
Experimentally finding graphs that minimize Wiener-entropy
ALEKSANDAR PETROV, University of Twente, The Netherlands

Graph entropy is a way to measure the complexity of a graph. There are

many different graph entropies, but there is little work done on finding their

extremal values. It is especially intriguing to find the minimal values because

of the lack of analytical methods to tackle this problem. This paper will focus

only on the Wiener entropy and aims to find the trees that minimize the

entropy, until the possible computation limit. After that, 2 classes of graphs,

referred to as "brooms" and𝐺𝑛,𝑘,𝑗 , will be inspected and the goal is to find the

optimum structure that minimizes the entropy. There is one existing research

paper on minimizing Wiener entropy, and the results from this experiments

aim to confirm or deny the predictions made there. The experiments will

be performed by brute-forcing the graphs that minimize the entropy in

the respective search space. In the end, it appears that the class of brooms

minimizes the entropy for trees with number of vertices(𝑛) 16 < 𝑛 < 32

and is expected to continue to minimize it for bigger trees. Furthermore, the

results, for the 2 distinct classes, confirm the conjectures for brooms and

discover an error in the predictions for the optimum structure of the𝐺𝑛,𝑘,𝑗

class. The paper then defines new conjectures based on the results gathered.

Additional Key Words and Phrases: Wiener entropy, graph entropy, trees,

brooms

1 INTRODUCTION
Shannon entropy, named after Claude Shannon, is a fundamental

concept in information theory. It provides a measure of the uncer-

tainty of a random variable and it is widely used in various fields, for

example in Computer science, Mathematics, and others. Scientists

have extended this notion of entropy to graphs. One such graph

entropy is called Wiener entropy, which utilizes the transmission

of the nodes in the graph, will be studied in this paper.

This paper aims to explore the minimization of Wiener entropy in

graphs, focusing on trees but not only. Understanding the properties

of graphs with minimum Wiener entropy can have implications in

diverse fields where entropy is used. For instance, entropy is used

in biology and chemistry [4, 13, 15], in ecological studies [16], and

others.

The research on Wiener-entropy is small. Nevertheless, there

are several results presented in the research of Yanni Dong & Stijn

Cambie [7]. They found asymptotic lower bounds for the entropy

of trees, experimentally found minimal trees, and predicted class,

called brooms, to be the minimum trees for higher-sized graphs.

However, the results are only for small graphs and this paper aims

to build on top of those results by brute-forcing the minimum trees

and confirming the prediction to a certain extent. Due to the fact,

that the number of non-isomorphic trees grows exponentially, 𝑇𝑛 =

0.535(2.959)𝑛𝑛
2

5 according to [14], brooms are going to be explored

by themselves, after confirming that they minimize the Wiener-

entropy. The goal of studying them is to confirm the asymptotic

bounds and show how the size of the tree is related to the structure

of the broom. Furthermore, another class of graphs, derived from
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brooms but generalized for all graphs and referred to as𝐺𝑛,𝑘,𝑗 later,

is predicted to minimize the Wiener entropy in general. The paper

will also explore them and again try to find the relation between the

size and the structure of the graphs. The number of non-isomorphic

graphs grows extremely fast with the size of the graph, 2
(𝑛
2
)/𝑛!

according to [8], and therefore only this specific class of graphs is

going to be considered. In summary, the research questions, that

this paper will answer, are:

• What is the tree 𝑇 of 𝑛 vertices that minimizes 𝐼𝑤 (𝑇 )?
• What is the broom 𝑇 of 𝑛 vertices that minimizes 𝐼𝑤 (𝑇 )?
• What is the graph 𝐺𝑛,𝑘,𝑗 that minimize 𝐼𝑤 (𝐺𝑛,𝑘,𝑗 )?

2 PRELIMINARIES

2.1 Background
Shannon entropy is a concept in information theory and it is

used as a way to measure the uncertainty of a random variable

[2, 7, 12]. Let𝑋 be a discrete random variable with possible outcomes

𝑥1, 𝑥2, . . . , 𝑥𝑛 , and let 𝑃 = 𝑝 (𝑥1), 𝑝 (𝑥2), . . . , 𝑝 (𝑥𝑛) be the probability
distribution on 𝑋 . Shannon entropy is defined as:

−
𝑛∑︁
𝑖=1

𝑝 (𝑥𝑖 ) log2 (𝑝 (𝑥𝑖 ))

In his paper [3] Dehmer proposes a general form of graph entropy.

Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑉 = 𝑣1, 𝑣2, . . . , 𝑣𝑛 and 𝐸 be the set

of edges. Given any function 𝑓 : 𝑉 → R>0, the graph entropy with

respect to 𝑓 is defined as:

𝐼𝑓 = −
𝑛∑︁
𝑖=1

𝑓 (𝑣𝑖 )∑𝑛
𝑗=1 𝑓 (𝑣 𝑗 )

log
2

(
𝑓 (𝑣𝑖 )∑𝑛
𝑗=1 𝑓 (𝑣 𝑗 )

)
There are many different ways one can define such informational

functional but this paper will focus only on one. The distance be-

tween two vertices 𝑢 and 𝑣 , denoted by 𝑑 (𝑢, 𝑣), is the length of the

shortest path from 𝑢 to 𝑣 . Wiener-entropy, as defined in [7], uses

𝑓 (𝑣𝑖 ) = 𝜎 (𝑣𝑖 ) where 𝜎 (𝑣𝑖 ) is called 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 of a vertex and it is
the sum of distances towards all other vertices: 𝜎 (𝑣) = ∑

𝑢∈𝑉 𝑑 (𝑣,𝑢).
The entropy is then defined as:

𝐼𝑤 = −
𝑛∑︁
𝑖=1

𝜎 (𝑣𝑖 )∑𝑛
𝑗=1 𝜎 (𝑣 𝑗 )

log
2

(
𝜎 (𝑣𝑖 )∑𝑛
𝑗=1 𝜎 (𝑣 𝑗 )

)
2.2 Existing results on Wiener entropy

This section will go over the work that has been done related to

Wiener-entropy in graphs.

The main research paper that has done work in the field is by

Yanni Dong & Stijn Cambie [7]. In their work, they compare 2

popular natural distance-based graph entropies: eccentricity-based

and Wiener-entropy. They derive the extremal behaviour of graphs

based on the Wiener-entropy and conclude that Wiener-entropy

is more spread than the eccentricity-based. In the derivation of

the minimal behaviour of graphs, they prove the asymptotic lower

bound for the Wiener-entropy which is:

1
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Fig. 1. Example of a broom for 𝑛 = 13 and 𝑘 = 6.

Fig. 2. Example of𝐺𝑛,𝑘,𝑗 graph for 𝑛 = 14, 𝑘 = 6 ,𝑗 = 4.

𝐼𝑤 ≥
3

4

(1 + 𝑜 (1)) log
2
(𝑛))

Furthermore, in the proof they show that equality is attained by

a specific class of trees that they define as "brooms". Therefore they

expect the trees of order 𝑛, which minimize Wiener-entropy, to be

the class of brooms. In this paper, they will be explored further. A

broom is defined as a tree consisting of a path 𝑃𝑘 with one of its

end vertices 𝑐 connected with 𝑛 − 𝑘 pendent vertices. An example

of a broom can be seen in Figure 1.

In their paper [7], the authors could not reach a precise answer

on the graphs that minimize Wiener-entropy, therefore they only

assume that with sufficiently large 𝑛, brooms will become those

graphs. They brute-forced the graphs with 3 ≤ 𝑛 ≤ 18 and found

out that only the graphs with 𝑛 = 17 and 𝑛 = 18 are brooms.

Those results are not enough to conclude that brooms minimize

the entropy for higher 𝑛. In addition, the optimum 𝑘 is not known,

but only asymptotically bounded and this research aims to give a

concrete estimation of the optimal 𝑘 .

The paper [7] also defines a graph 𝐺𝑛,𝑘,𝑗 which will be also ex-

plored in this paper. It comes from a broom but is generalized for

all graphs. The conjecture is that this class of graphs would be min-

imizing the entropy for graphs in general. It is defined as a graph,

consisting of a disjoint union of a path 𝑃𝑘 and a clique 𝐾𝑛−𝑘 and

one of the end vertices of 𝑃𝑘 is connected with 𝑗 vertices from 𝐾𝑛−𝑘 .
This class of graphs is introduced due to the fact that it is impossible

to compute the minimal graph out of all graphs. The number of

graphs grows exponentially fast with the size 𝑛, shown to be 2(
𝑛
2
)/𝑛!

[8]. An example of 𝐺𝑛,𝑘,𝑗 can be seen in Figure 2.

3 PROBLEM STATEMENT
As it was mentioned previously, this paper aims to continue the

research on trees and graphs that minimize the Wiener entropy.

Due to the fact the number of trees grows exponentially with the

size of the tree, the paper will also explore minimal brooms by

themselves. In addition, 𝐺𝑛,𝑘,𝑗 graphs will also be explored because

the number of graphs grows even faster than the trees and they

are also predicted to minimize the Wiener entropy but for graphs

in general. The paper [7] experimentally shows that 𝐺𝑛,𝑘,1 is the

minimal graph from that type. However, in their results, they have

several assumptions about 𝑘 and 𝑗 which this paper aims to remove.

The research questions, that are going to be answered in this paper,

are:

(1) What is the tree 𝑇 of 𝑛 vertices that minimizes 𝐼𝑤 (𝑇 )?
(a) How can trees for a given 𝑛 be generated?

(b) What is the fastest way to calculate the Wiener entropy of

a graph?

(c) What is the fastest way to calculate the minimal Wiener

entropy for a tree with 𝑛 vertices?

(2) What is the broom 𝑇 of 𝑛 vertices that minimizes 𝐼𝑤 (𝑇 )?
(a) How is the length of the path (𝑘) related to the size of the

broom (𝑛)?

(b) How is the entropy (𝐼𝑤 (𝑇 )) related to the size of the broom(𝑛)?

(3) What is the graph 𝐺𝑛,𝑘,𝑗 that minimize 𝐼𝑤 (𝐺𝑛,𝑘,𝑗 )?
(a) How is the length of the path (𝑘) related to the size of the

graph (𝑛)?

(b) How is the number of connected nodes from the clique to

the path ( 𝑗 ) related to the size of the graph (𝑛)?

(c) How is the entropy (𝐼𝑤 (𝐺𝑛,𝑘,𝑗 )) related to the size of the

graph (𝑛)?

4 METHODOLOGY
In this section, the tools and the steps for completing the research

will be discussed. For each research question a program had to be

implemented.

4.1 Tools
For performing the experiments initially Python was used, mainly

because of the available library networkx [9], which makes working

with graph structures easy. In addition, it has an implementation

of an algorithm for generating all non-isomorphic trees for a given

size. However, due to the fact that Python is not a very fast language

and the library is written in Python as well, the experiment did not

produce enough results. Therefore all the code was rewritten in Rust.

Rust was chosen because it provides good performance and an easy

way to parallelise the execution of a program. For working with

graphs the crate(library) called petgraph was used. For producing

the plots, pythonwas still used with the libraries pandas [17], numpy

[10] and matplotlib [11]. Most of the code for the experiments was

run on the High Performance Cluster(HPC) of the University of

Twente, due to the fact that it has modern and advanced hardware.

With the use of the HPC, graphs with bigger sizes were able to be

calculated and therefore more results were gathered.

4.2 Minimal tree for 𝐼𝑤
For finding the tree that minimizes 𝐼𝑤 , 2 algorithms were needed:

generating all non-isomorphic trees and calculating the 𝐼𝑤 for a tree.

After that, a program which combines both was written in order to

2
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calculate the minimal tree for a given order. The program was also

configurable to provide top 𝑥 minimal graphs.

4.2.1 Generating non-isomorphic trees. To begin with, the algo-

rithm that was used for generating trees is Wright, Richmond,

Odlyzko and McKay (WROM) algorithm [18]. The algorithm builds

on top of Bayer and Hedetniemi rooted tree algorithm [1], which

generates only rooted trees. Both algorithms use integer sequences

to encode trees. The WROM algorithm sequentially generates non-

isomorphic trees and that sequentiality restricted the optimizations

that were possible in the combined program.

4.2.2 Calculating 𝐼𝑤 (𝑇 ). For calculating the 𝐼𝑤 (𝑇 ), we need the

transmission (𝜎 (𝑣)) for all 𝑣 ∈ 𝑇 . The Dijkstra algorithm [5] was

used on each vertex in order to obtain all of the shortest paths

in the graph. The rewritten formula for 𝐼𝑤 , derived in [7], was

used in order to optimize the performance. It improved the speed

of the calculation because it contains considerably fewer division

operations and those operations are expensive in computation. It

uses the Wiener index which is defined as:

𝑊 (𝐺) =
∑︁

𝑣𝑖 ,𝑣𝑗 ∈𝑉
𝑑 (𝑣𝑖 , 𝑣 𝑗 )

The rewritten formula for 𝐼𝑤 (𝑇 ):

𝐼𝑤 = log
2
(2𝑊 (𝐺)) − 1

2𝑊 (𝐺)

𝑛∑︁
𝑖=1

𝜎 (𝑣𝑖 ) log2 𝜎 (𝑣𝑖 )

4.2.3 Combining both parts to calculate the minimum tree. Making

a program for calculating the minimum tree was fairly simple. How-

ever, 2 modifications were made. First, a producer-consumer pattern

was used in order to improve performance. Producer-consumer

pattern [6] is a concurrency design pattern, where there are mul-

tiple threads(producers) which produce objects and put them into

a shared queue, from where then multiple threads(consumers) can

get the objects and perform a task with them. It appeared that the

generation of trees was faster than the calculation of 𝐼𝑤 (𝑇 ). There-
fore, it was beneficial to have multiple CPUs, computing in parallel

the calculation of the entropy, while other CPUs are generating

trees. There were only 2 producers because the WROM algorithm is

sequential and therefore not possible to parallelize. However, it was

observed that with 2 producers the program was significantly faster.

The second modification was to add a configuration that outputs not

only the minimal tree. Instead of keeping track only of the minimal

graph, the program takes an argument which defines how many

graphs to save.

4.3 Minimal broom for 𝐼𝑤
For calculating the minimal broom, the search space is reduced

to only broom graphs. The method, in which the search for the min-

imum broom was performed, was looping through all the brooms

with 𝑛 vertices and changing the number of vertices that are on the

path part of the broom (changing the 𝑘). Because of the fact that the

structure of the graph is known, it was possible to calculate the en-

tropy without using graph objects in the code but by implementing

a clever calculation. This was considerably faster than creating a

graph object, then running the Dijkstra algorithm on each node and

then calculating the entropy. A pseudo-code of that calculation can

be seen below at Algorithm 1. Additionally, a version which utilizes

parallelization was implemented in order to compute brooms up

to 𝑛 = 125 000. The parallelization was not in the calculation, but

making different CPUs to calculate minimal broom with different 𝑛.

Algorithm 1 Calculate wiener entropy of a broom

function calculate_entropy(𝑛, 𝑘)

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑡𝑎𝑟 ← 𝑘 (𝑘 + 1)/2 + 2(𝑛 − 𝑘 − 1)
𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑝𝑎𝑡ℎ ← 0

𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑝𝑎𝑡ℎ ← 0

for 𝑖 𝑖𝑛 1 . . . 𝑘 do
𝑡 ← ((𝑘 − 𝑖) (𝑘 − 𝑖 + 1)/2 + 𝑖 (𝑖 − 1)/2 + 𝑖 (𝑛 − 𝑘))
𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑝𝑎𝑡ℎ += 𝑡
𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑝𝑎𝑡ℎ += 𝑡∗ log2 (𝑡)

end for
𝑊𝑖𝑒𝑛𝑒𝑟𝐼𝑛𝑑𝑒𝑥 ← (𝑛−𝑘)𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑡𝑎𝑟 +𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑝𝑎𝑡ℎ
𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ← log

2
(𝑊𝑖𝑒𝑛𝑒𝑟𝐼𝑛𝑑𝑒𝑥) − (1/𝑊𝑖𝑒𝑛𝑒𝑟𝐼𝑛𝑑𝑒𝑥) ((𝑛 −

𝑘)𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑡𝑎𝑟 ∗ log2 (𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑡𝑎𝑟 ) + 𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑝𝑎𝑡ℎ)
return 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

end function

4.4 Minimal 𝐺𝑛,𝑘,𝑗 graph for 𝐼𝑤
A similar approach to calculating the minimal broom was applied

here. The difference was that in the search, the program had to loop

through all pairs of 𝑘 and 𝑗 for a given 𝑛. Unlike the broom solution,

here the number of pairs (𝑘, 𝑗) was significantly more and therefore

parallelization in the calculation was utilized. A different thread

was spawned for each 𝑘 and each thread calculated the entropy

for all possible 𝑗 values. This technique appeared to improve the

performance. The calculation of 𝐼𝑤 is different but the approach

stayed the same because again the structure of the graph is known

beforehand, therefore a clever calculation was possible and the

object-orientated approach could be skipped. The algorithm can be

seen below at Algorithm 2.

Algorithm 2 Calculating wiener entropy of a 𝐺𝑛,𝑘,𝑗 graph

function calculate_entropy(𝑛,𝑘 , 𝑗 )

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑖𝑜𝑛𝑛𝑜𝑡_𝑐𝑜𝑛 ← ((𝑛 − 𝑘 − 1) + (𝑘 (𝑘 + 1))/2 + 𝑘)
𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑐𝑜𝑛 ← ((𝑛 − 𝑘 − 1) + (𝑘 (𝑘 + 1))/2)
𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑝𝑎𝑡ℎ ← 0

𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑝𝑎𝑡ℎ ← 0

for 𝑖 𝑖𝑛 1 . . . 𝑘 + 1 do
𝑡 = ((𝑘 − 𝑖) (𝑘 − 𝑖 +1)/2+ 𝑖 (𝑖 −1)/2+ 𝑖 𝑗 + (𝑛−𝑘 − 𝑗) (𝑖 +1))
𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑝𝑎𝑡ℎ += 𝑡
𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑝𝑎𝑡ℎ += 𝑡 ∗ log2 (𝑡)

end for
𝑊𝑖𝑒𝑛𝑒𝑟𝐼𝑛𝑑𝑒𝑥 ← (𝑛 − 𝑘 − 𝑗) ∗ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛𝑜𝑡_𝑐𝑜𝑛 + 𝑗 ∗

𝑡𝑟𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑐𝑜𝑛 + 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑝𝑎𝑡ℎ
𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ← log

2
(𝑊𝑖𝑒𝑛𝑒𝑟𝐼𝑛𝑑𝑒𝑥) − (1/𝑊𝑖𝑒𝑛𝑒𝑟𝐼𝑛𝑑𝑒𝑥) ((𝑛 −

𝑘 − 𝑗) ∗ 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛𝑜𝑡_𝑐𝑜𝑛 ∗ log2 (𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑛𝑜𝑡_𝑐𝑜𝑛)) + 𝑗 ∗
𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑐𝑜𝑛 ∗ log2 (𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑐𝑜𝑛) + 𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑝𝑎𝑡ℎ)

return 𝑒𝑛𝑡𝑟𝑜𝑝𝑦
end function

3
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5 RESULTS
In this section, the results for each research question will be

presented and discussed. For brooms and 𝐺𝑛,𝑘,𝑗 graph, logarithmic

linear regression was applied to find a function that approximates

𝑘 well. The way it was done was using the data gathered, finding

𝑎 and 𝑏 such that log
2
(𝑘) = 𝑎 log

2
(𝑛) + 𝑏 and then using them to

approximate 𝑘 with the equation 𝑘 = 2
𝑏𝑛𝑎 . The code for generating

the trees and the plots can be found at https://gitlab.utwente.nl/

s2615576/research-project.

5.1 Minimal trees
Brute-forcing the tree that minimizes 𝐼𝑤 (𝑇 ) took exponentially

more time as the number of vertices of the tree grew. There are 2

reasons for that. First, the number of trees exponentially increases

with 𝑛. In the past [14] proved the asymptotic estimate for the total

number of (unlabeled) trees to be: 𝑇𝑛 = 0.535(2.959)𝑛𝑛
2

5 . Secondly,

the calculation of the entropy for each tree is slower for bigger trees.

In the end, in this experiment minimal trees up until 𝑛 = 31 were

able to be computed, the last one taking several days. The numbers

of non-isomorphic trees for 𝑛 = 30 is 1.4 · 1010, 𝑛 = 31 is 4 · 1011
and for 𝑛 = 32 is 1.1 · 1012 for which it would take nearly a week to

compute the minimum graph.

From the experiment, all of the minimal trees with 𝑛 > 16 turned

out to be brooms. Therefore Conjecture 1 was made. Furthermore,

Conjecture 2 was made because for trees with 𝑛 ≥ 19, the second

minimal tree is also a broom and for trees with 𝑛 ≥ 25 3 out of the

top 4 minimal trees are brooms. More results, supporting Conjecture

2 can be seen in Table 1.

Conjecture 1. Among all trees where 𝑛 > 16, the Wiener entropy
is minimized by a broom.

Conjecture 2. For a given𝑚, there exists an 𝑛0 such that for all
𝑛 > 𝑛0 the top𝑚 minimal trees are brooms.

𝑚 𝑛0

1 17, 18

2 19, 20, 21, 22, 23, 24, 26, 27, 28, 31

3 25, 29, 30

Table 1. Showing results supporting Conjecture 2

The relation between the length of the path of the broom(𝑘) and

the size of the broom(𝑛) will be discussed in the next section.

5.2 Minimal brooms
Restricting the search space only to brooms led to significantly

more results. In the end, the minimal brooms with size 16 ≤ 𝑛 <

125 000 were calculated. The relation between 𝑛 and 𝑘 seems to

confirm the proposition by [7] and the results can be seen in Figure

3. Using logarithmic linear regression, the optimal choice for𝑘 seems

to be: 𝑘 ≈ 1.814𝑛0.568.

However, the prediction for the entropy in [7] seems to not be

perfectly matching. First of all, there is a mistake in the formula

Fig. 3. Relation between broom size(𝑛) and tail length(𝑘).

of their Proposition 29. With the correction, for 0 < 𝜖 < 1

3
the

asymptotic estimation for the entropy is:

𝐼𝑤 (𝐺) =
3 + 2𝜖
4

log
2
(𝑛)

With that correction, the lower and upper bounds were more ac-

curate and the actual results were in between those bounds. The

lower and upper bounds were calculated by taking 0 and
1

3
for 𝜖

respectively. The prediction was made by calculating the 𝜖 from the

formula for the optimal choice for 𝑘 . The value that was substituted

was 𝜖 = 0.168.

Although the entropy was not matching perfectly, with more

results gathered we can see that the entropy slowly getting closer to

the predicted value. The prediction in the paper [7] is an asymptotic

prediction with 𝑛 → ∞, therefore with enough results, it might

reach the prediction. A plot can be seen in Figure 4.

5.3 Minimal 𝐺𝑛,𝑘,𝑗

Conjecture 3. There exists a value 𝑛0 such that for all 𝑛 ≥ 𝑛0,
among graphs of order 𝑛, the Wiener-entropy is minimized by 𝐺𝑛,𝑘,1

and/or 𝐺𝑛,𝑘,𝑛−𝑘 .

For the graphs 𝐺𝑛,𝑘,𝑗 the paper [7] predicted that after a certain

𝑛 > 𝑛0, 𝑗 = 1 to be the minimum graph. However, the paper [7]

missed the possibility of having 2 different graphs having equal

entropy. From the results gathered, graphs with higher order tend

to have 2 minimal graphs, where 𝑗 = 1 with a certain 𝑘0 is one of

them and the second one is with 𝑘 = 𝑘0 + 1 and 𝑗 = 𝑛 − 𝑘 . It should
be noted that 𝑗 = 𝑛 − 𝑘 is the maximum value that 𝑗 can attain.

Because of that, this paper proposes slightly changed conjecture

seen at 3. The 𝑛0 appears to be the same as in the paper [7], being

𝑛0 = 1270.

Another interesting result is that for bigger graphs, the fraction

of graphs with 2 minimal entropies tends to be increasing. However,

it should be noted that there are still graphs for which there is only

1 minimum. This observation can be seen in Figure 6.

4
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Fig. 4. Relation between the size of the broom(𝑛) and the entropy of the
broom.

Fig. 5. Relation between the number of connected nodes of the clique to
the path(𝑗 ) and the size of the graph(𝑛).

In Figure 6 can be also seen that for bigger graphs which had 1

minimum, the number of graphs that have 𝑗 = 1 and 𝑗 ≠ 1 is almost

the same.

The optimal choice for 𝑘 , considering all minimal graphs, again

seems to be linear on a logarithmic scale therefore again logarithmic

linear regression was applied. The exponent seems to be very close

to the one for brooms but the coefficient differs significantly. The

result can be seen in Figure 7 and the formula is:

𝑘 ≈ 1.07𝑛0.597

Fig. 6. The distribution of 1 and 2 minimums in𝐺𝑛,𝑘,𝑗

Fig. 7. Relation between graph size(𝑛) and path length(𝑘) for𝐺𝑛,𝑘,𝑗 .

6 CONCLUSION
This research has analyzed the trees and graphs that minimize

Wiener entropy. It found that for trees with number of vertices

16 < 𝑛 < 32, the minimal graphs are brooms and this trend is

expected to continue. Furthermore, the relation between the length

of the path(𝑘) and the size of the broom(𝑛) for the minimal broom

was examined and was found to be log-linear. In addition, a certain

graph class,𝐺𝑛,𝑘,𝑗 , was researched because it is expected tominimize

the Wiener entropy for all graphs. The relation between the length

of the path(𝑘) and the size of the graph(𝑛) was again examined. An

interesting result that was found is that for bigger sizes, 2 minimal

graphs were more common. In addition, 𝑗 was taking the values of

either 1 or the maximum possible value with the optimum 𝑘 .

5
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7 FUTURE WORK
For future research, trees withmore than 31 nodes can be explored.

As the number of trees becomes enormous, different generation of

trees can be a point of research. There might be a way to not look

through every possible tree, but to find a structure of trees that are

definitely not minimal and can be skipped.

Another possible future research can be to extend the class of

𝐺𝑛,𝑘,𝑗 graphs by allowing for multiple paths connecting to the clique

and not forcing the clique to be at the end of a path. The extended

class should be still computable and it would support or contradict

the prediction that 𝐺𝑛,𝑘,𝑗 are minimizing the entropy for graphs.

ACKNOWLEDGMENTS
I want to express my deep gratitude to my supervisor - Milan

Lopuhaä-Zwakenberg for their invaluable guidance, support, and

feedback throughout this Bachelor Thesis. In addition, I want to

thank Yanni Dong for her propositions for the focus of this research

and for providing me with literature on graph entropy.

REFERENCES
[1] Terry Beyer and Sandra Mitchell Hedetniemi. 1980. Constant Time Generation

of Rooted Trees. SIAM J. Comput. 9, 4 (1980), 706–712. https://doi.org/10.1137/

0209055 arXiv:https://doi.org/10.1137/0209055

[2] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory
2nd Edition (Wiley Series in Telecommunications and Signal Processing). Wiley-

Interscience.

[3] Matthias Dehmer. 2008. Information processing in complex networks: Graph

entropy and information functionals. Appl. Math. Comput. 201, 1 (2008), 82–94.
https://doi.org/10.1016/j.amc.2007.12.010

[4] Matthias Dehmer and Abbe Mowshowitz. 2011. A history of graph entropy

measures. Information Sciences 181, 1 (2011), 57–78. https://doi.org/10.1016/j.ins.

2010.08.041

[5] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs.

Numerische mathematik 1, 1 (1959), 269–271.

[6] Edsger W. Dijkstra. 2002. Cooperating Sequential Processes. Springer New York,

New York, NY, 65–138. https://doi.org/10.1007/978-1-4757-3472-0_2

[7] Yanni Dong and Stijn Cambie. [n. d.]. On the main distance-based entropies: the

eccentricity- and Wiener-entropy. ([n. d.]). arXiv:2208.12209 [math.CO] preprint

on webpage at https://arxiv.org/pdf/2208.12209.pdf.

[8] G W Ford and G E Uhlenbeck. 1957. COMBINATORIAL PROBLEMS IN THE

THEORY OF GRAPHS. IV. Proc Natl Acad Sci U S A 43, 1 (Jan. 1957), 163–167.

[9] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network

Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th
Python in Science Conference, Gaël Varoquaux, Travis Vaught, and Jarrod Millman

(Eds.). Pasadena, CA USA, 11 – 15.

[10] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,

Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,

Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van

Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,

Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren

Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array

programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:

//doi.org/10.1038/s41586-020-2649-2

[11] J. D. Hunter. 2007. Matplotlib: A 2D graphics environment. Computing in Science
& Engineering 9, 3 (2007), 90–95. https://doi.org/10.1109/MCSE.2007.55

[12] David J. C. MacKay. 2003. Information Theory, Inference, and Learning Algorithms.
Copyright Cambridge University Press.

[13] Harold J. Morowitz. 1955. Some order-disorder considerations in living systems.

The bulletin of mathematical biophysics 17, 2 (01 Jun 1955), 81–86. https://doi.

org/10.1007/BF02477985

[14] Richard Otter. 1948. The Number of Trees. Annals of Mathematics 49, 3 (1948),
583–599. http://www.jstor.org/stable/1969046

[15] Nicolas P. Rashevsky. 1955. Life, information theory, and topology. Bulletin of
Mathematical Biology 17 (1955), 229–235.

[16] William B Sherwin and Narcis Prat i Fornells. 2019. The Introduction of Entropy

and Information Methods to Ecology by Ramon Margalef. Entropy 21, 8 (2019).

https://doi.org/10.3390/e21080794

[17] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In

Proceedings of the 9th Python in Science Conference, Stéfan van der Walt and Jarrod

Millman (Eds.). 56 – 61. https://doi.org/10.25080/Majora-92bf1922-00a

[18] Robert Alan Wright, Bruce Richmond, Andrew Odlyzko, and Brendan D. McKay.

1986. Constant time generation of free trees. SIAM J. Comput. 15, 2 (1986), 540–548.
https://doi.org/10.1137/0215039

6

https://doi.org/10.1137/0209055
https://doi.org/10.1137/0209055
https://arxiv.org/abs/https://doi.org/10.1137/0209055
https://doi.org/10.1016/j.amc.2007.12.010
https://doi.org/10.1016/j.ins.2010.08.041
https://doi.org/10.1016/j.ins.2010.08.041
https://doi.org/10.1007/978-1-4757-3472-0_2
https://arxiv.org/abs/2208.12209
https://arxiv.org/pdf/2208.12209.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/BF02477985
https://doi.org/10.1007/BF02477985
http://www.jstor.org/stable/1969046
https://doi.org/10.3390/e21080794
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1137/0215039

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Background
	2.2 Existing results on Wiener entropy

	3 Problem statement
	4 Methodology
	4.1 Tools
	4.2 Minimal tree for Iw
	4.3 Minimal broom for Iw
	4.4 Minimal Gn,k,j graph for Iw

	5 Results
	5.1 Minimal trees
	5.2 Minimal brooms
	5.3 Minimal Gn,k,j

	6 Conclusion
	7 Future work
	Acknowledgments
	References

