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Abstract
One of the most important theorems of 19

𝑡ℎ
century mathe-

matics is Cantor’s theorem. The theorem set forth new areas

of study within mathematics; it influenced set theory, shaped

important aspects of mathematics philosophy, and affected

many more areas. A powerful tool first used by Cantor in

his theorem was the diagonalization argument, which can be

applied to different contexts through category-theoretic or

set-theoretic abstraction, as shown by Lawvere and Yanofsky,

respectively. For instance, an interesting context that lever-

ages this argument is Turing’s Halting problem. In this re-

search, we express a set-theoretic conception of the argument

with a proof assistant, namely Isabelle/HOL, and formalize

various theorems which touch upon it in some ways. Then

we realize certain weaknesses of our abstraction when trying

to derive the Halting problem. In turn, we come up with a

novel framework that circumvents those weaknesses.

1 INTRODUCTION
Proof assistants or interactive theorem provers are software tools

that formalize mathematics. They present an expressive syntax

that can capture mathematical statements and, via logical calculus,

try to verify their correctness. [2] One of the most widely used

interactive theorem prover is Isabelle, written in Standard ML and

Scala. There are different logical calculi Isabelle variants build on.We

use the Higher Order Logic variant, Isabelle/HOL. On top, Isabelle

constitutes a formal proof language called Isar; essentially, it is a

generic framework for creating human-readable proof documents

with full proof checking. [8]

Using Isabelle, one can show, for example, Cantor’s theorem. Can-

tor’s theorem is considered to be one of themost important theorems

of 19
𝑡ℎ

century mathematics, as it opened up doors to vastly differ-

ent studies. The theorem originally states that there are different

sizes of infinity. [1] An argument used within the theorem inspired

many groundbreaking theorems later on. The argument is called the

diagonalization argument, which can be seen to be leveraged from

Gödel’s incompleteness theorems [4] to Turing’s Halting problem

[6].

The fact that Cantor initially put forth a line of reasoning that can

be used in different contexts prompted possibilities to obtain an

abstract version of the argument. Lawvere initially wrote down a
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general version using category theory. [4] Afterwards, Yanofsky

simmered that down to a set-theoretic language. [10]

In this research, we use Isabelle to express the set-theoretic ab-

straction of the diagonalization argument formally. Afterwards, we

instantiate this abstraction with different mathematical objects in or-

der to realize various theorems. Then, we spot certain shortcomings

in the framework and construct a stronger one to capture Turing’s

Halting problem.

Contribution
The contributions of this paper are the formalization of the following

mathematical results in Isabelle/HOL:

(1) Yanofsky’s set-theoretic abstraction of the diagonalization argu-

ment.

(2) Instances of the abstracted diagonalization argument, such as

Cantor’s theorem, Russell’s Paradox, and the existence of non-

recursively enumerable languages.

(3) A stronger version of the argument with minimally structured

carrier sets.

(4) Turing’s Halting problem via instantiating the stronger version.

All of which can be found in the following link:

https://github.com/Chmlgy/generalized_cantor

2 PRELIMINARY KNOWLEDGE
2.1 Mathematics
We use the classic representation of power sets as a set of charac-

teristic functions. That is, for any set 𝐴, P(𝐴) ≡ {𝑓 | 𝑓 : 𝐴 → 2},
where 2 = {0, 1}. One can think of each function in the set as a

characteristic function for a subset of 𝐴. The function that maps

each member to 1 admits 𝐴; the function that maps each member

to 0 admits ∅, etc.

2.2 Isabelle/HOL

2.2.1 Isabelle.
Isabelle’s text has two parts: inner syntax (inside "") and outer

syntax.

The outer syntax has important keywords to know. theorem and

lemma specify that what follows is a statement which will be proven.

After the theorem/lemma statement, we can fix certain variable’s

type using the fixes keyword. Following that, we can assume cer-

tain facts using assumes. And after fixing and assuming, we can

tell what the theorem eventually proves via the keyword shows.
Within the proof state, we can use the keyword apply to command

Isabelle to use a certain proof method, like unification. by simi-

larly commands Isabelle, but the proof state is completed right after.

definition specifies a non-recursive function definition. locale
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specifies a parametric theory. It fixes certain constructions and as-

sumes their behaviour; one can prove things in that specific context

using them. A locale can be instantiated and used as a framework for

different varieties of mathematical objects that satisfy its context.

The inner syntax is ML-based. So familiarity with a functional pro-

gramming languagemakes it easier to read statements. _-abstractions,

if-then-else, and case statements work the same way as they would

in any other functional PL. The data structure syntax is easily un-

derstandable. The symbol @ is list comprehension.

∧
can simply

be interpreted as the universal quantifier. [[·]] is used to list as-

sumptions for a theorem/lemma followed by an implication. SOME
is Hilbert’s choice operator.

2.2.2 Universal Turing Machine library.
We make use of the Universal Turing Machine library, which for-

malizes Turing machines. [9] The type of Turing machines we work

with is tprog0. They are simply an instruction list. The tapes are

formalized as a pair of cell lists. Cells can be in one of two states,

blank (Bk) or occupied (Oc). ↑ is used to create repeating cells, for

example, Bk ↑ 2 = [Bk, Bk]. Tapes consist of a pair of lists because
the head of the Turing machine is assumed to be at the beginning

of the latter list.

A Gödel encoding for Turing machines exists – a function called

tm_to_nat. An encoder from natural numbers to cell lists exists –

shown as <n>; this encoder can also encode pairs of natural numbers

as <(n1, n2)> by putting a Bk in between them. This encoding is

heavily used to create input tapes.

Composability of Turing machines makes up an important part

of the theory but is left out of the discussion in this paper. The

only thing to know is the composable_tm0 function that takes in a

machine and returns True if it is composable. Assume the machines

we work with are composable. The operator |+| is used to chain

machines together. The machines are run from left to right when

they are composed, unlike function composition.

Hoare triples are used to reason about the behaviour of machines.

The syntax for it is: {[Q1]}p{[Q2]}. If the machine does not halt, then

we show it by: {[Q1]}p↑. p is the machine. Q1 and Q2 are assertions on
what the input and output tapes conform to, respectively. Assertions

are usually _-abstractions that take in a tape and specify its structure.

Importantly, Hoare triples can be composed as follows:

{[Q1]}p{[Q2]} ∧ {[Q2]}q{[Q3]} =⇒ {[Q1]}p|+|q{[Q3]}
{[Q1]}p{[Q2]} ∧ {[Q2]}q↑ =⇒ {[Q1]}p|+|q↑

3 METHODOLOGY
The method of formalization is the Isabelle language. The subject of

the formalization is the generalized diagonalization argument. The

approach is to first clearly lay out the mathematical structure of the

argument with the utmost clarity, as close to a formal proof [3] as

it gets.

For this, consider the commutative diagram [10] below; it captures

the essence of the argument. The framework we wish to formalize

is built on this idea.

𝑆 ×𝑇 𝑌

𝑇 𝑌

⟨𝛽 ; 𝐼𝑑𝑇 ⟩

𝑓

𝑔

𝛼

Fig. 1. The key insight of the set-theoretic generalized diagonal argument.

Let’s curry the function 𝑓 to understand what is happening here. We

can call this function 𝑓𝑐𝑢𝑟𝑟𝑖𝑒𝑑 , which is of the form 𝑆 → (𝑇 → 𝑌 ).
The usual goal of the argument is to show that 𝑓𝑐𝑢𝑟𝑟𝑖𝑒𝑑 does not map

to 𝑔 even though 𝑔 is of the form 𝑇 → 𝑌 , i.e. we try to show that

𝑓𝑐𝑢𝑟𝑟𝑖𝑒𝑑 is not surjective. To achieve that result, one must construct𝑔

carefully. As the commutative diagram shows,𝑔 := 𝛼 ◦ 𝑓 ◦ ⟨𝛽 ; 𝐼𝑑𝑇 ⟩.
Here ⟨𝛽 ; 𝐼𝑑𝑇 ⟩ stands for diagonalization – the input is fed into those
two functions, and a pair is given as output. 𝛽 : 𝑇 → 𝑆 is assumed

to be surjective, meaning there exists a right inverse 𝛽 : 𝑆 → 𝑇 with

𝛽 ◦ 𝛽 = 𝐼𝑑𝑇 . 𝛼 is a bit more interesting; usually, it is regarded as

logical negation, but in the general case, it is any function from 𝑌

to 𝑌 that satisfies the condition ∀𝑦 ∈ 𝑌 . 𝑦 ≠ 𝛼 (𝑦). In other words, 𝛼

has no fixed points. The possibility of defining such 𝛼 makes 𝑌 a

non-degenerate set, by definition.

Nowwe can prove the goal. We assume, for contradiction, 𝑓𝑐𝑢𝑟𝑟𝑖𝑒𝑑 is

surjective. If that is the case, a 𝑠 ∈ 𝑆 exists such that 𝑓𝑐𝑢𝑟𝑟𝑖𝑒𝑑 (𝑠) = 𝑔.

Meaning we can write 𝑓𝑐𝑢𝑟𝑟𝑖𝑒𝑑 (𝑠) (𝛽 (𝑠)) = 𝑔(𝛽 (𝑠)), as 𝛽 (𝑠) ∈ 𝑇 , but

by definition of 𝑔 that means:

𝑓𝑐𝑢𝑟𝑟𝑖𝑒𝑑 (𝑠) (𝛽 (𝑠)) = (𝛼 ◦ 𝑓 ◦ ⟨𝛽 ; 𝐼𝑑𝑇 ⟩)(𝛽 (𝑠))

= (𝛼 ◦ 𝑓 ) (𝛽 (𝛽 (𝑠)), 𝛽 (𝑠))

= 𝛼 (𝑓 (𝑠, 𝛽 (𝑠)))

Uncurrying the left-hand side gives us 𝑓 (𝑠, 𝛽 (𝑠)) = 𝛼 (𝑓 (𝑠, 𝛽 (𝑠))).
But 𝛼 by assumption has no fixed points — contradiction.

We need to translate this proof into a formal one to express in Is-

abelle. A representation closer to formal proof is easier for a machine

to realize, even though it can be unnecessary for humans.

Realize not much has been said for the underlying sets 𝑆 , 𝑇 and 𝑌 ,

except that𝑌 is non-degenerate. This is the power of this framework.

This way, the argument can be invoked in different contexts to prove

insights for distinct objects. We can derive specific insights about

the power of 𝑓 , or – better phrased – the limited power of 𝑓 . The

impossibility of its surjectivity can often be regarded as a counting

problem, giving us the statement |𝑆 | < |{ℎ | ℎ : 𝑇 → 𝑌 }|. And
sometimes, the reason behind not being able to map to a specific

object reveals the limits of what can exist in our set in the first place.

Later in the paper, we showcase someweaknesses of this method and

devise a new one. For now, the following two sections implement

the discussed method in Isabelle and interpret various mathematical

results using it.
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4 FORMALIZATION OF THE ARGUMENT
4.1 Abstracted Diagonalization Argument
The proof given in the above section can be formalized in Isabelle

as follows:

theorem "abstracted_cantor":
fixes f :: "'b ⇒ 'a ⇒ 'c" and 𝛼 :: "'c ⇒ 'c"

and 𝛽 :: "'a ⇒ 'b" and 𝛽 :: "'b ⇒ 'a"
assumes surjectivity: "surj f"
and no_fixed_point: "∀y. 𝛼 y ≠ y"

and right_inverse: "∀s. 𝛽 (𝛽 s) = s"
shows "False"

Here 'a corresponds to 𝑇 , 'b to 𝑆 , and 'c to 𝑌 .

4.2 Instantiated Versions
We do not always need all the variables in the fixes clause of

the theorem abstracted_cantor. For example, when we wish to

prove the classic result of Cantor, we are interested in just showing

|𝑇 | < |P(𝑇 ) |. Using the alternative representation of the power set,

this boils down to |𝑇 | < |{ℎ | ℎ : 𝑇 → 2}|.

Below is an instantiation of abstracted_cantor that gives us |𝑇 | <
|{ℎ | ℎ : 𝑇 → 𝑌 }|, where we plug in the identity for 𝛽 and 𝛽 . And

interpret 𝑓 ’s type not as (𝑆 ×𝑇 ) → 𝑌 but as (𝑇 ×𝑇 ) → 𝑌 . Here 𝑔

becomes 𝑔 := 𝛼 ◦ 𝑓 ◦ Δ where Δ = ⟨𝐼𝑑 ; 𝐼𝑑⟩. Δ comes up later in the

paper; it simply duplicates any input it takes.

theorem "generalized_cantor":
fixes f :: "'a ⇒ 'a ⇒ 'b" and 𝛼 :: "'b ⇒ 'b"
assumes surjectivity: "surj f"
and no_fixed_point: "∀y. 𝛼 y ≠ y"
shows "False"

Then, we can instantiate generalized_cantor such that 𝛼 becomes

¬ and 'b becomes bool to reach exactly at the classic result of Cantor
– that is for any set 𝑇 , |𝑇 | < |{ℎ | ℎ : 𝑇 → 2}|, or |𝑇 | < |P(𝑇 ) |.
theorem "classic_cantor":

fixes f :: "'a ⇒ 'a ⇒ bool"
assumes surjectivity: "surj f"
shows "False"

5 INSTANCES OF THE ARGUMENT
Now we have enough ingredients to reason about objects of interest

by plugging them into our framework.

For starters, we dive into the world of different sizes of infinity.

Then we realize the infamous Russell’s paradox, which leverages

self-reference. Finally, the abstracted framework entails a counting

argument for languages and Turing machines.

5.1 |N| ⪇ |P(N) |
The most famous way to present that there are different sizes of

infinity is to show that there are more elements in the power set of

natural numbers than there are in natural numbers. Even though

both sets are infinite, one is larger than the other. The result is

reached by showing that there cannot be a surjective mapping from

N to P(N). Take P(N) as the set of functions from N to bool.

Showing this result using our classic_cantor is as trivial as it

gets.

theorem "classic_nat_cantor":
fixes f :: "nat ⇒ nat ⇒ bool"
assumes surjectivity: "surj f"
shows "False"

What exactly is happening here can be nicely shown using a picture.

Our function 𝑓 acts like a grid of boolean values. The first natural

number can be interpreted as the row and the second one as the

column, wherein the intersection, the boolean value lies. Just filling

in the first slot gives us an infinite sequence of binary digits, exactly

a function from N to bool.

0 1 2 3 4 5 6 · · ·
0 1 0 1 0 1 0 1 · · ·
1 0 1 0 1 0 1 0 · · ·
2 0 0 0 0 0 0 0 · · ·
3 1 1 1 0 1 0 0 · · ·
4 0 0 1 1 1 1 0 · · ·
5 1 0 0 1 0 0 1 · · ·
6 0 1 0 0 0 1 0 · · ·
.
.
.

.

.

.
. . .

The theorem tells us that this table should miss at least one infinite

binary sequence. We construct the exact sequence as 𝑔 := ¬ ◦ 𝑓 ◦ Δ,
pictorially 𝑔 is the blue sequence below.

0 1 2 3 4 5 6 · · ·
0 1 0 1 0 1 0 1 · · ·
1 0 1 0 1 0 1 0 · · ·
2 0 0 0 0 0 0 0 · · ·
3 1 1 1 0 1 0 0 · · ·
4 0 0 1 1 1 1 0 · · ·
5 1 0 0 1 0 0 1 · · ·
6 0 1 0 0 0 1 0 · · ·
.
.
.

.

.

.
. . .

0 0 1 1 0 1 1 · · ·

And we know for no 𝑛 ∈ N that 𝑓 (𝑛) = 𝑔 as it always differs at the

𝑛𝑡ℎ spot.

5.2 Russell’s Paradox
The second use of the framework is to show Russell’s Paradox or,

better said, how ZF axioms resolve it. But before we present in

Isabelle, we give a quick reminder of Russell’s Paradox.

Russell’s Paradox happens when we unrestrictively use the set

builder notation – which ZF axioms fix via the axiom of comprehen-

sion. Initially, we build a set of all sets that do not contain themselves,

i.e. 𝑅 = {𝑥 | 𝑥 ∉ 𝑥}. Then we ask whether 𝑅 contains itself. If 𝑅 ∈ 𝑅,

the criterion tells us 𝑅 ∉ 𝑅; if 𝑅 ∉ 𝑅, we fulfil the criterion and 𝑅 ∈ 𝑅.

Paradox. [7]

ZF is formalized in Isabelle [5], and we can show how 𝑅 cannot

exist in this framework using classic_cantor. We achieve this by

showing that the function Elem :: ZF ⇒ ZF ⇒ bool (∈) is not

surjective.
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lemma "russell's_paradox": "surj Elem =⇒ False"
apply (rule classic_cantor)
by simp

That looks much simpler than expected. A closer inspection is re-

quired to understand that this statement actually tells us 𝑅 cannot

exist in ZF. Let the function that Elem does not map to be 𝑔 :: ZF
⇒ bool. Because of the unification with classic_cantor we also

know that 𝑔 := ¬ ◦ Elem ◦ Δ. So for any set 𝑥 , 𝑔(𝑥) is True if and

only if 𝑥 ∉ 𝑥 . Realize that this is exactly the characteristic function

of 𝑅. So 𝑅’s existence in ZF would imply Elem 𝑅 = 𝑔. But as per the

lemma, Elem does not map to 𝑔, meaning 𝑅 does not exist in ZF.

5.3 Languages and Machines
Recursively enumerable (r.e.) languages are languages for which a

Turing machine halts on and accepts each word in the language and

halts on and rejects or runs forever for all other words.

In our formalization, we inspect words represented as natural num-

bers. Accepting a word means returning a tape that encodes the

number 1 with blanks to the left and right, and rejecting a word

means returning any other tape or not returning anything. We can

write a function that checks if a Turing machine accepts a word or

not as follows:

definition "tprog0_accepts_num p n ≡
{[_tap. tap = ([], <n>)]}
p

{[_tap. ∃k l. tap = (Bk ↑ k, <1> @ Bk ↑ l)]}"

Realize the type; it is tprog0 ⇒ nat ⇒ bool. Where nat ⇒
bool exactly admits a language. True for words within it and false

otherwise.

To show that there exist non-r.e. languages, we can use similar

reasoning to the one we employed to show |N| < |P(N) |. In this

context, the picture changes slightly, as shown below:

0 1 2 3 4 5 6 · · ·
M0 1 0 1 0 1 0 1 · · ·
M1 0 1 0 1 0 1 0 · · ·
M2 0 0 0 0 0 0 0 · · ·
M3 1 1 1 0 1 0 0 · · ·
M4 0 0 1 1 1 1 0 · · ·
M5 1 0 0 1 0 0 1 · · ·
M6 0 1 0 0 0 1 0 · · ·
.
.
.

.

.

.
. . .

However, beforewe construct the blue sequence, we need tomention

one assumption we are glancing over. That is, we can enumerate

Turing machines as M0, M1, M2, · · · . Such an enumeration would

be possible to imagine only if Turing machines were countable.

Thankfully, they are. We used Isabelle’s HOL library Countable to

show this within our formalization.

So, tprog0 is countable, and there exist conversion functions

to_nat and from_nat, which are inverses of each other. With this,

we can realize the picture above via our framework.

theorem "non-re_languages":
assumes surjectivity: "surj tprog0_accepts_num"
shows "False"

apply (rule abstracted_cantor[𝑜 𝑓
tprog0_accepts_num ¬ from_nat to_nat])

Here we use the most abstract version of the argument because the

picture has different types of rows and columns. Only abstracted_-
cantor can capture tprog0 × N. The argument constructs 𝑔 as the

blue sequence below,

0 1 2 3 4 5 6 · · ·
M0 1 0 1 0 1 0 1 · · ·
M1 0 1 0 1 0 1 0 · · ·
M2 0 0 0 0 0 0 0 · · ·
M3 1 1 1 0 1 0 0 · · ·
M4 0 0 1 1 1 1 0 · · ·
M5 1 0 0 1 0 0 1 · · ·
M6 0 1 0 0 0 1 0 · · ·
.
.
.

.

.

.
. . .

0 0 1 1 0 1 1 · · ·

and 𝑔 admits a language for which no Turing machine recursively

enumerates. Hence, non-r.e. languages exist. Alternatively:

∃l. ∀p. tprog0_accepts_num p ≠ l.

6 HALTING PROBLEM
As we work with Turing machines and diagonalization, it is natural

to be reminded of the Halting problem. Not coincidentally, parallels

between some of the above results and the Halting problem are well

known. [6]

So, as an exercise, we first try to formalize the Halting problem with-

out any reference to the general framework. And in the later section,

we inspect possible ways to fit the framework in our formalization,

only to realize that that might not be possible.

Before we dive in, let’s state the Halting problem. The problem asks

if a machine decides whether a given Turing machine halts on an

arbitrary input. We can define what halting would mean for an

arbitrary machine and input as follows:

definition "halts p n ≡
∃Q. {[_tap. tap = ([], <n>)]} p {[Q]}"

So we encode a natural number n into a tape and run p on it. If

any tape is given in the end, it would mean the machine halted.

It should be noted that we are restricting ourselves to numerical

inputs when deciding whether a machine halts. This is a smaller set

than arbitrary inputs, and if we cannot devise a machine deciding

the Halting problem here, the arbitrary case immediately follows.

Using halts, we can define the behaviour of a machine that decides

the Halting problem as follows:

definition "decides_halting H ≡ ∀p n.
{[_tap. tap = ([Bk], <tm_to_nat p, n>)]}
H

{[_tap. ∃k l. tap = (Bk ↑ k, <(if halts p n then 0
else 1)> @ Bk ↑ l)]}"
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Basically, H is given a tape that encodes both the natural number

encoding an arbitrary machine and a numerical input. Afterwards,

it always halts with a tape that encodes the number 0 if the arbitrary

machine halts on the numerical input and the number 1 otherwise.

The Halting problem turns out to be undecidable, i.e. no machine

fulfils decides_halting; so we would like to show that "�H. de-
cides_halting H". To achieve this, we must talk about two other

machines which do exist. The machines are named dither and copy.
Their workings are quite simple and are explained below.

dither’s behaviour is defined only for two inputs: on a tape that

encodes the number 1, dither halts and returns the same exact

tape; on a tape that encodes the number 0, dither runs forever.

copy’s behaviour is known for any tape that encodes a number: on

a tape that encodes the number n, it returns a tape that encodes

<(n, n)>.

It is more convenient to talk about the behaviours of these machines

in terms of their Hoare triples. We can state them easily as follows:

{[_tap. ∃k l. tap = (Bk ↑ k, <1> @ Bk ↑ l)]} dither
{[_tap. ∃k l. tap = (Bk ↑ k, <1> @ Bk ↑ l)]}

{[_tap. ∃k l. tap = (Bk ↑ k, <0> @ Bk ↑ l)]} dither
↑

{[_tap. tap = ([], <n>)]} copy
{[_tap. tap = ([Bk], <(n, n)>)]}

Additionally, remember that these machines can be made compos-

able, and they would still preserve their Hoare triples. Now we have

all the tools necessary to show the result.

Proof. For contradiction, assume that there exists a machine that

decides Halting. Let’s name this machine H, so we have:

"decides_halting H".

Using this machine together with dither and copy, we can define a

new machine as a composition. Let this machine be named contra
defined as contra := copy |+| H |+| dither. To save ink, we

present the Gödel encoding of contra not as "tm_to_nat contra"
but as "⌜contra⌝".

We now reason about the behaviour of contra on the numerical

input of ⌜contra⌝. As with any machine, there are two cases: either

it halts or runs forever. We use our halts definition to show these

cases.

Case 1: Assume halts contra ⌜contra⌝

We can inspect what happens to contra when run on ⌜contra⌝ by
looking at the behaviour of the machines that make it up. Firstly

copy satisfies the followingHoare triple for a tape encoding ⌜contra⌝:

{[_tap. tap = ([], <⌜contra⌝>)]}
copy

{[_tap. tap = ([Bk], <⌜contra⌝, ⌜contra⌝>)]}

H acts on this output in the following way:

{[_tap. tap = ([Bk], <⌜contra⌝, ⌜contra⌝>)]}
H

{[_tap. ∃k l. tap = (Bk ↑ k, <0> @ Bk ↑ l)]}

The output tape encodes the number 0 by definition of H because we
assumed contra halts on ⌜contra⌝. And as the final step, dither
satisfies the following Hoare triple following its definition:

{[_tap. ∃k l. tap = (Bk ↑ k, <0> @ Bk ↑ l)]}
dither

↑

We can chain these three Hoare triples from where their output

matches the input and compose the machines accordingly. Which

gives:

{[_tap. tap = ([], <⌜contra⌝>)]}
copy |+| H |+| dither (=: contra)

↑

So, we let contra run on ⌜contra⌝ by tracing the behaviour of the

machines that compose it and came to the conclusion that it does

not halt – contradicting our assumption.

Case 2: Assume ¬ halts contra ⌜contra⌝

This case’s proof is symmetrical to the above case’s, so it is left

out. □

In Isabelle, the formalized proof is given with the following theorem:

theorem "halting_problem": "�H. decides_halting H"

7 SHORTCOMINGS AND LOCALES
As said at the beginning of the previous section, the Halting problem

has many parallels with results that leverage diagonalization. This

is not so hard to see now. The counterexample we came up with

that shows the limits of the powers of the object we were after is

constructed via diagonalization. We wanted to see if H exists; it

didn’t because of contra.

Remember how we defined 𝑔 in our general framework to show the

limited power of 𝑓 . As 𝑔 := 𝛼 ◦ 𝑓 ◦ Δ. And here we defined contra
as contra := copy |+| H |+| dither. These two identities are

completely analogous. We first diagonalize, then pass the result to

the object of interest, and finally pass it to a construction with no

fixed points.

Unfortunately, even though there are strong analogies between our

abstraction and the Halting problem, they cannot fit together.

7.1 Failure of generalization
To understand why the generalization fails in the context of the

Halting problem, we have to understand how much we limit the

power of 𝑓 and H. To derive the non-existence of 𝑓 , we assume its

surjectivity, and in the pictorial representation, that coincides with

an entire infinite sequence which 𝑓 cannot map to – like the blue

sequences we inspected.

But in the case of the Halting problem, the pictorial representation,

which can be seen below, failed not in an entire row but in just
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an entry. Unlike the previous generalizations, where we picked an

entire row, we had to pick both the row and the column to spot an

undecidable entry in the matrix.

0 1 2 3 4 · · · c · · ·
M0 1 0 1 0 1 · · · 1 · · ·
M1 0 1 0 1 0 · · · 0 · · ·
M2 0 0 0 0 0 · · · 0 · · ·
M3 1 1 1 0 1 · · · 0 · · ·
M4 0 0 1 1 1 · · · 0 · · ·
M5 1 0 0 1 0 · · · 1 · · ·
M6 0 1 0 0 0 · · · 0 · · ·
.
.
.

.

.

.
. . .

.

.

.

Mc 0 0 1 1 0 · · · ? · · ·
.
.
.

.

.

.
.
.
.

. . .

We need more structure than naked sets to capture this kind of proof

using diagonalization.

7.2 A more structured abstraction
For a better generalization, we use a carrier set. It is basically a

subset of a naked set which admits some additional structure. We

call it F.

It is important to realize that with many instantiations of the argu-

ment, we were using countable objects. Consider the Halting prob-

lem; numeral inputs and Turing machines are both countable – so

we can encode these types with nat. Additionally, we had numeral

outputs, sometimes. So this set’s members we wish to construct

should get a numeral input and optionally return a numeral output.

The type in Isabelle that corresponds to this is (nat⇀nat) set –
the partial arrow indicates that the output is a nat option. (option
monad represents results that might go wrong. It becomes Some n if
the computation succeeded and returned n. Otherwise, it becomes

None.)

The elements of this set are sometimes interpreted as different ob-

jects. In the general framework, we had 𝛽 and 𝛽 to encode/decode

our objects; in the Halting problem, we had Gödel encodings. To

capture this transformation, we equip our set with an operation

pull_up that is of type (nat⇀nat)⇒nat. Stylistically we some-

times show pull_up as ⌜·⌝.

Our encodings were always injective, as we always needed to de-

code back to the original object in our proof without confusion. So

we have to assume that our encoding is injective, at least on the

elements of our carrier set. In Isabelle, that is: inj_on pull_up F.

Once we have an injective pull_up, constructing a decoder

push_down becomes trivial. It would simply be equivalent to the

inverse of pull_up into the elements of F. In Isabelle, that is shown

by inv_into F pull_up. But at times, wemight desire to push down

the outputs of our functions, and in some cases, the output might be

None. Also, even if it is not None, not all nat’s have a function that

encodes to it. We assumed injectivity, not bijectivity or surjectivity;

some numbers might never be encoded into. So we make a simple

case distinction and a small check to define push_down as follows:

definition "naive_push_down ≡ inv_into F pull_up"
definition "push_down x = (case x of

Some n ⇒ (if ∃f. ⌜f⌝ = n then naive_push_down n
else (__.None)) |

None ⇒ (__.None))"

(__.None) stands for the bottom function, used when things don’t

make sense, like the push_down of a number for which no function

encodes into. Again, stylistically we sometimes use ⌞·⌟ to represent
push_down. And by definition, it follows that

∀f ∈ F. ⌞Some ⌜f⌝⌟ = f.

The last additional structure we need is some sort of chaining. Analo-

gous to function composition in our general framework andmachine

composition in the Halting problem. We can quickly realize that we

need a monadic composition. So if the output of a function is Some
n, we pass n along the composition, but if it is None, we just return
None. Point-wise, we define the composition as follows:

(f1 ⊕ f2) x = (case f2 x of None ⇒ None |
Some n ⇒ f1 n)

Of course, our carrier set should be closed under ⊕. To formalize

this carrier set with the specified structure, we define the following

locale in Isabelle:

locale computable_universe_carrier =
fixes F :: "(nat⇀nat) set"
fixes pull_up :: "(nat⇀nat) ⇒ nat"
assumes countable: "inj_on pull_up F"
assumes comp_closed: "[[a ∈ F; b ∈ F]] =⇒ a ⊕ b ∈ F"

Now that we have a carrier set, we can specify the functions we

need inside of it to invoke the diagonalization argument. Firstly,

the analogue of dither, which is trivial. We name it 𝛼 . It basically

maps 1 to None, and 0 to Some 1.

However, when trying to create the analogue of copy, we realize a
caveat. We cannot output two numbers. That is against the type of

our carrier set. Also, we need a function that takes in two inputs;

hence the table-like pictorial view, but our carrier set does not sup-

port that immediately. So, we devised two approaches to circumvent

this issue, enabling us to distill the diagonalization argument. The

first one makes use of a more general currying-inspired strategy;

the second one simply encodes pairs into natural numbers.

Curry-like approach for Δ
We call the analogue of copy, Δ. We are only interested in Δ when

it is composed to the left with some other function. This function

should support taking two inputs via currying. It is fed the first

input and gives out a number that can be interpreted as another

function which in turn can eat up the second input. We know how

to interpret an output as a function; it is push_down. So Δ acts as

follows:∧
f. f ∈ F =⇒ (f ⊕ Δ) x = ⌞f x⌟ x

So functions that take in two inputs have to be curried, and the

output of the partially applied part needs to encode the rest of the

function as a natural number.
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Now we can define H, which is the analogue of H in the Halting

problem. H partially applied should stay within the carrier set so we

can push it down later. Formally:∧
f h. [[f ∈ F; H ⌜f⌝ = Some ⌜h⌝]] =⇒ h ∈ F

The function that is encoded in the output should act as follows –

completely analogous to the Halting machine:

∀f ∈ F. H ⌜f⌝ = Some ⌜Hf⌝, where
Hf c = (case f c of Some _ ⇒ Some 1 | None ⇒ Some 0)

With these, we can show that H ∉ F.

Proof. Assume for contradiction that H ∈ F. Then we can construct
contra := 𝛼 ⊕ H ⊕ Δ. We then inspect contra ⌜contra⌝.

contra ⌜contra⌝ = 𝛼 ((H ⊕ Δ) ⌜contra⌝)
= 𝛼 (⌞H ⌜contra⌝⌟ ⌜contra⌝)
= 𝛼 (⌞Some ⌜Hcontra⌝⌟ ⌜contra⌝)
= 𝛼 (Hcontra ⌜contra⌝) (*)

Hcontra ⌜contra⌝ by definition only has two results. Either Some
1 or Some 0. So we make a case distinction.

Case 1: Assume Hcontra ⌜contra⌝ = Some 1

From the case assumption, and following the definition of Hcontra,
we conclude that contra ⌜contra⌝ = Some _.

And from (*) it follows that 𝛼 (Hcontra ⌜contra⌝) = Some _.

But substituting the case assumption, we get 𝛼 (Hcontra ⌜contra⌝)
= 𝛼 1 = None, contradicting the above line.

Case 2: Assume Hcontra ⌜contra⌝ = Some 0

This case’s proof is symmetrical to the above case’s, so it is left

out. □

Pairing approach for Δ
In this approach, we define Δ using another small function

pair_to_nat that encodes a pair of natural numbers into a natural

number. Again just like the previous approach, we define Δ only

in the context of a composition with another function to the left. It

behaves as such:∧
f. f ∈ F =⇒ (f ⊕ Δ) x = f (pair_to_nat (x, x))

The H with this approach also changes a bit, but it is still quite

reminiscent. It is given as follows:∧
f c. f ∈ F =⇒ H (pair_to_nat (⌜f⌝, c)) =

(case f c of Some _ ⇒ Some 1 | None ⇒ Some 0)

Again, we prove that H ∉ F.

Proof. Assume for contradiction that H ∈ F. Then we can construct
contra := 𝛼 ⊕ H ⊕ Δ. And inspect H (pair_to_nat (⌜contra⌝,
⌜contra⌝)).

By H’s definition, there are only two possible results: Some 1 and

Some 0. So we make a case distinction.

Case 1: Assume H (pair_to_nat (⌜contra⌝, ⌜contra⌝)) =
Some 1

From the case assumption, and following the definition of H, we
derive that contra ⌜contra⌝ = Some _. (*)

Expanding contra ⌜contra⌝ gives us:

contra ⌜contra⌝ = 𝛼 ((H ⊕ Δ) ⌜contra⌝)
= 𝛼 (H (pair_to_nat (⌜contra⌝,

⌜contra⌝)))
= 𝛼 1 = None

But that contradicts (*).

Case 2: Assume H (pair_to_nat (⌜contra⌝, ⌜contra⌝)) =
Some 0

This case’s proof is symmetrical to the above case’s, so it is left

out. □

7.3 The Halting problem revisited
We can get back to the Halting problem by instantiating this newly

created parametric theory. We use the pairing approach variant for

its simplicity.

To build a carrier set, we need special Turing machines to induce

functions. We make it so that our Turing machines are composable

as it will be easier to work with. Additionally, when given input

tapes that encode numeric values, we want the output tapes to

encode numeric values as well – in case the machines halt.

Elements of this specific set of Turing machines satisfy the function

numeral_composable_tm0.

Then the functions we induce from thesemachines work as expected.

We encode the given natural number onto a tape which we then

run on the machine that induces the function. If the machine halts,

it outputs a tape that encodes a number, which we return. If it does

not halt, we return None. This feels like too strict of criteria on the

machines and input/output formats, and it is, but it is just enough

to realize the Halting problem.

We refrain from showing the Isabelle formalization of this set be-

cause of the complicated definition. The reader is referred to the

.thy file to inspect the two below definitions with the paragraphs

above as a guide.

definition induce_F_from_tprog0 ::
"tprog0 ⇒ nat ⇒ nat option"

definition turing_F :: "(nat⇀nat) set"

After inducing Turing machines into our carrier set, we need a

pull_up back to natural numbers. There is a trivial way of doing

this. We know a Turing machine gives us the function inside the

carrier set, so we use Hilbert’s choice to obtain this machine and

get its Gödel encoding.

definition turing_pull_up :: "(nat⇀nat) ⇒ nat" where
"turing_pull_up f = (if f ∈ turing_F

then tm_to_nat (SOME p. induce_F_from_tprog0 p = f)
else 0)"
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We can prove that turing_pull_up is injective on our carrier set

using Isabelle’s SMT solver.

Now that we have our functions, we need to show that they are

closed under ⊕. We restricted the machines that induce these func-

tions to be composable. So we can leverage this fact and show that

there is a correspondence between ⊕ and |+|. Because we know
composable Turing machines are closed under |+|, we can inherit

this to show our carrier set functions are closed under ⊕. Formally,

we are after the following lemma:

lemma seq_tm_oplus_correspondence: "
∧
p1 p2.

[[numeral_composable_tm0 p1;
numeral_composable_tm0 p2]] =⇒

induce_F_from_tprog0 (p2 |+| p1) =
induce_F_from_tprog0 p1 ⊕ induce_F_from_tprog0 p2"

The way these functions are induced makes it clear that this lemma

is correct. The numeral outputs are passed along by machine compo-

sition the same way they are passed along by function composition.

The restriction on numeral outputs plays a crucial role here; if that

was not the case, machine composition could have passed pairs

along, which ⊕ cannot, and the correspondence would fail. How-

ever, by our restriction, we manage to circumvent that issue. Lastly,

a couple of technical steps are required to show this in Isabelle,

which is left incomplete in the formalization.

All of the above definitions and lemmas conform to the required

structure we specified in the locale computable_universe_car-
rier. The only thing left to show the undecidability of the Halting

problem is to devise an 𝛼 and Δ. We can manage this using dither
and a modified copy.

dither already takes in numeral inputs and only gives numeral

outputs or just runs forever, so it is easier to instantiate into the

framework.

But fitting copy into the behaviour of Δ is not immediately clear,

as the output tape of copy encodes not a single number but a pair.

The way we work around this is to change copy to simply double

the numeral input. If it takes in a tape encoding 𝑥 , it outputs a tape

encoding 𝑥 + 𝑥 .

So the pair_to_nat function we have defined becomes an addition

operation to mimic the modified copy’s behaviour.

A modified_copy machine has been defined as the composition

of copy with a machine that takes in a pair and adds them. The

proof for a Hoare triple showing its behaviour is left incomplete.

But assuming the behaviour holds, the induced function is just what

we need to instantiate Δ – with pair_to_nat being addition.

Using this guideline, we can induce the necessary functions to in-

stantiate the rest of the locale that uses the pairing approach. Some

parts of this instantiation are yet to be completed, but a clear strategy

for completing it is noted down. When complete, the non-existence

of a Halting deciding machine within turing_F falls automatically

as the proof of H ∉ F within the locale is analogous to the Halting

problem.

8 DISCUSSION
In this research, we started off by formalizing a set-theoretic con-

ception of the diagonalization argument owed to Yanofsky. [10] We

realized that there could be certain restrictions on the free variables

of the abstracted framework to derive a toolbox. Afterwards, we

employed our toolbox by instantiating the framework with different

mathematical objects to reach important mathematical results.

Looking back at the Contributions. We showed Cantor’s theorem

and proved that different sizes of infinities exist. We showed a built-

in limit of the Elem (∈) relation within the ZF set theory, enabling

modern set theory to circumvent the infamous Russell’s paradox.

We showed the existence of non-recursively enumerable languages

by invoking the framework with Turing machines and words within

languages as natural numbers.

After getting comfortable with Turing machines, we wished to show

the undecidability of the Halting problem – as there are known

parallels between the diagonalization argument and that proof. [6]

We were successful in formalizing this important result but failed

to use our framework within. We quickly realized the toolbox could

not fit into the context of the Halting problem as it is too coarse

and limiting. This realization then opened up a possibility for a

more nuanced abstraction using the parametric theories of Isabelle

– locales.

We created a carrier set with a structure just enough to realize an

analogous result to the undecidability of the Halting problem with-

out any reference to the mathematical context of Turing machines.

Then, using the Turing machine formalisation, we built a promising

but incomplete scaffolding to instantiate the parametric theory.

All of these interconnected, deeply insightful mathematical results

were formalized in Isabelle. Additionally, a section on cardinalities

of infinities was formalized but had to be dropped from the paper

due to page-count limitations. The Isabelle code for all the results

mentioned in the paper and more can be found in the repository

given under Contributions.

9 CONCLUSION
In conclusion, Yanofsky’s various set-theoretic generalizations [10]

have been formalized in Isabelle. These encompass the diagonaliza-

tion argument, Cantor’s theorem [1], Russell’s paradox [7], and the

existence of non-recursively enumerable languages. Also included

are the Halting problem, along with two novel diagonalization ar-

gument abstractions that utilize minimally structured carrier sets.

Apprehension of the deep connection these results share with each

other has been gained. Some of the differences have also been spot-

ted and studied. Future work on formalizing a category-theoretical

abstraction is left open. Building on this research, especially on the

discussed parametric theories, this extension is quite possible and

would most likely prove even more powerful. Instantiating Gödel’s

incompleteness theorems can be seen as a goal mark, which was

left untouched by this research’s framework.
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