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Abstract 

Traffic accidents resulting from a vigilance decrement contribute to a significant proportion of road 

incidents in Europe, with an estimated occurrence rate of 10% to 20%. To mitigate such accidents, it is 

crucial to detect the moments of vigilance decrement. This exploratory study investigated the potential 

utility of functional Near-Infrared Spectroscopy (fNIRS) in detecting vigilance decrement during 

prolonged highway driving. Grounded in cognitive resource theory and mindlessness theory, the 

research hypothesized correlations between fNIRS measures, subjective sleepiness measured by the 

Karolinska Sleepiness Scale (KSS), and specific driving performance indices, such as steering errors and 

instruction misses. However, multilevel models used for data analysis revealed no significant 

associations between these variables, thus not supporting the initial hypotheses. The results implied 

that the fNIRS measures employed in this study might not be adequate for detecting vigilance 

decrement in real-world driving scenarios. The research emphasized the need for a more 

comprehensive exploration, incorporating detailed assessments of driving experience and consistent 

instructional design between participants to enhance the relevance of fNIRS in predicting vigilance 

decrement. This study enriched the understanding of vigilance decrement and illuminated challenges 

and future research paths for the effective application of neuroimaging tools like fNIRS in assessing 

driver vigilance.  
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Exploring the Potential of Functional Near-Infrared Spectroscopy (fNIRS) in Detecting Vigilance 

Decrement: A Study on Prolonged Highway Driving 

Introduction 

The growing number of road accidents has raised public concern about driving safety in the last 

decades. It is stated that most accidents caused by a decline in vigilance occur in road conditions that 

are meant to be safe, and this decline is strongly linked to the monotony of the road (Thiffault and 

Bergeron, 2003). The decrease in vigilance alternatively has been attributed to reduced attentional 

capacity, making it difficult to sustain mental effort (Pattyn et al., 2008). This study aims to investigate 

the effectiveness of fNIRS measures to detect vigilance decrement in prolonged highway driving. 

Vigilance is generally defined as the ability to sustain attention and remain alert over extended 

periods of time (Warm et al., 2008). However, vigilance decrement, which refers to the decrease in 

attention and alertness over time while performing attention-requiring tasks (Oken et al., 2006), adds a 

nuanced perspective to our understanding of vigilance. Different groups of scientists have defined 

vigilance in various ways, leading to variations in its conceptualization (Oken et al., 2006). For instance, 

clinical neuropsychologists often consider vigilance as the level of sleepiness on a sleep-wake axis, while 

psychologists view it as a cognitive performance level, and animal behaviorists focus on being alert 

specifically to potential dangers (Oken et al., 2006). Despite these differences, vigilance can generally be 

understood as sustained attention. 

Two main theories, namely cognitive resource theory (CRT) and mindlessness theory (MT), have 

been proposed to explain vigilance decrement and its underlying mechanisms (Flanagan & Nathan-

Roberts, 2019). CRT, closely related to Wickens' Multiple Resources Theory (2008), posits that our brains 

possess diverse resources that are independent of each other, and different tasks may utilize different 

resources (Wickens, 2008). When two tasks share overlapping resources, depletion of those resources 

occurs more rapidly compared to a single task utilizing the same resource. According to CRT, the amount 
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of resources required is determined by task difficulty, and prolonged time spent on a demanding task 

leads to resource depletion. On the other hand, MT suggests that vigilance decrement is primarily a 

result of task monotony and the cognitive disengagement it engenders (Helton & Russell, 2015). In this 

view, cognitive resources are considered fixed and do not deplete over time. Instead, resources may be 

allocated to other tasks or mind wandering, which is the default state of the mind when the current task 

lacks sufficient stimulation (Flanagan & Nathan-Roberts, 2019). Consequently, vigilance decrement is 

observed in the task at hand. 

The importance of vigilance in real-world tasks such as driving cannot be understated. 

Prolonged driving, particularly during long-distance trips between cities or countries, necessitates 

sustained vigilance for hours. While previous studies on vigilance and driving have predominantly 

focused on the complex nature of driving tasks, it is worth considering that some driving conditions, 

particularly on highways in rural areas, lack the unpredictability and variability required to maintain 

vigilance (Larue et al., 2011). Thiffault and Bergeron (2003) argued that most crashes resulting from 

vigilance decrement occur on roads specifically designed to enhance road safety. Fell and Black (1997) 

found that in rural areas characterized by highly monotonous road geometry, 45% of drivers involved in 

crashes reported not feeling tired before the incident. This suggests that in rural highway settings, 

vigilance decrement is closely related to the monotony of the road. 

Within the driving literature, terms such as fatigue, sleepiness, arousal, and vigilance are 

frequently associated with performance decline and accidents. Dinges (1995) posited that vigilance 

decrement is an effect of fatigue and sleepiness. Fatigue encompasses physiological and psychological 

processes that decrease an individual's capacity to perform by altering their alertness and vigilance 

(Thiffault & Bergeron, 2003). Sleepiness, on the other hand, refers to the inability to stay awake (Shen et 

al., 2006). Factors such as the time of day, extended hours of driving, and sleep-related issues have been 

identified as contributing to driver sleepiness. Time-of-day is related to the 24-hour circadian rhythm of 
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the body. Lengthy periods of driving, also known as the time-on-task effect, are known to cause fatigue 

and a decrease in driving performance. Spending extensive time on a task which in turn resulted in a 

depletion of mental resources is related to active fatigue, which is related to the CRT. The fatigue caused 

by task monotony is named passive fatigue and it is connected to the MT (Körber et al., 2015). Philip et 

al. (2005), found out in the study they conducted on a French highway, that duration of driving is not the 

main factor to explain driving impairment due to vigilance decrement, while time awake (time-of-day 

effect) and previous sleep duration has a significant impact. Their results indicated individual subjective 

measures of sleepiness have a negative connection with driving performance, whereas individual 

subjective measures of fatigue were discovered to be an ineffective predictor of driving performance. 

This result indicated that fatigue may not be an equally precise indicator as sleepiness when it comes to 

vigilance decrement, particularly in a highway environment. As Cocks (2022) mentioned, sleepiness 

appears to be a more significant factor in the link between driving performance and vigilance. One of 

the reliable methods to measure subjective sleepiness is Karolinska Sleepiness Scale (KSS; Shahid et al., 

2011; Kaida et al., 2006) which is widely used in driving vigilance studies (Philip et al., 2005; Bartolacci et 

al., 2020; Freire & Freire, 2018). Kaida et al. (2007) indicated that KSS scores could be used to predict 

performance errors due to vigilance decrement. Shoaib et al. (2023) conducted an experiment where 

they divided participants into two groups: well-rested and sleep deprived. They used KSS and fNIRS 

measures in a driving environment. Their results indicated that sleep deprivation and fatigue have a 

noticeable impact on brain activity during driving. 

Fatigue and sleepiness result in decrement of driving performance. Lane change, steering wheel 

reversal, accelerator pedal release time, accelerator to brake transition time and, brake reaction time 

are some of the most used performance measures in driving research (Savino, 2009). Papantoniou et al. 

(2017) pointed out in their review, for the distracted driving research that conducted with driving 

simulators, lateral control measures such as lane keeping, and steering wheel control are very 



7 

commonly used. Driver distraction can arise from various sources and is divided into physical distraction, 

visual distraction, auditory distraction, and cognitive distraction. Vigilance decrement due to boredom 

and allocation of mental resources to mind-wandering instead of the task at hand can be considered as 

cognitive distraction. Mixed findings have emerged in lane keeping research, potentially stemming from 

distinct impacts of visual, manual, and cognitive distraction on the performance of lane keeping. 

Cognitive distraction was found to increase steering wheel manipulation by Ranney et al. (2005) and 

Seppelt and Wickens (2003). However, there are also mixed findings for steering wheel manipulation. 

For example, Feng et al. (2009) found out that fatigued drivers tended to perform fewer steering micro-

corrections. Besides these, reaction time and eye-movement measures are becoming increasingly 

common (Papantoniou et al., 2017). Reaction time increases when an individual fatigues (Li et al., 2009). 

Fixations, saccades, and smooth pursuits represent three types of eye movements that can be used to 

help identify cognitive distractions. There are some other methods to measure vigilance such as 

Psychomotor Vigilance Task (PVT), however, Theresia et al. (2018) argued that one of its limitations is 

that PVT is not suitable for real-time measurement while driving.  

Maintaining vigilance requires maintaining attention over time and this causes fluctuations in 

neural activity. For measuring neural activity, there are different methods benefiting from; 1) the 

electrical activity due to the synchronous firing of the neurons (Light et al., 2010), 2) mapping brain 

activity by recording magnetic fields produced by electrical currents (Singh, 2014) or 3) measuring the 

blood oxygenation level (Bogler et al., 2014). These methods are 1) electroencephalography (EEG), 2) 

magnetoencephalography (MEG) and 3) functional magnetic resonance imaging (fMRI) and functional 

near-infrared spectroscopy (fNIRS) respectively. The comparison of fMRI, EEG and NIRS can be seen in 

Table 1 (Liu et al., 2015).  

Table 1 

Comparison of three brain imaging techniques of fMRI, EEG and NIRS. 
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Items fMRI  EEG NIRS 

Spatial resolution + 

- 

- 

- 

- 

- 

+ 

~ 

~ 

+ 

~ 

~ 

+ 

+ 

+ 

Temporal resolution 

Constraints on body movement 

Continuous, long-time measurement 

Application cost 

Note. ‘+’, ‘~’ and ‘−’ represent good, moderate, and poor, respectively. 

 To investigate vigilance, EEG has been used in many studies (Cocks, 2022; Campagne et al., 

2004; Formentin et al., 2019). This study builds upon the foundation established by Cocks (2022). In 

their study, Cocks conducted a driving simulator experiment using similar closed-loop road conditions 

and EEG to evaluate the effectiveness of EEG in detecting driver vigilance. However, although EEG is 

capable of high temporal and spatial resolution, it is less immune to ambient electrical noise (Siddique, 

2020), and to noise artifacts caused by movement (Palendeng, 2011). Therefore, this study seeks to 

investigate whether fNIRS could serve as a viable alternative to EEG in effectively detecting driver 

vigilance. 

Functional MRI studies have shown that attentional performance related to vigilance is 

correlated with blood-oxygen-level-dependent (BOLD)-signals, especially in parietal and prefrontal 

cortical regions (Bogler et al., 2014). It is important to note that fNIRS differs from fMRI because fNIRS 

relies upon the intrinsic optical absorption of blood to form its signals, as opposed to fMRI, which utilizes 

the paramagnetic properties of deoxygenated hemoglobin (HbR). Consequently, fNIRS is capable of 

simultaneously recording changes in oxygenated hemoglobin (HbO) and deoxygenated hemoglobin 

(HbR). (Basso Moro et al., 2013). Also, fNIRS measures are limited to the surface of the brain (Bogler et 

al., 2014). fNIRS is a less expensive non-invasive technique with higher portability and temporal 
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resolution but a comparable outcome to fMRI, despite fMRI being frequently used in brain imaging 

research (Siddique, 2020).  

Li et al. (2009), studied cerebral oxygenation during prolonged driving using fNIRS. They divided 

participants into two groups: task and control groups. The task group was required to perform the 

driving task for 3 hours while the control group was merely required to watch the driving simulation 

video for 3 hours. According to their results, when driving began HbO increase was observed with a 

decrease in HbR in the frontal cortex. However, as time on task increased, a decrease in HbO and an 

increase in HbR started to appear. At the end of the 3-hour study, the cerebral oxygen saturation was 

significantly lower in the task group, and participants exhibited symptoms of fatigue. However, it is 

important to note that there was no significant difference in oxygen saturation between the groups 

before the 180-minute mark, and the significantly higher levels of HbO for the task group remained valid 

until the 120-minute mark. Another study (Helton et al., 2010) also focused on the cerebral oxygenation 

levels of participants during vigilance tasks lasting 12 minutes. The participants were divided into three 

groups: easy vigilance task, hard vigilance task, and control group. In both vigilance tasks, the regional 

oxygen saturation, calculated using the relative amounts of HbO and HbR, was significantly higher than 

that of the control group throughout the experiment. Bogler et al (2014), studied vigilance using fNIRS 

with a vigilance task. Results of the vigilance task (variations in reaction times) were correlated with the 

oxygenation changes in frontal and parietal regions as expected. Further analysis showed that effects 

were more prominent in HbO than in HbR. Maintaining vigilance caused an increase in oxygen demand 

in the cerebral cortex. While HbO concentrations rose following cortical activation due to increased 

blood flow, HbR concentrations fell. However, during extended periods of specific neuronal activity, the 

energy requirement might exceed the energy available, causing a disparity in the activated areas of the 

brain (Rupp & Perrey, 2007). Consequently, there might be an inverse reaction, such as an increase in 

HbR and a decrease in HbO towards the conclusion of the driving task. As a result, fNIRS may be able to 
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detect attention-related BOLD signals at the brain's surface, notably in the parietal and prefrontal 

cortex. 

Although vigilance is affected by several neural and functional systems and therefore is not 

unidimensional as suggested by Oken et al (2006), it is not possible within the scope of this research to 

experimentally control all different specific physiologic or performance measurements. Therefore, self-

reported subjective sleepiness with KSS, steering control and instruction misses, and fNIRS data will be 

the identifying measures of vigilance in this study. Given the established theories and measures related 

to vigilance and its decrement, the aim of this study is to investigate the relationship between fNIRS 

measures, subjective sleepiness (as measured by KSS), and driving performance measures (e.g., steering 

errors, instruction misses) during prolonged highway driving. 

The hypotheses of the current study are as follows:  

Based on cognitive resource theory (CRT), it is hypothesized that changes in subjective 

sleepiness, as indicated by Karolinska Sleepiness Scale (KSS) scores, will be correlated with changes in 

fNIRS measures in the frontal cortex. Specifically, increased subjective sleepiness will be associated with 

decreased oxygenated hemoglobin (HbO) levels and increased deoxygenated hemoglobin (HbR) levels in 

the frontal cortex, indicating resource depletion during vigilance decrement. This effect is predicted 

because as the brain becomes more fatigued and resources are depleted according to the CRT, there is 

an increase in oxygen demand and utilization to perform the task, leading to changes in the hemoglobin 

levels measured by fNIRS. 

Building on mindlessness theory (MT), it is hypothesized that fNIRS measures in the frontal 

cortex will be able to predict individual changes in driving performance measures, such as steering 

errors and instruction misses. Specifically, increased cognitive disengagement and mind-wandering due 

to boredom, as reflected by the decrease in HbO and increase in HbR, will be associated with a higher 

frequency of steering errors and instruction misses during prolonged highway driving. This effect occurs 
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because as the brain becomes disengaged and bored with the task, the measured changes in fNIRS 

levels indicate a shift in attention away from the driving task, leading to poorer performance in terms of 

steering control and following instructions. 

Although EEG data is not recorded in this study, based on previous research (Cocks, 2022), it is 

hypothesized that EEG and fNIRS measures would show complementary predictive abilities for 

subjective sleepiness and individual changes in driving performance. Specifically, it is hypothesized that 

fNIRS measures in the frontal cortex would provide additional predictive value beyond what can be 

captured by EEG, indicating that fNIRS measures can account for a significant portion of the variance in 

subjective sleepiness and driving performance measures. 

Method 

Participants 

A total of 30 participants took part in the experiment. However, only 23 participants' data could 

be used in the end. Data files from 4 participants were corrupted due to a computer shutdown during 

the recording with Oxysoft. Data from 3 participants could not be used due to low signal quality. Among 

the remained participants, 13 were men and 10 were women, ranging in age from 19 to 37 years old (M 

= 22.7). They were recruited from The University of Twente Faculty of Behavioural, Management, and 

Social Sciences (BMS) Test Subject Pool system SONA or by the researcher. A post hoc power analysis 

conducted using GPower software (Faul et al., 2007) revealed that with a total sample size of 23 

participants and an effect size of 0.1, the achieved power was 0.445, indicating a 44.5% chance of 

detecting a significant effect (Mayr et al., 2007). The critical range of R2 values for rejecting the null 

hypothesis was 0.011 to 0.381 according to the power analysis. 

The study obtained ethical approval from the BMS Ethical Committee with project number 

220975. All participants were adults, university students, or staff from the University of Twente. They all 

had driver's licenses. Participants were verbally informed that their participation was voluntary and that 
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they could withdraw at any time without any consequences. Before the start of the experiment, they 

were provided with a written consent form containing complete information about the study and asked 

to confirm their voluntary participation. 

Materials 

Participants filled out a demographic questionnaire along with some questions to understand if 

there were any other factors that could affect their vigilance and fNIRS data before the experiment. The 

questions can be found in Appendix A. Qualtrics was used to collect answers for the questionnaire. 

Additionally, participants completed a visual acuity test to assess whether they had normal vision or 

corrected-to-normal vision as self-reported. 

Changes in the concentration of oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in the 

frontal cerebral cortex were measured using a continuous wave optical system called Brite 24 (Artinis 

Medical Systems, Elst, The Netherlands). The system generated two wavelengths of near-infrared light 

at 760 and 840 nm, which were sampled at a rate of 10 Hz. The system included 10 transmitters and 8 

receivers. The optode template used for this study allowed for a total of 27 channels with an inter-

optode distance of 3 cm (see Figure 1). 

Figure 1 

Artinis Optode Template Guide 
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The fNIRS technique relies on NIR light to measure concentration changes in oxygenated and 

deoxygenated hemoglobin concentrations in the brain. It utilizes the Hemodynamic Response Function 

(HRF) to effectively monitor cognitive activity. Hemodynamic response functions refer to the 

physiological changes in blood flow, oxygenation, and volume that occur in response to neural activity in 

the brain. HRFs are typically modeled as a series of time-dependent functions that describe the 

temporal dynamics of the hemodynamic response. 

OxySoft (version 3.2.51.4, Artinis Medical Systems, Netherlands) was used for data collection. 

The spatial arrangement slightly differs from the international 10–20 system used in EEG studies. 

Therefore, the manual digitization option in Oxysoft was used to determine the positions of the optodes 

(see Figure 2). 

Figure 2 

Manual Optode Digitization Using Oxysoft 
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 The road and traffic in the driving simulation were built in Unity (Version 2021.3.8.f1) by the 

BMS Lab at the University of Twente. The environment was created by me and fellow master student 

Abbas Kerem Dogan using assets. The driving environment represented a closed highway system (see 

Figure 3) with cloudy weather conditions and traffic. The traffic in the environment included other cars, 

but there were no pedestrians or bikes. 

Figure 3 

Driving Track 
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The connection between Oxysoft and Unity was established using the Lab Streaming Layer (LSL) 

protocol, which allows for real-time data and triggering streaming, as well as multi-modal time 

synchronization. 

The setup included a Logitech steering wheel, shift stick, pedals, and a Next Level motion and 

traction platform. However, only the steering wheel and pedals were used in this experiment. The visual 

simulation projected onto the wall covered by a 2×3-meter screen. Participants used the gas pedal to 

accelerate, the brake pedal to stop when the car was moving, and the brake pedal again to reverse 

when the car was already stopped. The driving simulator room setup can be seen in Figure 3. 

Figure 3 

Driving Simulator Room 
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Procedure 

After filling out the questionnaire, the researcher placed a properly sized fNIRS cap on each 

participant's head. Optodes were positioned according to the template, and the experiment 

commenced with a 2-minute baseline measurement. Following the measurement, participants drove in 

the driving simulator for 1 hour. They were instructed not to exceed 120 km/h to minimize differences 

in steering errors due to speed. During the driving task, participants encountered several visual 

instructions. The driving instructions included driving straight, turning right, and keeping the left lane 

(see Figure 4 for an example). When participants approached a junction, a visual cue was given, 

instructing them to make a right turn or continue driving straight ahead. Participants also received 

another driving instruction that instructed them to keep to the left lane. Failure to follow the 

instructions correctly resulted in an instruction miss. Please refer to the Appendix B for information on 

triggers in Unity and their corresponding marker symbols received by Oxysoft using the LSL connection. 

Figure 4 
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Go Straight Instruction That Was Seen by The Participants 

 

Every five minutes, participants were asked to verbally rate their sleepiness levels on a scale of 1 

to 9 using the Karolinska Sleepiness Scale. 

During the experiment, the Recforth screen recorder was used to record the screen. These 

recordings were then used to determine steering errors. Steering errors were identified by observing 

instances where participants failed to stay in the driving lane or respond appropriately to directional 

changes in the driving environment. Collisions with the divider, lampposts, and junction points within 

the driving environment were counted as steering errors. 

Data Analysis 

 The fNIRS data was transferred to Matlab using the oxysoft2matlab script provided by Artinis 

Medical Systems. The .oxy4 files were converted into .snirf files (Shared Near InfraRed File Format). 

After conversion, the snirf files were imported into Homer3 (Huppert et al., 2009), a MATLAB application 

used for analyzing fNIRS data to obtain estimates and maps of brain activation. In Homer3, the data was 

divided into 12 equal 5-minute blocks and one 2-minute baseline measurement block using events. Basic 

preprocessing steps were applied. First, the data was converted from intensity to optical density (OD). 
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Then, to remove motion artifacts, Targeted Principle Component Analysis (tCPA) was applied. tCPA was 

chosen over other motion artifact correction methods because it is applied only to pre-identified MA 

segments to avoid over-correction (Yücel et al., 2014). After that, low-pass filtering was applied to the 

data. To annihilate heart-rate artifacts (~ 1 Hz) but to conserve human respiration frequency component 

(0.2–0.4 Hz) or Mayer waves (0.1 Hz) during the hemodynamic measurement, a low-pass filter was 

designed for fNIRS at a 0.5 Hz cutoff frequency. The OD was then converted to concentration. Finally, 

block averaging was applied to the concentration data (see Appendix C for details). 

After preprocessing, the mean HRF values were exported as a text file from Homer3 and added 

to the datasets. Two datasets were created: one for oxygenated hemoglobin (HbO) HRF means and 

another for deoxygenated hemoglobin (HbR) HRF means. Each dataset included participant number, 

acuity score for the left and right eye, age, gender, nationality, education level, handedness, hours slept 

the night before, drug use, alcohol use, caffeine use, time, KSS score, channel, HRF means, steering 

errors, and instruction misses for the 23 participants. In the dataset files, the "steering errors" variable 

represents the number of instances in which a participant made steering errors during a specific 5-

minute period. Similarly, the "instruction misses" variable indicates the number of times a participant 

failed to follow the driving instructions correctly within a specific 5-minute interval. 

RStudio was used to conduct statistical analysis using the R programming language (RStudio 

Team, 2022). In R, the HRF value of the baseline condition was subtracted from the HRF values of each 

block for every channel and every participant to isolate the activity created by the experimental 

manipulation (Chuang et al., 2018). Descriptive statistics were estimated for HRF, KSS scores, steering 

errors, and instruction misses. Line graphs were created to visualize the changes over time for each 

variable of interest in both the HbO and HbR datasets. Two boxplots were created to examine the 

changes in HRF over time for HbO and HbR. 
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Correlation analysis was applied to explore the relationship between fNIRS measures (HRF for 

HbO and HbR), and sleepiness scores (KSS), instruction miss, and steering errors. Additionally, the 

correlation coefficients between KSS and steering errors, KSS and instruction miss, and steering errors 

and instruction miss were calculated to observe the relationship between these variables. The type of 

correlation analysis conducted was Pearson correlation coefficient analysis. Pearson correlation 

coefficient analysis is chosen for this analysis because it is a commonly used method to measure the 

linear relationship between two continuous variables. It assesses the strength and direction of the linear 

association between variables, indicating how closely the data points align to a straight line. Correlation 

analysis between fNIRS measures (HRF for HbO and HbR) and subjective sleepiness (KSS) scores 

examined whether changes in subjective sleepiness are correlated with changes in fNIRS measures in 

the frontal cortex, as predicted by the first hypothesis. Correlation analysis between fNIRS measures 

(HRF for HbO and HbR) and driving performance measured (steering errors and instruction misses) 

investigates whether fNIRS measures in the frontal cortex can predict individual changes in driving 

performance measures, as proposed by the second hypotheses. To further investigate these 

relationships, several linear regression analyses were conducted on the same variable pairs. While the 

correlation analysis provides information about the strength and direction of the linear relationship 

between variables, linear regression analysis allows for a more comprehensive understanding of the 

nature, significance, and predictive value of these relationships. 

The Multilevel Linear Models (MLMs) were used to examine the relationship between HRF 

means (dependent variable), KSS scores, steering errors, and instruction misses (independent variables) 

in separate models for HbO and HbR. MLM is chosen because it is very effective for analyzing data with 

nested structure, where observations are nested within higher-level units. In this study, HRF means are 

nested into channels and channels are nested into time blocks for each participant. MLMs allow for the 

estimation of both fixed effects (population-level effects) and random effects (group-level effects) 
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simultaneously and can handle unbalanced or missing data. With MLMs random intercepts and slopes 

for participants and channels can be estimated, which can help understand the variability in HRF and its 

relationships with predictors across different participants and channels. 

Two separate models were conducted for HbO and HbR with participants as a random intercept. 

HRF was added to the models as a dependent variable, while KSS scores, steering errors, and instruction 

misses were included as independent variables. MLM for HbO model examined whether changes in 

subjective sleepiness (KSS scores) predict changes in HRF (oxygenated hemoglobin - HbO) levels in the 

frontal cortex. It tested the hypothesis that increased subjective sleepiness is associated with decreased 

HbO levels, indicating resource depletion during vigilance decrement, as predicted by the CRT. MLM for 

HbO model also explored whether HRF (HbO) levels in the frontal cortex can predict individual changes 

in driving performance measures (steering errors and instruction misses). It tested the hypothesis that 

decreased HbO levels, indicating cognitive disengagement and mind-wandering due to boredom, are 

associated with a higher frequency of steering errors and instruction misses during prolonged highway 

driving, as suggested by the MT. MLM for HbR model investigated whether changes in subjective 

sleepiness (KSS scores) predict changes in HRF (deoxygenated hemoglobin - HbR) levels in the frontal 

cortex. It tested the hypothesis that increased subjective sleepiness is associated with increased HbR 

levels, indicating resource depletion during vigilance decrement, as proposed by the CRT. MLM for HbR 

model also investigated whether HRF (HbR) levels in the frontal cortex can predict individual changes in 

driving performance measures (steering errors and instruction misses). It tested the hypothesis that 

increased HbR levels, reflecting cognitive disengagement and mind-wandering due to boredom, are 

associated with a higher frequency of steering errors and instruction misses during prolonged highway 

driving, as proposed by the MT. 

After the multilevel analysis, variation partitioning analysis was performed to assess the 

proportion of variance in the HRF outcome accounted for by participant-level variation and group-level 
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variation. Random effects analysis was also performed to estimate random effects for each participant 

in the models. Considering a possible learning effect in the first 10 minutes as Cocks (2022) observed, 

data is rearranged to remove the first 10 minutes of observation. First 10 minutes is chosen because 

Cocks (2022) found out a large decrease in both steering errors and instruction miss after 10 minutes 

which indicates the learning effect is assumed to be occurred in the first 10 minutes. The 

aforementioned analyses were also carried out on the new dataset, which will be referred to as the 

adjusted dataset from this point onward. 

Two additional multilevel models were fitted for HbO and HbR with the addition of the 

channels. These models considered the nested structure of the data, with random intercepts for both 

Participant and Channel:Participant. These models examined the relationship between HRF and the 

predictors (KSS, Steering Errors, and Instruction Miss) while considering the channel-specific effects. 

After that, interaction between HRF and the predictors (KSS, Steering Errors, and Instruction Miss) were 

added in the multilevel linear regression models. Interaction analysis explored whether the relationship 

between HRF and the predictors differs depending on the channel. 

Results 

Descriptive Statistics 

 Descriptive statistics for the variables HRF, KSS, Steering Errors, and Instruction Miss are 

presented in Table 1. For oxygenated hemoglobin, the HRF ranged from -0.00013 to 0.00012, with a 

mean of 0.00000033 (SD = 0.000013). For deoxygenated hemoglobin, the HRF ranged from -0.00010 to 

0.000093, with a mean of -0.00000011 (SD = 0.0000093). Karolinska Sleepiness Score ranged from 2 to 

9, with a mean of 4.6 (SD = 1.7) which indicates participants were on the more alert side of the scale in 

general. Steering errors ranged from 0 to 10, with a mean of 1.7 (SD = 1.7) while instruction misses 

ranged from 0 to 5, with a mean of 0.29 (SD = 0.69). Overall, participants exhibited good driving 

performance with few instruction misses and steering errors (see Table 1). 
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Table 2 

Descriptive Statistics of Hemodynamic Response Function (HRF) for oxygenated (HbO) and deoxygenated 

(HbR) hemoglobin, Karolinska Sleepiness Scale (KSS), Steering Errors and Instruction Miss 

Variable Min Max Mean SD 

HRF for HbO -0.00048 0.00043 0.0000086 0.000054 

HRF for HbR -0.00031 0.00028 -0.0000042 0.000039 

KSS 2 9 4.6 1.7 

Steering Errors 0 10 1.7 1.7 

Instruction Miss 0 5 0.29 0.69 

 

Figure 5 depicts the changes in KSS scores over time. A small decrease in sleepiness can be 

observed after five minutes and after 30 minutes of driving. However, participants' sleepiness levels 

increased over time during the majority of the driving task in the simulated environment. 

Figure 5 

Line graph depicting changes in Karolinska Sleepiness Scale (KSS) over Time 

 

Note: Vertical bars represents the standard error of the mean. The y-axis represents the mean KSS at 

each time period for all participants. Time is represented in minutes. 

Figure 6 illustrates the changes in instruction misses over time. There is a notable decrease in 

instruction misses after five minutes, which may be attributed to a learning effect as participants 

familiarized themselves with the driving environment and equipment. Additionally, a sharp fluctuation 
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in instruction misses can be observed at 45 minutes, potentially indicating an increase in sleepiness 

levels. 

Figure 6 

Line graph depicting changes in Instruction Miss over Time

 

Note: Vertical bars represents the standard error of the mean. The y-axis represents the mean 

instruction miss at each time period for all participants. Time is represented in minutes. 

Figure 7 presents the changes in steering errors over time. Similar to instruction misses, a 

significant decrease in steering errors can be observed after five minutes, potentially indicating a 

learning effect. There is a slight increase in steering errors at 45 minutes, followed by a sharp decrease 

at 50 minutes. The increase in errors at 45 minutes may have prompted participants to make more 

conscious efforts to avoid mistakes, leading to the subsequent decrease at 50 minutes. The unexpected 

decrease in steering errors for all participants at exactly 50 minutes raises concerns regarding the 

experimental setup or other factors. The researcher examined the screen recordings to identify any 

anomalies in the road design that could cause this effect, but no visible problems were found. 

Figure 7 

Line graph depicting changes in Steering Errors over Time 
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Note: Vertical bars represents the standard error of the mean. The y-axis represents the mean steering 

errors at each time period for all participants. Time is represented in minutes. 

Correlations & Regressions 

 For both the complete dataset and adjusted dataset, all correlations were negligible except for 

the correlation between steering errors and instruction miss, which indicates a moderate positive 

correlation (coefficient for the complete dataset: 0.36, coefficient for the adjusted dataset: 0.39). This 

suggests that as the number of steering errors increases, the number of instruction misses also tends to 

increase, with a slightly stronger correlation for the adjusted dataset. 

The regression analysis between HRF values for HbR and self-reported sleepiness scores (KSS) 

indicates a small negative relationship between KSS and HRF, which is statistically significant (β = -

0.0015, p = .001). However, the R² value is 0.0015, indicating that HRF explains only a very small portion 

of the variability in KSS. The regression analysis of HRF for HbR and steering errors shows a small 

negative significant relationship (β = -0.15, p = .06). Nonetheless, the R² value is very low (i.e. 0.0045), 

indicating that HRF explain only a small portion of the variability in steering errors. The coefficient for 

steering errors is -0.15, suggesting a negative relationship between steering errors and KSS, which is 

statistically significant (β = -0.15, p < .001). The R² value is again low (i.e. 0.02), indicating that KSS 

explain only a small portion of the variability in steering errors. The coefficient for instruction miss is 

0.90, suggesting a positive relationship between instruction miss and steering errors, which is 

statistically significant (β = 0.90, p < .001). The R² value is 0.13, indicating that instruction miss explains a 



25 

small portion of the variability in steering errors. The regression analysis is performed using the 

individual values of instruction miss and steering errors for each time period for each participant. All 

other pairs of variables were not statistically significant. In summary, the regression analyses reveal 

some relationships between the different variables, but overall, the models have limited explanatory 

power, as indicated by the low R² values. The significance of the coefficients also varies, with some 

relationships being statistically significant while others are not. The regression analysis for the adjusted 

dataset did not yield different results. 

Multilevel Linear Model 

Two multilevel linear regression models were conducted to examine the relationships between 

the predictors (KSS, Instruction Miss, and Steering Errors) and the dependent variable HRF, for HbO and 

HbR respectively. The models included a random intercept for the variable "Participant" to account for 

the nested structure of the data. 

For Model 1 (HbO) which used the complete dataset, the predictors (KSS, Instruction Miss, and 

Steering Errors) did not have statistically significant associations with HRF for HbO. The fixed effects 

estimate for the predictors were close to zero, indicating weak or non-significant associations. The 

random effects analysis showed that the participant-level variance was very small, suggesting minimal 

variation in HRF levels between participants. The residual variance represented unexplained variation in 

HRF after accounting for the fixed and random effects. See Table 3 for values. 

Table 3 

Model 1: Multilevel Linear Model for oxygenated (HbO) hemoglobin for complete dataset 

Predictor HbO 

Estimate Standard Error t-value 

(Intercept) 0.00000668 0.00000482 1.39 

KSS 0.000000234 0.000000692 0.34 

Instruction Miss -0.000000438 0.00000109 -0.40 

Steering Errors -0.000000136 0.000000542 -0.25 

Random Effects    



26 

 Variance Standard Deviation  

Participant 0.000000000242 0.0000156  

Residual 0.00000000273 0.0000522  

N Participant   23 

REML Criterion at Convergence -114694.1 

Note: REML stands for Restricted Maximum Likelihood. It is a statistical method used for parameter 

estimation in mixed-effects models. In general, a lower REML value indicates a better fit of the model to 

the data. 

 The ICC (Intraclass Correlation Coefficient) is a statistical measure used to assess the proportion 

of variance in a dependent variable that can be attributed to the differences between groups or 

participants. It is commonly used in multilevel or hierarchical models to quantify the amount of variance 

at different levels. For Model 1 (Multilevel Linear Model for oxygenated HbO hemoglobin), the ICC value 

is approximately 0.081. This suggests that about 8.1% of the total variance in oxygenated HbO 

hemoglobin levels can be attributed to the differences between participants, while the remaining 91.9% 

is due to the residual variance or random error within participants. This relatively low ICC indicates that 

individual differences between participants contribute only a small portion of the overall variance in 

oxygenated HbO levels. 

In Model 2 (HbR), also using the complete dataset, none of the predictors (KSS, Instruction Miss, 

and Steering Errors) had statistically significant associations with HRF for HbR. The fixed effects estimate 

for the predictors was close to zero, indicating weak or non-significant associations. The random effects 

analysis revealed a small participant-level variance, indicating minimal variation in HRF levels between 

participants. The residual variance represents the unexplained variation in HRF after accounting for the 

fixed and random effects. It indicates that there is some residual variability in HRF levels that cannot be 

explained by the predictors included in the model (see Table 4). 

Table 4 
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Model 2: Multilevel Linear Model for deoxygenated (HbR) hemoglobin for complete dataset 

Predictor HbR 

Estimate Standard Error t-value 

(Intercept) -0.00000267 0.00000383 -0.70 

KSS -0.000000216 0.000000498 -0.43 

Instruction Miss 0.000000220 0.000000770 0.29 

Steering Errors -0.0000000150 0.000000386 -0.04 

Random Effects    

 Variance Standard Deviation  

Participant 0.000000000186 0.0000136  

Residual 0.00000000136 0.0000369  

N Participant   23 

REML Criterion at Convergence -119394.7 

 For Model 2 (Multilevel Linear Model for deoxygenated HbR hemoglobin), the ICC value is 

approximately 0.121. This indicates that around 12.1% of the total variance in deoxygenated HbR 

hemoglobin levels can be attributed to the differences between participants, while the remaining 87.9% 

is due to the residual variance or random error within participants. Similarly to Model 1, this ICC value 

suggests that individual differences between participants explain a relatively small proportion of the 

overall variance in deoxygenated HbR levels. 

Overall, neither model does provide strong evidence for a significant relationship between the 

predictors (KSS, Instruction Miss, Steering Errors) and HRF. The low fixed effects estimates, non-

significant t-values, and small participant-level variance suggest that these predictors have limited 

impact on HRF levels, and other factors may be influencing the observed HRF variability.  

Two additional models were also explored (Model 3 HbO and Model 4 HbR) where the adjusted 

datasets were used, the results were consistent with the previous analysis using the complete dataset. 

There is no strong evidence of a significant effect of the predictors on HRF levels. The variation in HRF is 

primarily driven by unexplained residual variation rather than participant-level differences (see Table 5 

and Table 6). 
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Table 5 

Model 3: Multilevel Linear Model for oxygenated (HbO) hemoglobin for the adjusted dataset 

Predictor HbO 

Estimate Standard Error t-value 

(Intercept) 0.00000690 0.00000552 1.25 

KSS 0.000000182 0.000000848 0.22 

Instruction Miss -0.00000000577 0.00000131 -0.004 

Steering Errors 0.0000000405 0.000000732 0.06 

Random Effects    

 Variance Standard Deviation  

Participant 0.000000000238 0.0000154  

Residual 0.00000000271 0.0000520  

N Participant   23 

REML Criterion at Convergence -93772.3 

 

Table 6 

Model 4: Multilevel Linear Model for deoxygenated (HbR) hemoglobin for the adjusted dataset 

Predictor HbR 

Estimate Standard Error t-value 

(Intercept) -0.00000248 0.00000434 -0.57 

KSS -0.000000223 0.000000619 -0.36 

Instruction Miss -0.000000138 0.000000932 -0.15 

Steering Errors -0.000000124 0.000000525 -0.24 

Random Effects    

 Variance Standard Deviation  

Participant 0.000000000188 0.0000137  

Residual 0.00000000136 0.0000369  

N Participant   23 

REML Criterion at Convergence -97589.2 

 

Two additional multilevel models were fitted for HbO and HbR with random intercepts for both 

the Participant and Channel, nested within Participant. Additionally, an interaction term was added to 

the models to investigate potential moderating effects. The interaction terms included in the models 

were KSS * steering errors, KSS * instruction miss, and steering errors * instruction miss. 
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The fixed effects results for Model HbO are as follows: The intercept was estimated to be 

0.00000664 (SE = 0.00000345, t(6800) = 1.93, p = .05). The predictor KSS showed a non-significant effect 

on HRF (estimate = 0.000000217, SE = 0.000000177, t(6800) = 1.23, p = .22). Similarly, steering errors 

also had a non-significant effect on HRF (estimate = -0.000000165, SE = 0.000000135, t(6800) = -1.22, p 

= .22). Instruction miss had a non-significant effect on HRF as well (estimate = -0.00000039, SE = 

0.000000266, t(6800) = -1.46, p = .14). The correlation of fixed effects in Model HbO indicated a 

negative correlation between KSS and steering errors (r = -0.25) and a weak negative correlation 

between KSS and instruction miss (r = -0.01). There was also a weak negative correlation between 

steering errors and instruction miss (r = -0.15). The details of the HbO model can be seen in Table 7. 

Table 7 

Model 5: Multilevel Linear Model for oxygenated (HbO) hemoglobin (Channel included) 

Predictor HbO 

Estimate Standard Error t-value 

(Intercept) 0.00000664 0.00000345 1.93 

KSS 0.000000217 0.000000177 1.23 

Instruction Miss -0.000000164 0.000000134 -1.22 

Steering Errors -0.000000390 0.000000266 -1.46 

Random Effects    

 Variance Standard Deviation  

Channel:Participant 0.00000000278 0.0000527  

Participant 0.000000000152 0.0000123  

Residual 0.000000000162 0.0000127  

N Participant   23 

REML Criterion at Convergence -130727.9 

When interaction term was added to the Model HbO, none of the interaction terms reached 

statistical significance (all p > .05). The interaction between KSS and steering errors (Estimate = -

0.0000000914, SE = 0.0000000855, t = -1.07), KSS and instruction miss (Estimate = 0.000000296, SE = 

0.00000032, t = 0.93), steering errors and instruction miss (Estimate = 0.000000103, SE = 0.000000408, t 

= 0.25), and the three-way interaction of KSS, steering errors, and instruction miss (Estimate = -
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0.00000011, SE = 0.0000000863, t = -1.28) were not statistically significant. The random effects results 

indicated that a considerable portion of the variance in HRF could be attributed to the between-

Participant level (Participant: Channel random intercept variance = 0.00000000278, SD = 0.0000527; 

Participant random intercept variance = 0.000000000151, SD = 0.0000123) and the within-Participant 

level (residual variance = 0.000000000162, SD = 0.0000127). 

For the Model HbR, the intercept was not significantly different from zero (β = -0.00000326, SE = 

0.00000296, t = -1.10, p > .05). None of the predictors, including KSS (β = -0.00000011, SE = 

0.000000128, t = -0.86, p > .05), steering errors (β = 0.0000000769, SE = 0.0000000975, t = 0.79, p > .05), 

and instruction miss (β = 0.000000242, SE = 0.000000193, t = 1.25, p > .05), showed a significant 

association with HRF. The random effects analysis revealed that the participant-level variance was very 

small (Variance = 0.000000000141, SD = 0.0000119), indicating little variability across participants. The 

random effects results indicate that there is variability in HbR levels at the between-Participant level and 

the within-Participant level across different channels. The residual variance was also small (Variance = 

0.0000000000851, SD = 0.00000922). The details can be found in Table 8. 

Table 8 

Multilevel Linear Model for deoxygenated (HbR) hemoglobin (Channel included) 

Predictor HbO 

Estimate Standard Error t-value 

(Intercept) -0.00000327 0.00000296 -1.10 

KSS -0.000000110 0.000000128 -0.86 

Instruction Miss 0.0000000769 0.0000000975 0.79 

Steering Errors 0.000000242 0.000000193 1.25 

Random Effects    

 Variance Standard Deviation  

Channel:Participant 0.00000000136 0.0000369  

Participant 0.000000000141 0.0000119  

Residual 0.0000000000851 0.00000922  

N Participant   23 

REML Criterion at Convergence -135142.6 
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 Interaction term showed that the intercept was not significantly different from zero (β = -

0.00000286, SE = 0.00000299, t = -0.96, p > .05). The interaction between KSS and steering errors 

(Estimate = 0.000000054, SE = 0.000000062, t = 0.87), KSS and instruction miss (Estimate = -

0.000000212, SE = 0.000000232, t = -0.91), steering errors and instruction miss (Estimate = -

0.0000000467, SE = 0.000000296, t = -0.16), and the three-way interaction of KSS, steering errors, and 

instruction miss (Estimate = 0.0000000655, SE = 0.0000000626, t = 1.05) were not statistically 

significant. The random effects analysis revealed that both the participant-level variance (Variance = 

0.000000000142, SD = 0.0000119) and the channel-level variance (Variance = 0.00000000136, SD = 

0.0000369) were small. The residual variance was 0.0000000000851 (SD = 0.00000922). 

Discussion 

The present study aimed to examine the relationships between fNIRS measures, subjective 

sleepiness (as measured by the Karolinska Sleepiness Scale) and driving performance measures (steering 

errors and instruction misses) during prolonged highway driving. The investigation of these relationships 

was motivated by the need to better understand the underlying mechanisms of vigilance decrement and 

its impact on driving safety. With the emergence of automated vehicles, another important 

consideration is the ability of drivers to maintain alertness and promptly take over control when 

necessary. With the current level of automation (SAE Level 2; SAE, 2018) drivers must monitor the 

autonomous vehicle operations and its surroundings and, if possible, anticipate failures of the 

automated vehicle, and respond quickly to potential take-over events (Balters et al., 2021). To fulfill 

these requirements, drivers must maintain vigilance and be prepared to take over from the vehicle. 

Mindlessness theory, as discussed in the introduction, suggests that cognitive disengagement due to 

task monotony can contribute to vigilance decrement. This notion becomes particularly relevant in the 

context of automated vehicles, as mind-wandering resulting from boredom may hinder drivers' ability to 

promptly respond and regain timely focus when taking over control. 
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Given the importance of vigilance in driving, it is crucial to identify reliable measures that can 

capture changes in cognitive states and predict performance decline. By exploring the associations 

between fNIRS measures, subjective sleepiness, and driving performance, this study sought to 

contribute to our understanding of vigilance decrement and provide insights into the potential utility of 

fNIRS as a complementary measure to assess driver vigilance. The conceptual framework guiding this 

investigation was informed by two prominent theories: cognitive resource theory and mindlessness 

theory. These theories offer distinct perspectives on the mechanisms underlying vigilance decrement, 

emphasizing either resource depletion or cognitive disengagement, respectively. Building upon these 

theoretical foundations, the hypotheses of this study aimed to investigate the relationships between 

fNIRS measures, subjective sleepiness as measured by the Karolinska Sleepiness Scale (KSS), and driving 

performance measures, such as steering errors and instruction misses. By exploring these relationships, 

the study sought to shed light on the potential of fNIRS as a reliable tool for assessing vigilance in real-

world driving scenarios and comparing its effectiveness to EEG. 

In this study, it is hypothesized that changes in subjective sleepiness will correspond to changes 

in fNIRS measures, particularly in the frontal cortex, indicating resource depletion during vigilance 

decrement. However, the results did not support these hypotheses, as no significant associations were 

found between the Karolinska Sleepiness Scale (KSS) predictor and HRF levels using multilevel models. 

Although the overall findings did not support this hypothesis, the regression analysis revealed a 

statistically significant small negative relationship between self-reported sleepiness scores (KSS) and the 

HRF for HbR. This finding aligns with previous research by Chen et al. (2021), which explored the 

relationship between fNIRS measures and sleepiness levels during N-back tasks and subsequent rest 

periods. Chen et al. (2021) reported that individuals with higher levels of sleepiness during the N-back 

task exhibited a higher HRF for HbR in the frontal cortex, indicating increased oxygen consumption in 

the brain to complete cognitive tasks. Additionally, during the rest periods, subjects with higher 
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sleepiness levels showed greater variation in HbO levels in the dorsolateral prefrontal and frontal 

cortices, suggesting a need for increased oxygen supply to compensate for the oxygen consumed during 

the tasks. However, it is important to note that the low R² value in our regression analysis indicates that 

KSS explains only a small portion of the variability in HRF. 

Even though there is a relationship between KSS and HRF for HbR based on regression analysis, 

multilevel models show a nonsignificant relationship between them. The lack of significant relationships 

between subjective sleepiness, fNIRS measures, and driving performance as indicated by the multilevel 

models may be attributed to several factors. Firstly, the small participant-level variance observed 

suggests that individual differences between participants had minimal impact on HRF levels. Instead, the 

unexplained residual variance indicates the presence of other unidentified factors contributing to the 

variability in HRF. Multilevel models account for the dependency and correlation within each level of the 

hierarchy. By explicitly modeling the random effects and capturing the variation between higher-level 

units and the correlation among observations within the same higher-level unit, multilevel models 

provide more accurate standard errors and avoid biased parameter estimates that may arise from 

disregarding the dependency or correlation. Additionally, multilevel models can enhance statistical 

power compared to single-level models by effectively utilizing the variability within and between higher-

level units, leading to more precise estimates. These considerations may explain the lack of a significant 

relationship between KSS and HRF for HbR in the multilevel model. 

The non-significant relationships between KSS and fNIRS measures in the frontal cortex, as 

indicated by the multilevel model, conflict with findings from the literature (Philip et al., 2005). 

Descriptive statistics presented in the results indicate that participants demonstrated overall good 

driving performance, with low levels of steering errors and instruction misses. The KSS scores also 

suggest that participants were generally on the more alert side of the sleepiness scale. These findings 

may partially explain the lack of significant associations between sleepiness, driving performance, and 
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HRF in the multilevel model. It is possible that the study sample consisted of individuals who were 

generally attentive and alert, resulting in limited variability in sleepiness levels and driving performance. 

However, it is also important to note that Cocks (2022) observed an increase in alpha and theta power in 

EEG when there was an increase in sleepiness, while the mean and standard deviation of the KSS scores 

(M = 4.56, SD = 1.68) were very similar to this study (M = 4.6, SD = 1.7).  

One potential reason for the non-significant relationship between sleepiness and HRF could be 

the complex nature of the physiological responses involved. Although it was hypothesized that higher 

sleepiness would lead to changes in HRF values, the brain's response to sleepiness may not have 

manifested straightforwardly within the specific measures used in this study. Other factors, such as 

cognitive load and contextual variables (simulator fidelity, scenario complexity, experimental 

instructions and so on) could have influenced the fNIRS measures and masked the effects of sleepiness. 

Another potential factor that may have influenced the lack of significant results is the difference 

in sleep deprivation levels among participants. A study by Shoaib et al. (2023) observed significant 

differences in frontal brain region activation for the oxygenated hemoglobin (HbO) measure between 

awake participants and sleep-deprived/fatigued participants. For the awake group they ensured that the 

subjects had a good night’s sleep of 7.9 h ± 0.5 and for the sleep-deprived group it was ensured that 

each participant underwent continuous sleep deprivation for 22 ± 0.5 h. The experimental periods were 

chosen to best match the experimental needs, incorporating the times with the lowest risk of sleepiness 

(in the morning) for the awake-state experiments and times with the highest risk of sleepiness (middle 

of the night) for the sleep deprived-state experiments. The awake group, which had sufficient sleep, 

exhibited higher brain activity, oxygen consumption, and cerebral blood flow, leading to higher levels of 

HbO. Conversely, the sleep-deprived or fatigued group showed diminished brain activity, resulting in 

reduced HbO levels. In the current study, participants were not divided into groups, and they were 

invited to the experiment randomly either in the morning (between 09:30-12:00) or in the afternoon 
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(between 13:30-16:00). This might be the reason why their HRF responses are different during the 

experiment. 

Alternatively, the reason why there is no significant relationship between sleepiness and fNIRS 

measures can be the speed range was too high (with no lower limit and 120 km/h as a higher limit) in 

this study. Liu (2014) examined the relationship between prefrontal activation, mental state of 

drowsiness, and driving performance in a simulated speed-control driving task using fNIRS. The study 

divided participants into two groups: a speed-free group and a speed-control group with a speed limit of 

30-40 km/h. The results revealed a positive correlation between left prefrontal activation (indicated by 

an increase in HbO concentration) and subjective drowsiness level in the speed-control group, but not in 

the speed-free group. Considering the findings of Liu (2014), it is plausible to speculate that the lack of 

significant associations between subjective sleepiness (as measured by KSS) and fNIRS measures in the 

current study could be attributed, in part, to the relatively large speed range (0-120 km/h) employed 

during the driving task. The speed of the drivers may be a confounding factor for depletion of the 

resources as suggested by CRT and the wide speed range might be preventing the changes in HRF levels 

as expected. 

The second hypothesis stated that participants driving on a monotonous highway will 

experience boredom, leading to a mind-wandering state, resulting in more instruction misses and 

steering errors, while changes in fNIRS measures will be observed.  However, the results failed to prove 

this hypothesis. 

A possible explanation for this could be the level of effort participants invested in the simulator 

driving is different than real-world driving. Li et al. (2009) investigated prolonged driving with fNIRS and 

reaction time as a performance measure. They had a task group which drove 3 hours in a simulated 

environment and a control group which just watched the driving in the same set-up. They observed an 

increase in frontal cortex oxygenation at the start of a 3-hour driving task and a decrease at the end in 
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the task group while there was no significant difference for the control group. The significant difference 

in the cerebral oxygen saturation was observed between the task and control groups during the post-

task periods. In the current study, the complexity of the simulated task may not be stimulative enough 

to see the effects that Li et al. (2009) saw with their task group. 

One possible explanation for the lack of significant findings could be related to the participants' 

driving experience, which was not thoroughly assessed in this study. While participants in the current 

study possessed a valid driver's license, their driving experience in terms of kilometers driven per day or 

overall driving expertise was not explicitly measured. This omission may have influenced the ability to 

detect meaningful relationships between driving performance and fNIRS measures. In contrast, Larue et 

al. (2011) implemented specific criteria when selecting their participants, which included having a 

minimum of two years of driving experience, driving a minimum of three days per week, and covering a 

minimum of 100 kilometers per week. By implementing these criteria, the authors aimed to minimize 

potential confounding factors related to age and inexperience. Given the absence of comprehensive 

information on participants' driving experience in the current study, it becomes difficult to ascertain 

whether driving expertise played a role in the observed results. It is possible that individuals with varying 

levels of driving experience may exhibit differential driving performance and neural activation patterns 

during the task. Factors such as accumulated driving hours, exposure to diverse driving conditions, and 

familiarity with driving techniques could potentially influence driving performance and associated neural 

activity. Participants who are used to drive more may experience boredom but maintain better control, 

which might lead to better steering than participants who drive less even though they experience mind-

wandering. 

Another potential factor that could have influenced the lack of significant results in relation to 

instruction miss and fNIRS measures is the design of the instructions given to participants. It was 

observed that participants were exposed to different numbers of instructions based on their driving 
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speed. Those driving at faster speeds received more instructions, while those driving at slower speeds 

received fewer instructions. This variability in the number of instructions might have introduced 

confounding effects on the outcomes and limited the comparability of the data. Driving speed of 

participants could also affect their stimulation levels and participants who drove with a higher speed 

could experience less boredom, in turn less mind-wandering. This may hinder abilities of fNIRS to 

observe changes in HRF for HbO and HbR. 

The multilevel linear models confirmed the lack of significant associations between the 

predictors and HRF. The small participant-level variance observed suggests that individual differences 

between participants had minimal impact on HRF levels. Instead, the unexplained residual variance 

indicated the presence of other unidentified factors contributing to the variability in HRF. Other 

unidentified factors could be blood flow, oxygen consumption, arterial saturation, and arterial and 

venous volume which could affect the cerebral tissue oxygenation signal (Tachtsidis et al. 2008). These 

findings suggest that the EEG and fNIRS measures also did not relate in terms of predicting the 

subjective level of sleepiness and individual changes in driving performance. 

While the hypotheses failed to find support in the results, an interesting observation was made 

regarding the correlation between the number of steering errors and instruction misses. Results indicate 

that an increase in the occurrence of steering errors is accompanied by a corresponding increase in the 

number of instruction misses. This pattern suggests that drivers experiencing a higher number of 

steering errors also exhibit a higher frequency of errors in following instructions. Such a relationship 

between steering errors and instruction misses is indicative of a potential vigilance decrement occurring 

during the driving task. 

Limitations and Recommendations 

This study has several limitations that should be acknowledged.  



38 

Firstly, the use of a simulated driving environment may not fully replicate the complexities and 

conditions of real-world driving. This could potentially limit the ecological validity of the results. Future 

studies could benefit from incorporating real-world driving conditions or utilizing more advanced driving 

simulators that can better mimic real-world driving scenarios. However, it is important to consider the 

safety of the drivers and capabilities of fNIRS measurement while designing the real-world driving 

studies. If real-world driving would not be possible due to increased sleepiness could be a threat to 

driver safety, more advanced equipment for the driving simulator such as a moving base that replicates 

movements felt in real life driving or speakers and lights to replicate traffic sounds and lighting could be 

integrated into the study. This will ensure a more realistic experience which stimulates actual driving 

behavior. 

Secondly, future researchers could consider administering black coverage over the optodes to 

counteract artifact due to light and maintain a light level close to the natural light in the experiment 

room. In this study, the lights were always dimmed to get better signal, but this could also affect the 

sleepiness level of the participants and it is different from how they drive in the real-world under the 

sunlight. 

Another limitation of the study is the use of a single Brite 24 device, which has a limited number 

of channels for data acquisition. This limited spatial coverage and resolution of the fNIRS measurements 

in the frontal cortex. To overcome this limitation, future studies could consider using a Dual Brite 

system, which offers increased channel coverage of up to 54 channels and allows for the inclusion of 

short-separation channels. The inclusion of short-separation channels improves the accuracy of 

recorded fNIRS data by measuring signals originating from shallow tissue layers. This would improve the 

accuracy of the data and lead to better results. 

In this study, participant recruitment was largely conducted through the SONA system, which 

may have resulted in participants with varying levels of driving experience. To better understand the 
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relationship between driving performance and fNIRS measures, future studies should assess 

participants' driving experience. This can be achieved by collecting data on the number of years 

participants have held a driver's license, their frequency of driving, and the average distance covered. 

Gathering such information would provide valuable insights into the potential influence of driving 

experience on driving performance and its neural correlates. 

To investigate the relationship between sleepiness and hemodynamic response function (HRF), 

future studies should recruit participants with a wider range of sleepiness levels. This could be 

accomplished by including individuals with different sleep schedules or testing participants at different 

times of the day when sleepiness levels vary. Additionally, dividing participants into awake and sleep-

deprived groups could help isolate the effects of sleep deprivation on fNIRS measures. It is also 

recommended to consider additional measures of driving performance, such as reaction time and lane 

deviation, in combination with subjective ratings, instruction miss, and steering errors. Advanced 

computer vision techniques and machine learning algorithms can be employed to enhance the 

evaluation of steering errors, providing a more comprehensive analysis without relying solely on manual 

screen recording. 

In this study, there was a higher speed limit of 120 km/h, but no lower speed limit was 

implemented. Future studies should consider using a standardized number of instructions for all 

participants, regardless of their driving speed. This approach would ensure that each participant 

receives a similar number of instructions during the driving task, facilitating more meaningful 

comparisons across individuals. Additionally, implementing a lower speed limit in addition to the 

existing higher speed limit could help maintain a consistent level of instruction exposure across 

participants. By controlling the number of instructions received, researchers can more accurately assess 

the impact of these instructions on driving performance and the activation of the frontal cortex. 
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Additionally, future researchers could consider choosing a small range for the speed limit. By 

using a narrower speed range, such as 30-40 km/h as in Liu's study (2014), it is possible that the effects 

of sleepiness on prefrontal activation captured by fNIRS could have been more pronounced and 

detectable. While the high speed of the drivers may be a confounding factor for resource depletion, as 

suggested by Cognitive Resource Theory (CRT); lower speeds can potentially induce boredom, leading to 

increased mind-wandering, as proposed by Mindlessness Theory (MT). To investigate the effects 

suggested by MT and CRT, future studies could consider determining different speed limits in higher and 

lower ranges. For instance, one group of participants could drive at speeds ranging from 40-50 km/h, 

while the other group could drive at speeds ranging from 120-130 km/h. By manipulating speed limits 

ranges, researchers can examine how different speed contexts influence the effects predicted by MT 

and CRT, potentially shedding light on the interplay between cognitive resources, mind-wandering, and 

driving performance. 

Although the overall impact was minimal, the line graphs clearly indicate the presence of a 

learning effect among participants during the initial five-minute period. To mitigate or eliminate steering 

errors and missed instructions resulting from this learning effect, future studies should allocate a trial 

period for participants to familiarize themselves with the driving environment before data collection 

begins. This familiarization period would help participants adapt to the driving task and minimize the 

confounding effects of the learning curve on the measured variables. 

While this study considered the results of an EEG study and fNIRS provides valuable insights into 

cerebral hemodynamic responses, future studies could consider integrating these two 

neurophysiological measures simultaneously to provide a more comprehensive understanding of 

vigilance decrement. The combination of fNIRS and EEG could help capture both the hemodynamic and 

electrophysiological aspects of brain activity, enhancing our understanding of the underlying 

mechanisms involved in vigilance decrement. 
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The findings of this study, although not supporting the initial hypotheses, have important 

theoretical implications for approaches to vigilance decrement. The lack of significant associations 

between subjective sleepiness, fNIRS measures, and driving performance suggests that vigilance 

decrement is a complex phenomenon that might be influenced by various factors beyond resource 

depletion or cognitive disengagement alone. Future research should continue to explore theoretical 

frameworks and develop comprehensive models that can capture the multifaceted nature of vigilance 

decrement and its underlying mechanisms. 

Finally, it would be good to consider the sample size was relatively small, which may have 

limited the ability to detect significant associations between variables. To address this limitation, future 

studies should consider increasing the sample size to improve the statistical power and enhance the 

generalizability of the findings. A larger and more diverse sample would allow for a more robust 

examination of the relationships under investigation. 
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Appendix A – Informed Consent and Qualtrics Questionnaire 

You are being invited to participate in a research study titled The Vigilant Brain of Drivers in 

Driving Simulator: an fNIRS Study. This study is being conducted by Yaz Armagan from the Faculty of 

Behavioural, Management and Social Sciences at the University of Twente. Supervisor of this master 

Psychology thesis is Assoc. Prof. Dr. Rob van der Lubbe. 

The purpose of this research study is to understand if fNIRS is effective in predicting lapses of 

attention in a driving simulator, which in real-life driving conditions may lead to serious accidents. This 

experiment lasts for 2-3 hours in total. You will fill in a questionnaire after signing the informed consent. 

Then, you will be driving for an hour in a simulated environment, and this might be stressful or might 

create nausea. If you begin to feel uncomfortable, you have every right to stop the experiment at any 

point. Your participation in this study is entirely voluntary and you can withdraw at any time. You are 

free to omit any question. 

You will gain 3 credits if you are joining the experiment through SONA test subject pool. 

Your data will be used for research purposes only and will be stored completely anonymous. You will not 

be asked any identifying personal data and your data will be further anonymized by giving you a 

participant number. 

Contact Information of Researcher 

If you have any questions about the study or your privacy rights, such as accessing, changing, 

deleting, or updating your data, please contact me, Yaz Armagan by i.c.armagan@student.utwente.nl  

Contact Information for Questions about Your Rights as a Research Participant 

If you have questions about your rights as a research participant, or wish to obtain information, 

ask questions, or discuss any concerns about this study with someone other than the researcher(s), 

please contact the Secretary of the Ethics Committee/domain Humanities & Social Sciences of the 
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Faculty of Behavioural, Management and Social Sciences at the University of Twente by 

ethicscommittee-hss@utwente.nl 

I have read and understood the study information. I have been able to ask questions about the 

study and my questions have been answered to my satisfaction. – Yes/No 

I consent voluntarily to be a participant in this study and understand that I can refuse to answer 

questions and I can withdraw from the study at any time, without having to give a reason. – Yes/No 

I understand that taking part in the study involves a survey questionnaire and an experiment 

with fNIRS and driving simulator. – Yes/No 

I understand that information I provide will only be used for research purposes. – Yes/No 

 

1. For the next question, you will have to go the following link and complete visual acuity test. 

https://michaelbach.de/fract/FrACT10/capp/index.html 

Left eye (write with a comma between two values): 

Right eye (write with a comma between two values): 

2. Please enter your age. 

3. Please select your gender. – Male/Female/Non-binary,third gender/Prefer not to say 

4. Please enter your nationality. 

5. Do you have normal vision? – Yes/No 

If yes, survey continues from question Q6 

If no, survey continues from question Q7 

6. Are you using any vision correction? (glasses, contact lenses) – Yes/No 

7. Please select your highest level of education. - High school graduate/ HBO (Profession-oriented 

higher education)/ WO (Research-oriented higher education)/ Master graduate/Doctorate 

8. Please select your handedness. - Left-handed/ Right-handed/ Ambidextrous (both) 

mailto:ethicscommittee-hss@utwente.nl
https://michaelbach.de/fract/FrACT10/capp/index.html
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9. Have you taken any mind altering drugs in the last two weeks? – Yes/No 

10. Have you had alcohol over the last 24 hours? – Yes/No 

11. Have you had caffeinated drinks over the last 24 hours? Yes/No 

12. How many hours have you slept last night? – More than 8 hours/ 5 to 8 hours/ Less than 5 hours 

13. Please report your level of sleepiness. –  According to the Karolinska Sleepiness Scale 
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Appendix B – Driver Simulator Requirements 

 The driver (the participant) will drive in the driving environment and will be given instruction 

prompts to do certain actions. There will be other cars driving in the driving environment as well. These 

cars will spawn outside the view of the driver. Because these other cars cannot be controlled, they could 

possibly act as obstacles.  

Requirements  

• Scenarios provided in the environment  

• Trigger and outcome information fed to the oxysoft  

• Trigger symbol should be used as input to the oxysoft  

Scenario  

• Take the exit (make a right)  

• Go straight  

• Switch lanes   

Triggers  

• Triggers for the scenarios are prompted (appear on screen)  

• Triggers for when the scenarios are executed (desired)  

• Triggers for when the scenarios are not executed (undesired)  

  Scenario  Outcome  Trigger Symbol (sent to 

fNIRS using LSL)  

Meanings of the 

cues  

Trigger 

Symbol 

(sent to 

fNIRS)  

Symbol 

(On the 

screen in 

the car)  

Desired  Undesired  Desired  Undesired  
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Take the exit 

(make a right)  

2  

  

Driver 

makes a 

right exit 

Driver does 

not take the 

exit 

02  22  

Go straight  1  

  

Driver goes 

straight  

Driver makes 

a right exit 

01  11  

Keep Left  

  

3  

  

Driver 

maintains 

driving in 

the left 

lane  

Driver does 

not keep to 

the left  

03  33  
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Appendix C – Preprocessing with Homer 

● Convert the .oxy4 files from Oxysoft to Matlab format using the oxysoft2matlab script (provided 

by Artinis Medical Systems). Choose both project file and individual oxy4file to make sure output 

will include the template information. 

 

● Choose the .snirf data type as the output format. 
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● Place the .snirf file in a folder within the Homer3 directory for Homer3 to read it. 

● Don’t forget to install the required toolboxes for Homer3 in Matlab, including the Signal 

Processing Toolbox, Image Processing Toolbox, Curve Fitting Toolbox, Statistics and Machine 

Learning Toolbox, Wavelet Toolbox, and Symbolic Math Toolbox. 

● Open Homer3 and access the Edit Events TSV file tool to modify the event triggers. LSL triggers 

from Oxysoft is not needed here. For this study, data needs to be divided into 12 5-minute 

intervals. 

 

• Go to Tools>Edit Events TSV file. 
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• In the TSV file, delete the existing events and put events according to the needs of the study. 
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• After modifying the events, the data will be divided into the specified intervals and a baseline 

period. 

 

• Proceed to preprocess the data by selecting the Edit Processing Stream option in Homer3's main 

interface. (Tools > Edit Processing Stream). 
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• In the processing screen, choose the desired preprocessing steps. 

 

• It is important to click save after choosing the desired steps and saving the current processing 

stream. 
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• Close the processing window and click on Edit Options in the Homer3 main GUI. 

 

• Enter the parameter values for each preprocessing step. For this study the steps were: 

1. Convert to optical densities: This step does not require any additional parameters. 

2. Motion artifact correction (tCPA): Apply the tCPA model for efficient motion artifact 

correction in pre-identified segments. tCPA is applied as motion artifact correction model 

because it is very efficient when motion is the main source of variance and it is applied only 

to pre-identified MA segments to avoid over-correction. 

3. Low-pass filtering: Design a low-pass filter with a cutoff frequency of 0.5 Hz to remove 

heart-rate artifacts (~ 1 Hz)  while preserving respiration frequencies (0.2–0.4 Hz) or Mayer 

waves (0.1 Hz) during the hemodynamic measurement. 
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4. High-pass filtering: It is not recommended to use high-pass filtering as it may remove 

important signals, so it can be omitted.  

5. OD to concentration: Apply the Modified Beer-Lambert Law with a conversion factor of 6.06 

(which appears as 6.1 when entered). This value is the advice from Artinis Medical System 

from their fNIRS analysis toolbox series – Homer article. 

6. Average trials: Determine a sufficiently long tRange to capture the longest trial (e.g., 5 

minutes) based on stimulus marks. When Homer3 sees the new stimulus mark, it assumes it 

is the start of another stimulus.  

 

• Manually exclude bad channels and exclude data before or after the experiment using the 

Exclude Data menu on the right side of the Homer3 GUI. 
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• After applying the preprocessing steps by clicking "Run," the data will be displayed as below, 

including OD and concentration views. 
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• Export the hemodynamic response function (HRF) means by selecting File > Export HRF Means 

and save it as a text file.  
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Appendix D – Additional Results 

Figure D1. 

Boxplot of Changes in HRF over Time for HbO 

 

Figure D2. 

Boxplot of Changes in HRF over Time for HbR 
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Figure D3. 

Bar plots of changes in HRF over time 

 

Figure D4. 

Line graph depicting mean changes in HRF over time for each channel (for HbO) 
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Figure D5. 

Line graph depicting mean changes in HRF over time for each channel (for HbR) 
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Appendix E – R Script 

```{r setup, include=FALSE} 

knitr::opts_chunk$set(echo = TRUE) 

# Load required packages 

#For reading excel files 

library(readxl) 

# For data manipulation and visualization 

library(tidyverse) 

library(dplyr) 

library(ggplot2) 

#For extending ggplot2 with statistical significance annotations 

library(ggsignif) 

#For creating American Psychological Association (APA) style tables 

library(apaTables) 

# For conducting psychological and psychometric research, including descriptive statistics and factor 

analysis 

library(psych) 

#For summarizing and visualizing regression models 

library(jtools) 

#For implementing linear mixed-effects models 

library(lme4) 

#For working with statistical models and computing effect sizes 

library(sjstats) 

#For producing high-quality, anti-aliased graphics output 
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library(Cairo) 

``` 

# Set the option for numeric display format 
options(scipen=999) 

 

# Code chunk without warning messages 

suppressWarnings({ 

# Read the HbO data 

baseline_hbo_data <- read_excel("C:/Users/NIRS-PC/Desktop/Yaz/Driver Vigilance-HbO - Baseline.xlsx") 

 

# Read the HbR data 

baseline_hbr_data <- read_excel("C:/Users/NIRS-PC/Desktop/Yaz/Driver Vigilance-HbR - Baseline.xlsx") 

 

# Clean NA values 

baseline_hbo_data <- na.omit(baseline_hbo_data) 

baseline_hbr_data <- na.omit(baseline_hbr_data) 

}) 

# Subtract corresponding 0 HRF values from every other Time HRF values to isolate the activity created 

by the experimental manipulation 

time_points <- c(5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60) 

 

subtract_hrf <- function(data) { 

  data <- data %>% 

    group_by(Participant, Channel) %>% 

    mutate(HRF = HRF - HRF[Time == 0]) 
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  return(data) 

} 

 

# Subtract HRF values for HbO 

baseline_hbo_data <- subtract_hrf(baseline_hbo_data) 

 

# Subtract HRF values for HbR 

baseline_hbr_data <- subtract_hrf(baseline_hbr_data) 

 

# Verify the updated datasets 

head(baseline_hbo_data) 

head(baseline_hbr_data) 

# Remove rows where Time=0 

clean_hbO_data <- baseline_hbo_data %>% filter(Time != 0) 

clean_hbR_data <- baseline_hbr_data %>% filter(Time != 0) 

 

# Verify the updated datasets 

head(clean_hbO_data) 

head(clean_hbR_data) 

# Bind the cleaned datasets 

combined_data <- bind_rows(clean_hbO_data, clean_hbR_data) 

# Remove rows where Time=5 and Time=10 

clean_hbO_data_r <- clean_hbO_data %>% filter(Time != 5 & Time != 10) 
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clean_hbR_data_r <- clean_hbR_data %>% filter(Time != 5 & Time != 10) 

 

# Verify the removed datasets 

head(clean_hbO_data_r) 

head(clean_hbR_data_r) 

# Bind the cleaned adjusted datasets 

combined_data_r <- bind_rows(clean_hbO_data_r, clean_hbR_data_r) 

# Get unique participants 

unique_participants <- unique(combined_data$Participant) 

 

# Initialize empty lists for age and gender 

age_list <- c() 

gender_list <- c() 

 

# Loop through unique participants 

for (participant in unique_participants) { 

  # Extract age and gender for the current participant 

  participant_data <- subset(combined_data, Participant == participant) 

  age <- participant_data$Age[1]  # Assuming age is the same for all rows of a participant 

  gender <- participant_data$Gender[1]  # Assuming gender is the same for all rows of a participant 

   

  # Append age and gender to the respective lists 

  age_list <- c(age_list, age) 

  gender_list <- c(gender_list, gender) 
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} 

 

# Descriptive statistics for age 

age_summary <- summary(age_list) 

print(age_summary) 

# Descriptive statistics for gender 

gender_table <- table(gender_list) 

print(gender_table) 

#For complete dataset 

# Define the variables and statistics to include in the table 

variables <- c("HRF", "KSS", "SteeringErrors", "InstructionMiss") 

statistics <- c("min", "max", "mean", "sd") 

 

# Function to compute the specified statistics 

compute_statistics <- function(x) { 

  c(min(x, na.rm = TRUE), max(x, na.rm = TRUE), mean(x, na.rm = TRUE), sd(x, na.rm = TRUE)) 

} 

 

# Create APA-style descriptive table for HbO 

hbO_descriptives <- sapply(clean_hbO_data[, variables], compute_statistics) 

 

# Add row and column names to the table 

rownames(hbO_descriptives) <- c("Min", "Max", "Mean", "SD") 

colnames(hbO_descriptives) <- c("HRF", "KSS", "Steering Errors", "Instruction Miss") 



70 

 

# Print the APA-style descriptive table for HbO 

print(hbO_descriptives, format = "html", digits = 2) 

# Create APA-style descriptive table for HbR 

hbR_descriptives <- sapply(clean_hbR_data[, variables], compute_statistics) 

 

# Add row and column names to the table 

rownames(hbR_descriptives) <- c("Min", "Max", "Mean", "SD") 

colnames(hbR_descriptives) <- c("HRF", "KSS", "Steering Errors", "Instruction Miss") 

 

# Print the APA-style descriptive table for HbR 

print(hbR_descriptives, format = "html", digits = 2) 

#For the adjusted dataset 

# Define the variables and statistics to include in the table 

variables <- c("HRF", "KSS", "SteeringErrors", "InstructionMiss") 

statistics <- c("min", "max", "mean", "sd") 

 

# Function to compute the specified statistics 

compute_statistics <- function(x) { 

  c(min(x, na.rm = TRUE), max(x, na.rm = TRUE), mean(x, na.rm = TRUE), sd(x, na.rm = TRUE)) 

} 

 

# Create APA-style descriptive table for HbO 

hbO_descriptives_removed <- sapply(clean_hbO_data_r[, variables], compute_statistics) 
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# Add row and column names to the table 

rownames(hbO_descriptives_removed) <- c("Min", "Max", "Mean", "SD") 

colnames(hbO_descriptives_removed) <- c("HRF", "KSS", "Steering Errors", "Instruction Miss") 

 

# Print the APA-style descriptive table for HbO 

print(hbO_descriptives_removed, format = "html", digits = 2) 

# Create APA-style descriptive table for HbR 

hbR_descriptives_removed <- sapply(clean_hbR_data_r[, variables], compute_statistics) 

 

# Add row and column names to the table 

rownames(hbR_descriptives_removed) <- c("Min", "Max", "Mean", "SD") 

colnames(hbR_descriptives_removed) <- c("HRF", "KSS", "Steering Errors", "Instruction Miss") 

 

# Print the APA-style descriptive table for HbR 

print(hbR_descriptives_removed, format = "html", digits = 2) 

# Define APA theme 

apa_theme <- theme( 

  plot.margin = unit(c(1, 1, 1, 1), "cm"), 

  plot.background = element_rect(fill = "white", color = NA), 

  plot.title = element_text(size = 11, face = "bold", hjust = 0.5, margin = margin(b = 15)), 

  axis.line = element_line(color = "black", linewidth = 0.5), 

  axis.title = element_text(size = 11, color = "black"), 

  axis.text = element_text(size = 11, color = "black"), 
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  axis.text.x = element_text(margin = margin(t = 10)), 

  axis.title.y = element_text(margin = margin(r = 10)), 

  axis.ticks = element_line(linewidth = 0.5), 

  panel.grid = element_blank(), 

  legend.position = "right", 

  legend.text = element_text(size = 11), 

  legend.margin = margin(t = 5, l = 5, r = 5, b = 5), 

  legend.key = element_rect(color = NA, fill = NA) 

) 

 

theme_set(theme_minimal(base_size = 11) + apa_theme) 

 

 

# Line graph depicting how Karolinska Sleepiness Scale (KSS) changes over time (mean with standard 

error bars) 

kss_hrf_plot <- ggplot(clean_hbO_data, aes(x = Time, y = KSS)) + 

  stat_summary(fun.data = mean_se, geom = "line", fun.args = list(alpha = 1), 

               position = position_dodge(width = .5)) + 

  stat_summary(fun = mean, geom = "line", position = position_dodge(width = .5)) + 

  stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.1, fun.args = list(mult = 1), position = 

position_dodge(width = .5)) + 

  labs(x = "\nTime", y = "KSS \n") + 

  ggtitle("KSS Changes Over Time") 
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# Line graph depicting how Steering Errors changes over time (mean with standard error bars) 

steering_hrf_plot <- ggplot(clean_hbO_data, aes(x = Time, y = SteeringErrors)) + 

  stat_summary(fun.data = mean_se, geom = "line", fun.args = list(alpha = 1), 

               position = position_dodge(width = .5)) + 

  stat_summary(fun = mean, geom = "line", position = position_dodge(width = .5)) + 

  stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.1, fun.args = list(mult = 1), position = 

position_dodge(width = .5)) + 

  labs(x = "\nTime", y = "Steering Errors \n") + 

  ggtitle("Steering Errors Changes Over Time") 

 

 

# Line graph depicting how Instruction Miss changes over time (mean with standard error bars) 

instruction_hrf_plot <- ggplot(clean_hbO_data, aes(x = Time, y = InstructionMiss)) + 

  stat_summary(fun.data = mean_se, geom = "line", fun.args = list(alpha = 1), 

               position = position_dodge(width = .5)) + 

  stat_summary(fun = mean, geom = "line", position = position_dodge(width = .5)) + 

  stat_summary(fun.data = mean_se, geom = "errorbar", width = 0.1, fun.args = list(mult = 1), position = 

position_dodge(width = .5)) + 

  labs(x = "\nTime", y = "Instruction Miss \n") + 

  ggtitle("Instruction Miss Changes Over Time") 
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# Line graph depicting changes of HRF for HbO and HRF for HbR over time 

hrf_hbo_plot <- ggplot(clean_hbO_data, aes(x = Time, y = HRF)) + 

  stat_summary(fun = "mean", geom = "line") + 

  labs(x = "Time", y = "HRF") + 

  ggtitle("HRF Changes Over Time (HbO)") 

 

hrf_hbr_plot <- ggplot(clean_hbR_data, aes(x = Time, y = HRF)) + 

  stat_summary(fun = "mean", geom = "line") + 

  labs(x = "Time", y = "HRF") + 

  ggtitle("HRF Changes Over Time (HbR)") 

# Save line graphs in APA style as TIFF files 

ggsave("kss_hrf_plot.tiff", plot = kss_hrf_plot, width = 6, height = 3, dpi = 300, units = "in", type = 

"cairo") 

ggsave("steering_hrf_plot.tiff", plot = steering_hrf_plot, width = 6, height = 3, dpi = 300, units = "in", 

type = "cairo") 

ggsave("instruction_hrf_plot.tiff", plot = instruction_hrf_plot, width = 6, height = 3, dpi = 300, units = 

"in", type = "cairo") 

ggsave("hrf_hbo_plot.tiff", plot = hrf_hbo_plot, width = 6, height = 3, dpi = 300, units = "in", type = 

"cairo") 

ggsave("hrf_hbr_plot.tiff", plot = hrf_hbr_plot, width = 6, height = 3, dpi = 300, units = "in", type = 

"cairo") 

# Boxplot of changes in HRF over time for HbO 

ggplot(clean_hbO_data, aes(x = factor(Time), y = HRF)) + 

  geom_boxplot() + 
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  labs(x = "Time", y = "HRF (HbO)") + 

  ggtitle("Boxplot of Changes in HRF over Time (HbO)") + 

  theme_minimal(base_size = 11) + 

  apa_theme 

# Boxplot of changes in HRF over time for HbR 

ggplot(clean_hbR_data, aes(x = factor(Time), y = HRF)) + 

  geom_boxplot() + 

  labs(x = "Time", y = "HRF (HbR)") + 

  ggtitle("Boxplot of Changes in HRF over Time (HbR)") + 

  theme_minimal(base_size = 11) + 

  apa_theme 

 

# Calculate the mean HRF over time for each channel 

mean_hbO_data <- aggregate(HRF ~ Time + Channel, data = clean_hbO_data, FUN = mean) 

 

# Visualize the mean changes in HRF over time for each channel (HbO) 

ggplot(mean_hbO_data, aes(x = Time, y = HRF, group = Channel)) + 

  geom_line(aes(color = as.factor(Channel)), linewidth = 1) + 

  labs(x = "Time", y = "Mean HRF (HbO)", color = "Channel") + 

  theme_minimal() 

 

# Calculate the mean HRF over time for each channel 

mean_hbR_data <- aggregate(HRF ~ Time + Channel, data = clean_hbR_data, FUN = mean) 
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# Visualize the mean changes in HRF over time for each channel (HbR) 

ggplot(mean_hbR_data, aes(x = Time, y = HRF, group = Channel)) + 

  geom_line(aes(color = as.factor(Channel)), linewidth = 1) + 

  labs(x = "Time", y = "Mean HRF(HbO)", color = "Channel") + 

  theme_minimal() 

 

# Compute mean HRF for each time point, channel, and participant (HbO) 

mean_hbO_data <- clean_hbO_data %>% 

  group_by(Time, Channel, Participant) %>% 

  summarize(mean_HRF = mean(HRF), .groups = "drop") 

 

# Create a graph showing the mean changes in HRF over time for each channel and participant (HbO) 

ggplot(mean_hbO_data, aes(x = Time, y = mean_HRF, group = Participant)) + 

  geom_line(aes(color = as.factor(Channel)), linewidth = 0.5) + 

  facet_wrap(~ Channel, nrow = 5) + 

  labs(x = "Time", y = "Mean HRF", color = "Channel") + 

  theme_minimal() 

 

# Create a bar plot for HbO 

plot_hbO <- ggplot(clean_hbO_data, aes(x = Time, y = HRF)) + 

  geom_bar(stat = "identity", fill = "blue", color = "black") + 

  labs(title = "HRF over Time (HbO)", 

       x = "Time", 

       y = "HRF") + 



77 

  apa_theme 

 

# Create a bar plot for HbR 

plot_hbR <- ggplot(clean_hbR_data, aes(x = Time, y = HRF)) + 

  geom_bar(stat = "identity", fill = "red", color = "black") + 

  labs(title = "HRF over Time (HbR)", 

       x = "Time", 

       y = "HRF") + 

  apa_theme 

 

# Arrange the plots side by side 

gridExtra::grid.arrange(plot_hbO, plot_hbR, ncol = 2) 

#For the complete dataset 

# Correlation analysis between HRF and KSS for HbO 

correlation_hbo_kss <- cor(clean_hbO_data$HRF, clean_hbO_data$KSS) 

 

# Correlation analysis between HRF and KSS for HbR 

correlation_hbr_kss <- cor(clean_hbR_data$HRF, clean_hbR_data$KSS) 

 

# Correlation analysis between HRF and steering errors for HbO 

correlation_hbo_steering <- cor(clean_hbO_data$HRF, clean_hbO_data$SteeringErrors) 

 

# Correlation analysis between HRF and steering errors for HbR 

correlation_hbr_steering <- cor(clean_hbR_data$HRF, clean_hbR_data$SteeringErrors) 
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# Correlation analysis between HRF and instruction miss for HbO 

correlation_hbo_instruction <- cor(clean_hbO_data$HRF, clean_hbO_data$InstructionMiss) 

 

# Correlation analysis between HRF and instruction miss for HbR 

correlation_hbr_instruction <- cor(clean_hbR_data$HRF, clean_hbR_data$InstructionMiss) 

 

# Correlation analysis between KSS and steering errors 

correlation_kss_steering <- cor(combined_data$KSS, combined_data$SteeringErrors) 

 

# Correlation analysis between KSS and instruction miss 

correlation_kss_instruction <- cor(combined_data$KSS, combined_data$InstructionMiss) 

 

# Correlation analysis between steering errors and instruction miss 

correlation_steering_instruction <- cor(combined_data$SteeringErrors, 

combined_data$InstructionMiss) 

 

# Correlation analysis results 

cat("Correlation Analysis:\n") 

# HRF and KSS for HbO 

cat("Correlation between HRF and KSS (HbO): ", correlation_hbo_kss, "\n") 

# HRF and KSS for HbR 

cat("Correlation between HRF and KSS (HbR): ", correlation_hbr_kss, "\n") 
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# HRF and steering errors for HbO 

cat("Correlation between HRF and Steering Errors (HbO): ", correlation_hbo_steering, "\n") 

# HRF and steering errors for HbR 

cat("Correlation between HRF and Steering Errors (HbR): ", correlation_hbr_steering, "\n") 

# HRF and instruction miss for HbO 

cat("Correlation between HRF and Instruction Miss (HbO): ", correlation_hbo_instruction, "\n") 

# HRF and instruction miss for HbR 

cat("Correlation between HRF and Instruction Miss (HbR): ", correlation_hbr_instruction, "\n") 

# KSS and steering errors 

cat("Correlation between KSS and Steering Errors: ", correlation_kss_steering, "\n") 

# KSS and instruction miss 

cat("Correlation between KSS and Instruction Miss: ", correlation_kss_instruction, "\n") 

# Steering errors and instruction miss 

cat("Correlation between Steering Errors and Instruction Miss: ", correlation_steering_instruction, "\n") 

#For the adjusted dataset 

# Correlation analysis between HRF and KSS for HbO 

correlation_hbo_kss_r <- cor(clean_hbO_data_r$HRF, clean_hbO_data_r$KSS) 

 

# Correlation analysis between HRF and KSS for HbR 

correlation_hbr_kss_r <- cor(clean_hbR_data_r$HRF, clean_hbR_data_r$KSS) 

 

# Correlation analysis between HRF and steering errors for HbO 

correlation_hbo_steering_r <- cor(clean_hbO_data_r$HRF, clean_hbO_data_r$SteeringErrors) 

 



80 

# Correlation analysis between HRF and steering errors for HbR 

correlation_hbr_steering_r <- cor(clean_hbR_data_r$HRF, clean_hbR_data_r$SteeringErrors) 

 

# Correlation analysis between HRF and instruction miss for HbO 

correlation_hbo_instruction_r <- cor(clean_hbO_data_r$HRF, clean_hbO_data_r$InstructionMiss) 

 

# Correlation analysis between HRF and instruction miss for HbR 

correlation_hbr_instruction_r <- cor(clean_hbR_data_r$HRF, clean_hbR_data_r$InstructionMiss) 

 

# Correlation analysis between KSS and steering errors 

correlation_kss_steering_r <- cor(combined_data_r$KSS, combined_data_r$SteeringErrors) 

 

# Correlation analysis between KSS and instruction miss 

correlation_kss_instruction_r <- cor(combined_data_r$KSS, combined_data_r$InstructionMiss) 

 

# Correlation analysis between steering errors and instruction miss 

correlation_steering_instruction_r <- cor(combined_data_r$SteeringErrors, 

combined_data_r$InstructionMiss) 

 

# Correlation analysis results 

cat("Correlation Analysis for adjusted dataset:\n") 

# HRF and KSS for HbO 

cat("Correlation between HRF and KSS (HbO): ", correlation_hbo_kss_r, "\n") 
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# HRF and KSS for HbR 

cat("Correlation between HRF and KSS (HbR): ", correlation_hbr_kss_r, "\n") 

# HRF and steering errors for HbO 

cat("Correlation between HRF and Steering Errors (HbO): ", correlation_hbo_steering_r, "\n") 

# HRF and steering errors for HbR 

cat("Correlation between HRF and Steering Errors (HbR): ", correlation_hbr_steering_r, "\n") 

# HRF and instruction miss for HbO 

cat("Correlation between HRF and Instruction Miss (HbO): ", correlation_hbo_instruction_r, "\n") 

# HRF and instruction miss for HbR 

cat("Correlation between HRF and Instruction Miss (HbR): ", correlation_hbr_instruction_r, "\n") 

# KSS and steering errors 

cat("Correlation between KSS and Steering Errors: ", correlation_kss_steering_r, "\n") 

# KSS and instruction miss 

cat("Correlation between KSS and Instruction Miss: ", correlation_kss_instruction_r, "\n") 

# Steering errors and instruction miss 

cat("Correlation between Steering Errors and Instruction Miss: ", correlation_steering_instruction_r, 

"\n") 

cat("\n") 

#For the complete dataset 

# Regression analysis between HRF and KSS for HbO 

regression_hbo_kss <- lm(HRF ~ KSS, data = clean_hbO_data) 

 

# Regression analysis between HRF and KSS for HbR 

regression_hbr_kss <- lm(HRF ~ KSS, data = clean_hbR_data) 
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# Regression analysis between HRF and steering errors for HbO 

regression_hbo_steering <- lm(HRF ~ SteeringErrors, data = clean_hbO_data) 

 

# Regression analysis between HRF and steering errors for HbR 

regression_hbr_steering <- lm(HRF ~ SteeringErrors, data = clean_hbR_data) 

 

# Regression analysis between HRF and instruction miss for HbO 

regression_hbo_instruction <- lm(HRF ~ InstructionMiss, data = clean_hbO_data) 

 

# Regression analysis between HRF and instruction miss for HbR 

regression_hbr_instruction <- lm(HRF ~ InstructionMiss, data = clean_hbR_data) 

 

# Regression analysis between KSS and steering errors 

regression_kss_steering <- lm(KSS ~ SteeringErrors, data = combined_data) 

 

# Regression analysis between KSS and instruction miss 

regression_kss_instruction <- lm(KSS ~ InstructionMiss, data = combined_data) 

 

# Regression analysis between steering errors and instruction miss 

regression_steering_instruction <- lm(SteeringErrors ~ InstructionMiss, data = combined_data) 

 

# Regression analysis results 

cat("Regression Analysis:\n") 
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# HRF and KSS for HbO 

cat("Regression analysis: HRF ~ KSS (HbO)\n") 

print(summary(regression_hbo_kss)) 

# HRF and KSS for HbR 

cat("Regression analysis: HRF ~ KSS (HbR)\n") 

print(summary(regression_hbr_kss)) 

# HRF and steering errors for HbO 

cat("Regression analysis: HRF ~ Steering Errors (HbO)\n") 

print(summary(regression_hbo_steering)) 

# HRF and steering errors for HbR 

cat("Regression analysis: HRF ~ Steering Errors (HbR)\n") 

print(summary(regression_hbr_steering)) 

# HRF and instruction miss for HbO 

cat("Regression analysis: HRF ~ Instruction Miss (HbO)\n") 

print(summary(regression_hbo_instruction)) 

# HRF and instruction miss for HbR 

cat("Regression analysis: HRF ~ Instruction Miss (HbR)\n") 

print(summary(regression_hbr_instruction)) 

# KSS and steering errors 

cat("Regression analysis: KSS ~ Steering Errors\n") 

print(summary(regression_kss_steering)) 

# KSS and instruction miss 

cat("Regression analysis: KSS ~ Instruction Miss\n") 

print(summary(regression_kss_instruction)) 
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# Steering errors and instruction miss 

cat("Regression analysis: Steering Errors ~ Instruction Miss\n") 

print(summary(regression_steering_instruction)) #For the adjusted dataset 

# Regression analysis between HRF and KSS for HbO 

regression_hbo_kss_r <- lm(HRF ~ KSS, data = clean_hbO_data_r) 

 

# Regression analysis between HRF and KSS for HbR 

regression_hbr_kss_r <- lm(HRF ~ KSS, data = clean_hbR_data_r) 

 

# Regression analysis between HRF and steering errors for HbO 

regression_hbo_steering_r <- lm(HRF ~ SteeringErrors, data = clean_hbO_data_r) 

 

# Regression analysis between HRF and steering errors for HbR 

regression_hbr_steering_r <- lm(HRF ~ SteeringErrors, data = clean_hbR_data_r) 

 

# Regression analysis between HRF and instruction miss for HbO 

regression_hbo_instruction_r <- lm(HRF ~ InstructionMiss, data = clean_hbO_data_r) 

 

# Regression analysis between HRF and instruction miss for HbR 

regression_hbr_instruction_r <- lm(HRF ~ InstructionMiss, data = clean_hbR_data_r) 

 

# Regression analysis between KSS and steering errors 

regression_kss_steering_r <- lm(KSS ~ SteeringErrors, data = combined_data_r) 
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# Regression analysis between KSS and instruction miss 

regression_kss_instruction_r <- lm(KSS ~ InstructionMiss, data = combined_data_r) 

 

# Regression analysis between steering errors and instruction miss 

regression_steering_instruction_r <- lm(SteeringErrors ~ InstructionMiss, data = combined_data_r) 

 

# Regression analysis results 

cat("Regression Analysis for adjusted dataset:\n") 

# HRF and KSS for HbO 

cat("Regression analysis: HRF ~ KSS (HbO)\n") 

print(summary(regression_hbo_kss_r)) 

# HRF and KSS for HbR 

cat("Regression analysis: HRF ~ KSS (HbR)\n") 

print(summary(regression_hbr_kss_r)) 

# HRF and steering errors for HbO 

cat("Regression analysis: HRF ~ Steering Errors (HbO)\n") 

print(summary(regression_hbo_steering_r)) 

# HRF and steering errors for HbR 

cat("Regression analysis: HRF ~ Steering Errors (HbR)\n") 

print(summary(regression_hbr_steering_r)) 

# HRF and instruction miss for HbO 

cat("Regression analysis: HRF ~ Instruction Miss (HbO)\n") 

print(summary(regression_hbo_instruction_r)) 
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# HRF and instruction miss for HbR 

cat("Regression analysis: HRF ~ Instruction Miss (HbR)\n") 

print(summary(regression_hbr_instruction_r)) 

# KSS and steering errors 

cat("Regression analysis: KSS ~ Steering Errors\n") 

print(summary(regression_kss_steering_r)) 

# KSS and instruction miss 

cat("Regression analysis: KSS ~ Instruction Miss\n") 

print(summary(regression_kss_instruction_r)) 

# Steering errors and instruction miss 

cat("Regression analysis: Steering Errors ~ Instruction Miss\n") 

print(summary(regression_steering_instruction_r)) 

#For complete dataset 

# Model 1: Multilevel Linear Model for HbO 

model_hbO <- lmer(HRF ~ KSS + InstructionMiss + SteeringErrors + (1 | Participant), data = 

clean_hbO_data) 

 

# Model 2: Multilevel Linear Model for HbR 

model_hbR <- lmer(HRF ~ KSS + InstructionMiss + SteeringErrors + (1 | Participant), data = 

clean_hbR_data) 

 

# Extract fixed effects summary 

summary_hbO <- summary(model_hbO) 

summary_hbR <- summary(model_hbR) 
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# Extract residual variance manually 

residual_var_hbO <- summary_hbO$sigma^2 

residual_var_hbR <- summary_hbR$sigma^2 

 

# Extract participant-level variance manually 

participant_var_hbO <- unlist(lapply(VarCorr(model_hbO), function(x) sum(x^2))) 

participant_var_hbR <- unlist(lapply(VarCorr(model_hbR), function(x) sum(x^2))) 

 

# Total variance 

total_var_hbO <- participant_var_hbO + residual_var_hbO 

total_var_hbR <- participant_var_hbR + residual_var_hbR 

 

# Print the results 

cat("Model 1: Multilevel Linear Model for HbO\n") 

print(summary_hbO) 

cat("Model 2: Multilevel Linear Model for HbR\n") 

print(summary_hbR) 

#For the adjusted dataset 

# Model 1: Multilevel Linear Model for HbO 

model_hbO_r <- lmer(HRF ~ KSS + InstructionMiss + SteeringErrors + (1 | Participant), data = 

clean_hbO_data_r) 

 

# Model 2: Multilevel Linear Model for HbR 
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model_hbR_r <- lmer(HRF ~ KSS + InstructionMiss + SteeringErrors + (1 | Participant), data = 

clean_hbR_data_r) 

 

# Extract fixed effects summary 

summary_hbO_r <- summary(model_hbO_r) 

summary_hbR_r <- summary(model_hbR_r) 

 

# Extract residual variance manually 

residual_var_hbO_r <- summary_hbO_r$sigma^2 

residual_var_hbR_r <- summary_hbR_r$sigma^2 

 

# Extract participant-level variance manually 

participant_var_hbO_r <- unlist(lapply(VarCorr(model_hbO_r), function(x) sum(x^2))) 

participant_var_hbR_r <- unlist(lapply(VarCorr(model_hbR_r), function(x) sum(x^2))) 

 

# Total variance 

total_var_hbO_r <- participant_var_hbO_r + residual_var_hbO_r 

total_var_hbR_r <- participant_var_hbR_r + residual_var_hbR_r 

 

# Print the results 

cat("Model 1: Multilevel Linear Model for HbO for the adjusted dataset\n") 

print(summary_hbO_r) 

cat("Model 2: Multilevel Linear Model for HbR for the adjusted dataset\n") 

print(summary_hbR_r) 



89 

 

# Multilevel models with Channel included 

# Model for HbO dataset 

model_hbO_c <- lmer(HRF ~ KSS + SteeringErrors + InstructionMiss + (1 | Participant/Channel), data = 

clean_hbO_data) 

 

# Model for HbR dataset 

model_hbR_c <- lmer(HRF ~ KSS + SteeringErrors + InstructionMiss + (1 | Participant/Channel), data = 

clean_hbR_data) 

 

# Summary of the multilevel models 

summary_hbO_c <- summary(model_hbO_c) 

summary_hbR_c <- summary(model_hbR_c) 

 

# Extract residual variance manually 

residual_var_hbO_c <- summary_hbO_c$sigma^2 

residual_var_hbR_c <- summary_hbR_c$sigma^2 

 

# Extract participant-level variance manually 

participant_var_hbO_c <- unlist(lapply(VarCorr(model_hbO_c), function(x) sum(x^2))) 

participant_var_hbR_c <- unlist(lapply(VarCorr(model_hbR_c), function(x) sum(x^2))) 

 

# Total variance 

total_var_hbO_c <- participant_var_hbO_c + residual_var_hbO_c 
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total_var_hbR_c <- participant_var_hbR_c + residual_var_hbR_c 

 

# Print the results 

cat("Model 1: Multilevel Linear Model for HbO\n") 

print(summary_hbO_c) 

cat("Model 2: Multilevel Linear Model for HbR\n") 

print(summary_hbR_c) 

cat("\n") 

cat("Variation Partitioning for HbO:\n") 

cat("Total Variance:", total_var_hbO_c, "\n") 

cat("Participant-level Variance:", participant_var_hbO_c, "\n") 

cat("Residual Variance:", residual_var_hbO_c, "\n") 

cat("\n") 

cat("Variation Partitioning for HbR:\n") 

cat("Total Variance:", total_var_hbR_c, "\n") 

cat("Participant-level Variance:", participant_var_hbR_c, "\n") 

cat("Residual Variance:", residual_var_hbR_c, "\n") 

cat("\n") 

# Adding the interaction between HRF and predictors (KSS, SteeringErrors, InstructionMiss) 

interaction_model_hbO_c <- lmer(HRF ~ KSS * SteeringErrors * InstructionMiss + (1 | 

Participant/Channel), data = clean_hbO_data) 

summary(interaction_model_hbO_c) 
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interaction_model_hbR_c <- lmer(HRF ~ KSS * SteeringErrors * InstructionMiss + (1 | 

Participant/Channel), data = clean_hbR_data) 

summary(interaction_model_hbR_c) 


