
LOAD TRANSPORTATION WITH AN ELASTIC
CABLE: MODELING AND CONTROL

N. (Niels) ter Heerdt

BSC ASSIGNMENT

Committee:
prof. dr. ir. A. Franchi

dr. S. Sun
Y. Shen

dr. ing. A. Lavrenko

July, 2023

029RaM2023
Robotics and Mechatronics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Abstract—In this paper, research was done to see how cable
elasticity affects the behaviour of a quadrotor Unmanned Aerial
Vehicles (UAVs) carrying a slung load. The research consists of
two main steps. In the first step, a non-linear model was derived
using the Newton-Euler method. This resulted in the rotational
and translational equations of motion of the system. The model
was then simulated and validated using Simulink. The second
step was to design a controller for the UAV. This was done by
finding the equilibrium for hovering, which is used as a basis
for the linearization of the non-linear system. The linearization
resulted in the Jacobian matrix A and input matrix B, these were
validated using the linmod function. With this A and B matrix,
an LQR controller for the system was designed and implemented
in Simulink. The controller was the tested by letting it track a
certain position and a circular path.

I. INTRODUCTION

Multi-rotor Unmanned Aerial Vehicles (UAVs) have been
applied for load transportation, such as package delivery. In
the future it might even be applied in flying taxis. However,
attaching load, especially those with large sizes, directly
underneath the UAV can disturb the airflow detrimentally and
can consequently reduce the aerodynamic efficiency. The sling
load operation is a solution to tackle this issue, in which the
load is connected to the UAV through a tether. Literature
already tackles this problem by neglecting the elasticity of
the cable, treating it as a rigid link, hence lacking accuracy.
[1] [2] There has also already been research done into elastic
slung loads, but these make use of non-linear control strategies
to control the system. [3]. Although there has been a lot
of research, there is no literature about linear control for
these dynamic systems. In order to know more about how the
elasticity of the cable affects the system behaviour, consider
that the system consists of a single quadrotor (UAV), a point-
mass load, and an elastic cable. The load and cable can be
simplified as a mass-spring-damper system. This brings about
the following question: "How does the elasticity in the cable
affect the system behaviour of a quadrotor UAV". In this paper
a non-linear model is derived. This model was then linearized
and used to design an LQR controller.

II. DYNAMIC MODEL

To derive the dynamic model, the free body diagram is
used. For this derivation a couple of simplifications were made
namely:

• The elastic slung load is connected to the centre of mass
(COM) of the quadrotor

• The frame of the drone is considered rigid
• The load is considered a point mass
The system to be considered is a quadrotor which is carrying

an elastic slung load. The load is modelled by a point mass
connected with a spring damper to the centre of the UAV. In
figure 1 the free body diagram of the model is shown. With
the Q and T vectors showing the reaction torque and thrust
respectively. The rigid frame is sketched by a black cross and
the force due to the cable is shown as Fcable. In this paper,
two frames will be considered the (right hand) reference frame
denoted by subscript ’e’ and the (right hand) body fixed frame

(BFF) which is rigidly connected to the centre of mass of
the UAV, with the x- and y-axis being on the frame of the
quadcopter.

Fig. 1. Free body diagram of the system

To be able to describe the system’s motion, the position of
the UAV and point mass were taken at the COM expressed in
the reference frame. This is expressed by the vector:

pe = [xv, yv, zv, xp, yp, zp]
T (1)

To derive the dynamic equation the Newton Euler method is
used. [4] The translational equation of motion can be described
by using the sum of forces acting on the system in the
reference frame. To convert between the body-fixed frame and
reference frame a rotation matrix can be constructed such that
re =e Rbrb. One way to describe this rotation is with the
Euler angles, in this paper the Z-Y-X [5] order is used. Here,
the angles ϕ,θ andψ correspond to rotations around the Z-, Y-
and X- axis. The derivation for this can be found in appendix
B.

eRb =

cψcθ cψsϕsθ − cϕsψ sψsϕ+ cψcϕsθ
cθsψ cψcϕ+ sψsϕsθ cϕsψsθ − cψsϕ
−sθ cθsϕ cψcθ]

 (2)

Here, the s and c stand for sine and cosine respectively. To
convert from reference to BFF the transpose of this rotation
matrix is used.

A. Translational

Now that all the forces can be described in the reference
frame, the translational equations of motion become:

Mp̈ = Fg + Ft + Fc (3)

[3] Here M denotes the mass matrix described by:

M =

[
mvI3x3 03x3

03x3 mpI3x3

]
(4)

With Fg describing the forces due to gravity, Ft describing
the forces due to thrust and Fc describing the tension force

2

that is applied by the cable to the UAV and payload.
The thrust force is in the positive z- direction in BFF and thus
needs to be rotated back to the reference frame using equation
II. The trust generated by the rotors can be described by the
use of aerodynamics where the thrust for one of the rotors is
proportional to:

Ti = cT ∗ ω2
i (5)

The total thrust produced by the rotors can be calculated by:
[4]

TΣ = Σ4
i=1Ti = cTΣ

4
i=1ω

2
i (6)

The thrust is always in the z direction in BFF resulting when
rotated back in:

Ft =


(sϕsψ + cϕcψsθ)TΣ
(cϕsψsθ − cψsϕ)TΣ

(cϕcθ)TΣ
0
0
0

 (7)

The force due to gravity is always pointing down in the
reference frame from the COM of the UAV this then gives:

Fg =


0
0

−mvg
0
0

−mpg

 (8)

The tension force in the cable is modelled as a spring damper
resulting in a mass spring damper system. The force that the
cable is acting on the mass is negative to the force acting
on the UAV due to Newton’s Third Law. This results in the
following:

Fc =

[
(ka(l − l0) + cavr)ê
−(ka(l − l0) + cavr)ê

]
(9)

In equation II-A ka is the axial stiffness of the cable and ca
is the dampening coefficient. l0 represents the initial length
of the cable and l is the actual length of the cable which
can be described by: ||rp − rv|| here rp = [xpypzp]

T is
the absolute position of the payload and rv = [xvyvzv]

T is
the absolute position of the UAV. vr is the absolute relative
velocity which is described by: vr = (ṙp − ṙv) · ê. To get
the forces in the corresponding direction the tension force
is multiplied by the unit direction vector ê =

rp−rv
l where

l =
√

(xp − xv)2 + (yp − yv)2 + (zp − zv)2. [3]

B. Rotational

The rotational equation of the UAV stays the same as for
a normal UAV this is due to the assumption that the cable is
connected to the COM of the UAV. This makes the rotational
equation equal to:

I

ṗq̇
ṙ

 =

U2

U3

U4

−

pq
r

× I

pq
r

 (10)

In equation 10, the I stands for the inertia matrix which is:

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (11)

The p, q and r are the rotations around the BFF axes. For the
inputs U2 U3 and U4 are considered which are the moments
around the x-, y- and z- axis of the BFF respectively. The
rotors create a reaction torque on the airframe which can be
modelled by:

Qi = cQω
2
i (12)

This will generate a certain torque around the z- axis of the
BFF. The moments around the x- and y-axis can be achieved
by increasing and decreasing the thrust on opposing sides,
because the thrust difference between the rotors times the
distance will cause a moment around the axis. The moments
around the BFF are summarized in equation 13.U2

U3

U4

 =

 0 dct 0 −dct
−dct 0 dct 0
−cQ cQ −cQ cQ



ω2
1

ω2
2

ω2
3

ω2
4

 (13)

During the simulation, the Euler angles are needed, but the
physics only determines the rotations around the axis, so a
mapping is needed between the rotational rate and the Euler
angles. This can be achieved by considering only a small
change in the Euler angle and inspecting what the influence
is on the rotational rate. This results in the mapping shown in
equation 14. pq

r

 =

1 0 −sθ
0 cϕ sϕcθ
0 −sϕ cϕcθ

ϕ̇θ̇
ψ̇

 (14)

To find the Euler angle rate as a function of the rotational
rate, the inverse of this rotation matrix is taken resulting in
equation 15. [5]ϕ̇θ̇

ψ̇

 =

1 sϕtθ cϕtθ
0 cϕ −sϕ
0 sϕ

cθ
cϕ
cθ

pq
r

 (15)

III. HOVER EQUILIBRIUM

The next step after deriving the dynamic equations, is to find
the equilibrium for hover. To find the equilibrium for hovering
it is needed to have the accelerations, velocities and Euler
angles equal to 0. This simplifies equation 3 to equation 16.
This causes the vector ê to simplify to only a z-component,
which results in

[
0 0 1

]T
.

0
0
0
0
0
0

 =


0
0

−mvg
0
0

−mpg

+


0
0
TΣ
0
0
0

+


0
0

ka(l − l0)
0
0

−ka(l − l0)

 (16)

3

This system of equations can be solved by solving for l in the
last row resulting in equation 17. This can then be substituted
back into the third row which then is simplified to equation
19.

l = −mpg

ka
+ l0 (17)

−mvg + TΣ + ka(−
mpg

ka
+ l0 − l0) = 0 (18)

Fz = (mv +mp) ∗ g (19)

This is the required force in the z-direction for a hovering
flight. To find the rotor speeds required for this force equations
6 and 13 are used. Resulting in the following set of system of
equations:

ct(ω
2
1 + ω2

2 + ω2
3 + ω2

4) = (mv +mp) ∗ g (20)

dct(ω
2
2 − ω2

4) = 0 (21)

dct(ω
2
1 − ω2

3) = 0 (22)

dcq(−ω2
1 + ω2

2 − ω2
3 + ω2

4) = 0 (23)

The required rotor speeds all need to be the same following
the last 3 equations. Solving the first equation results in:

ω1 = ω2 = ω3 = ω4 =

√
(mv +mp)g

ct
(24)

The stationary point around which the equilibrium for hovering
can be calculated then follows from finding the steady state
of the system. This can be achieved by using the required
rotor speeds as input for the simulation. This will then give
the steady state coordinates for the UAV and payload. This is
simulated using the matlab script described in appendix C.[

0 0 zvss 0 0 zpss
]T

(25)

A. Validation

To validate if the designed non-linear system and hover
equations are correct, two Simulink simulations were made.
The first simulation implements the previously described equa-
tions of motion. The second simulation makes use of the 6 DoF
(Euler angle) block out of the aerospace toolbox. This block
uses a different convention for the BFF-axis, namely with the
z-axis down. To account for this, all forces and moments are
rotated by an angle π around the x-axis resulting in a rotation
matrix:

6DoFRb =

1 0 0
0 −1 0
0 0 −1

 (26)

During these simulations, all initial conditions were set to 0
except for the zv = zvss and the zp = zpss. The variables
used are shown in table III-A.

First, it is verified that it will fall down when there is no
input to the system. As can be seen in figure 2, only the
z-coordinates of payload and the UAV change. As can be
seen in the left and right-hand side of the figure the two
graphs are exactly the same. Then to verify if the spring

Parameter Value Parameter Value
Mv [kg] 10 ka [N/m] 100
Mp [kg] 10 ca [Ns/m] 10
g [m/s2] 9.81 ct 0.1
I [kgm2] 0.01 cq 0.5
l0 [m] 1 d [m] 1

TABLE I
USED PARAMETERS IN THE SIMULATION

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time(s)

-20

-15

-10

-5

0

h
e

ig
h

t(
m

)

Equations

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time(s)

-20

-15

-10

-5

0

h
e

ig
h

t(
m

)

6DoF

Fig. 2. System response with no input

damper connection is working, the input is set to the value that
returns from equation 24. The payload and UAV should start
oscillating around their equilibrium position. The dampening
effect is first neglected to see if the spring is working. As
can be seen in figure 3, this corresponds to what happens;
the sinusoidal signal keeps the same amplitude and the force
between the UAV and payload is inverse as the zv and zp go
in the same rate but, in negated direction.

To see if the dampening is functioning well the ca term is
now included. This gives the graph shown in figure 4. This
shows that as time progresses that an equilibrium is reached
in the z-direction and eventually the velocities go to 0.

The mass spring damper subsystem is now verified together
with the rotational part. This is achieved by considering each
axis separately and seeing if it acts correctly. First for every
axis a negative moment is applied around this axis in BFF. So
first a negative moment is put around the Y-axis. This should
cause the Euler angle around y, the height of the UAV, the
height of the payload and the value of xp and xv to start
decreasing as the input force stays the same. This is the same
behaviour that can be observed in figure 5. The top left shows
the result from the equations of motion and the top right shows
the 6DoF implementation. The bottom graph is the two graphs
plotted on top of each other such that it can be seen that
the values are the same. This is also checked with a positive
moment and then for the Y and Z axis. This is shown in
appendix A.

IV. CONTROLLER

A Linear Quadratic Regulator (LQR) controller was chosen,
because it is widely used due to it finding the optimum control

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

-2

0

2

4
States over time hover ca = 0 equation implementation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

-2

0

2

4
6DoF implementation

Fig. 3. System response without dampening

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

-2

-1

0

1

2

States over time hover ca = 0 equation implementation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

-2

-1

0

1

2

6DoF implementation

Fig. 4. System response with dampening

for linear systems. To design such a controller, it is needed that
equations 3 and 10 are in the form of equation 27 and 28.

ẋ = Ax+Bu (27)

y = Cx+Du (28)

A. Linearization

The derived system is still non-linear while the LQR con-
troller is applicable to linear systems. However, it is still
possible to apply this control theory to a non-linear system by
linearizing it around a specific point. This changes the state
space equations to:

∆̇x = A∆x+B∆u (29)

∆y = C∆x+D∆u (30)

[6] The linearization will be done around the equilibrium
position for which equations were derived in section III.

∆x =

x1 − x∗1
...

xn − x∗n

 (31)

Here the x∗ is the equilibrium point. The same holds for the
input u, where u∗ is the equilibrium for hovering resulting in
equation 32.

∆u =

u1 − u∗1
...

un − u∗n

 (32)

These new coordinates are the variations away from the
equilibrium point. These can be seen as the new states, control
inputs, and control outputs. To find the Jacobian matrix, a

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

-30

-20

-10

0

overlayed

0 1 2 3 4 5

time(s)

-30

-20

-10

0

h
e
ig

h
t(

m
)

Equations

0 1 2 3 4 5

time(s)

-30

-20

-10

0

h
e
ig

h
t(

m
)

6DoF

Fig. 5. Negative moment around Y-axis

partial derivative is taken over the different equations of
motion with respect to all the states. This can be written down
as in equation 33. Matrix B can be derived by taking the partial
derivative of f with respect to the input. The function f stands
for the derivative of the states so f1 = ẋ1 until fn = ẋn where
n is the number of states

A =
∂f

∂x
, B =

∂f

∂u
(33)

[6]
To linearize the model, the next step is to choose the states.

The chosen states are:
x = [xv, yv, zv, xp, yp, zp, ẋv, ẏv, żv, ẋp, ẏp, żp, p, q, r, ϕ, θ, ψ]
The state function f results in the following:

ẋ1 = ẋv (34)

ẋ2 = ẏv (35)

ẋ3 = żv (36)

ẋ4 = ẋp (37)

ẋ5 = ẏp (38)

ẋ6 = żp (39)

ẋ7 =
1

mv
((sϕsψ+cϕcψsθ)TΣ+ka(l− l0)êx+cavr êx) (40)

ẋ8 =
1

mv
((cϕsψsθ−cψsϕ)TΣ+ka(l− l0)êy+cavr êy) (41)

ẋ9 = −g + 1

mv
((cϕcθ)TΣ + ka(l − l0)êz + cavr êz) (42)

˙x10 =
1

mp
(−ka(l − l0)êx − cavr êx) (43)

˙x11
1

mp
= (−ka(l − l0)êy − cavr êy) (44)

˙x12 = −g + 1

mp
(−ka(l − l0)êz − cavr êz)) (45)

˙x13 =
U2 + (Iyy − Izz)qr

Ixx
(46)

5

˙x14 =
U3 + (Izz − Ixx)pr

Iyy
(47)

˙x15 =
U4 + (Ixx − Iyy)pq

Izz
(48)

˙x16 = p+ rcψtθ + qsψsθ (49)

˙x17 = qcψ − rsψ (50)

˙x18 = r
cψ

cθ
+ q

sψ

θ
(51)

For the linearization, the equilibrium point x∗ =
[0, 0, 2.5, 0, 0, 0.5,01x12] and u∗ = [(mv +mp)g, 0, 0, 0] the
result of this is shown in appendix F1. This was calculated
using the script in appendix D. For the validation, the function
linmod is used which can linearize a Simulink system around
a specified equilibrium point. When the theoretically derived
equations are correct the A and B matrix results should be
the same. This is the case as can be seen in appendix section
F1 and F2.

B. Controllability

To see if the system is controllable, the controllability matrix
is calculated which is specified as equation 52. The system is
then controllable when the rank of matrix C is equal to the
number of states.

C =
[
A A2... AnB

]
(52)

[7] This was then calculated using Matlab with the code from
appendix E. This gave that the system was full rank and thus
fully controllable.

C. LQR synthesis

The goal of an LQR controller is to find the optimal control
by minimizing J in equation 53. [8]

J =

∫ ∞

0

(xTvQxv + uTRu)dt (53)

Here, Q is a nxn matrix where n is the number of states
and R is an mxm matrix where m is the number of inputs.
Here Q is chosen to be an nxn identity matrix. In figure 6 the
implementation of the controller is shown. Here a reference
state can be given as input to the system.

Fig. 6. Controller implementation in Simulink

D. Position control

When implementing the controller as in figure 6, it has
a large steady-state error when moved away from the equi-
librium position. To solve the steady-state issue an integral
feedback is used. In this problem, the payload must stay at
a certain position or track a trajectory. The implementation
works by introducing three extra states in the controller which
will be the integral of the position of the payload. This can
be described by equations 54. [9]

v =

∫ xpyp
zp

 dt (54)

By augmenting the state vector with this, the new state space
model becomes equation 55. Here G = [03x3I3x3] which
ensures that only the payload position is integrated.[

ẋ
v̇

]
=

[
A 018x3
G 03x15

] [
x
v

]
+

[
B
03x4

]
u (55)

The control input is also changed to:

u = −K
[
x− u∗

v − vref

]
(56)

vref is the desired position of the payload, therefore the
control input to the system is changed to uapplied = u + u∗.
In figure 7 the implementation is shown in Simulink.

Fig. 7. Integral LQR controller in Simulink

V. RESULTS

To see how the controller performs, tests are done. First,
the LQR controller will be tested for its ability to control it
around a hover position. Second, the improved controller with
position control is tested by flying it to a certain position in
space. At last, it is tested if the controller is able to let the
package trace a circular trajectory.

A. LQR

For the first test, the reference is set at 0 and there are
no disturbances present. The LQR controller was designed
with Q = I18x18 and R = I4x4. In figure 8 the response
of the system is shown after about 5 seconds it has reached
its equilibrium position and is stable here.

To check whether the controller is robust, disturbances are
introduced in the form of Gaussian noise. These are included
as forces around the payload in x, y and z directions. As can
be seen in figure 9 It is able to keep the x and y within
0.25[m] of the origin. But it is also able to control the z of
the payload and of the UAV within a tolerance of 0.25[m]

6

0 1 2 3 4 5 6 7 8 9 10

time(s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

h
e
ig

h
t(

m
)

response hover no disturbace

Fig. 8. Controller performance in hover no disturbance

0 2 4 6 8 10 12 14 16 18 20

time(s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

h
e
ig

h
t(

m
)

response hover with disturbace

Fig. 9. Controller performance in hover with disturbance

around its equilibrium position. What also becomes evident is
that in both cases the controller is not able to compensate for
the oscillations caused by the initial conditions.

B. Position control

For this simulation, the initial length of the rope l0 is
increased to 10 [m]. The reference point of the payload is
set at [3,5,2]. For the LQR controller, a Q was used of

Q = 100

[
I18x18 018x3
03x18 100I3x3

]
and a R = I4x4. This resulted in

figure 10. What can be seen is that the payload reaches the set
point in about eight seconds in which the steady-state error is
zero. Here, it can also be seen that the oscillations caused by
the mass spring damper system are not controlled well in the
beginning.

C. Tracking a circular trajectory

To see if the designed controller is able to make the payload
trace a circular trajectory with a radius of 5[m], the reference
is changed to zref = 5[m] and the xref = 5 ∗ sin(t)[m] and
yref = 5 ∗ cos(t)[m]. In figure 11, the result is shown. In this
figure, the cross corresponds to the UAV at a certain time and
the o to the position of the payload in time. The corresponding
times are connected via a line which is the cable. As can

0 5 10 15

time(s)

-4

-2

0

2

4

6

8

10

12

14

h
e

ig
h

t(
m

)

Position tracking

Fig. 10. System response when flying to setpoint [3,5,2]

Fig. 11. Payload tracking a circular reference

be seen, it is able to follow the circle quite well after it has
stabilized.

VI. DISCUSSION

The designed controller is able to converge to the desired
position quite well. The downside is that it does not take
care of the initial oscillations of the system after these have
damped out, then it has no problem controlling the location
of the payload. The reason it is not able to take care of these
oscillations is probably due to it being linearized around a
certain position and that it does not include these dynamics. To
solve this issue more research has to be done into for example
non-linear controllers or gain scheduling LQR.

VII. CONCLUSION

The paper presented a detailed model of an UAV carrying
an elastic-slung load. For this system, the equilibrium for
hovering was determined as well as a linearized state space
form. On the basis of this linearized state space, a LQR
controller was designed to keep the UAV at its hover position.
With the LQR controller a steady state error was experienced,

7

this was solved by introducing an integral feedback on the
position of the payload. This was then tested by letting it
hover at a point outside the equilibrium and tracing a circular
trajectory which was succesfull. This paper was based on the
following research question: "How does the elasticity in the
cable affect the system behaviour of a quadrotor UAV". It
can now be said that taking the elasticity into account can
lead to new interesting trajectories by the controller being
able to utilize the elasticity for getting to the desired position
quickly. For future work, it would be interesting to look
into the possibility of using trajectory tracking by either a
gain-scheduling LQR controller or a non-linear controller and
exploring a wider range of different types of cable.

REFERENCES

[1] Kamil Us, Altan Cevher, Mert Sever, and Ahmet Kirli. On the effect
of slung load on quadrotor performance. Procedia Computer Science,
158:346–354, 01 2019.

[2] Ying Feng, Camille Alain Rabbath, and Chun-Yi Su. Modeling of a
Micro UAV with Slung Payload, pages 1257–1272. Springer Netherlands,
Dordrecht, 2015.

[3] Alexander Cicchino. Three Formulations of Sling Load Dynamics for
UAV Motion Planning and Control. McGill University, 2018.

[4] Peter Corke Robert Mahony, Vijay Kumar. Multirotor aerial vehicles
modeling, estimation and control of quadrotor. IEEE Robotics and
automation magazine, pages 20–32, 2012.

[5] Michael Triantafyllou. Maneuvering and control of surface and under-
water vehicles (13.49), 2004.

[6] University of Toronto. Ece311 - dynamic systems and control lineariza-
tion of nonlinear systems, 2007.

[7] Erfan Nozari. Lecture 3: Stability, controllability observability, 2010.
[8] Faraz Ahmad, Pushpendra Kumar, Anamika Bhandari, and Pravin P. Patil.

Simulation of the quadcopter dynamics with lqr based control. Materials
Today: Proceedings, 24:326–332, 2020. International Conference on
Advances in Materials and Manufacturing Applications, IConAMMA
2018, 16th -18th August, 2018, India.

[9] R. Praveen Jain. Transportation of cable suspended load using unmanned
aerial vehicles: A real-time model predictive control approach. PhD
thesis, 08 2015.

APPENDIX

A. Validation of the equations of motion

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

-30

-20

-10

0

overlayed

0 1 2 3 4 5

time(s)

-30

-20

-10

0

h
e
ig

h
t(

m
)

Equations

0 1 2 3 4 5

time(s)

-30

-20

-10

0

h
e
ig

h
t(

m
)

6DoF

Fig. 12. Negative moment around X-axis

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

-10

0

10

20

30
overlayed

0 1 2 3 4 5

time(s)

-10

0

10

20

30

h
e

ig
h

t(
m

)

Equations

0 1 2 3 4 5

time(s)

-10

0

10

20

30

h
e

ig
h

t(
m

)

6DoF

Fig. 13. Positive moment around Y-axis

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time(s)

-10

0

10

20

30

h
e

ig
h

t(
m

)

Equations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time(s)

-10

0

10

20

30

h
e

ig
h

t(
m

)

6DoF

Fig. 16. negative moment around ZX-axis

8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

-2

-1

0

1

2

overlayed

0 1 2 3 4 5

time(s)

-2

-1

0

1

2
h
e
ig

h
t(

m
)

Equations

0 1 2 3 4 5

time(s)

-2

-1

0

1

2

h
e
ig

h
t(

m
)

6DoF

Fig. 14. Negative moment around Z-axis

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (s)

0

1

2

3
overlayed

0 1 2 3 4 5

time(s)

0

1

2

3

h
e
ig

h
t(

m
)

Equations

0 1 2 3 4 5

time(s)

0

1

2

3

h
e
ig

h
t(

m
)

6DoF

Fig. 15. Positive moment around Z-axis

B. Rotation matrix

1 %Rotation matrix
2 syms theta phi psi
3 Rz = [cos(phi) sin(phi) 0; -sin(phi) cos(

phi) 0; 0 0 1];
4 Ry = [cos(theta) 0 -sin(theta); 0 1 0 ;

sin(theta) 0 cos(theta)];
5 Rx = [1 0 0; 0 cos(psi) sin(psi); 0 -sin(

psi) cos(psi)];
6 Rb = Rx*Ry*Rz;
7 Re = transpose(Rb);

C. Find equilibrium

1 %matlab visualization
2 model = 'ModelFindSteadyState'; %

Vervang 'naam_van_je_simulink_model'
door de werkelijke naam van je
Simulink-model

3
4 load_system(model);
5
6 % Simuleer het model
7 simOut = sim(model, 'StopTime', '60', '

SrcWorkspace', 'current');

8
9 States = transformTo2DArray(simOut.States

.Data);
10 EqPoint = States(:,length(States))

D. Finding the A and B matrices

1 syms x_v y_v z_v x_p y_p z_p x_dot_v
y_dot_v z_dot_v x_dot_p y_dot_p
z_dot_p phi theta psi U1 U2 U3 U4 ca
ka mv mp g Ixx Iyy Izz I l0 p q r

2 RR = [1 0 -sin(theta); 0 cos(phi) sin(phi
)*cos(theta);0 -sin(phi) cos(phi)*cos(
theta)]%[cos(theta) 0 -cos(phi)*sin(
theta); 0 1 sin(phi); sin(theta) 0 cos
(phi)*cos(theta)]

3 U = [U2; U3; U4];
4 pqr = [p;q;r];
5 Is = [Ixx 0 0; 0 Iyy 0; 0 0 Izz];
6 dotpqr = inv(Is)*(U- cross(pqr,(Is*pqr)))
7 Rinv = simplify(inv(RR))
8 dotphithetapsi = Rinv*pqr
9

10 vr = [(x_dot_p-x_dot_v); (y_dot_p-y_dot_v
);(z_dot_p-z_dot_v)]

11 l = sqrt((x_p-x_v)^2+(y_p-y_v)^2+(z_p-z_v
)^2)

12 ek = 1/l*[x_p-x_v;y_p-y_v;z_p-z_v]
13 vrk = dot(vr,ek)*ek
14
15 syms theta phi psi
16 Rz = [cos(psi) sin(psi) 0; -sin(psi) cos(

psi) 0; 0 0 1]
17 Ry = [cos(theta) 0 -sin(theta); 0 1 0 ;

sin(theta) 0 cos(theta)]
18 Rx = [1 0 0; 0 cos(phi) sin(phi); 0 -sin(

phi) cos(phi)]
19 Rb = Rx*Ry*Rz
20 Re = simplify(inv(Rb))
21 vU1 = [0;0;U1];
22 FU1 = Re*vU1
23
24 eq1 = x_dot_v; % Eq for x_dot_v
25 eq2 = y_dot_v; % Eq for y_dot_v
26 eq3 = z_dot_v; % Eq for z_dot_v
27 eq4 = x_dot_p; % Eq for x_dot_p
28 eq5 = y_dot_p; % Eq for y_dot_p
29 eq6 = z_dot_p; % Eq for z_dot_p
30 eq7 = 1/mv*(FU1(1)+ka*(x_p-x_v)-ka*l0*(

x_p-x_v)/(sqrt((x_p-x_v)^2+(y_p-y_v)
^2+(z_p-z_v)^2))+ca*vrk(1)) %Eq for
xdotdotp

31 eq8 = 1/mv*(FU1(2)+ka*y_p-ka*y_v- ka*l0*(
y_p-y_v)/(sqrt((x_p-x_v)^2+(y_p-y_v)
^2+(z_p-z_v)^2))+ca*vrk(2)) %Eq for
ydotdotp

9

32 eq9 = -g + 1/mv*(FU1(3)+ka*z_p-ka*z_v+ca*
vrk(3) - ka*l0*(z_p-z_v)/(sqrt((x_p-
x_v)^2+(y_p-y_v)^2+(z_p-z_v)^2))) %Eq
for zdotdotp

33 eq10 = -1/mp*(ka*(x_p-x_v)-ka*l0*(x_p-x_v
)/(sqrt((x_p-x_v)^2+(y_p-y_v)^2+(z_p-
z_v)^2))+ca*vrk(1)) %Eq for xdotdotv

34 eq11 =-1/mp*(ka*y_p-ka*y_v- ka*l0*(y_p-
y_v)/(sqrt((x_p-x_v)^2+(y_p-y_v)^2+(
z_p-z_v)^2))+ca*vrk(2)) %Eq for
ydotdotv

35 eq12 =-g + 1/mp*(-(ka*z_p-ka*z_v+ca*vrk
(3) + - ka*l0*(z_p-z_v)/(sqrt((x_p-x_v
)^2+(y_p-y_v)^2+(z_p-z_v)^2)))) %Eq
for zdotdotv

36 eq13 = dotpqr(1) % Eq for pdot
37 eq14 = dotpqr(2) % Eq for qdot
38 eq15 = dotpqr(3) % Eq for rdot
39 eq16 = dotphithetapsi(1) % Eq for phidot
40 eq17 = dotphithetapsi(2) % Eq for

thetadot
41 eq18 = dotphithetapsi(3) % Eq for psidot
42 xdot = [eq1 eq2 eq3 eq4 eq5 eq6 eq7 eq8

eq9 eq10 eq11 eq12 eq13 eq14 eq15 eq16
eq17 eq18]

43 x = [x_v y_v z_v x_p y_p z_p x_dot_v
y_dot_v z_dot_v x_dot_p y_dot_p
z_dot_p p q r phi theta psi]

44 u = [U1 U2 U3 U4]
45 z0 = 2;
46
47 A = jacobian(xdot,x)
48 A = subs(A,[Ixx,Iyy,Izz,U1,ca,ka,l0,mp,mv

,p,phi,psi,q,r,theta,x_p,x_v,y_p,y_v,
z_p,z_v, x_dot_p,x_dot_v,y_dot_v,
y_dot_p,z_dot_p,z_dot_v
],[0.01,0.01,0.01,(Mv+Mp)

*9.81,10,100,1,Mp,Mv
,0,0,0,0,0,0,0,0,0,0,0.5,2.5,0,0,0,0,0,0])

49 var = vpa(A)
50 A = double(A);
51 B = jacobian(xdot,u)
52 B = subs(B,[Ixx,Iyy,Izz,mp,mv,phi,psi,

theta],[0.01,0.01,0.01,Mp,Mv,0,0,0])
53 B = double(B);
54 C = ctrb(A,B)
55 rank(C)

E. Find controllable states

1 C = ctrb(a,b)
2 rank(C)
3 % Determine the controllable states
4 % Determine the controllable states for

each input

5 controllable_statestill1 = false(1, 14);
6 controllable_statestill2 = false(1, 14);
7 controllable_statestill3 = false(1, 14);
8 controllable_statestill4 = false(1, 14);
9 controllable_statestill5 = false(1, 14);

10 controllable_statestill6 = false(1, 14);
11 controllable_statestill7 = false(1, 14);
12 controllable_statestill8 = false(1, 14);
13 controllable_statestill9 = false(1, 14);
14 controllable_statestill10 = false(1, 14);
15 controllable_statestill11 = false(1, 14);
16 controllable_statestill12 = false(1, 14);
17 controllable_statestill13 = false(1, 14);
18 controllable_statestill14 = false(1, 14);
19
20 for i = 1:18
21 controllable_statestill1(i) = rank(c

(1:i, :)) == 1;
22 controllable_statestill2(i) = rank(C

(1:i, :)) == 2;
23 controllable_statestill3(i) = rank(C

(1:i, :)) == 3;
24 controllable_statestill4(i) = rank(C

(1:i, :)) == 4;
25 controllable_statestill5(i) = rank(C

(1:i, :)) == 5;
26 controllable_statestill6(i) = rank(C

(1:i, :)) == 6;
27 controllable_statestill7(i) = rank(C

(1:i, :)) == 7;
28 controllable_statestill8(i) = rank(C

(1:i, :)) == 8;
29 controllable_statestill9(i) = rank(C

(1:i, :)) == 9;
30 controllable_statestill10(i) = rank(C

(1:i, :)) == 10;
31 controllable_statestill11(i) = rank(C

(1:i, :)) == 11;
32 controllable_statestill12(i) = rank(C

(1:i, :)) == 12;
33 controllable_statestill13(i) = rank(C

(1:i, :)) == 13;
34 controllable_statestill14(i) = rank(C

(1:i, :)) == 14;
35 end
36
37 % Display the results
38 disp('States controllable by input 1:');
39 disp(controllable_statestill1);
40 disp('States controllable by input 2:');
41 disp(controllable_statestill2);
42 disp('States controllable by input 3:');
43 disp(controllable_statestill3);
44 disp('States controllable by input 4:');
45 disp(controllable_statestill4);
46 disp('States controllable by input 5:');

10

47 disp(controllable_statestill5);
48 disp('States controllable by input 6:');
49 disp(controllable_statestill6);
50 disp('States controllable by input 7:');
51 disp(controllable_statestill7);
52 disp('States controllable by input 8:');
53 disp(controllable_statestill8);
54 disp('States controllable by input 9:');
55 disp(controllable_statestill9);
56 disp('States controllable by input 10:');
57 disp(controllable_statestill10);
58 disp('States controllable by input 11:');
59 disp(controllable_statestill11);
60 disp('States controllable by input 12:');
61 disp(controllable_statestill12);
62 disp('States controllable by input 13:');
63 disp(controllable_statestill13);
64 disp('States controllable by input 14:');
65 disp(controllable_statestill14);

F. Linearization

1) Result from equations

A =



0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

−5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 981
50

0

0 −5 0 0 5 0 0 0 0 0 0 0 0 0 0 − 981
50

0 0

0 0 −10 0 0 10 0 0 −1 0 0 1 0 0 0 0 0 0
5 0 0 −5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 5 0 0 −5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 10 0 0 −10 0 0 1 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0



B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1
10

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100
0 0 0 0
0 0 0 0
0 0 0 0


2) Result form linmod

A =



0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

−5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 981
50

0

0 −5 0 0 5 0 0 0 0 0 0 0 0 0 0 − 981
50

0 0

0 0 −10 0 0 10 0 0 −1 0 0 1 0 0 0 0 0 0
5 0 0 −5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 5 0 0 −5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 10 0 0 −10 0 0 1 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0



B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1
10

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100
0 0 0 0
0 0 0 0
0 0 0 0



11

	Introduction
	Dynamic model
	Translational
	Rotational

	Hover equilibrium
	Validation

	Controller
	Linearization
	Controllability
	LQR synthesis
	Position control

	Results
	LQR
	Position control
	Tracking a circular trajectory

	Discussion
	Conclusion
	References
	Appendix
	Validation of the equations of motion
	Rotation matrix
	Find equilibrium
	Finding the A and B matrices
	Find controllable states
	Linearization
	Result from equations
	Result form linmod

