUSSION

6.1 Explaination of results
The results of Experiment 1 demonstrate that Fourier-based noise
augmentation effectively improves model robustness against adver-
sarial attacks. As shown in Fig.5 and Table 1, FB1 mainly incorpo-
rates noise at low and high frequencies. In contrast, FB2 introduces
mid-to-high frequency noise, while FB3 includes a substantial quan-
tity of high-frequency noise. The following analysis is conducted
based on the frequency distribution of the three Fourier-basis noise
augmentation policies. The CIFAR-10 clean images have a high
concentration at low frequencies (Fig.4), which explains why FB1
has the highest clean accuracy. According to the previous works

Fig. 4. Fourier spectrum of natural images in CIFAR-10 [30]

Fig. 5. Fourier heat map from 𝑀𝐹𝐺𝑆𝑀 and 𝑀𝑃𝐺𝐷 . The magnitude of
Fourier-basis noise is 4. 𝑀𝐹𝐺𝑆𝑀 and 𝑀𝑃𝐺𝐷 perform similarly, while
𝑀𝐹𝐺𝑆𝑀 is slightly better than𝑀𝑃𝐺𝐷 in mid-frequency. Both models are
robust to low-frequency noise.

mentioned in Section 2.5, We initially hypothesized that adversarial
perturbations are more often associated with high frequency. There-
fore, training the model with more high-frequency noise such as
FB2 and FB3 can reach a better performance than FB1. However,
FB3, which has more high-frequency noise does not perform as well
as FB2. It indicates that the robustness does not increase as expected
with the addition of high-frequency noise, as Yin et al. [30] claimed
that adversarial examples are not limited to high frequencies.

Compared with other adversarial training methods, the results of
Experiment 2 show that the Fourier-basis noise trained model out-
performs other methods only in a limited range of adversarial per-
turbations. It is interesting to observe that the curves of𝑀𝐹𝐺𝑆𝑀 and
𝑀𝑃𝐺𝐷 show similarities, and𝑀𝐹𝐺𝑆𝑀 always performs better than
𝑀𝑃𝐺𝐷 . This result can be partly explained in Fig.5, the heat maps of
𝑀𝐹𝐺𝑆𝑀 and𝑀𝑃𝐺𝐷 show a remarkable resemblance, with𝑀𝐹𝐺𝑆𝑀

performing slightly better than𝑀𝑃𝐺𝐷 . Both models are only robust
to Fourier-basis noise toward low frequency, which means they tend
to have a low-frequency noise. Therefore, the performance of the
FB2 with mid-high-frequency noise is weaker. However, based on
the results of Experiment 1, it is observed that FB1, which adds a
certain amount of low-frequency noise, is less effective. The insight
provided by Maiya et al. [17], adversarial examples cannot be simply
characterized by low-frequency and high-frequency phenomena
helps explain the situation.
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Fig. 6. Fourier heat map. FB1 is robust to Fourier-basis noise in general, while it is a bit weak against middle frequencies. FB2 has a poor performance against
low frequencies. FB3 performs much weaker.

7 CONCLUSION
This study focuses on evaluating the effectiveness of Fourier-basis
noise in improving adversarial robustness. The result of Experiment
1 indicates that the Fourier-basis noise can help the baseline model
to improve its robustness against adversarial attacks. Especially,
the policy of prioritizing the mid-to-high frequency range has been
identified as the most effective in addressing adversarial examples.
Furthermore, we compared the performance with other defense
methods specifically for adversarial training in Experiment 2. The
result shows that Fourier-basis noise augmentation is superior to
other methods only when the perturbation is sufficiently small.

8 FUTURE WORK
This study only evaluates the robustness of the model against FGSM
and PGD attacks. There are many other types of adversarial at-
tacks such as deep fool [18], C&W [2], one-pixel [25], etc. that can
be assessed in future research. Despite not performing as impres-
sively compared to other methods, we believe that this approach has
potential. It may be worth exploring the possibility of combining
Fourier-basis noise augmentation with other defense mechanisms
such as adversarial training to enhance its effectiveness in improving
adversarial robustness in the future.
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