
Finding maximal cliques in uniform hypergraphs using
Baum-Eagon inequality

Victor Melinceanu

v.melinceanu@student.utwente.nl

University of Twente

The Netherlands

ABSTRACT
In this paper, we are going to analyze the performance of an al-

gorithm for finding maximal cliques in 𝐾-uniform hypergraphs.

The algorithm is based on a replicator dynamics method using

Baum-Eagon inequality.

The following algorithm has been researched in the past on circu-

lant 𝐾-hypergraphs, but in this paper, we are going to use a dataset

composed of both circulant 𝐾-hypergraphs and 𝐾-hypertrees. We

also present an optimization for the algorithm, that makes each iter-

ation faster by a factor of𝑛 (number of nodes) than what the current

state of the art presents. We do this through an easy combinatorial

optimization. A slight optimization for memory complexity when

working with 𝐾-hypergraphs is also proposed. We have tested the

fast implementation both in Python and in C++, showing that C++

is 15 times faster on average.

We also present for the first time an algorithm to generate ran-

dom 𝐾-hypertrees. An interesting observation made during the

testing phase is that the size of every converged clique is always

exactly 𝑘 , which is the cardinality of the hyperedge. We provide a

new theorem and the proof, stating the maximum clique size in a

𝐾-hypertree is always exactly k.

The algorithm was tested on a dataset consisting of 500 tests all

converging to a correct maximal clique. The results show that the

convergence of the algorithm in terms of iterations depends on 𝑘

and the number of hyperedges, and not on the number of nodes.

KEYWORDS
Replicator dynamics, Circulant 𝐾-hypergraphs, 𝐾-hypertrees, Max-

imum cliques, optimization for replicator dynamics

1 INTRODUCTION
The maximum clique problem has been for a long time a work

in progress. Various algorithms have been developed to solve the

task, but no general solution that works very efficiently has been

found, because of the problem being an NP-Hard problem. However

the last couple of years, research on this topic has been going

more towards the direction of finding approximation algorithms

for special structures of hypergraphs.

The focus on circulant hypergraphs is growing nowadays due

to their application in computer networks. In computer networks,

TScIT 39, July 7, 2023, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

circulant 𝐾-uniform hypergraphs have been used to model the

topology of communication networks, where the vertices repre-

sent nodes or switches, and the hyperedges represent connections

between nodes or groups of nodes. Circulant hypergraphs have

several desirable properties for modeling network topologies, such

as symmetry, regularity, and low diameter. Another application of

hypergraphs is in informational biology, mainly in modeling gene

interactions [2].

𝐾-hypertrees have been described in different literature with dif-

ferent definitions. However, Tomescu [8] defined 𝐾-hypertrees that

was useful for solving Bonferroni inequalities. This same definition

was later used by Ojas [5] to further extend some tree proper-

ties. There is no practical way of generating random 𝐾-hypertrees

so this paper will introduce a dynamic programming method for

generating this specific hypergraph structure for the first time in

literature.

This paper focuses on using the method described in Ahmed and
Still [1]. The interest in this algorithm comes from the fact that

it doesn’t use exhaustive search (backtracking) to find a maximal

clique, but it rather focuses on reducing the problem to finding local

minimizers in homogeneous polynomials over the unit simplex. For

this reason, the algorithm might perform well for specific types of

hypergraphs, independent of the number of nodes.

2 PROBLEM STATEMENT AND STRUCTURE
It is important to notice that even though research has been done

on finding maximal cliques for circulant 𝐾-uniform hypergraphs,

none of the current literature has optimized the replicator dynam-
ics method. The method presented in [1] for finding maximal cliques

shows to behave differently in practice thanmost exhaustive searches

for maximal cliques. Hence the interest in researching this method.

𝐾-hypertrees have not been studied in practice enough and they

might have some useful applications in the field. Besides them not

being studied, also no method for generating random 𝐾-hypertrees

has been described. For that matter, this paper focuses on these

particular mathematical structures. To tackle the above problems

we are going to focus on the following research question.

RQ:What is the performance of the replicator dynamics method

when finding maximal cliques in circulant 𝐾-hypergraphs and 𝐾-

hypertrees?

We are going to answer the research question above by answering

the following sub-questions.

• RQ1: Can the current implementation of the algorithm be

optimized?

• RQ2:Howdoes the algorithm behave on circulant𝐾-hypergraphs?

• RQ3: How can we generate random 𝐾-hypertrees?

TScIT 39, July 7, 2023, Enschede, The Netherlands Victor Melinceanu

• RQ4: How does the algorithm behave on 𝐾-hypertrees?

• RQ5: Is it more optimal to use C++ over Python for the

following algorithm and by how much?

RQ1 is answered in 4.3.2, 4.3.3 and 5.2. RQ2 is answered in 5.1.2.

RQ3 is answered in 4.2. RQ4 is answered in 5.1.1. RQ5 is answered
in 5.3.

3 RELATEDWORK
First of all the problem of finding maximum cliques in 𝐾-uniform

hypergraphs is NP-Hard. The subproblem of finding maximum

cliques in circulant𝐾-hypergraphs and𝐾-hypertrees, at the current

moment is considered to be in the same class of problems. By

researching heuristics and approximation algorithms, we may be

able to observe some special structures of hypergraphs for which

the problem is solvable in polynomial time, or close to polynomial.

The simplest way to solve the problem of maximum clique find-

ing is by doing a recursive backtracking. This is a naive method

that leaves a lot of space for heuristics and optimizations. This

algorithm was optimized by Östergård [9], using the Russian doll

technique. The Russian doll algorithm [3] is used to prune through

the recursion tree and it minimizes the search space as much as

possible.

Iosif [4] has also studied this problem. In this paper, it was re-

searched how the method replicator dynamics and descent method

work in practice on circulant𝐾-hypergraphs. It was noticed that the

replicator dynamics method works faster. It was also observed that

with the increase of the parameter 𝑘 , the two algorithms provide

more and more different efficiencies compared to one another.

Note that no research on findingmaximal cliques in𝐾-hypertrees

has been conducted. Also, the definition provided by [8] is non-

trivial and no practical method for generating 𝐾-hypertrees has

been described.

4 THEORY AND METHODOLOGIES
To test the maximal clique finding algorithm using the replicator dy-

namics method, we need first some dataset of 𝐾-hypergraphs, since

the methods described below were derived only for hypergraphs

with hyperedges of size k. For that purpose, we are going to present
the theory and methods used to generate circulant 𝐾-hypergraphs

and 𝐾-hypertrees.

4.1 Circulant 𝐾-hypergraphs
First of all we are going to introduce circulant 𝐾-hypergraphs.

Definition 1 A circulant 𝐾-hypergraph is a hypergraph 𝐺 =

(𝑉 , 𝐸), where 𝑉 is the set of vertices and 𝐸 ⊆ 𝑃𝑘 (𝑉) is the set of
hyperedges, where 𝑃𝑘 (𝑉) is the set of all subsets of size 𝑘 , such that

for every 𝑒 ∈ 𝐸 and for every possible rotation (shift operation) of

𝑒 , there exists 𝑒1 ∈ 𝐸, such that 𝑒1 corresponds to that rotation.

Circulant 𝐾-hypergraphs have been extensively discussed and

researched by Plant [6]. They devised a way to generate random

circulant 𝐾-hypergraphs, given the parameters 𝑛 - the number of

nodes, 𝑘 - the size of every hyperedge and 𝑑 - an estimator for the

proportion of hyperedges out of all the possible hyperedges in a

𝐾-hypergraph with 𝑛 nodes, which is

(𝑛
𝑘

)
. So the hypergraph will

have approximately

(𝑛
𝑘

)
𝑑 hyperedges.

This paper is going to provide a general overview and imple-

mentation of the generation algorithm. For technical details the

interested reader is referred to [4, 6]. To generate random circulant

𝐾-hypergraph with 𝑛 nodes, first we need to generate all the binary

canonical necklaces of size 𝑛 containing 𝑘 ones. This is achieved

using the algorithm provided by Plant [6]. Then we assign each

binary canonical necklace the same probability 𝑑 , and proceed to

choose randomly the set of binary canonical necklaces that will

constitute the generating set for our circulant 𝐾-hypergraph. To

satisfy definition 1, we need to take each binary canonical necklace

from our generating set and perform all possible shift rotations on

the following strings, resulting in a random set of hyperedges for a

circulant 𝐾-hypergraph.

Using the method described in Plant 2018 [6] and in short above,

we are able to generate a random dataset of circulant𝐾-hypergraphs

using parameters 𝑛, 𝑘 and 𝑑 .

4.2 𝐾-hypertrees
This specific structure called 𝐾-uniform hypertrees has not been

studied in much detail. There are various definitions for various

purposes, trying to generalize the tree structure. In this paper, we

focus on the definition of 𝐾-hypertrees as presented in Tomescu

[8] in the context of solving Bonferroni inequalities.
Definition 2 [8] A 𝐾-hypertree is a 𝐾-uniform hypergraph

𝐺 = (𝑉 , 𝐸) such that for 𝑘 = 2,𝐺 is a tree with vertex set 𝑉 and for

𝑘 >= 3 𝐺 is defined recursively by the following two rules:

• If 𝑉 = {1, ..., 𝑘} then 𝐺 has a unique edge {1, 2, ..., 𝑘}.
• If |𝑉 | > 𝑘 then there exists a vertex 𝑣 ∈ 𝑉 such that if

𝐸1, ..., 𝐸𝑞 denote all edges containing 𝑣 then 𝐸1 \ {𝑣}, 𝐸2 \
{𝑣}, ..., 𝐸𝑞 \ {𝑣} induce a (k - 1)-hypertree with vertex set

𝑉 \ {𝑣} and the remaining edges of 𝐺 induce a 𝐾-hypertree

with vertex set 𝑉 \ {𝑣}.

We note that a 2-hypertree is just a normal tree and has 𝑛 − 1 edges.

A 1-hypertree is a singleton or a tree with exactly one node. A

𝐾-hypertree with k nodes has exactly one hyperedge, as definition
2 suggests. This definition is not trivial and visualising what a 𝐾-

hypertree would look like is challenging. To create an actual dataset

of 𝐾-hypertrees we need to find a way to construct a 𝐾-hypertree

based on definition 2.
From the definition one can clearly see the inductive steps. We

have a base case when 𝑛 = 𝑘 and we see that constructing a 𝐾-

hypertree with 𝑛 nodes, depends on 𝐾-hypertrees with 𝑛 − 1 nodes

and on (k - 1)-hypertrees with 𝑛 − 1 nodes. Let’s call the vertex 𝑣

for the second rule of the definition the terminal node, since it’s

the last node to be added. We notice that when 𝑣 is added to the

structure, we should already have a 𝐾-hypertree with 𝑛 − 1 nodes.

Now all we need to do, according to the second rule, is to choose a

random (k-1)-hypertree with 𝑛 − 1 nodes, let’s call it𝑇 , and append

to each of the hyperedges of 𝑇 node 𝑣 .

Let’s write the construction method described above in a mathe-

matical way. Let𝑇 [𝑘] [𝑛] be the set of all𝐾-hypertrees with𝑛 nodes.
Then if we want to generate a random 𝐾-hypertree 𝑡3, we have to

choose a random 𝑡1 ∈ 𝑇 [𝑘] [𝑛−1] and a random 𝑡2 ∈ 𝑇 [𝑘−1] [𝑛−1].
The terminal vertex 𝑣 which in this case is 𝑣 = 𝑛 , is the last vertex

we are adding to 𝑡1. As the second rule states, add all 𝑒 ∈ 𝑡1 as

Finding maximal cliques in uniform hypergraphs using Baum-Eagon inequality TScIT 39, July 7, 2023, Enschede, The Netherlands

hyperedges of 𝑡3 and ∀e1 ∈ 𝑡2 append node 𝑛 to 𝑒1 and add this

hyperedge to 𝑡3.

𝑡3 = 𝑡1
⋃
𝑡2 + {𝑛},

where 𝑡1 ∈ 𝑇 [𝑘] [𝑛 − 1], 𝑡2 ∈ 𝑇 [𝑘 − 1] [𝑛 − 1] and 𝑡3 ∈ 𝑇 [𝑘] [𝑛].
As one can notice, the number of hyperedges of a 𝐾-hypertree

with 𝑛 nodes is constant. Let 𝑆 [𝑘] [𝑛] be the number of hyperedges

in a 𝐾-hypertree with 𝑛 nodes. From the inductive step above, we

can see that 𝑆 [𝑘] [𝑛] = 𝑆 [𝑘] [𝑛 − 1] + 𝑆 [𝑘 − 1] [𝑛 − 1]. Tomescu [8]

gives a proof stating 𝑆 [𝑘] [𝑛] =
(𝑛−1

𝑘−1

)
. Just to check that the number

of edges in our newly generated hypertree is correct we can see that

𝑆 [𝑘] [𝑛] = 𝑆 [𝑘] [𝑛 − 1] + 𝑆 [𝑘 − 1] [𝑛 − 1] =
(𝑛−2

𝑘−1

)
+
(𝑛−2

𝑘−2

)
=
(𝑛−1

𝑘−1

)
.

below we present a method that uses dynamic programming to

generate random 𝐾-hypertrees. The algorithm runs in a bottom

up manner and generates 10 random hypertrees for each 𝑛 and 𝑘 .

Prerequisites:
• push_back is a utility function that appends to the end of a

set.

• vector<int> represents a set of integers.
• 𝑇 [𝑛] [𝑘] is a set of trees, meaning it’s a set of sets of hyper-

edges, which in turn means that it’s a set containing sets of

sets. So the empty element is represented by {{{}}}.
Initially, we set the base cases for the dynamic programming.

Then we generate 10 unique trees for each parameter choice using

the dynamic programming approach explained above. After run-

ning the algorithm 𝑇 will be populated with random hypertrees of

needed sizes. The approximate complexity of this algorithm is

10 ∗
𝐾∑︁
𝑘=2

𝑁∑︁
𝑛=𝑘

(
𝑛 − 1

𝑘 − 1

)
since we have to iterate through each hyperedge of a tree in

order to create it and we do this 10 times for each 𝑛 and 𝑘 . As stated

above there are (
𝑛 − 1

𝑘 − 1

)
hyperedges in a 𝐾-hypertree with 𝑛 nodes.

4.3 Replicator dynamics method to find
maximal clique in 𝐾-hypergraph

In this paper we present a method that appeared in Ahmed and

Still [1] for finding maximal cliques in 𝐾-hypergraphs. The idea

was first presented in Bulò and Pelillo 2007 [7].

First we define the Lagrangean function of a 𝐾-hypergraph 𝐺 =

(𝑉 , 𝐸) as 𝐿𝐺 (𝑥) : Δ ↦→ R

𝐿𝐺 (𝑥) =
∑︁
𝑒∈𝐸

(∏
𝑗∈𝑒

𝑥 𝑗

)
, (1)

where

Δ = {𝑥 ∈ R𝑛 : 𝑥 >= 0,

𝑛−1∑︁
𝑖=0

𝑥𝑖 = 1} (2)

is the unit simplex [7]. Let’s consider the function ℎ𝐺 (𝑥) : Δ ↦→ R,
defined below

ℎ𝐺 (𝑥) = 𝐿𝐺 (𝑥) + 𝜏
𝑛−1∑︁
𝑖=0

𝑥𝑘𝑖 , 𝜏 > 0 (3)

Algorithm 1 Generate 𝐾-hypertrees

𝑇 [1] [1] = {{{0}}}
for 𝑖 = 2 to 𝑁 do
𝑇 [1] [𝑖] = 𝑇 [1] [𝑖 − 1]
𝑇 [1] [𝑖] .push_back({{𝑖 − 1}})

end for
for 𝑘 = 2 to 𝐾 do

for 𝑛 = 𝑘 to 𝑁 do
if 𝑘 = 𝑛 then
𝑇 [𝑘] [𝑛] .push_back({{}})
for 𝑖 = 0 to 𝑛 − 1 do
𝑇 [𝑘] [𝑛] .back().back().push_back(𝑖)

end for
else

vector<vector<int» 𝑡1, 𝑡2, 𝑒, 𝑒1

int 𝑠𝑧 = size(𝑇 [𝑘 − 1] [𝑛 − 1]), sz1 = size(𝑇 [𝑘] [𝑛 − 1])
int 𝑡𝑡 = 0

while size(𝑇 [𝑘] [𝑛]) ≠ 10 do
𝑡𝑡 = 𝑡𝑡 + 1

if 𝑡𝑡 = 100 then
break

end if
int 𝑟1 = rand() % sz1, 𝑟 = rand() % sz

𝑡1 = 𝑇 [𝑘] [𝑛 − 1] [𝑟1]
𝑡2 = 𝑇 [𝑘 − 1] [𝑛 − 1] [𝑟]
vector<vector<int» t3 = t1

for each 𝑒 in 𝑡2 do
vector<int> e1 = e

𝑒1.push_back(𝑛 − 1)
t3.push_back(𝑒1)

end for
if find(𝑇 [𝑘] [𝑛], t3) = end(𝑇 [𝑘] [𝑛]) then
𝑇 [𝑘] [𝑛] .push_back(t3)

end if
end while

end if
end for

end for

We indicate with ℎ
𝑗

𝐺
(𝑥) the partial derivative of ℎ𝐺 with respect to

𝑥 𝑗 ,

h
𝑗

𝐺
(𝑥) = 𝜏k𝑥𝑘−1

𝑗
+∑𝑒∈𝐸1𝑗 ∈ 𝑒∏𝑖∈𝑒\{ 𝑗 } 𝑥𝑖

Using the following theorem from [7], we can link the above theory

to th problem of finding maximal cliques in 𝐾-hypergraphs.

Theorem 1 Let 𝐺 be a 𝐾-hypergraph and 0 < 𝜏 < 1

2
𝑘−2

. A

vector 𝑥 ∈ Δ is a global/local minimizer of ℎ𝐺 (𝑥) if and only if it is

the characteristic vector of a maximum/maximal clique of 𝐺 .

Define for a subset

𝑆 ⊆ 𝑁

TScIT 39, July 7, 2023, Enschede, The Netherlands Victor Melinceanu

the characteristic vector 𝑥𝑆 ∈Δ𝑛 by

𝑥𝑆 =

{
1

|𝑆 | , 𝑖 ∈ 𝑆
0, 𝑖 ∉ 𝑆

Theorem 1 implicitly provides an isomorphism between the set of

maximal cliques of a 𝑘-hypergraph 𝐺 and the set of local/global

minimizers of the function ℎ𝐺 over Δ. This allows us to find a local

minimizer of the polynomial ℎ𝐺 and then to map that minimizer to

a maximal clique of 𝐺 .

To find a local minimizer for the homogeneous polynomial ℎ𝐺 ,

we are going to use the Baum-Eagon inequality as stated in theorem
5 in [7].

𝑧𝑖 = 𝑥𝑖
𝜕𝑃 (𝑥)
𝜕𝑥𝑖

/ 𝑛−1∑︁
𝑗=0

𝑥 𝑗
𝜕𝑃 (𝑥)
𝜕𝑥 𝑗

, 𝑖 = 0, ..., 𝑛 − 1,

where 𝑃 is a homogeneous polynomial.

The iteration starts with a random vector 𝑥 ∈Δ𝑛 . To find the local
minimizer ofℎ𝐺 overΔ𝑛 , [7] suggests the following transformations

derived from the Baum-Eagon inequality.

𝑦𝑖 =
𝑥
(𝑡)
𝑖
[𝑘b − ℎ𝑖

𝐺
(𝑥 (𝑡))]

𝑘b −∑𝑛−1

𝑗=0
𝑥
(𝑡)
𝑗
ℎ
𝑗

𝐺
(𝑥 (𝑡))

where 𝑡 is the current iteration and𝑦 is the new vector created from

applying the transformation to 𝑥 .

4.3.1 Trivial implementation of the replicator dynamics method.
The algorithm runs on 𝐺 and not on 𝐺 . This means that instead

of using the set of hyperedges 𝐸 we use the complement set, 𝐸.

We need to compute the complement of our 𝐾-hypergraph. Note

that computing the complement of a 𝐾-hypergraph can be done in

multiple ways and often the computation takes much more time

than required, since one has to work with a subset that often spans

the complete power set. below we show a way to compute the

complement in time complexity

(𝑛
𝑘

)
log

2
(
(𝑛
𝑘

)
𝑘). The

(𝑛
𝑘

)
factor comes

from iterating through all subsets of 𝑛 choose 𝑘 elements. The

𝑙𝑜𝑔2 factor comes from the python hashmap, that holds all the

hyperedges from 𝐺 .

Algorithm 2 Complement(𝑛, 𝐸, 𝑘)

𝑚𝑝 ← map of hyperedges in 𝐺

𝑎 ← empty vector representing the current subset

𝑎𝑙 ← empty vector for the complement hyperedges

gen𝑖

if size(𝑎) = 𝑘 then
if ¬𝑚𝑝 [𝑎] then
𝑎𝑙 .push_back(𝑎)

end if
return

end if
for 𝑖𝑖 = 𝑖 to 𝑛 do
𝑎.push_back(𝑖𝑖)
GEN(𝑖𝑖 + 1)
𝑎.pop_back()

end for
GEN(0)

Then we choose 𝜏 = 1

2
𝑘 to satisfy theorem 1. We then initialise

𝑥 with random numbers from 0 to 1, that is why we normalize

by dividing every element of 𝑥 by

∑𝑛−1

𝑖=0
𝑥𝑖 . We normalize because

we need a random starting vector 𝑥 ∈ Δ𝑛 . After convergence the

Algorithm 3 Replicator dynamics method

1: b ← max(𝜏, 1

𝑘!
)

2: 𝑥 ← random array of size 𝑛

3: 𝑠 ← ∑
𝑥

4: 𝑥 ← 𝑥
𝑠

5: 𝑖𝑡 ← 0

6: while True do
7: 𝑖𝑡 ← 𝑖𝑡 + 1

8: if 𝑖𝑡 = 10000 then
9: break
10: end if
11: 𝐻 ← 0.0

12: 𝑞_𝑠𝑢𝑚 ← 0.0

13: ℎ ← empty list

14: for 𝑗 ← 0 to 𝑛 − 1 do
15: 𝑦_𝑠𝑢𝑚 ← 0.0

16: for each 𝑒 in 𝐸 do
17: if 𝑗 is in 𝑒 then
18: 𝑦_𝑝𝑟𝑜𝑑 ← 1.0

19: for each 𝑖 in 𝑒 do
20: if 𝑖 ≠ 𝑗 then
21: 𝑦_𝑝𝑟𝑜𝑑 ← 𝑦_𝑝𝑟𝑜𝑑 · 𝑥 [𝑖]
22: end if
23: end for
24: 𝑦_𝑠𝑢𝑚 ← 𝑦_𝑠𝑢𝑚 + 𝑦_𝑝𝑟𝑜𝑑
25: end if
26: end for
27: 𝑦_𝑠𝑢𝑚 ← 𝑦_𝑠𝑢𝑚 + 𝜏 · 𝑘 · 𝑥 [𝑗]𝑘−1

28: ℎ[𝑗] ← 𝑦_𝑠𝑢𝑚

29: 𝐻 ← 𝐻 + 𝑦_𝑠𝑢𝑚 · 𝑥 [𝑗]
30: end for
31: 𝑦 ← array of size 𝑛 initialized with zeros

32: for 𝑗 ← 0 to 𝑛 − 1 do
33: 𝑦 [𝑗] ← 𝑥 [𝑗] · (𝑘 ·b−ℎ[𝑗])

𝑘 ·b−𝐻
34: end for
35: s← ∑

𝑦

36: if s > 1.0001 or s < 0.999 then
37: 𝑦 ← 𝑦

s

38: end if
39: if ∥𝑦 − 𝑥 ∥ < 1𝑒 − 6 then
40: 𝑥 ← 𝑦

41: break
42: end if
43: 𝑥 ← 𝑦

44: end while
45: return (𝑥, 𝑖𝑡)

algorithm will provide a characteristic vector 𝑥 ∈ Δ𝑛 and the num-

ber of iterations it took. This vector will correspond to a maximal

clique of our initial hypergraph 𝐺 . We allow for a maximum of

Finding maximal cliques in uniform hypergraphs using Baum-Eagon inequality TScIT 39, July 7, 2023, Enschede, The Netherlands

10000 iterations. This algorithm is similar to the one implemented

by Iosif. [4], and has the same time complexity of 𝑂 (𝑛 ∗ |𝐸 | ∗ 𝑘).
However the algorithm can be easily made faster by iterating only

through hyperedges that contain a certain node, as opposed to iter-

ating through all the hyperedges each time. The complexity thus

becomes 𝑂 (|𝐸 | ∗ 𝑘), making it 𝑛 times faster.

4.3.2 Optimization of the trivial implementation. The scope of the
optimization is to speed up each iteration. The algorithm remains

logically exactly the same, but by changing the way we calculate the

formulas, we can speed it up by a factor of 𝑛. For this optimization

we define 𝑒𝑑𝑔 𝑗 as the set of all hyperedges containing node 𝑗 , each

hyperedge being represented as an index from 𝐸. All 𝑒𝑑𝑔 𝑗 should

be pre-calculated.

Algorithm 4 Fast iteration implementation

1: 𝑝𝑒 ← array of size |𝐸 |
2: for 𝑗 in range(len(𝐸)) do
3: pe[𝑗] ← 1.0

4: for 𝑒 in 𝐸 [𝑗] do
5: pe[𝑗] ← pe[𝑗] · 𝑥 [𝑒]
6: end for
7: end for
8: for 𝑗 in range(𝑛) do
9: 𝑦_𝑠𝑢𝑚 ← 0.0

10: for 𝑒 in edg[𝑗] do
11: 𝑦_𝑝𝑟𝑜𝑑 ← pe[𝑒]
12: if 𝑥 [𝑗] > 0 then

13: 𝑦_𝑝𝑟𝑜𝑑 ← 𝑦_𝑝𝑟𝑜𝑑

𝑥 [𝑗]
14: end if
15: 𝑦_𝑠𝑢𝑚 ← 𝑦_𝑠𝑢𝑚 + 𝑦_𝑝𝑟𝑜𝑑
16: end for
17: 𝑦_𝑠𝑢𝑚 ← 𝑦_𝑠𝑢𝑚 + 𝜏 · 𝑘 · 𝑥 [𝑗]𝑘−1

18: h.append(𝑦_𝑠𝑢𝑚)
19: 𝐻 ← 𝐻 + 𝑦_𝑠𝑢𝑚 · 𝑥 [𝑗]
20: end for

This code should be replaced in the trivial implementation (3)

on lines 14 - 30. Let’s now analyse the time complexity. In this

algorithm we do the same as in the trivial one, but we iterate only

over the sets of hyperedges that contain node 𝑗 . Also we noticed

that instead of calculating the product of each hyperedge each time

we want to calculate the derivative (see line 18-23 in 3), we can

precompute the product once (see line 2-6 in 4) and then divide

by the current 𝑥 𝑗 . The complexity on line 2-6 of the fast algorithm

(4), is obviously 𝑂 (|𝐸 ∗ |𝑘), since for each edge in the complement

we iterate through all the nodes in the edge, and there are 𝑘 node

in each hyperedge. Line 8-10, we iterate through each hyperedge

of each node. We know that each hyperedge will appear 𝑘 times

in the vector 𝑒𝑑𝑔, because 𝑘 nodes are part of that hyperedge. So

the complexity of line 8-10 as well as the complexity of the entire

algorithm is 𝑶 (|𝑬 | ∗ 𝒌). Note that this optimization doesn’t speed

up the number of iterations required to converge, but it makes the

calculation of each iteration faster by a factor of 𝑛.

Thememory complexity of this algorithm can also be easily

calculated.We have a list of hyperedges and a list of the complement,

adding up to a total of

(𝑛
𝑘

)
hyperedges each having 𝑘 nodes, so the

complexity for even holding the preliminary data in memory is

𝑂 (
(𝑛
𝑘

)
∗𝑘). The 𝑒𝑑𝑔 vector contains |𝐸 | ∗𝑘 hyperedges, represented

as indeces from 𝐸, which means that the memory complexity for

𝑒𝑑𝑔 is𝑂 (|𝐸 | ∗𝑘). Because |𝐸 | <
(𝑛
𝑘

)
the overall memory complexity

is 𝑶 (
(𝒏
𝒌

)

∗ 𝒌).

4.3.3 Memory optimization for storing 𝐾-hypertrees. Currently we

are storing each hyperedge as a vector of integers. Usually an

integer has 32-64 bits in modern programming languages, meaning

that we require 32 ∗ 𝑘 bits to store a hyperedge. However instead

of using a vector of integers, we could use a binary string, where

𝑠𝑖 = 1, if 𝑖 ∈ 𝑒𝑑𝑔𝑒 and 𝑠𝑖 = 0 otherwise, with 𝑖 = 0, ..., 𝑛 − 1. In C++

as well as Python, there is a data structure called bitset. It contains
a collection of bits, each occupying exactly 1 bit in memory. So

storing 𝑛 bits will require exactly 𝑛 bits. We can encode each of

hyperedge using a bitset of size 𝑛 containing 𝑘 ones representing

the nodes in the hyperedge. Now storing a hyperedges requires 𝑛

bits instead of 32 ∗ 𝑘 bits.

Of course this optimization makes sense only when 𝑛 < 32∗𝑘 , or
𝑛
𝑘
< 32. So for𝐾-hypergraphs with 𝑛

𝑘
< 32, the memory complexity

becomes 𝑶 (
(𝒏𝒌)∗𝒏

32). The time complexity shouldn’t be affected by

this change because bitsets allow most operations in constant or

almost constant time. For example for finding the next set bit after

some index, the bitset does that in 𝑂 (𝑚
32
), where𝑚 is the size of

the bitset.

5 EXPERIMENTS
Multiple experiments have been conducted in order to find out more

about the fast iteration implementation and about the proposed

replicator dynamics method.

5.1 Testing the fast iteration implementation
To test the fast implementation of the replicator dynamics method

for finding maximal cliques in 𝐾-hypergraphs we first need a

dataset. We made use of the generation algorithms described above

to generate random circulant𝐾-hypergraphs and random𝐾-hypertrees.

What we care about with each test is what is the number of itera-

tions until the algorithm converges to a maximal clique. To check

at the end if the algorithm converged correctly to a maximal clique,

we take the given set returned by the algorithm and check if it’s

a maximal clique. For this experiment we tested the Python fast

iteration implementation.

5.1.1 𝐾-hypertrees. Since 𝐾-hypertrees with 𝑛 nodes contain ex-

actly

(𝑛−1

𝑘−1

)
hyperedges, we have analyzed for 𝑘 = 3, 5 and 𝑛 <= 30

because higher values require a lot of computational time. For each

𝑘 and 𝑛 we have generated 4 different random trees.

5.1.2 Circulant𝐾-hypergraphs. For this type of structurewe picked
𝑛, 𝑘 and 𝑑 as opposed to just 𝑛 and 𝑘 for 𝐾-hypertrees. Here again

we decided to consider 𝑘 = 3, 5 and both 𝑛 = 10, 19 and 𝑛 = 50, 59.

However for 𝑛 = 50, 59 we have used 𝑘 = 3,4 since computation

takes a lot of time. For 𝑑 we chose values starting from 0.35 to 0.95

with an increase of 0.05. So finally the dataset contains a random

circulant 𝐾-hypertree for each 𝑛, 𝑘 and 𝑑 chosen.

TScIT 39, July 7, 2023, Enschede, The Netherlands Victor Melinceanu

5.2 Comparing efficiencies between the trivial
and fast implementation

We know for a fact that the fast iteration implementation is faster

than the trivial implementation, mathematically. However to find

out about the practical aspect of the optimization we have con-

ducted a couple of tests. For conducting the tests we chose the cir-

culant 𝐾-hypergraph. We tested for 𝑑 = 0.35, 𝑘 = 4 and 𝑛 = 50, 56.

We care about the average run time of an iteration per test. Here we

used the trivial and fast iteration implementation both in Python.

5.3 Comparing efficiencies between Python and
C++ fast implementation

To show the readers the difference in the efficiencies of Python

and C++ implementation, we also conducted an experiment to find

out more about the factor by which these two implementations

differ. Here we are going to see the entire run time of the algorithm.

We tested again for circulant 𝐾-hypergraphs with 𝑑 = 0.35 and

𝑑 = 0.95, 𝑘 = 4 and 𝑛 = 50, 56.

6 RESULTS
For all the experiments conducted, Python 3.11.3 with Sublime Text

3 as editor and C++14 with Codeblocks 20.03 as IDE was used. The

experiments were run on a Intel(R) Core(TM) i5-10210U CPU @

1.60GHz on Windows 10.

6.1 Testing the fast iteration implementation
All of the tests converged and have given a correct maximal clique,

testing the implementation of the fast iteration method over a

dataset of 500 graphs.

6.1.1 𝐾-hypertrees. We have computed for every 𝑛 and 𝑘 the aver-

age number of iterations for all 4 random 𝐾-hypertrees. below we

show the plots with the results obtained for each 𝑘 = 3, 5.

We can notice that the number of iterations it takes for the

algorithm to converge is not dependent on the number of nodes,

since the line is not increasing, but rather it is oscillating, for all

𝑘 = 3, 5. This is a positive result because the scope of the algorithm

is to findmaximal cliques for graphs of arbitrary size and this proves

that in practice the number of iterations until convergence will not

depend on 𝑛, but rather on the number of hyperedges.

We can also notice that the maximum average number of iter-

ations for 𝑘 = 3 is smaller than the minimum average number of

iterations for 𝑘 = 4. Same holds for 𝑘 = 4 and 𝑘 = 5.

6.1.2 Observation, new theorem and proof. After running all 300
𝐾-hypertrees tests, the algorithm always converged to a clique of

size 𝑘 . This suggests the following theorem.

Theorem 6.1. For all𝐾-hypertrees the size of the maximum clique
is always exactly 𝑘 .

Proof. We prove this statement using mathematical induction.

First let 𝑃 (𝑛, 𝑘) = 𝑡𝑟𝑢𝑒 if the size of the maximum clique in any

𝐾-hypergraph is exactly k. Let 𝑇 (𝑛, 𝑘) be any random 𝐾-hypertree

with 𝑛 nodes. Define a clique of size 𝑐 in a 𝐾-hypergraph as a set

containing all the

(𝑐
𝑘

)
subsets of size 𝑘 composed of 𝑐 nodes. We’ll

prove that 𝑃 (𝑛, 𝑘) = 𝑡𝑟𝑢𝑒 ∀𝑛, 𝑘, 𝑛 >= 𝑘 .

Base Cases:

• 𝑃 (𝑘, 𝑘) = 𝑡𝑟𝑢𝑒 ∀𝑘 , because 𝑇 (𝑘, 𝑘) contains the hyperedge
{1, 2, ..., 𝑘} which is a clique of size 𝑘 .

Finding maximal cliques in uniform hypergraphs using Baum-Eagon inequality TScIT 39, July 7, 2023, Enschede, The Netherlands

• 𝑃 (𝑛, 2) = 𝑡𝑟𝑢𝑒 ∀𝑛 >= 2, because for 𝑘 = 2 the 2-hypertree

is the same as a regular tree and the size of the maximum

clique in any tree is 2.

Inductive Step:Wewant to find out if 𝑃 (𝑛, 𝑘) is true, for that we
assume that ∀𝑛1 <= 𝑛, 𝑘1 <= 𝑘, 𝑛1 ≠ 𝑛, 𝑘1 ≠ 𝑘 , 𝑃 (𝑛1, 𝑘1) = 𝑡𝑟𝑢𝑒 ,
for some arbitrary positive integers 𝑛, 𝑘 >= 3, 𝑛 >= 𝑘.

Since we want to prove that 𝑃 (𝑛, 𝑘) = 𝑡𝑟𝑢𝑒 , we only care about

the statements 𝑃 (𝑛 − 1, 𝑘) and 𝑃 (𝑛 − 1, 𝑘 − 1). We know they both

are 𝑡𝑟𝑢𝑒 from the inductive step.

From the definition 1we know that𝑇 (𝑛, 𝑘) = 𝑇 (𝑛−1, 𝑘)⋃𝑇 (𝑛−
1, 𝑘 − 1) + {𝑛}. We know that 𝑃 (𝑛 − 1, 𝑘) = 𝑡𝑟𝑢𝑒 , so the 𝑇 (𝑛 − 1, 𝑘)
hypertree contains a maximum clique of size 𝑘 . However for𝑇 (𝑛 −
1, 𝑘 − 1), we know that we append node 𝑛 to each hyperedge of

the hypertree, as stated by rule 2 of the definition. So the size of a

maximum clique for 𝑇 (𝑛 − 1, 𝑘 − 1) + {𝑛} increases from 𝑘 − 1 to

𝑘 . Now we know that both components of the new hypertree we

are constructing contain a maximum clique of size 𝑘 . The only way

𝑇 (𝑛, 𝑘) could have a clique of size greater than 𝑘 , is if 𝑇 (𝑛 − 1, 𝑘)
and 𝑇 (𝑛 − 1, 𝑘 − 1) + {𝑛} contained parts of a clique of size 𝑘 + 1,

that when concatenated would create the clique of size 𝑘 + 1 (1).
We want to prove that 𝑃 (𝑛, 𝑘) = 𝑡𝑟𝑢𝑒 , meaning there is no clique

of size greater than 𝑘 . So we will prove that there is no clique of

size 𝑘 + 1 in 𝑇 (𝑛, 𝑘) using proof by contradiction.

Assume there exists a clique of size 𝑘 + 1 in 𝑇 (𝑛, 𝑘). From (1) we
know that hyperedges of this clique are contained both in𝑇 (𝑛−1, 𝑘)
and in 𝑇 (𝑛 − 1, 𝑘 − 1) + {𝑛}, meaning that each hypertree must

contain at least one hyperedge from this maximal clique of size

𝑘 + 1 (2). Because 𝑇 (𝑛 − 1, 𝑘 − 1) + {𝑛} is a set of hyperedges all
containing node 𝑛 and because (2), we know that 𝑛 needs to be

part of the 𝑘 + 1 clique. WLOG let’s assume that the other nodes

part of the 𝑘 + 1 clique are {1, 2, .., 𝑘}. A clique of size 𝑘 + 1 in a

𝐾-hypertree will have
(𝑘+1
𝑘

)
= 𝑘 + 1 hyperedges.

(𝑘
𝑘−1

)
= 𝑘 of those

hyperedges need to contain node 𝑛, since it’s a clique. So only 1

hyperedge not containing node 𝑛 is present in the clique, namely

{1, 2, ..., 𝑘} ∈ 𝑇 (𝑛 − 1, 𝑘). Now for all the other 𝑘 hyperedges that

also contain 𝑛, we need to show that all the

(𝑘
𝑘−1

)
subsets with

𝑛 appended are present, since it’s a clique of size 𝑘 + 1. But if all

the

(𝑘
𝑘−1

)
subsets with 𝑛 appended are present in 𝑇 (𝑛, 𝑘), then the

subsets

(𝑘
𝑘−1

)
were also present in 𝑇 (𝑛 − 1, 𝑘 − 1), menaing that

𝑇 (𝑛 − 1, 𝑘 − 1) has a maximum clique of size 𝑘 , but it doesn’t since

𝑃 (𝑛−1, 𝑘 −1) = 𝑡𝑟𝑢𝑒 means that the maximum clique has size 𝑘 −1.

So we arrived at contradiction.

Therefore, by the principle of mathematical induction, the claim

is proved for all positive integers 𝑛 and 𝑘 . □

We provide a new property to 𝐾-hypertrees, that generalizes the

definition of trees. It’s a known fact that the maximum clique size

in any tree is 2. Since trees are 2-hypertrees, the property holds. We

proved for any 𝑘 that a 𝐾-hypertree, defined by [8], has a maximal

clique of size 𝑘 .

6.1.3 Circulant 𝐾-hypergraphs. For this structure we decided to

split the results into 2 datasets, one with 𝑛 = 10, 19 and the other

with 𝑛 = 50, 59.

In the above plot we can see how for smaller𝑛we get less number

of iterations on average. However in the 𝑘 = 4 plot, the discrepancy

is very small between the two lines, showing that the number of

iterations is more dependant on the number of hyperedges, or so

to say it is dependant on the structure of the graph, it’s 𝑘 and 𝑑

parameters.

TScIT 39, July 7, 2023, Enschede, The Netherlands Victor Melinceanu

Judging by all 3 plots, we can see that the average number of

iterations increases with 𝑑 , especially when 𝑑 gets close to 0.95, so

to say close to a complete 𝐾-hypergraph. The number of iterations

also increases considerably with the increase of 𝑘 , because a higher

value of 𝑘 means more possible hyperedges in the hypergraph. So

the number of the iterations is dependant on the number of hyper-

edges. Even if the complement of a dense graph has a small amount

of hyperedges, the algorithm doesn’t converge in less iterations,

an iteration will be faster, but the number of iterations show to

increase. This could be explained due to the fact that there are a

small number of edges in the complement of a dense hypergraph,

the characteristic vector changes slower, thus a higher number of

iterations is required.

We note that for larger hypergraphs, the algorithm will still

converge but it will take more iterations than 10000. While running

some test cases with k = 6, the algorithm converged once in 83000

iterations. For larger hypergraph cases also the precision error

could be changed from 10
−6

to 10
−8
, for a more accurate result.

Since we are dealing here with a lot of floating numbers precision

does play somewhat of a role.

6.2 Comparing efficiencies between the trivial
and fast implementation

Again this experiment was conducted on circulant 𝐾-hypergraphs

with 𝑑 = 0.35, 𝑘 = 4 and 𝑛 = 50, 56.

From the plot above we can clearly see that the fast implemen-

tation is at least 3 times faster in practice. Besides that we can see

how the Trivial line grows much faster once 𝑛 starts to grow. This

is explained due to the 𝑛 factor in the time complexity of the trivial

implementation, which is absent in the fast implementation. The

Fast line also grows with 𝑛, because once 𝑛 increases, the number

of expected hyperedges also increases, thus increasing the run time

of the iteration.

6.3 Comparing efficiencies between Python and
C++ fast implementation

We conducted the experiments on two datasets, one for sparse and

one for dense 𝐾-hypergraphs.

The plots above show the difference between C++ and Python

efficiency. C++ has always converged in under 44 seconds, whereas

Python even got to 1100 seconds. After computing the average iter-

ation run time over all tests in Python and C++, we have calculated

the average factor by which C++ is faster than Python. For the

first plot, with 𝑑 = 0.35, the factor is 14.3. For the second plot, with

𝑑 = 0.95, the factor is 16.7. So it turns out that in practice C++ works

around 15 times faster than Python, when it comes to algorithmic

implementation. This should suggest to the readers how much time

you could save if you use the faster language.

7 CONCLUSION
After careful testing of the fast replicator dynamics method the fol-

lowing conclusions could be drawn. The following algorithm shows

potential use in finding maximal cliques in 𝐾-hypergraphs, since

the number of iterations and the time complexity is not dependent

on 𝑛. However future optimizations should focus on minimizing the

number of iterations by using line minimization for example, which

is described in [1]. If the number of iterations could be brought

down, then the algorithm would be very useful in practice.

In current literature the 𝑂 (𝐸 ∗ 𝑘) implementation is state of the

art for the replicator dynamics method. The fast implementation

works much better in practice, especially for 𝐾-hypergraphs with

Finding maximal cliques in uniform hypergraphs using Baum-Eagon inequality TScIT 39, July 7, 2023, Enschede, The Netherlands

larger value of 𝑛. If we have 𝐾-hypergraphs with the property

𝑛
𝑘
< 32, then we can use a memory optimization by representing

hyperedges with bitsets instead of vectors of integers.

It is advised to use C++ for algorithmic implementations if effi-

ciency is what you’re looking for. Even without the use of pointers

or anything fancy, C++ turned out to be around 15 times faster than

Python.

Finally, 𝐾-hypertrees defined by [8], may have more uses in

the future, due to the proof of theorem 6.1 showing another close
connection between hypertrees and trees.

REFERENCES
[1] Ahmed Faizan and Still Georg. 2021. Two methods for the maximization of

homogeneous polynomials over the simplex. Computational Optimization and
Applications 80 (2021), 523–548. https://doi.org/10.1007/s10589-021-00307-1

[2] Heath E. Jefferson B. et al. Feng, S. 2021. Hypergraphmodels of biological networks

to identify genes critical to pathogenic viral response. BMC Bioinformatics 22
(2021). https://doi.org/10.1186/s12859-021-04197-2

[3] M. Lemaitre G. Verfaillie and T. Schiex. 1996. Russian Doll Search for Solving

Constraint Optimization Problems. 1 (1996).

[4] A. Iosif. 2022. An empirical evaluation of approximation algorithms to find

maximal cliques in hypergraphs. http://essay.utwente.nl/89626/

[5] Ojas Parekh. 2003. Forestation in Hypergraphs: Linear K-Trees. Electronic Journal
of Combinatorics 10 (11 2003). https://doi.org/10.37236/1752

[6] Lachlan Plant. 2018. Maximum Clique Search in Circulant k-Hypergraphs. (2018).

https://doi.org/10.20381/ruor-22717

[7] Samuel Rota Bulò and Marcello Pelillo. 2007. A Continuous Characterization of

Maximal Cliques in k-Uniform Hypergraphs. https://doi.org/10.1007/978-3-540-

92695-5_17

[8] Ioan Tomescu. 1986. Hypertrees and Bonferroni inequalities. Journal of Com-
binatorial Theory, Series B 41, 2 (1986), 209–217. https://doi.org/10.1016/0095-

8956(86)90044-4

[9] Patric R.J. Östergård. 2002. A fast algorithm for the maximum clique problem.

Discrete Applied Mathematics 120, 1 (2002), 197–207. https://doi.org/10.1016/S0166-

218X(01)00290-6 Special Issue devoted to the 6th Twente Workshop on Graphs

and Combinatorial Optimization.

https://doi.org/10.1007/s10589-021-00307-1
https://doi.org/10.1186/s12859-021-04197-2
http://essay.utwente.nl/89626/
https://doi.org/10.37236/1752
https://doi.org/10.20381/ruor-22717
https://doi.org/10.1007/978-3-540-92695-5_17
https://doi.org/10.1007/978-3-540-92695-5_17
https://doi.org/10.1016/0095-8956(86)90044-4
https://doi.org/10.1016/0095-8956(86)90044-4
https://doi.org/10.1016/S0166-218X(01)00290-6
https://doi.org/10.1016/S0166-218X(01)00290-6

	Abstract
	1 Introduction
	2 Problem Statement and Structure
	3 Related Work
	4 Theory and Methodologies
	4.1 Circulant K-hypergraphs
	4.2 K-hypertrees
	4.3 Replicator dynamics method to find maximal clique in K-hypergraph
	4.3.1 Trivial implementation of the replicator dynamics method
	4.3.2 Optimization of the trivial implementation
	4.3.3 Memory optimization for storing K-hypertrees

	5 Experiments
	5.1 Testing the fast iteration implementation
	5.1.1 K-hypertrees
	5.1.2 Circulant K-hypergraphs

	5.2 Comparing efficiencies between the trivial and fast implementation
	5.3 Comparing efficiencies between Python and C++ fast implementation

	6 Results
	6.1 Testing the fast iteration implementation
	6.1.1 K-hypertrees
	6.1.2 Observation, new theorem and proof
	6.1.3 Circulant K-hypergraphs

	6.2 Comparing efficiencies between the trivial and fast implementation
	6.3 Comparing efficiencies between Python and C++ fast implementation

	7 Conclusion
	References

