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Abstract

Attack trees are a simple model used for system security that
provides a systematic way to assess possible attacks on a
system and quantify them using different metrics, such as
total cost or damage caused. This is an NP-Complete problem.
However, brute-forcing all possible attacks is too costly for
large attack trees, so there are algorithms for making the
analysis more efficient. One such algorithm transforms the
attack tree into a Binary Decision Diagram (BDD). Solving
this is exponential in time at worst, so we apply an existing
method, called Modular analysis, where the work is split by
first solving smaller components (modules). The goal of this
research is to check the effect Modular analysis has on the
performance of the BDD algorithm. We construct a corpus of
attack trees of up to 260 nodes and analyze the computation
times of our implementations for both methods. The results
indicate that the time complexities of both methods are expo-
nential, but Modular analysis tends to be significantly faster.
Moreover, this increase in performance is dependent on the
number of modules. However, this combined approach intro-
duces some computational overhead, which causes negligibly
longer computation times for attack trees that take fractions
of a second to solve. The results we show are for calculating
the minimal total cost.

Additional Key Words and Phrases: attack tree, Binary Decision Diagram,
Modular analysis, quantitative analysis

1 INTRODUCTION

Attack trees(ATs) are graphical models used for representing the
vulnerabilities of a system in the form of connected directed graphs.
Their intuitive structure and power of expression make them widely
used in the industry, from estimating the damage of DDoS attacks on
computer systems [14], to analyzing the security of nuclear digital
systems [17].

The so-called leaves of the tree are stand-alone independent attacks,
also called Basic Attack Steps (BAS), that have some property associ-
ated with them, such as the cost of performing or the damage caused
to the system. Moreover, they are connected through parent nodes
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that have certain activating conditions - AND/OR logical gates. At
the very top, there is the root node, which represents the end goal
of the attacker. Depending on what combination of the BAS-es are
activated, the root could be reached, which we will refer to as a

successful attack.
(N ()

AND-gate OR-gate BAS
Fig. 1. Allowed types of nodes

In their simplest form attack trees are tree-structured, where each
non-root node has exactly one parent. They can also be directed
acyclic graphs (DAGs), where nodes could have multiple parents.
Such is the case in Figure 2, where the node "Bribe employee" has
two parents. We refer to such nodes as foster nodes, as suggested in
[1]. In this research, we do not set a restriction on the number of
parents, so we also refer to DAG-like structures as attack trees like
in [12].

&

employee

Fig. 2. simple DAG-like attack tree with costs

In this example, the attacker can open the safe by breaking in and
bribing because it is an AND-gate. Similarly, bribing and exploiting
a bug results in hacking the system. The final goal of robbing the
bank is an OR-gate, so the attacker needs to either open the safe,
hack the system, or do both.

Going back to the usage of ATs, to reach the root, a certain cost or
indicator will be accumulated for activating the leaves. Of course, if
all individual attacks are performed, the final goal will be reached,
but we want a more optimal solution according to some metric -
this is what we are looking for when quantitatively analyzing an
AT. It is important because it shows where the biggest vulnerability
of the system is and quantifies its security overall, e.g. minimal cost
for breaking it. In this project, we only look at the minimal cost.

We can look at Figure 2 for a simple explanation of this metric. Each
BAS ("Break in", "Bribe employee" and "Exploit bug") can either
be performed or not, so there are eight possible combinations, out
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of which three are attacks (successful combinations): ["Break in",
"Bribe employee"], ["Bribe employee", "Exploit bug"], ["Break in",
"Bribe employee", "Exploit bug"], which have total costs 6, 8 and 12,
respectively. Therefore, the minimal total cost is 6.

Doing this analysis efficiently is very important, since brute-forcing
through all combinations would take exponential time. That is why
algorithms for AT analysis have been developed, such as the sim-
ple bottom-up approach for tree-like ATs and the Binary Decision
Diagram (BDD) algorithm which additionally works for DAG-like
ATs [12]. The latter one consists of converting the attack tree into
another type of DAG, namely a BDD, and then solving it. If we
consider an attack tree to essentially be a boolean function, the
BDD would be an encoding of that function. A simple case is shown
in Figure 3.

Bribe
employee

Exploit bug|

Break in \Y

Fig. 3. BDD of the attack tree in Figure 2

In this example, we can see that each of the leaves of the attack tree
is present as a variable in the BDD. We start with "Bribe employee".
If it is not performed, we go directly to the end state 0, meaning
that the goal was not accomplished. Looking at the attack tree
representation, we see that both "Open safe” and "Hack system"
require this node, so indeed if it is not activated, "Rob a bank" cannot
happen. However, if "Bribe employee" is done, we go to the next
variable "Exploit bug". We can either do it or choose not to and
then do "Break in" to reach the final goal. Not doing both results
in failure. One necessary clarification is that BDDs do not contain
edge attributes like how we put the costs in Figure 3. We do this
just to make it more understandable.

As for analyzing the BDD, we touched upon the fact that the BDD
algorithm is for DAG-like ATs. That is because the bottom-up pro-
cedure used for tree-like ATs can produce incorrect results on such
graphs [12]. However, a similar approach can be applied on the BDD
representation instead. This method’s effectiveness depends on the
size of the generated BDD, which could theoretically be exponential
in the number of nodes, but on average it tends to be relatively
small [12]. An experimental evaluation of the algorithm has been
conducted which seems to confirm this, but the conclusions are
uncertain [1].

Furthermore, an idea has been suggested to apply this algorithm
to smaller sections of the tree and use the intermediate results in
the calculations of the whole [12]. This is done by first identifying
the modules of an attack tree, then analyzing these parts separately,
before finally solving the remaining component. A module is essen-
tially a node that is the root of a sub-DAG that is only connected
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to the rest of the AT through that node. We refer to the application
of this method to the BDD algorithm as Modular analysis. It makes
sense for this approach to be an improvement for solving this expo-
nential problem, because we are splitting it into sub-problems and
therefore analyzing smaller BDDs with fewer variables, but it has
not been confirmed in practice. Therefore, the goal of this project
can be expressed with the following research question:

Question: To what extent, if at all, does modular analysis improve
the performance of the BDD algorithm for calculating the minimum
cost of an attack tree?

The steps taken for the completion of this project can be summarized
in several steps. First, a sufficiently large corpus of realistic attack
trees gets constructed. Second, the BDD algorithm and modular
analysis are implemented and applied to the corpus. The results
need to be structured and saved in a way that facilitates analysis of
the data. Finally, appropriate visualization techniques are applied
to compare the algorithms. Furthermore, we do simple correlation
analysis to see how certain attributes affect the results.

We should mention that we use Python 3.10 for the whole project be-
cause it is a very intuitive general-purpose language that we already
have plenty of experience with. It is especially appropriate for this
project because of the wide range of libraries that are available. The
most important ones we use are "networkx" - for representing and
working with attack trees, while also giving us essentially complete
freedom over the graph objects, "dd" - for constructing and using the
BDDs, and "pandas"”, "matplotlib” and "seaborn" for data analysis.

2 RELATED WORK

As described in the previous section, the definitions of attack trees
and the algorithms we are comparing are as discussed in [12]. How-
ever, there exists work on quantitative analysis for other types of
models. In that same paper, a possible extension is mentioned in
the form of dynamic ATs based on [2, 7]. This adds a new type
of gate, namely the sequential AND, which requires the children
nodes to be activated in a specific order. Similarly, another possible
extension is to add defence gates and make an attack-defence tree
[8]. These extensions allow for the representations of systems with
more complex relations and in some cases findings about simple
ATs can be generalized to apply to the more complex models too,
such as computing the min time metric for dynamic ATs [13].

In some cases research for ATs can even be related to work on
different models. For example, the use of the BDD algorithm with
modularisation has been discussed in [15] for analyzing fault trees,
which represent a system from the defensive side, although these
two models are still quite similar.

Coming back to the AT model we are using, our work is related
to research that experimentally evaluates the BDD algorithm in
relation to different AT properties [1] based on the same literature
as us. The authors found that the number of foster nodes is the most
detrimental graph attribute for the performance of the algorithm,
while the size of the AT seemingly has no impact, based on the
Pearson coefficients for linear correlation. Our conclusions do not
align with theirs, but this could be attributed to differences in the
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implementation of the algorithm and the generation of the ATs used
for the evaluation. The authors acknowledge that a more systematic
approach can be used for generating the ATs and storing the results,
to which we pay special attention.

Another relevant work is about attack time analysis via integer
linear programming [13]. Although it is for dynamic ATs, it ex-
perimentally evaluates the proposed algorithm and compares its
performance with a few other methods, including a variation of itself
with Modular analysis. The results demonstrate the effectiveness
of both integer linear programming and modular analysis, but not
so much the combination of the two, possibly due to some hidden
optimization in the used framework. This paper has been invaluable
because of the proposed way of generating a corpus of ATs and the
visualization techniques used for showing the results.

3 ATTACK TREES

In this section, we first give an extensive definition of attack trees.
As mentioned before, we extend the definition to include DAG-
structured ATs. Then, we will cover how an attack tree can be
quantitatively assessed.

3.1 The attack tree model

An attack tree is a directed acyclic graph that models the vulnera-
bilities of a system that can be exploited by a malicious party. The
final goal, represented by the root of the DAG, is further broken
down into simpler steps. These can either be intermediate attacks
or basic attack steps (BAS-es). The latter are the simplest actions
that can be taken by the attacker and are the leaves of the tree-like
structure. The former are lower-level attacks, which can be further
decomposed into simpler ones. Furthermore, they are labeled with
AND/OR logical gates that indicate their activation condition - how
the activation of the children nodes determines the success of the
intermediate attack.

Note that attack trees in our research, despite the name, are not
necessarily tree-structured as a node can have multiple parents. We
call such cases with more than one parent foster nodes. Lastly, we
define an attack on the system as a subset of the basic attack steps
that results in the activation of the root node. The ATs used in this
research follow the formal definitions presented in some literature
[12, 13]. A simple example is given in Figure 2. Now, we define the
relevant terms similar to [12].

Definition 3.1. An attack tree is a tuple T = (N, t, children) where:

e N: finite set of nodes;

e t: mapping of each node to the corresponding node type with
type € {BAS, OR, AND};

e children: mapping of each node to a list of its children;
Additionally, the following constraints need to be satisfied:
e (N, E) is a connected DAG, where
E = {(parent, child) € N?|child € children(parent)};
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e R7 € T is a unique root such that

'Ry € N.Vuv € N.Rt ¢ children(v);

e BAST are the leaves of T
Vv € N.t(v) = BAS & children(v) = @;

Using this we can now define a successful attack:
e A is an attack such that A C BAST;

e fr is an activation function for node v, such that:

1 if t(v) = OR and Ju € children(v).fr(u, A) = 1,

1 ift(v) = AND and Vu € children(v).fr(u, A) = 1,
1 ift(v) =BASando € A,
0

otherwise.

fr(v,A) =

e attack A reaches node v if
fr(v,A)=1;

e A is a minimal attack on node v if

BA1 C A fr(v.Ar) = 1;
e Ais a successful attack if
Jr(A) = fr(Rr,A) = 1;
e [[T]] is the set of all successful minimal attacks:

[[T1 = {A € BAST|(fr(A) = 1) & (BA1 S Afr(v, A1) = 1)}

3.2 AT metrics

Now that we understand what attack trees and successful attacks
are, it is logical to consider some basis for the comparison of attacks.
Many different metrics are used in practice such as the total cost
of the attack or the damage caused to the system [12], but we will
focus on the minimal cost.

o S7: mapping for the cost value of each BAS of T

e minimal total cost of T can be defined as:
min d(a);
A€([T]] ;4

The last definition simply expresses the minimal total cost as the
minimum sum of the costs of the BAS-es that are part of each
successful minimal attack. However, to find and compare all possible
attacks would be exponential in time, so there is a need for an
algorithm that can do this more efficiently.
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4 BDD ALGORITHM

It has been shown that tree-like ATs can be analyzed very efficiently
with a simple bottom-up algorithm, but this method can produce
faulty results for DAG-like ones [13]. Therefore, an alternative ap-
proach has been proposed, where the AT is turned into a Binary
Decision Diagram, which is then solved in a similar bottom-up
fashion.

A binary decision diagram is a directed DAG-like model used for
representing boolean functions. It allows for efficiently and intu-
itively storing the relations between variables. Moreover, an attack
tree can be turned into a BDD, the size of which is at worst linear in
the number of leaves but tends to be of manageable size on average.
This largely depends on the variable ordering when constructing
the BDD, but finding such ordering is NP-hard [4]. There are some
methods for optimizing this, but we have chosen to take the vari-
ables in order. More specifically, we traverse the attack tree using
breadth-first search to represent it as a boolean expression. Then,
we use the Python library ’dd’ to create a BDD object from that
expression.

For example, the AT from Figure 2 can be expressed as "((Break
in) AND (Bribe employee)) OR ((Bribe employee) AND (Exploit
bug))" with a simple recursive bottom-up approach. This boolean
expression, then, is given as input to ’dd’, which produces the BDD
from Figure 3.

To analyze the BDD, we use a recursive method based on what is
proposed in [13]. It is a bottom-up algorithm that works for semir-
ing attribute domains, meaning that it can be used for calculating
different metrics with specific properties. However, for this study,
we will solely consider the metric of minimal total cost, since we
are only interested in the calculation time. The pseudo-code for the
implementation used in this study is given in Algorithm 1.

Algorithm 1: get_min_cost
Input: BDD, node, costs
Output: minimum total cost of BDD starting from node

if node — value = 1 then
L return 0;

else if node — value = —1 then
L return oo;

else
return min(
get_min_cost(BDD, node — low, costs),
get_min_cost(BDD, node — high, costs) + (costs — node)

)

A small clarification about the algorithm is in order because it is
fitted to the ’dd’ library. First, we should mention that the BDD
object does not contain the costs of the attacks, but they are instead
stored in a separate dictionary, which you can see is passed as an
argument in the function. This is because BDDs simply represent a
boolean expression, so the variables do not have attributes present
in the attack tree like the cost. Second, each node of the BDD has
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some attributes that we use for traversing the graph. The high and
low attributes are pointers to the nodes that follow if the current
node is True or False, respectively.

It should become clearer with an example. We use the BDD from
Figure 3 again. We will substitute "get_min_cost(BDD, node, costs)"
with "solve(node)" for the sake of readability.

solve("Bribe employee") = min(solve("-1"), solve("Exploit bug"))+2)
solve("-1") =
solve("Exploit bug") = min(solve("Break in"), solve("1")) + 6)
solve("Break in") = min(solve("-1"), solve("1")) + 4)
solve("1") =0
solve("Break in") = min(co,0+4) =4
solve("Exploit bug") = min(4,0+6) = 4
solve("Bribe employee") = min(c0,4+2) =6

5 MODULAR ANALYSIS

In the previous section, we explained the details relevant to the
algorithm we aim to improve. Now, we will go over the concept of
modules and how we apply them. We follow the formal definitions
as written in [13], but essentially a module in an attack tree is a
node, for which all nodes reachable from it cannot be reached from
the root through any path not including that node. Therefore, it
forms a sub-DAG that is connected to the attack tree at a single
point. So, the idea of modular analysis is to replace that sub-DAG
with a single basic attack step(a leaf node), which has as value the
result of solving it, e.g. the total minimum cost of the module.

Rule the
world

Solved Finish
Module degree

Fig. 4. AT with a module in green Fig. 5. AT with solved module

4

The nodes marked in green in Figure 5 are part of the sub-DAG
formed by the module "Rob a bank". We already solved this AT from
Figure ??. Therefore, we can just replace the entire sub-DAG with a
new BAS node that has its solution as a cost, which is what we see
in Figure 6.

For our implementation, we have a component that determines the
modules of a given attack tree based on [5]. To do that we traverse
the attack tree two times using depth-first search, once to mark
the nodes with the visiting order and a second time to discover the
modules based on the previously assigned numbers. The next step
is, for each module, to solve the sub-DAG and construct a simplified
version of the attack tree. We do this in such an order, that each
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one is checked after all modules that are part of its sub-DAG. Then,
once we are left with an attack tree without modules, we solve it
using just the BDD algorithm.

One relevant detail about this approach is that our implementation
does not use multi-threading. On the one hand, this makes the
comparison of the algorithm and the modified version more fair
because the same amount of resources are used, and on the other
hand, this simplifies some of the components to be implemented.
Most importantly, we do not need to worry about concurrently
changing an attack tree for multiple modules and introducing more
overhead by complicating the order of execution further. However,
we consider the possibility of multi-threading to be quite important,
so it will be discussed in Section 7.2.2.

6 EXPERIMENTS
6.1 Attack tree generation

One very important aspect of the experimentation is the data we
conduct it on. For meaningful results, we want it to be of sufficient
size, consist of attack trees from the industry, and also be diverse
enough to capture some relations between different attack tree
properties and the results. Using graphs from the industry such as
an attack tree of existing big systems would be ideal, but making
these publicly available would pose a security risk, so this is not
an option for us. On the other hand, the ones found in academic
literature are quite small. Therefore, we construct our own attack
trees using an approach similar to what is done in [12], where large
attack trees are generated by combining smaller ones.

We use nine attack trees of sizes between
8 and 25 nodes as building blocks, listed
in Table 1. Some of them are for dynamic
trees or attack-defence trees, in which [
cases we replaced the sequential AND- [

[

1

Source |N]

3] Fig.3 8

3] Fig.5 21

gates with normal AND-gates and re- 3] Fig.7 25
moved the defence components, respec- [10] Fig.1 12
tively. We consider these ATs to be appro- [10] Fig. 8 20
priate examples of what can be seen in [10] Fig. 9 13
reality and they vary in characteristics. [2] Fig.1 16
(6] Fig.2 19

]

Those get combined or mutated in three [9] Fig.1 15

ways: we combine the current tree with
a few blocks by adding a common root,
we replace a random leaf of the attack
tree with a block, which is essentially just
adding a module, or we take a random
number of leaves and merge them. A vi-
sual representation of these three opera-
tions is given in Figure 6.

Table 1. Sources for
the ATs we use as
building blocks
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Fig. 6. Operations for generating ATs: 1) add blocks as sub-DAGs. 2) make a
new root node Rt ., and add our AT and add sub-DAGs. 3) merge BAS-es
together

This continues until the graph is within the desired range, e.g. be-
tween 40 and 50 nodes, and the process is reset if it exceeds the
upper limit. This is not very efficient but the generation of the cor-
pus is done only once and it takes seconds, so it is sufficient. By
using this method, we generate a corpus of 2300 attack trees of sizes
between 20 and 250 nodes (100 ATs for each range of 10 nodes).

6.2 Approach

Our initial method of comparison was to simply run both algorithms
on each graph and note the time. However, we discovered that when
the analysis of an attack tree happened almost instantaneously,
which was the case for most of the ATs with less than 100 nodes,
the times were rounded to either zero or a very small value, which
ruined the visualization and analysis of the produced data.

Instead, we opted for setting a boundary for each benchmark, where
each attack tree is continuously ran through each analysis method
for at least 5 seconds and at most 1000 seconds. After every success-
ful solving of the AT, we check if we are past the lower limit, and if
so, we divide the time that the benchmark has been running by the
number of executions and end the process. And if the first analysis
does not finish within the upper limit, we write 1000 as the time it
took and continue.

Besides the benchmarks, for each attack tree, we also calculate some
graph properties. Currently, these are the number of each type of
node, as well as the minimum, mean, and maximum values for the
depth (distance from the root to leaves), in-degree and out-degree.
We also calculate the root-to-foster and foster-to-leaf distances as

described in [1].

Furthermore, we analyze the relationship between these properties
and the time it took for both algorithms to finish using the Pearson
correlation coefficient. For the interpretation of the absolute values,
we use the ranges from Table 2 as suggested in [16]. As for the
sign of the value, for the times of the algorithms, a positive value
indicates that increasing this property results in an increase in the
time, whereas for the ratio of the times, a positive value means that
this property improves how much better Modular analysis is.
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r-value  Correlation

0.00-0.09 Negligible
0.10-0.39 Weak
0.40-0.69 Moderate
0.70-0.89  Strong
0.90-1.00 Very Strong

Table 2. Interpretation of Pearson
correlation coefficient (absolute values)

We calculate these coeflicients using the ’corr’ function provided
in the Python library ’pandas’. Moreover, this is done once with
the timing values and once with their log to check for both linear
and exponential relationships. Another important detail is that we
only consider the data points where the two algorithms managed
to finish the analysis within the limit of 1000 seconds, so that the
potential correlation we find is not affected by it.

6.3 Results

After performing the steps described above, we end up with a table of
all attack trees, their timings for the BDD algorithm and the modular
analysis, and the graph properties described above. This allows us
to experiment with various visualization techniques without again
having to run any of the code described earlier. In this subsection,
we show the representations we found appropriate and provide an
explanation and interpretation for them.

6.3.1 Overview of performance.

We think it is suitable to start with a simple log-log scatter plot as
can be seen on Figure 7. Each attack tree is plotted according to
the time it took with the two approaches. Also, the diagonal line is
plotted. Naturally, if the BDD algorithm is faster for a specific attack
tree, we would get a point over the line. Conversely, if Modular
analysis makes the process faster, the point would be under the line.

A scatter plot is definitely suitable because of the substantial number
of instances we have. Additionally, we made it logarithmic because
our data spans a wide range of values, so the points, where the anal-
ysis took a fraction of a second, become indistinguishable because
of the cases that take 1000 seconds.
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Fig. 7. Comparison of the times of the two algorithms on the log scale
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Looking at Figure 7, we observe a clear trend. While the time it
takes for the BDD algorithm continues to increase, most of the
values for Modular analysis roughly form a line with a very small
incline. Furthermore, there are two interesting details on the left
and right sides of the plot. First, exactly at the 1000 seconds mark
for the BDD algorithm, we notice a vertical line. This is because the
calculation has an upper cap of 1000 seconds, meaning that the BDD
algorithm was not able to finish, whereas with modular analysis
the calculation of the minimal total cost was successful. Second, on
the left side until around the 0.01 mark, we notice a lot of attack
trees, for which the BDD algorithm performed better. We believe
this is a result of the overhead of looking for modules and splitting
the problem into smaller instances, where the initial attack tree can
already be solved almost instantaneously. However, this overhead is
clearly compensated for in instances that take longer to solve with
the BDD algorithm.

These results seem conclusive but there are a lot of instances closer
to the diagonal line. We found that the relative number of modules
in the attack tree can help to understand this. More precisely, we
take the ratio of the number of modules to the number of nodes
with a logical gate (intermediate nodes and root). You can see in
Figure 8, this value is shown as the color of each dot according to
the scale on the right of the plot.
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Fig. 8. Comparison of the times of the two algorithms on the log scale with
the module ratio of each data point

Now, it is easier to distinguish the overlapping points at the bottom-
left corner. Furthermore, we can observe that the data points are
roughly grouped according to the colors. So, the method with Mod-
ular analysis appears to perform better the more modules there are.
As for the cases on the right side of the plot that are closer to the
red line, ignoring the ones at the upper limit of 1000 seconds, we
can see that they have very low values for the ratio of modules.
However, these cases do not seem to be that frequent.

In Figure 9, we see for each range of graph sizes, how the module
ratio is distributed. For a proper comparison of the two algorithms
we would want something closer to a uniform distribution, but that
is not the case because of our generation method. After all, most
building blocks we use have multiple modules, so the bigger the
attack trees we create, the less likely it is to have an extremely
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low value. Additionally, the modification operation, which merges
leaves of the attack tree together, makes it less likely to see high
values. Therefore, we see the boxplots becoming smaller as the

graphs become larger.

This means that it is harder to reliably quantify the performance
increase that Modular analysis provides as a whole. Despite that,
we can still make the conclusion that the higher the relative count
of the modules is, the bigger the positive impact. And, of course,
modular analysis would be slightly slower if the attack tree has no
modules, since it is doing the work of checking for modules and
then just solving the attack tree with the BDD algorithm.

6.3.2  Performance comparison relative to the AT size.

In this part, we demonstrate the difference in performance between
the BDD algorithm and Modular analysis relative to the size of the
attack tree, by grouping the data in ranges based on the number
of leaf nodes. We provide a line chart of the moving median for
an overview and a plot with boxplots of each grouping for more
detailed insight. Also, both plots use the logarithmic scale for the
solving time, so that we can compare their relative behavior for

smaller values.
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Fig. 10. Comparison of the median times of the two algorithms on the
log scale as the number of leaves increases. Calculation for each AT is
interrupted at 103 seconds
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Fig. 11. Comparison of the distributions of the times of the two algorithms
on the log scale as the number of leaves increases. Calculation for each AT

is interrupted at 10° seconds
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We already showed that, for attack trees that take fractions of a
second to solve, the BDD algorithm tends to be faster. From Fig-
ures 10 and 11, we can conclude that this is generally the case for
attack trees with less than 30 leaves. We consider this to be insignif-
icant since these algorithms are meant to be used for substantially
bigger graphs where the brute-force approach is computationally
unfeasible.

It is also apparent that the lines for each algorithm appear to be
straight (ignoring that the BDD algorithm hit the upper limit of
1000 seconds). This tells us that both are exponential in the number
of leaves, but it is clear that the line of Modular analysis has a much
lower incline, approximately four times. This makes sense since it
essentially does a bit of extra work to make an attack tree smaller
before applying the BDD algorithm, so this size reduction has a
substantial impact. However, it is worth noting that there are a lot
of outliers, so there are likely other important factors that affect the
computation time besides the number of leaves.

6.3.3 Analysis of the effect of graph properties.

Now, we show the results of the analysis of the graph properties
using a heatmap containing the Pearson correlation coefficient be-
tween each pair of attributes in our dataset. Rows 1 and 2 contain
the coeflicients for each property for the time of the BDD algorithm
and Modular analysis, respectively. The third row is for the ratio
of the time it took the latter compared to the former, meaning that
the ratio is how many times faster the second algorithm is. The
columns are some of the attributes mentioned in Section 6.2. Some
less meaningful or repetitive ones were omitted for readability.
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Fig. 12. Pearson correlation coefficient between the computation times of
the algorithms and the graph attributes

The heatmap on Figure 12 shows a weak to moderate correlation
between the size of the attack tree, e.g. number of nodes, gates, and
leaves, and the computation time for the BDD algorithm. However,
this is not the case with Modular analysis, where it is between

negligible and weak.

As for the ratio showing how much faster the second approach is,
there is a moderate linear correlation with the number of modules
in an attack tree. Additionally, we can see that the size of the graph
and the mean root-to-foster distance have a weak correlation with
the ratio. However, if we take the logarithm of the time of the two
algorithms, we can see a lot more conclusive numbers.
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Fig. 13. Pearson correlation coefficient between the logarithm of the com-
putation times of the algorithms and the graph attributes

For Figure 13, since we are taking the logarithm of the time, seeing
a linear correlation, would indicate an exponential relationship
with the original value. And indeed, both algorithms show a strong
exponential correlation between the size of the graph and the time
it takes to do the analysis. We also see that the depth and foster-
to-leaves values seem to impact the performance of the second
algorithm more than the first one.

One important observation is that there is a weak negative exponen-
tial correlation between the percentage of nodes that are modules
and the performance of the algorithm with Modular analysis. And
if we only look at larger attack trees (more than 30 leaves), this cor-
relation is moderate with an r-value of -0.47. This is consistent with
our findings from Figure 8 where the y-axis is with a logarithmic
scale and we can see a roughly horizontal grouping of the colors.

7 CONCLUSION

7.1 Discussion

In this paper, we compared the performance of our implementation
for the BDD algorithm with and without Modular analysis. We
found that Modular analysis introduces some overhead to the BDD
algorithm, which makes it slightly slower for smaller DAGs, but it
helps tremendously when analyzing large ones.

We also performed simple correlation analysis between the graph
properties and the computation times of the two algorithms, which
supports our observations that both algorithms appear to be ex-
ponential in the size of the graph and that the impact of Modular
analysis is heavily dependant on the number of modules. So, at
worst it is still exponential in the number of BAS-es in cases with
an insignificant number of modules.

However, we used the Pearson correlation coefficient, which is
sensitive to outliers, so a more extensive look could be taken at the
distribution of our data and potentially other statistical tools such
as Spearman’s correlation coefficient.

One setback caused by the time constraints of this project is that
we had to set an upper limit of 1000 seconds for the run-time of
the algorithms for each AT. It would be interesting to see how our
results would look like if we could remove that limit and got the
complete data.

7.2 Future work

Overall, this research has accomplished the goals agreed upon at the
beginning. Throughout the process, we came up with several ideas

Vasil Pirinski

for how the project could be expanded, but due to time constraints,
those could not be realized. We will cover them in this section.

7.2.1  Corpus of ATs.

The findings of this research rely on the quality of the dataset they
were made on. At the moment of writing, the only issue we are
aware of is that because of the way we generate attack trees, the
distribution of graph attributes is uncertain. This limits our ability
to confidently make general statements about the effect of specific
properties on the performance of either algorithm, but this was
either way not the main point of our research.

However, the methods of evaluation we performed can be directly
applied to any dataset. Therefore, if someone produces a good-
quality corpus of attack trees by a better method of generation or by
gathering them from real systems, our work can easily be applied
to it and a comparison of the results can be made. This is important
because there is no benchmark for these methods on real-life ATs,
but perhaps an agreement can be made with companies for them to
use our work to evaluate their systems and anonymously provide
benchmark data without sharing the ATs and risk exposing their
vulnerabilities.

7.2.2  Multi-threading modular analysis.

As described in Section 5, in our implementation we do not use
multi-threading to solve modules in parallel. This means that our
comparison is based on the number of computations, rather than
efficiency in practice. So, one direction this project could go is to im-
plement this variation of the Modular analysis method and compare
it with our results. After all, the motivation for this research is to
be able to analyze complex systems faster, which this will probably
accomplish.

Even with sequential handling of the modules, we have observed
that we need to be careful with the order since some modules might
be part of the sub-DAGs of others, and therefore need to be executed
first. For parallel processing, these same relations can be used to
make sure that only modules that do not depend on any other
modules are being analyzed. Therefore, such a continuation of our
work should be easy to perform.

7.2.3  BDD variable ordering.

In Section 4 we touched upon the fact that the ordering of the
variables is important for the size of the BDD. Since both the BDD
algorithm and the one with modular analysis depend on this, finding
a consistent way to get the BDD is logical if one aims to optimize
our implementation.

One idea that we thought of but did not try because of time con-
straints is to avoid the problem by decreasing the time limit and
repeating the BDD transformation step multiple times. So, whenever
the limit is reached, we shuffle the boolean formula to one we have
not yet tried to generate a BDD with and attempt to solve this new
one.

Another direction is to try to implement optimization techniques
for better variable ordering [11, 18]. In any case, it would be very
interesting to see how improvements in the implementation of the
BDD algorithm could change the results.
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