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Abstract - As the number of IoT devices increases, protecting them from
cyber attacks has become increasingly challenging. Traditional IDS solutions
may not be practical for IoT devices due to their limited resources. Therefore
to address this, in this research, we aim to propose and evaluate the effec-
tiveness of a Raspberry Pi-based IDS for securing IoT devices. The study will
analyze the Pi-based IDS for detecting various network attacks, aim to iden-
tify configuration changes for performance improvement and investigate
any potential vulnerabilities in the IDS. The methodology involves carrying
out attacks on the IoT environment, consisting of a Raspberry Pi(RPi) with
IDS, a temperature sensor sending data to a web server and a background
traffic generator. Subsequently, the metrics data from log files are analyzed
and presented. The expected outcome of this research is to demonstrate
the efficacy and offer insights into the possible advantages of utilizing an
RPi-based IDS in detecting network attacks for securing IoT devices. The
study’s findings will contribute to IoT security literature and provide areas
of needed improvement to optimize Snort IDS on the RPi.
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1 INTRODUCTION
In recent years, the proliferation of Internet of Things(IoT) devices
has been remarkable, with their integration into various aspects of
daily life, such as smart homes, smart lamps, smartwatches, indus-
trial automation, healthcare, and more [2]. This widespread adop-
tion of IoT has provided organizations with opportunities to collect
vast amounts of data and automate numerous processes, leading
to increased efficiency, productivity, and innovation. However, this
expansion has also brought forth new security challenges, primar-
ily due to the inherent vulnerabilities of IoT devices, their limited
resources, and frequent connections to the internet [3]. To address
these security concerns, this research evaluates a cost-effective and
efficient security system: an RPi-based Intrusion Detection Sys-
tem(IDS). The IDS aims to provide robust protection for IoT devices
against various factors and attacks, ensuring their security and
integrity.
Intrusion Detection Systems are capable of analyzing network

traffic in real-time to identify suspicious and potentially malicious
activity through predefined rules or machine learning algorithms.
For this study, we employ Snort, an open-source IDS known for its
high customization capabilities, reliability, and active community
support. The research will specifically apply the IDS to an RPi, a
low-cost, compact-sized single-board computer popularly used in
many IoT applications. By leveraging the capabilities of the RPi,
IDS’s effectiveness and suitability in protecting IoT devices will
be assessed by conducting comprehensive evaluations and testing
across different attack scenarios.
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Recently, the security of IoT devices has become a significant
concern due to the sensitive data they carry and their vulnerabil-
ity to cyber-attacks. Traditional IDSs are not practical or efficient
solutions for IoT devices due to their limited computing power,
memory, and battery life. Several surveys and research studies have
highlighted the limitations of traditional security solutions for IoT
devices, such as cryptographic protocols, secure routing policies,
anti-malware solutions, and trust management systems, which con-
sume excessive resources, energy, and bandwidth [4, 6]. There have
also been concerns that cloud security solutions are not enough for
protecting the IoT as well, specifically against attacks utilizing vari-
ous levels of communication protocols[7]. Additionally, Blockchain,
which is often proposed as a modern security solution, may not be
suitable for IoT security due to issues with anonymity, scalability,
and performance rates [10].

To address these challenges, IDSs have shown promise in securing
IoT devices by analyzing network traffic and identifying malicious
activities. However, existing research on IDS performance analysis
for IoT devices, particularly using RPi as a platform, is limited. Pre-
vious studies have primarily focused on the feasibility and resource
usage of RPi-based IDSs, with little emphasis on other performance
metrics such as detection rate, false positive rate, and reaction time.
Moreover, there is a lack of research exploring the security aspects
of RPi IDS, including its susceptibility to exploitation, penetration,
and other types of attacks.
Motivated by these research gaps, this study aims to contribute

to cyber defense strategies by investigating the security challenges
in the IoT technology space. Specifically, we focus on evaluating the
effectiveness of a lightweight RPi-based IDS in detecting and logging
cyber attacks. Additionally, we analyze the resource usage of RPi
4 as an IDS, providing up-to-date insights compared to previous
studies that focused on earlier versions of the device. By sharing our
findings, we aim to enhance the understanding of the capabilities
and limitations of using RPi devices as IDS solutions in the modern
cybersecurity landscape.

The objective of this research is to assess the efficacy of using an
RPi 4-based Snort IDS as a security solution for IoT devices across
various industries. To achieve this goal, the study addresses the
following research questions:

(1) How does the performance of the RPi-based IDS compare to
other IDS solutions in terms of detecting rate, false positive
rate, and response time for different types of attacks (e.g., DoS,
Authentication, MITM, Network scanning) on IoT devices?

(2) What specific configurationmodifications can be implemented
to improve the effectiveness and security of the proposed
RPi-based IDS in identifying and logging cyber-attacks, par-
ticularly DoS attacks, on IoT devices?

(3) What are the particular vulnerabilities and exploits that could
potentially impact the performance of the proposed RPi-based
IDS, and what measures can be taken to mitigate them?
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The rest of this paper will be structured as follows. First, In section
2 we detail the setup of our experiments, Attacker machine, and IoT
environment to assess the effectiveness of RPi-based IDS in securing
IoT devices. Moreover, in Section 3 we present the results achieved
from our experiment. Section 4 goes into a critical analysis of our
results, address the limitations, and proposes potential solutions
to address the vulnerabilities discovered. Additionally, Section 4
performs a comparative analysis with the related works in the field.
Finally, section 5 concludes the research, and presents areas of
interest for further research.

2 RESEARCH METHODOLOGY
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Fig. 1. RPi IDS SCHEMA
To address the research questions, our study encompassed sev-

eral stages. Firstly, we conducted a comprehensive literature review
to gather relevant papers and research on RPI IDS performance
evaluations and comparisons. This served as the foundation for our
bibliography and provided valuable insights into the existing body
of knowledge. Next, we focused on creating an IoT environment
that could replicate authentic IoT traffic. To accomplish this, we
employed an RPi as our IoT device and utilized a traffic generator
script to simulate traffic. Additionally, we incorporated our own
temperature and humidity sensor data, which was transmitted to
a web dashboard. This allowed us to establish a robust IoT device
ecosystem that was well-suited for testing and evaluation. Subse-
quently, we configured and deployed Snort on RPi to monitor the
generated traffic. Snort served as our intrusion detection system,
enabling us to analyze and detect potential security threats within
the IoT network. To further evaluate the performance and security
aspects, we utilized various penetration testing tools and leveraged a
Kali Linux Virtual Machine. Through rigorous testing, we subjected
the IoT network traffic to different stress scenarios, generating data
for multiple performance and security evaluations. The insights
gained from these evaluations contributed to a comprehensive un-
derstanding of the system’s capabilities and vulnerabilities.

An overview of the architecture we constructed for this research
can be observed in Figure 1. This visual representation provides a
clear depiction of the components and their interconnections within
our research environment.
Lastly, we concluded the study by presenting our findings and

results, which directly addressed the research questions we had
initially formulated. Through a systematic approach and a combi-
nation of literature review, experimentation, and analysis, we were
able to contribute valuable insights to the field of RPI IDS and IoT
security.

2.1 Measurement Environment
2.1.1 Hardware and Software Configuration. The hardware and
software components are demonstrated in Tables 1 and 2. In this
setup, the RPi 4 functions as both an IoT device and an Intrusion
Detection System (IDS) to safeguard itself. To measure temperature
and humidity, an RPi is equipped with a DHT22 sensor. The IDS
functionality is achieved through the utilization of Snort software,
which operates as a signature-based IDS running on the RPi. For data
collection and traffic generation, Python3 programming language
is employed, along with the Scapy library. Additionally, Python3
is utilized in certain scripts for executing timed attack commands.
The primary research codes can be accessed on the RPi IDS Github
page1. In order to simulate an attacker, Kali Linux is employed,
which encompasses a range of attack tools such as Hping3 for De-
nial of Service (DoS) attacks, Hydra for Brute-Force attacks, Nmap
for scanning, and Ettercap for ARP spoof attacks.
In our study, we made certain modifications to the Snort config-
uration file to tailor it to our requirements. Firstly, we edited the
"HOME-NET" parameter, which defines the IP address range of our
internal network. In our specific case, it was set to "192.168.178.0/24"
as we were utilizing a Ziggo router in our home network. Addition-
ally, we included port 5000 in the list of HTTP ports to effectively
monitor the Flask web dashboard traffic. To enable the detection
of ARP spoofing attacks, we activated the ARP preprocessor in the
configuration file and added a list of IP-MAC address pairs. We also
incorporated preprocessor rules2 related to ARP and other prepro-
cessors and enabled the PATH and rule inclusion in the configura-
tion file. The ARP preprocessor in Snort continuously monitors and
analyzes ARP traffic, generating alerts when it detects any incon-
sistencies within the IP-MAC list, indicating ARP spoofing attacks.
Furthermore, we customized the snort rules inclusion to align with
our research objectives. For several tests, we created our own rules
in the "Local.rules" file, specifically tailored to simulate and evaluate
the attacks relevant to our research. These configuration procedures
were crucial in ensuring that Snort was appropriately configured
for our research environment, enabling it to effectively detect and
log the specific network threats we were examining.

Table 1. Hardware specifications
Hardware Component Specifications
Raspberry Pi 4 Model B 64-bit quad-core Cortex-A72 processor, 8GB

LPDDR4 RAM, 32 GB microSD storage,
802.11b/g/n/ac wireless, Gigabit Ethernet
port, 300 - 400 Mbit/s download and 30 - 50
Mbit/s upload internet speed

DHT22 AM2302 Sensor Temperature and Humidity Sensor
Acer Triton 500 (2019) Intel(R) Core(TM) i7-9750H CPU@ 2.60GHz,

16GB DDR4, Killer DoubleShot Pro wireless,
512 GB SSD storage

Kali Linux VM 2GB RAM, 2 Processor cores, vdi SATA vir-
tual 80.09 GB storage (actual 39.03GB)

Router Ziggo TG2492LG-ZG SmartWifi Modem

1https://github.com/Toghrul000/Raspberry-Pi-IDS
2 https://github.com/eldondev/Snort/blob/master/preproc_rules/preprocessor.rules
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Table 2. Main Software Components and Descriptions
Software Explanation
Raspbian OS Raspbian GNU/Linux 10 (buster), the OS running

inside the RPi
Kali Linux v2023.2, Attacker VM machine
Snort Snort v2.9.20 IDS in the RPi for detecting attacks
Flask v2.3.2, used for running the web dashboard for

temperature and humidity data
trafficpy.py A background traffic generator script
Scapy v2.5.0, a Python library for crafting your own

packets, used in background traffic generation and
some custom attacks tested

datetime.sh A shell script that prints start and end timestamps
of the command it is run with

run_for_duration.py A Python script used for making commands run
for a specific duration of seconds

sensor.py A program for reading data from a sensor and
sending it to the dashboard

Hping3 v3.0.0-alpha-2, a tool used for DoS attacks
Nmap v7.93, a tool used for various types of scan attacks
Hydra v9.4, a tool used for SSH brute force attacks
Ettercap v0.8.3.1, a tool used for ARP spoof attacks
Wireshark/tcpdump Tools used for analyzing network traffic
Metasploit/ExploitDB Tools used for testing the system against exploits

2.2 Measurement Metrics
To evaluate the effectiveness of the RPi-based IDS, we analyzed
several metrics to address our research questions. These metrics in-
cluded response time, detection rate (Alerts Logged), false positives,
packets processed by Snort, Snort’s packets analyzed per second
(Pkts/sec), percentage of dropped and analyzed packets, CPU and
memory usage, and power usage.
We collected some of these metrics directly from the output of

the Snort command, while others were manually obtained. For eval-
uating response time, we utilized our custom script "datetime.sh"
along with attack commands to capture the start and end times-
tamps. By comparing these timestamps and the timestamp of the
first non-false positive alert, we could measure the response time of
the IDS.
To assess the detection rate, we considered both internal and

external aspects. The internal detection rate was determined from
the Snort command output and represented the ratio of alerts of
targeted attacks to the packets processed by Snort, specifically ex-
cluding the total number of attacks directed at the Pi. However,
this metric often included numerous true negatives. To address this,
we examined the external detection rate, particularly for attacks
like DoS where the exact number of sent packets was known. We
estimated the external detection rate by dividing the number of
alerts logged by the number of attacks executed.
To identify false positives, we utilized tools such as "tcpdump"

and leveraged Snort’s built-in analysis capabilities to examine and
filter log files and alerts.

For monitoring Snort’s CPU and memory usage, we employed the
"top" command in Linux along with "grep". By periodically executing
the command "top | grep snort" while Snort was running, we obtained
outputs showing the CPU and memory usage of Snort. We plotted
these data points on a graph along with the duration Snort was
active, as extracted from the Snort output.

To measure the power usage of Snort, we installed and utilized the
"powertop" command. This command provided insights into metrics
such as Usage andWakeups/s. The "Usage" metric represented the
duration for which a specific component actively consumed system
resources, indicating the frequency and duration of resource utiliza-
tion. The "Wakeups/s" metric indicated the frequency at which a
component triggered wake-up events, potentially impacting power
consumption and system performance.
Other metrics such as Packets processed, Pkts/s and Packet I/O

were obtained from the Snort output. These metrics were also tested
for RQ2, where we made modifications to the Snort configuration
file and compared the results with the metrics collected for RQ1.
Details of these modifications are provided in the section 3.

In terms of security and vulnerability assessment, we focused on
several main metrics. These included determining if a specific attack
triggered an alert, testing Snort’s resilience against DoS attacks to
divert attention from hidden attacks, and evaluating Snort’s effec-
tiveness against custom-crafted packets and IPv6 DoS attacks. To
conduct these assessments, we utilized tools such as Metasploit and
ExploitDB, conducted buffer-overflow attacks, tested fragmented
attack packets, and examined Snort’s performance against custom-
crafted packets and IPv6 DoS attacks.

3 RESULTS
3.1 Answering RQ1
In this section, we present the results of our performance evaluation
of RPi IDS against the ICMP, TCP SYN, HTTP floods, SSH Brute
Force, ARP spoofing, and Nmap scans. We ran our background traf-
fic (sensor data and traffic script) and each attack for a duration
sufficient to observe measurable results. For ICMP, SYN floods and
ARP spoofs this was around 5 minutes. For HTTP Flood, Brute
Force, and Nmap we let them run until the attack was over. All
the attacks were run with our custom script "datetime.sh" to print
the timestamps of the Start and End of an attack. Thus in the next,
section, when which attack commands were used are shown, as-
sume the full commands are executed as follows: "sudo datetime.sh
<COMMAND>"
There were several general observations and findings we found

during the experiment. In Tables 5 and 6, the benchmark results
for the main metrics we examined for this study are presented.
One of the main findings was related to the packet processing of
Snort. we noticed that in all the attacks the Packet processing speed
(Pkts/s) is relative to the number of Packets processed. When the
processed packets are higher such asmore than 2.6million, the speed
it processes can reach as high as around 10000 Pkts/s, sometimes
even more. This is especially related to DoS attacks such as ICMP
and SYN flood where high volumes of traffic are targeted at Snort.
However, for other attacks, that don’t generate many instant alert
messages and logs, their packet processing speed was much lower.
We can also see this in Figure 8, where it is obvious which attacks
took the most out of Snort. In addition, according to Table 4 ICMP
and SYN floods had the most power usage. Another observation
we found was about the Packet drop rates. we noticed that RPi
combined with the IDS was not powerful enough to handle all DoS
network traffic and always had around 40% packet drop rates.
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First, we tested ICMP and SYN Flood attacks against Snort. We
ran these attacks in Kali Linux with the Hping3 tool. The commands
for these attacks were: "hping3 <–icmp/-S -p 80> –flood <host>".
For detecting these attacks we also utilized our own custom snort
rules: "alert icmp any any -> $HOME_NET any (msg:"ICMP flood";
sid:1000001; rev:1; classtype:icmp-event; detection_filter:track by_dst,
count 500, seconds 3;)" and " alert tcp any any -> $HOME_NET 80 (flags:
S; msg:"Possible SYN flood"; flow:stateless; sid:1000002; detection_-
filter:track by_dst, count 20, seconds 10;)". The first rule is designed
to generate an alert when counting 500 ICMP packets within a 3-
second timeframe. The second rule monitors TCP traffic from any
source to port 80, detecting SYN packets (S flag), and generating
an alert when the destination address receives more than 20 SYN
packets in 10 seconds. Both rules track by destination (our host)
since DDoS is attacked from various and too many source addresses
to count. Based on these rules, the response time for the detection
of these attacks was very fast by ICMP DoS being detected almost
instantly, and SYN flooding in approximately 1 second.
Next, we attempted the slow HTTP flood test. For the purpose

of this attack, we needed a better target. Thus, in this attack, we
switched the Temperature Web dashboard to be hosted on the Pi
instead of the laptop. After that, we performed the attack with the
following command: "slowhttptest -c 1000 -H -g -o slowhttp -i 10 -r
200 -t GET -u http://<host>:5000/ -x 24 -p 3". This command initiates a
Slowris-style HTTP attack to the host with 1000 connections, using
GET requests maximum length of 24 bytes at a rate of 200 requests
per second, with 10 seconds waiting for data and 3 seconds probe
connection timeouts. Since there wasn’t any specific rule against this
attack, we employed our rule to monitor port 5000 (Flask web port).
The rule "alert tcp any any -> $HOME_NET 5000 (msg:"FLASK HTTP
Flood"; threshold: type threshold, track by_src, count 100, seconds 10;
sid:40000056; rev:1;) " tracks the source and generates an alert when
there are more than 100 packets to port 5000 in 10 seconds. This
was effective in detecting such attacks since it was able to detect
the attack in less than a second.

Afterward, we performed an SSH brute-force attack with the help
of Hydra. We set up a wordlist with the help of a crunch tool. The
list contained 1000 entries, one of which was the password for our
Pi. We ran the command: "hydra -l pi -P wordlist.txt ssh://<host>".
To project SSH port 22 against this attack we utilized our custom
rule: "alert tcp any any -> $HOME_NET 22 ( msg:"SSH Brute Force
Attempt"; flow: established,to_server; content:"SSH"; nocase; offset:0;
depth:4; detection_filter:track by_src, count 5, seconds 60; sid:10000015;
rev:1;)". This rule monitors port 22 traffic, looks for the string case-
insensitive "SSH" and by tracking the source generates an alert if it
counts 5 attempts in 60 seconds. This rule responded to the attack in
a second and regularly provided alerts at periodic times, indicating
if the brute force is ongoing.

The next attack on our list was the Nmap scans. The performance
and resource specifications of the Nmap can be found in Table 6
and Figures 6, 7. In our system we had 4 services running, they
were VNC, OpenSSH, FTP and UPnP (Temp. dashboard running on
p5000). For this test, we performed numerous port and service scan
techniques. The test involved running 12 different scans with "nmap
(-s<S/T/A/W/M/V/C/U>/-PR/-A/-O) <host>". Since Nmap involves var-
ious types of attacks, we relied on Snort’s own default rules for

this attack. The response times for each attack were around 18 sec-
onds, with only the UDP ports scan taking 88 seconds. The alerts
generated in the attack accurately classified scans as "Attempted
Information Leak".
The Last Attack we tried was one of the variations of Man in

the Middle Attack, an ARP spoofing. The attacks involve sending
forged ARP packets to poison the ARP cache of the host and router
into linking the attacker’s MAC address with the IP of the other
device, resulting in traffic redirection and interception. To perform
this Attack we first enabled the network traffic forwarding with
"sysctl net.ipv4.ip_forward=1" and employed "ettercap -G" to open
the GUI of Ettercap. After that, we performed the attack by selecting
the router gateway and RPi IP as targets. Meanwhile, in Snort all
the ARP spoof protection setups were already enabled as described
in the section 2.1.1. With a response time of 1 second, IDS was
effectively able to identify the attack.
In Tables 5 and 3 you can also see the Detection rates and False

positives. Most of the False positives in the attacks were classified
as "BAD TRAFFIC" or "Consequetive TCP small segments" resulting
from traffic to ports 22 and 5000. These were most likely resulting
from our traffic generator script and attacks such as HTTP flood
and Brute Force to ports 22 and 5000. Due to some services running
on our Laptop, there were also occasional false alerts indicating
UPnP service discovery attempts. The most notable False positive
was in the SYN flood, where it alerted several incorrect TCP port
scans, miscellaneous activity and bad traffic alerts. Furthermore, in
terms of detection rates, the results were not as high as expected.
The internal detection rate in ICMP flood was good. However, SYN
Flood showed around 50% detection. Even without the packet drops
in some attacks such as HTTP and SSH BF, external detection rates
were low. Since Nmap scans didn’t generate as many alerts, for this
experiment they showed sufficient detection.

Table 3. False Positive Test Statistics

Attack Type with duration Num Attacks Alerts FP

ICMP Flood (340s) 19264990 3111810 21
TCP Flood (330s) 17545878 2039951 253
HTTP Flood (240s) 1000 connections 1919 372

SSH Brute Force (613s) 90.86 tries/min, 636 tries 393 221
ARP spoof (340s) unk 36 2

(nmap, -sSTAWM, -PR) (30-50s) unk 2 per each 0
(nmap -sV) (154s) unk 2 0
(nmap -A) (177s) unk 4 1
(nmap -O) (50s) unk 3 0
(nmap -sC) (62s) unk 3 1
(nmap -sU) (1076s) unk 21 6

Table 4. Power Consumption Statistics

Attack Type Duration Usage Wakeups/s

ICMP Flood 320s 9.1 ms/s 0.12
TCP SYN Flood 320s 31.6 ms/s 5.0
HTTP Flood 260s 409.2 us/s 0.04

SSH Brute Force 490s 57.4 us/s 0.07
NMAP Scans 340s 360.3 us/s 0.13
ARP spoof 340s 48.8 us/s 0.09
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Table 5. Attack Table V1 RQ1

Attack Type with duration NumOfAttackPkts Response time Alerts Packets processed External DR Pkts/sec Packets Dropped

ICMP Flood(352s) 10128751 0.077s 2686664(92.724%) 2897481 26.525% 8231 16136076 (45.881%)
TCP SYN Flood(333s) 8973979 1.075s 2971030(46.786%) 6350191 33.107% 19069 11923351 (39.485%)

Slow HTTP Flood(240s) 1000 connections 0.3s 120(0.268%) 44702 12% 160 0%
SSH Brute Force(673s) 601 tries, 85.86 tries/min 1s 177(0.504%) 34974 29% 51 0%

ARP spoof(340s) unk 1s 36(0.154%) 23358 unk 68 0%
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Fig. 8. CPU and MEM Resource Usages of Snort across different attacks

Table 6. Attack Table V2(Nmaps) RQ1

Attack Type Response time Packets processed Pkts/sec

(nmap)(45s) 18s 3712 82
(nmap -sSTAWM)(35-43s) (17.8-17.9s) (3223-3537) (78-92)

(nmap -PR)(54s) 17.77s 3865 71
(nmap -sV)(154s) 18.18s 7996 51
(nmap -A)(177s) 18.53s 8933 50
(nmap -O)(50s) 17.92s 3802 76
(nmap -sC)(62s) 17.96s 4541 73
(nmap -sU)(1076s) 88.32s 40832 37

3.2 Answering RQ2
In this section, we did multiple tests and modifications on Snort
configuration files to try to increase the effectiveness of the IDS in
detecting and logging the attacks.
For this experiment, we chose to test Snort against DoS attacks.

The main reason why we selected DoS attacks is they generate the
most alerts and better Packet I/O data. Thus, we believe they would
be the ones that would show if there is any potential improvement
in Snort.

In an attempt to improve Snort performance, we have tried several
modifications to the Snort config file. Our main goal was to examine
if we could make the IDS process and analyze more packets. If more
packets were to be analyzed, more alerts could have been gener-
ated, thus better detection rate could have been achieved. Initially,
we started changing configs in the base detection engine section.
The First modification we did was increasing pcre_match_limit and
pcre_match_limit_recursion from 3500 to 5000 and from 1500 to 2000
respectively. These settings specify how many times Snort will try

to match a packet to a rule using Perl Compatible Regular Expres-
sions (PCRE) before giving up. By raising these parameters, Snort’s
capacity to detect complex attacks could get improved. Then, we
increased the max-pattern-len from 20 to 30 in the detection config
where ac-split search method was defined. Themax-pattern-len con-
trols the maximum length of the patterns Snort searches. After that,
we raised the number of events Snort can handle simultaneously,
by increasing max_queue in event_queue config from 8 to 16. Next,
we doubled the maximum amount of data that Snort buffers before
discarding it, by changing the value of paf_max to 32000. We then
moved to the preprocessor configuration section. In this section, the
first thing we did was disable all the normalization preprocessors.
Since they are more useful in IPS mode, we didn’t require them, as
our focus was only on IDS mode. Next, we increased 8 times the
Snort’s ability to handle large amounts of fragmented traffic. By
modifying max_frags in frag3_global preprocessor, we increased
the number of fragments Snort can maintain at any given time.
In the stream5_global preprocessor, we raised the IDS’s ability to
handle large amounts of TCP and UDP traffic by 4 times, by in-
creasing values of max_tcp and max_udp. In http_inspect_server
preprocessor by increasing the values of chunk_length by 4 times,
and values of oversize_dir_length, max_header_length, max_headers,
max_spaces by doubling, we enhanced the capability of Snort to
handle larger amounts of HTTP traffic. These were the main con-
figuration changes we tried to improve the effectiveness of Snort
against our attacks.
We decided the test the IDS performance in 3 ways with the

following commands: "sudo snort -A fast -c /path/to/snort.conf -i eth0
-l /path/to/logfile", "sudo snort -A fast -c /path/to/snort_Modified.conf
-i eth0 -l /path/to/logfile, sudo nice -20 snort -A fast -c /path/to/snort_-
Modified.conf -i eth0 -l /path/to/logfile". First was running the attacks
against regular configuration, second was with modified and third
was with the highest priority. As a result, surprisingly, none of
the modifications or the priority changes we tried had any major
effects on the packet processing and performance of Snort. All the
performance test results can be seen in Tables 7, 8 and in Figure
15. The notable resource usage difference in test versions was: The
second and third commands hadmorememory usage and the second
command had higher power usage.

3.3 Answering RQ3
In this section, we describe the vulnerability assessments we took
to find security issues affecting Snort IDS and tested a few attacks
against Snort’s detection. In Table 9 you can find the attacks that
we tested.

First, we explored different kinds of Scan attacks to try to test the
IDS. One scanning tool we found to be effective as nuclei. Nuclei
is a customizable vulnerability scanning tool that was created in
2020 by projectDiscovery an open-source cyber security company.
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Table 7. Attack Table RQ2

Attack Type with duration NumOfAttackPkts Response time Alerts Packets processed Pkts/sec Packet Drop FP

ICMP_FLOOD_CV0(329s) 15417059 1.442s 2425932(99.528%) 2437413 7408 10161861(44.646%) 4
ICMP_FLOOD_CV1(331s) 17111445 1.212s 2674129(99.725%) 2681474 8101 9870959(44.021%) 6
ICMP_FLOOD_CV2(331s) 15522480 0.938s 2574306(99.639%) 2583595 7805 9941963(44.250%) 20
SYN_FLOOD_CV0(327s) 15501579 0.898s 1729377(50.172%) 3446874 10540 8589316(41.644%) 206
SYN_FLOOD_CV1(330s) 16142825 0.672s 1716858(50.188%) 3420864 10366 8610579(41.714%) 159
SYN_FLOOD_CV2(328s) 15870443 0.454s 1760632(51.036%) 3449769 10517 8502459(41.567%) 191
HTTP_FLOOD_CV0(280s) 1000 conn 1.695s 1907(119 relevant) 49481 176 0% 399
HTTP_FLOOD_CV1(273s) 1000 conn 1.411s 2102(120 relevant) 49473 181 0% 397
HTTP_FLOOD_CV2(276s) 1000 conn 1.195s 2011(122 relevant) 49108 177 0% 394

Table 8. Power Statistics for RQ2

Attack Type Duration Usage Wakeups/s

ICMP_FLOOD_CV0 329s 74.1 ms/s 0.08
ICMP_FLOOD_CV1 331s 94.3 ms/s 0.07
ICMP_FLOOD_CV2 331s 74.5 ms/s 0.06
SYN_FLOOD_CV0 327s 66.9 ms/s 0.05
SYN_FLOOD_CV1 330s 82.1 ms/s 0.07
SYN_FLOOD_CV2 328s 69.2 ms/s 0.05
HTTP_FLOOD_CV0 280s 671.6 us/s 0.06
HTTP_FLOOD_CV1 273s 1.1 ms/s 0.07
HTTP_FLOOD_CV2 276s 1.0 ms/s 0.08
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Fig. 9. IDS CPU-ICMP Floods
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Fig. 10. IDS MEM-ICMP Floods
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Fig. 11. IDS CPU-SYN Floods
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Fig. 12. IDS MEM-SYN Floods
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Fig. 13. IDS CPU-HTTP Floods
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Fig. 14. IDS MEM-HTTP Floods
Fig. 15. IDS CPU and MEM Resource Usages across DoS with diff. Confs

Table 9. Effectiveness of Security Metrics

Security Metric Detected Snort Affected

Nuclei Scan No No
IPv6 DoS Echo Yes No

DoS Attack Overwhelm DoS Yes, Hidden Attack No No
Buffer Overflow Yes No

Fragmented Buffer Overflow Yes No
Exploits - No

Special-Crafted Packet No No

Its customizability allows you to utilize and create YAML files ac-
cording to your specific needs. For our security testing, we decided
to download and use one of the predefined templates created by
their community. The command we ran for testing is as follows:

"nuclei -u <host> -t <path to temp folder/network>". Surprisingly,
when combined with the network template, this command was able
to discover services such as VNC and SSH and their versions in
our system. The IDS failed to detect these scans, which suggests a
potential vulnerability where attackers could apply nuclei instead of
Nmap for covert reconnaissance. It is important to note that nuclei
were not as comprehensive as Nmap, as it missed detecting the FTP
service. Nevertheless, considering nuclei is new and in ongoing
development, it has the potential to match Nmap’s effectiveness in
service scans in future.

Next, We tested the IDS against IPv6 attacks, to assess its ability to
detect IPv6. It is important that Snort detects IPv6 since every year
IPv4 addresses are depleting[12] and more companies are starting
to transition to IPv6. Thus, we changed the Snort HOME_NET to
detect IPv6 as well. The new HOME_NET in our Snort is as follows:

Listing 1. Snort HOME_NET

i p v a r HOME_NET [ 2 0 0 1 : 1 c 0 6 : 1 b0 e : 2 6 0 0 : : / 6 4 ]
i p v a r HOME_NET 1 9 2 . 1 6 8 . 1 7 8 . 0 / 2 4
To test IPv6 we used ICMPv6EchoRequest and created a small custom
DoS script targeting the IPv6 address of the Pi with Scapy. we also
had to make small count modifications in our ICMP rule for it to
detect Python loop DoS. Since Hping3 DoS is much faster than a
regular while true loop, we modified the ICMP rule as follows:"alert
icmp any any -> any any (msg:"ICMPv6 flood"; sid:1000001; rev:1;
classtype:icmp-event; detection_filter:track by_dst, count 50, seconds
3;)". In the end, Snort was able to detect this, and thus it confirmed
that Snort can be used to protect IoT from regular IPv6 attacks.
Afterwards, we tested the IDS against DoS Overwhelming. We

found that when snort is busy processing DoS attack packets, any
other attacks made to the same system are undetected by the RPi
IDS. While the DoS attack was in progress, we noticed that attacks
such as Brute Force and Nmap are being undetected by the IDS. This
raised another potential vulnerability for an attacker to perform
covert various types of attacks while Snort’s attention is diverted.

Later we assessed the RPi IDS against Buffer Overflow and Frag-
mented Buffer Overflow. Snort with its own default rules was not
able to detect the attack packet. However, after we enabled the pre-
processor rule set(footnote 2) we added earlier for the ARP spoof, It
was able to detect both attacks accurately as some irregular Data
on the SYN packet. Additionally, it is worth noting that Snort pro-
duced alerts for some small fragments as well, albeit it incorrectly
identified them as DoS attempts. Nonetheless, the IDS’s ability to
detect fragments was a notable milestone in its capacity to identify
potential signs of fragmented attacks.
Lastly, we evaluated the IDS against exploits and one specially

crafted packet. We utilized ExploitDB and MetaSploit for testing

6



Raspberry-Pi based IDS for IoT TScIT 39, July 7, 2023, Enschede, The Netherlands

exploits and shellcodes targeted at Snort. Since Snort 2.9 is written
in C, most of the exploits were attempting to cause segfaults in Snort,
which is why we didn’t have any entry in the Detection section
of Table 9 for Exploits. All the exploits and shellcodes we tested
targeted at Snort were useless against the latest Snort version (2.9.20).
Out of all the exploits, the exploits for CVE-2009-3641 took our
attention the most, since they were using specially crafted ICMPv6
packets. With a little modification, we replicated the custom packet.
Originally, this exploit was causing Snort Application to crash. It
was fixed in later versions of the Snort (after version 2.8.5). However,
for our security assessment, we tested Snort’s ability to detect the
DoS attack with the crafted packet. As a result, Snort was not able to
detect the DoS attack. This discovery introduced another potential
vulnerability that could be exploited by attackers to overwhelm the
target system undetected.

4 DISCUSSION
This section will discuss limitations, and reasons for some of the
main results, address if possible solutions for the vulnerabilities
found, and perform a comparative analysis with the other related
works in the field.

In this research, we conducted all the experiments using only a sin-
gle instance of Snort IDS rather than running separate instances for
different types of attacks. This choice was driven by the lightweight
nature of most real-world IoT applications. We believe usually most
IoT manufacturers utilize lesser, more cost-effective boards, such
as RPi Zero or Pico in the IoT appliances. These boards have lesser
CPU power and thus, it would not be ideal for IDS to hog most CPU
power to itself since extra CPU usually goes into other services
running inside the IoT devices.
The main significant limitation in this research was the single-

threaded nature of the Snort 2 application. We believe this had a
substantial impact on our performance results since Snort 2 utilizes
one packet thread per process[9]. We believe this combined with
other limitations of Snort 2 itself, could also be the reason why our
configuration change attempts at improving the performance failed.
After all, in the end, we found that themain factors that affect Snort’s
performance are Hardware resources, Network traffic, Rule sets, and
Snort’s own internal architecture. Moreover, detection rates for DoS
and Brute force attacks were also influenced by these limitations.
DoS detection rates were especially affected by this since they had
40% packet drop rates due to being unable to handle all the traffic.
While it is essential to aim for accurate and consistent detection
rates, reaching 100% detection is normally unlikely. Another main
factor was the alert rule’s complexity, which we believe affected
the performance of HTTP and Brute force attempts. In the end,
in a lightweight IoT environment, where limited resources and
constrained processing capabilities may exist, the ability to detect
that a particular kind of attack happened, even without precise
specifics or accurate attack counts, might still be important. It could
help in identifying attack patterns and help in making security and
incident response strategies. In addition, one of the vulnerabilities
we found, a DoS overwhelm, was the result of this limitation as
well. Usually, this kind of vulnerability is solved by utilizing multi-
threaded IDS, however, for IoT devices employing rate limiting and
traffic shaping techniques could also control the influx of incoming

traffic, and prevent DoS from overwhelming the IDS. As regards to
other vulnerabilities found, the DoS with crafted packets and nuclei
scan, the most we can do is regularly update Snort and the rule
sets and utilize new weekly community rules to the IDS. Snort’s
current inability to recognize detection patterns for nuclei scans and
crafted packets can be due to several kinds of factors. Firstly, nuclei
being a relatively new technology requires security specialists more
time to study their patterns and develop precise detection rules.
Additionally, the unpredictable nature of specially crafted packets
presents challenges in anticipating all the potential variations and
devising effective rules for them. Thus, as the threat landscape
shifts, IDSs like Snort are constantly updated to handle new attack
methods. However, developing and integrating complete detection
rules might require quite some time.

Throughout the literature, there have been many papers evaluat-
ing IDS performance and resource utilization on various platforms.
In Table 10 you can find the overview of attacks and IDSs by other
researchers.

Kyaw et al.[5] have tested their RPi 2 running Snort and Bro(now
Zeek) IDSs against SYN flood, Spoofing, and port scanning. In our
research, we also examined these attacks. However, we obtained
slightly different findings. For SYN flooding of 437369 and 357650
packets with 30% background traffic(BT), Kyaw et al. found that
Snort experienced an 11.36%, and Bro experienced 40.76% packet
drop rates. In comparison, our system experienced packet drops of
39.48% for Snort during 8973979 attack packets. They also analyzed
the packet processing speed during ARP spoofing with 60% BT and
observed Snort and Bro achieving 400 and 394 Pkts/sec, respectively,
while our system processed 68 Pkts/sec when Snort processed 23358
packets during spoofing. Next, during port Scanning attacks with
90% BT, they reported Snort had 9.6% and 23.5% and Bro had 56.3%
and 4.6% CPU and MEM utilization respectively. In contrast, during
Nmap scans, we experienced initial CPU usage spikes up to 40% and
MEM rising up to only 0.8%.

Furthermore, Sforzin et al.[8] evaluated their RPi 2 Snort against
various types of malicious recorded Pcap trafficwith different speeds.
We believe their trafficwas mainly DDoS/DoS. They have found that,
when the data rates surpassed 60 Mbit/s, their system experienced
CPU usage ranging from 20-100% with packet losses ranging from
40-80%. In comparison, during ICMP and SYN floods, our system
encountered CPU usage ranging from 10-95% with packet drop rates
of up to 45%.
Moreover, Visoottiviseth et al.[11] developed and evaluated the

"PITI" system, which utilized an RPi 3 and Snort IDS for the de-
tection of DoS, password, SQLi, and Evil Twin attacks. While our
research did not directly target SQLi and Evil Twin attacks, we
carried out more in-depth testing focused on DoS and password
attacks. Visoottiviseth et al. reported that their system generated
few alerts for DoS and password attacks and had a low amount of
false negatives. Our system, on the other hand, produced a higher
amount of false positives and issued significantly more alerts during
ICMP, SYN DoS, and brute force attacks. Their paper also shows
CPU usages of 14-53%, while our system had 10-95% CPU usages
during DoS and less than 1% CPU usages during Brute Force.
Additionally, Coşar et al. [1] assessed the performance of Snort

and Suricata IDSs on RPi 3 against SYN flood, UDP flood, and Smurf
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Table 10. Comparison with other IDS Measurement Papers

References Detection Method Pi Model IDS Attacks Environment

Kyaw et al. [5] Misuse-based Pi 2-B Snort, Bro SYN flood, ARP
spoofing, port scanning

Conventional

Sforzin et al. [8] Misuse-based Pi 2-B Snort - IoT
Visoottiviseth et al. [11] Misuse-based,

Anomaly-based, Hybrid
Pi 3-B Snort SQLi, Password,

DoS/DDoS, Evil Twin
IoT

Coşar et al. [1] Misuse-based Pi 3-B Snort, Suricata SYN flood, Smurf, UDP
flood

Conventional

Our Proposed Solution Misuse-based Pi 4-B Snort ICMP, SYN, HTTP
Floods, Password, ARP
spoof, port and service

scans

IoT

attacks. Among these, we focused solely on the SYN flood. During
which, Coşar et al. observed packet drop rates of 6.9% for Snort and
34.9% for Suricata, while in our system we encountered drop rates
of around 40%.
In summary, our findings vary from the aforementioned papers,

showing differences in various metrics. In the end, based on the lit-
erature review and to our knowledge, our proposed solution gained
an advantage over the solutions presented in the literature, since
we did a more in-depth analysis of many of the attacks experienced
by the IDS systems.

5 CONCLUSION
In this research paper, we proposed a Snort IDS system based on
RPi as a lightweight security solution for IoT devices. We conducted
a series of attack scenarios, made configuration modifications to
evaluate the IDS performance, and assessed the vulnerability of
the IDS itself to test its effectiveness in IoT environments. Our
findings demonstrated that the RPi-based Snort IDS successfully
detected various types of attacks, including ICMP, SYN,HTTP floods,
Brute Force attempts, Nmap, and Spoofing. The IDS showed prompt
responses to most of the attacks we tested, although there was a
slight delay in responding to Nmap, likely due to the nature of
Nmap’s probing mechanism. Regarding false positives, we observed
that when the IDS protected a specific IoT device, it did not generate
alarming false positives. Instead, it primarily provided alerts related
to the state of network traffic. The detection rates did not meet our
initial expectations when encountering high volumes of DoS traffic,
which led to elevated CPU usage and packet drops in the IDS. The
detection rates also depended on the complexity of the alert rules.
Despite these findings, the IDS demonstrated a reasonable level
of accuracy in recognizing attacks, allowing for estimates of their
potential severity. Additionally, the IDS efficiently utilized system
resources, consuming less than one-fifth of the available RAM on
the RPi, making it a suitable choice for low-powered IoT devices
with 1 GB RAM.

Moreover, based on our observations, it was evident that mod-
ification of configuration, as well as adjustments to high-priority
levels, had minimal effect on Snort’s packet processing and overall
performance. Instead, we identified that the key factors influencing
the performance of the IDS are its internal architecture, the complex-
ity of rule sets, the hardware environment, and the network traffic
itself. These findings emphasize the significance of taking these key
parameters into account when enhancing Snort’s performance in
real-world deployment environments.

Furthermore, during our research, we identified three vulnerabil-
ities in the IDS, a DoS overwhelming, undetected nuclei scan and
undetected crafted packet attacks. While we identified a remedy
for the first vulnerability, the remaining two are currently without
a definitive resolution. Nonetheless, we have provided potential
recommendations for addressing them in Section 4

For futurework, we plan to test the performance ofmulti-threaded
IDS solutions like Snort 3 and Suricata on the RPi. Additionally, we
intend to evaluate the performance of multiple running instances
of Snort and explore more complex IDS rule signatures.

REFERENCES
[1] Mustafa COŞAR and Harun Emre KIRAN. 2018. Performance Comparison of

Open Source IDSs via Raspberry Pi. In 2018 International Conference on Artificial
Intelligence and Data Processing (IDAP). 1–5.

[2] Mohammed El-Hajj, Ahmad Fadlallah, Maroun Chamoun, and Ahmed
Serhrouchni. 2019. A survey of internet of things (IoT) authentication schemes.
Sensors 19, 5 (2019), 1141.

[3] Mohammed El-Hajj, Hussien Mousawi, and Ahmad Fadlallah. 2023. Analysis
of Lightweight Cryptographic Algorithms on IoT Hardware Platform. Future
Internet 15, 2 (2023), 54.

[4] Mario Frustaci, Pasquale Pace, Gianluca Aloi, and Giancarlo Fortino. 2018. Eval-
uating Critical Security Issues of the IoT World: Present and Future Challenges.
IEEE Internet of Things Journal 5, 4 (2018), 2483–2495.

[5] Ar Kar Kyaw, Yuzhu Chen, and Justin Joseph. 2015. Pi-IDS: evaluation of open-
source intrusion detection systems on Raspberry Pi 2. In 2015 Second International
Conference on Information Security and Cyber Forensics (InfoSec). 165–170.

[6] Mardiana binti Mohamad Noor and Wan Haslina Hassan. 2019. Current research
on Internet of Things (IoT) security: A survey. Computer Networks 148 (Jan. 2019),
283–294. https://www.sciencedirect.com/science/article/pii/S1389128618307035

[7] Juan Ruiz Lagunas, Anastacio Hernández, Mauricio R. Reyes-Gutiérrez, Ferreira-
Medina Heberto, Torres-Millarez Cristhian, and Paniagua-Villagómez Omar. 2019.
How to Improve the IoT Security Implementing IDS/IPS Tool using Raspberry Pi
3B+. International Journal of Advanced Computer Science and Applications 10 (Jan.
2019).

[8] Alessandro Sforzin, Félix Gómez Mármol, Mauro Conti, and Jens-Matthias Bohli.
2016. RPiDS: Raspberry Pi IDS — A Fruitful Intrusion Detection System for IoT. In
2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and Big Data
Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBD-
Com/IoP/SmartWorld). 440–448.

[9] Snort.org. 2023. Why Snort 3? https://www.snort.org/snort3
[10] Abid Sultan, Muhammad Azhar Mushtaq, and Muhammad Abubakar. 2019. IOT

Security Issues Via Blockchain: A Review Paper. In Proceedings of the 2019 In-
ternational Conference on Blockchain Technology (ICBCT 2019). Association for
Computing Machinery, New York, NY, USA, 60–65. https://dl.acm.org/doi/10.
1145/3320154.3320163

[11] Vasaka Visoottiviseth, Gannasut Chutaporn, Sorakrit Kungvanruttana, and Jirapas
Paisarnduangjan. 2020. PITI: Protecting Internet of Things via Intrusion Detection
System on Raspberry Pi. In 2020 International Conference on Information and
Communication Technology Convergence (ICTC). 75–80. ISSN: 2162-1233.

[12] Abubakar Zakari, Maryam Musa, Girish Bekaroo, Surayya Ado Bala, Ibrahim
Abaker Targio Hashem, and Saqib Hakak. 2019. IPv4 and IPv6 Protocols: A
Comparative Performance Study. In 2019 IEEE 10th Control and System Graduate
Research Colloquium (ICSGRC). 1–4.

8

https://www.sciencedirect.com/science/article/pii/S1389128618307035
https://www.snort.org/snort3
https://dl.acm.org/doi/10.1145/3320154.3320163
https://dl.acm.org/doi/10.1145/3320154.3320163

	Abstract
	1 Introduction
	2 Research Methodology
	2.1 Measurement Environment
	2.2 Measurement Metrics

	3 Results
	3.1 Answering RQ1
	3.2 Answering RQ2
	3.3 Answering RQ3

	4 Discussion
	5 Conclusion
	References

